
Beyond Cmax: an optimization-oriented framework for

constraint-based scheduling

Arnaud Malapert, Sophie Demassey, Jean-Charles Régin

To cite this version:

Arnaud Malapert, Sophie Demassey, Jean-Charles Régin. Beyond Cmax: an optimization-
oriented framework for constraint-based scheduling. 2012. <hal-00976994>

HAL Id: hal-00976994

https://hal.archives-ouvertes.fr/hal-00976994

Submitted on 10 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL-Univ-Nantes

https://core.ac.uk/display/53002253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00976994

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES

DE SOPHIA ANTIPOLIS

UMR7271

Beyond Cmax: an optimization-oriented

framework for constraint-based scheduling

Arnaud Malapert, Sophie Demassey, Jean-Charles Régin

Équipe CeP

Rapport de Recherche

ISRN I3S/RR-2012-07-FR

Avril 2012

Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS

2000, route des Lucioles - Les Algorithmes - bât. Euclide B 06900 Sophia Antipolis - France

http://www.i3s.unice.fr

http://www.i3s.unice.fr/

Beyond Cmax: an optimization-oriented

framework for constraint-based scheduling

Arnaud Malapert

 1
 , Sophie Demassey

 2
, Jean-Charles Régin

 1

Équipe CeP

ISRN I3S/RR-2012-07-FR

Avril 2012 - 10 pages

Abstract: This paper presents a framework taking advantage of both the flexibility of constraint programming and the

efficiency of operations research algorithms for solving scheduling problems under various objectives and constraints. Built

upon a constraint programming engine, the framework allows the use of scheduling global constraints, and it offers, in

addition, a modular and simplified way to perform optimality reasoning based on well-known scheduling relaxations. We

present a first instantiation on the single machine problem with release dates and lateness minimization. Beyond the

simplicity of use, the optimizationoriented framework appears to be, from the experiments, effective for dealing with such a

pure problem even without any ad-hoc heuristics.

Key-words: Combinatorial optimization; Artificial intelligence; Constraints satisfaction; Scheduling

1 Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France – arnaud.malapert@unice.fr, jean-charles.REGIN@unice.fr
2 TASC project, Mines Nantes-INRIA, LINA CNRS UMR 6241 – sophie.demassey@mines-nantes.fr

mailto:arnaud.malapert@unice.fr
mailto:jean-charles.REGIN@unice.fr
mailto:sophie.demassey@mines-nantes.fr

Beyond Cmax: an optimization-oriented
framework for constraint-based scheduling

Arnaud Malapert1, Sophie Demassey2, and Jean-Charles Régin1

1 I3S CNRS UMR 7271, UNSA
2 TASC project, Mines Nantes-INRIA, LINA CNRS UMR 6241,

{firstname.lastname@{unice,mines-nantes}.fr

Abstract. This paper presents a framework taking advantage of both
the flexibility of constraint programming and the efficiency of operations
research algorithms for solving scheduling problems under various ob-
jectives and constraints. Built upon a constraint programming engine,
the framework allows the use of scheduling global constraints, and it
offers, in addition, a modular and simplified way to perform optimal-
ity reasoning based on well-known scheduling relaxations. We present a
first instantiation on the single machine problem with release dates and
lateness minimization. Beyond the simplicity of use, the optimization-
oriented framework appears to be, from the experiments, effective for
dealing with such a pure problem even without any ad-hoc heuristics.

All scheduling problems are defined by specific combinations of resource en-
vironments, job characteristics, objectives and side constraints which make them
all slightly different to solve and most of them highly combinatorial. A standard
approach for solving a given practical scheduling problem is to adapt and com-
bine different algorithms (relaxations, heuristics, search algorithms) that have
been designed for simpler mathematical models. As the peculiar aspects of the
problem are rarely compatible with these algorithms, they are simply ignored
during the solution process to be heuristically repaired afterwards. This results in
complex developments of a non-exact solution method dedicated to one problem.

As an alternative, a constraint programming (CP) engine lets the user specify
the different components of his problem separately, then automatically solves the
components jointly. The efficiency of the engine strongly depends on the manage-
ment of each independent component. In the context of scheduling, attention has
been paid on temporal networks [1] and, mainly, on resource conflicts given var-
ious filtering algorithms (edge-finding, not first/not last, etc) for disjunctive
and cumulative constraints [2]. These algorithms are mostly effective when min-
imizing the makespan, i.e. the schedule duration. However, makespan minimiza-
tion is not a realistic criterion in many contexts where other objective functions,
like the maximum lateness, the total tardiness or the weighted sum of the com-
pletion times, are preferred in practice [3]. Such regular objectives may be set as
additional constraints and variables in the model, but no effective propagation
can be obtained without considering the resource constraints and the temporal

2 A. Malapert, S. Demassey, J.-C. Régin

contraints at the same time. This is probably the main limitation of current CP
systems to their wide application to practical scheduling [4].

Our goal is to design a generic constraint-based scheduling framework, com-
bining the flexibility of CP for specifying complex scheduling problems with
various objectives and constraints, with the efficiency of ad-hoc branch-and-
bound (B&B) algorithms for solving the simplest models. These algorithms in-
clude accelerating features such as (for a minimization criterion): (i) relaxations
computing tight lower bounds at each node, (ii) filtering techniques discarding
either infeasible or sub-optimal decisions, (iii) branching strategies guided by
the relaxed solutions and impacting on them from one node to its child, and
(iv) heuristics computing upper bounds and feasible solutions, at the root node
only or during the search. These features are not standard in CP-based B&B
which are thus recognized to be weak for solving optimization problems in gen-
eral. The concept of using relaxations for integrating features (i) to (iii) has
been examined by Focacci et al. [5]. They show how to exploit relaxed optima in
CP-B&B for node pruning, domain filtering (also called back-propagation), and
search guiding. This approach has been fully applied to only few applications
in the current literature but since, back-propagation algorithms have demon-
strated their benefit when a convenient relaxation of a problem exists. In the
context of scheduling, several back-propagation algorithms have been applied
to specific problems with different optimality criteria, either for sum objectives,
e.g. weighted number of late jobs [6], total set-up times [5], total tardiness [7],
total earliness/tardiness [8, 9], total weighted completion time [10, 11], or for
bottleneck objectives, e.g. maximum lateness [12].

The unifying framework we propose aims at taking advantage of the generic-
ity of the full approach introduced by [5]. It is especially applicable to scheduling
problems for several reasons. From the user perspective, there exist libraries of re-
laxations and algorithms (e.g. [3, 13, 14]) which could be queried either manually
or automatically to be integrated in the framework. Furthermore, each relaxation
remains valid for various problems with different resource and job characteristics.
Finally, from the solver perspective, most of these algorithms, especially priority
list algorithms, offer all the features required (e.g. low complexity and incre-
mentality) to make the approach fully effective. To our knowledge, no generic
implementation of [5] has been proposed so far. The Aeon system [15] provides
a high-level modeling library and solvers for scheduling problems, but it does
not integrate this approach in a systematic way. Our framework can be seen as
a possible extension to this generic-purpose system.

Our first contribution, described in Section 1 of this paper, is a customizable,
modular and compositional template offering optimality reasoning functions to
any CP-B&B: the user specifies an algorithm for solving a relaxation of his core
problem, then the system automatically derives altogether basic bounding, fil-
tering (by probing) and search guiding (e.g. with regrets) techniques. The user
can also easily adapt these default functions to make them more effective with
his specific relaxation. To validate the framework, we present in Section 2 a first
instantiation on the single machine problem with release dates and lateness min-

Beyond Cmax: constraint optimization-based scheduling 3

imization (1|rj |Lmax) (see e.g. [16]) by implementing two standard relaxations.
This application confirms the simplicity of implementation offered by the frame-
work, while the experimental results given in Section 3 show its effectiveness.
In the future, we envisage to test models of other scheduling problems either
based on the same relaxations or requiring to implement new ones for different
objectives. Compared to ad-hoc solution methods for pure scheduling models,
which are mostly based on powerful meta-heuristics, we will also conduct a study
about the integration of heuristics in our generic framework.

1 The Optimization-oriented Framework

Relaxations in CP-based B&B. Pruning mostly derives from feasibility rea-
soning. When coping with an optimization problems with a B&B algorithm,
pruning must also proceed from optimality reasoning: Pruning a node means to
discard from the search a subset that contains no solution whose cost is better
than the current incumbent, i.e. the value of the best solution found so far. This
can be detected by solving a relaxation of the subproblem: the corresponding
node is pruned if the optimum of the relaxation equals or exceeds the incumbent.
Cost-based filtering allows to prevent such a thrash early, by removing variable-
value assignments which do not lead to solutions better than the incumbent. A
sub-optimal assignment is detected by estimating its extra-cost to the optimum
when added to the relaxation and, again, by comparing it to the incumbent.
Cost-guided branching aims at minimizing the size of the tree with strategies
that select the next branching according to the relaxed optima and solutions.
These are state-of-the-art techniques of integer linear programming solvers. In
contrast, they have received few attention in CP, one notable exception being
regret-based strategies. Relaxation-based heuristics can be run at each node
of the search to derive a feasible solution from a relaxed solution. When an
improving solution is found, the incumbent is updated.

To be effective, the features require certains informations that are not pro-
vided by all relaxations. Concerning heuristics, for instance, the solution of a
linear relaxation can rarely be made feasible, i.e. integer, while it is often pos-
sible to recover feasibility from a lagrangian or a combinatorial relaxation, de-
pending on the semantic of the relaxed constraints. A dual relaxation does not
even return a relaxed solution, but just a bound. Concerning cost-based filter-
ing, the default probing procedure, which consists in re-solving the relaxation
after adding each assignment decision independently, can be employed with any
relaxation. However, the procedure can be greatly improved when the relaxation
provides the bound estimates for all the assignments at once, as a gradient func-
tion. This is the case of linear and lagrangian relaxations with reduced costs. In
the context of CP, Focacci et al. [5] proposed to embed in a global constraint
an optimization component representing a suitable relaxation of the constraint
itself. The framework below is a customizable implementation of this approach.

4 A. Malapert, S. Demassey, J.-C. Régin

Specifications of the Framework. The framework attends to solve any con-
straint optimization problem P for which at least one convenient relaxationR ex-
ists. W.l.o.g assume that P is a minimization problem min{Z|Z = cost(X), X ∈
C} with C the constraints, X the decision variables, cost the objective func-
tion and Z a range variable representing the solution value. R can be stated
as min(X∈C′) cost(X) with C′ ⊆ C. At each point of the resolution, the current
domains D of variables X define an (optimization) instance of R denoted R(D):
min(X∈D∩C′) cost(X). With the upper bound Zmax of variable Z, they define a
satisfaction instance of P denoted P(D, Zmax): s ∈ D is a feasible solution of
P(D, Zmax) if and only if s ∈ C and cost(s) ≤ Zmax. As in a standard B&B,
each time a feasible solution of P(D, Zmax) is reached, i.e. when D becomes a
singleton {s}, it is stored as the new incumbent and the search goes on after the
maximum value Zmax has been restricted to cost(s)− 1.

The framework is built upon a standard CP engine and made of pre-imple-
mented generic components and of required and optional components the user
has to provide to solve its own problem P. First, the user adds to the model of
P a constraint relaxation(Z, X) whose solutions are (cost(s), s) for all feasible
solution s of P(D, Zmax). To ensure this, a propagator must be implemented
upon a given abstract template. The minimum implementation requires the code
of two primitives: buildRelaxation(D) that builds the instance R(D) from any
current domain D of X, and bound(D) that returns the optimal value of this
instance. The template is modular in order to be easily customized. The list of
primitives, their specifications and default implementations follow:
decisionList(D) returns a finite ordered list (D1, . . . , Dp) ⊆ Dp of decisions

to probe. The default is the list of assignments from variables X to values
in D in the lexicographic order.

probeDecision(Dk, Zmax) builds instance R(Dk) then returns (bound(Dk) >
Zmax) as a boolean. By default,R(Dk) is built from scratch using buildRelaxation.

pruneDecision(D, Dk) returns a restricted domain D′ with D \Dk ⊆ D′ ⊆ D.
filter(D, Zmax) returns the sublist of decisionList(D) of decisions Dk such

that probeDecision(Dk, Zmax) is true.
propagate(D, Zmax) notifies the propagation engine that: (i) Zmin := max(Zmin,bound(D))

then (ii), if no failure occurs (i.e. if bound(D) ≤ Zmax),D :=pruneDecision(D, Dk)
for each decision Dk ∈ D returned by filter(D, Zmax).

Hence, in the default implementation of the propagator, all variable-value as-
signments are probed in turn by, each time, building and solving the relaxation
from scratch. Depending on its knowledge of the relaxation, the user can greatly
improve this algorithm by overloading one or several primitives independently.
For instance, he may redefine decisionList in order to discard from probing
some assignments that are known for not changing the relaxed optimum value.
The way the decisions are probed in sequence is also crucial in terms of compu-
tational complexity. The relaxations can be built and solved, as follows, from the
less to the more incremental fashion: (i) by default, for each decision Dk, build
R(Dk) then solve it to get the optimum ; (ii) by overloading probeDecision,
build R(D) then, for each decision Dk, update R(Dk) then solve it to get the

Beyond Cmax: constraint optimization-based scheduling 5

optimum ; (iii) by overloading filter, build R(D) then solve it to get the opti-
mum and a gradient function then, for each decision Dk, get opt+gradient(Dk)
Furthermore, the optima of the probed relaxations can be exploited within the
branching strategy for guiding the search. Hence, these values and the associ-
ated decisions, are stored during the computation of filter, to be queried by
the search engine when choosing the next decision to branch, through different
primitives such as getBestCostDecision() or getBestRegretDecision().

Finally, most of the time, solving a relaxation R(D) returns the optimal
value with an optimal solution. This solution can also be exploited for guiding
the search (by assigning a variable to its value in the solution) or directly for
pruning the search if the solution is identified as feasible for P. Hence, when
possible the user will be interested to define these additional functions: relax(D)
returns an optimal solution of R(D) as an instantiation s ∈ D of X if exists,
and the empty set, otherwise (or by default); isFeasible(D) returns true iff
relax(D) is a feasible solution of P. The default just calls the solution checker
of the propagation engine; updateIncumbent(D, Zmax) notifies the search engine
of the new solution relax(D) if isFeasible(D) is true and its cost is lower than
Zmax (if the cost is Zmin then a backtrack occurs).

2 Application to 1|rj|Lmax

The scheduling model that we analyze is as follows. There are n independent jobs
J1, . . . , Jn that have to be scheduled without overlapping on a single machine.
Each job Jj requires processing during a given uninterrupted time pj ≥ 0, not
starting before its release date rj ≥ 0, and being ideally completed before a due
date dj ≥ 0. Let Cj denote the completion time of a job Jj , the objective function
to minimize is the maximum lateness defined as Lmax = max1≤j≤n(Cj − dj).

Basic Constraint Model. CP models of scheduling problems usually represent
a non-preemptive job Jj (also called task) by a triplet of non-negative integer
variables (sj , pj , ej) denoting the start, processing time and end of the task such
that sj + pj = ej . For every ordered pair of tasks Ji and Jj , i < j, we introduce
a boolean variable bij standing for the ordering between Ji and Jj . The value of
bij is equal to 1 if Ji precedes Jj and to 0 otherwise, i.e. if Jj precedes Ji. The
variables si, ei, sj , ej , and bij are linked by a disjunction constraint, on which
bounds consistency is maintained, and defined by:

disjunction(Ji, Jj , bij) ⇔ (ei ≤ sj ∧ bij = 1) ∨ (ej ≤ si ∧ bij = 0).

For n jobs, we must state a quadratic number (n(n − 1)/2) of disjunction con-
straints. The next constraint imposes that the objective variable Z is equal to the
maximal lateness of the tasks and the second next enforces that the makespan
T of the schedule is the latest completion time of its tasks. We also state a re-
dundant constraint on the objective variable which imposes that the maximal
lateness is greater than the makespan minus the greatest due date.

Z = max
1≤j≤n

(ej − dj), T = max
1≤j≤n

(ej), T − max
1≤j≤n

(dj) ≤ Z.

6 A. Malapert, S. Demassey, J.-C. Régin

Model Reinforcement. The model above is enough, but we can get stronger
inference by adding a disjunctive global constraint:

disjunctive(〈J1, . . . , Jn〉, T) (heavy)

We can also state a cubic number of boolean clauses which enforce the transi-
tivity of the precedence relations (assuming that bvu denotes 1− buv if u > v):

bik = v ∧ bkj = v ⇒ bij = v, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, v ∈ {0, 1} (clauses)

Next constraints break symmetries by ordering pairs of jobs with equal durations.
Their correctness can be proven by using simple interchange arguments:

(ri ≤ rj) ∧ (pi = pj) ∧ (di ≤ dj) =⇒ bij = 1 1 ≤ i ≤ n, 1 ≤ j ≤ n (order)

Cost-based Domain Filtering. We have tested our framework with two well-
known relaxations: 1|rj ; prec; pmtn|Lmax allowing preemption and that can be
solved in quadratic time by the modified due date algorithm, and 1|prec|Lmax ig-
noring the release dates and that can be solved in quadratic time by the Lawler
algorithm (see e.g. [3]). Thus, we provide two instances of the template con-
straint: relaxation[pmtn](Z, b, J) and relaxation[prec](Z, b, J). For both
relaxations, we implemented the following primitives: buildRelaxation initial-
izes in O(n2) the precedences (given bij), the release and due dates (given sj

and dj); relax executes in O(n2) the corresponding algorithm; probeDecision
calls a (≤ O(n2)) updateRelaxation method instead of buildRelaxation;
isFeasible checks in O(n) the feasibility of the solution returned by relax,
i.e. either the absence of preemption in [pmtn] or the respect of the release
dates in [prec].
We also overloaded the default decisionList primitive in order to only test a
subset of disjunctions which may actually change the current relaxed solution.
We propose two alternatives illustrated in Figure 1: rule swap tries in O(n) to
swap only the pairs of jobs with consecutive starting times in the relaxed solu-
tion; rule sweep additionally tries in O(n2), for [pmtn] only, to fix disjunctions
where a job is preempted by another. Note the modularity of the components
since we can state either zero or one or both relaxations in the model.

1 2a 3a 4 3b 2b 5 6

swap

sweep

Fig. 1: Overloading decisionList(D) for the relaxation 1|rj ; prec; pmtn|Lmax.

Beyond Cmax: constraint optimization-based scheduling 7

3 Experimental Results

This section presents computational experiments conducted to evaluate our
framework. The implementation is based on the java library Choco [17] and
tested on randomly generated instances proposed by Jouglet [11] ranging from
20 to 400 jobs (1440 instances: 240 for each n ∈ {20, 50, 100, 150, 200} and 120
for each n ∈ {300, 400}). The model is solved by a B&B algorithm guided by
branching on the boolean variables bij taken in lexicographic order. This realizes
the standard search strategy aiming at fixing the disjunctions between tasks. We
will evaluate the efficiency of the framework under two optimization procedures:
top-down and bottom-up. The top-down procedure starts with an upper bound
ub and tries to improve it. The bottom-up procedure starts with a lower bound
lb as target upper bound which is incremented by one unit until the problem
becomes feasible. The time limit has been fixed to 100 seconds for solving one in-
stance. In the result tables, opt denotes the number of instances solved optimally
by the CP-based B&B, and t̃, ñ and b̃ denote the average time (in seconds), the
average numbers of nodes and backtracks for this subset of instances.

Domain Initialization is an important preprocessing step to discard easy in-
stances and deductions. It consists in a) solving both relaxations to compute
a lower bound, b) if the relaxed solution is not feasible, computing an upper
bound using a simple randomized list heuristics over 100 iterations, c) if the
upper bound is not optimal, adjusting the domains of the variables accordingly.
To see the impact of this procedure on the basic model without any redundant
nor optimization constraint, we examined the 480 instances with less than 50
jobs. Results show that domain initialization is worthwhile because it solves,
alone, 189 instances optimally. It then allows the CP engine to solve more in-
stances, in less time, less nodes and less backtracks: for instance, the top-down
procedure solves 86 additional instances within 8 seconds in average whereas,
without domain initialization, it solves only a total of 21 instances within 20 sec-
onds in average. Finally, the bottom-up procedure gives the best results since it
solves, after initialization, 110 additional instances within 5 seconds in average.
This indicates that the simple relaxations we considered give quite tight lower
bounds for the problem. In the following experiments, we only consider those
“non-trivial” instances that are not solved by the initialization procedure alone.

Performance of the Relaxation-based Constraints. We evaluate the im-
pact of our optimization constraints relaxation[pmtn] and relaxation[prec]
upon the basic model. Table 1a gives results of the bottom-up and top-down pro-
cedures on the 818 non-trivial instances with less than 200 jobs: basic is the
basic model, pmtn, prec and pmtn+prec invoke pruning without filtering for each
or both relaxations, *-swap and *-sweep invoke pruning and cost-based filter-
ing. The results clearly show the necessity of considering lower bounds during
the resolution: the preemptive relaxation allows to solve at least 6 times more
instances at optimality. With the bottom-up procedure, cost-based filtering helps

8 A. Malapert, S. Demassey, J.-C. Régin

bottom-up top-down

opt t̃ ñ b̃ opt t̃ ñ b̃

basic 117 6.4 118k 181k 86 8.4 184k 278k

pmtn 743 5.4 683 313 587 10.1 6.4k 7.3k
pmtn_swap 766 7.0 334 93 565 15.0 2.5k 2.7k
pmtn_sweep 764 7.6 261 46 552 14.2 1.9k 1.9k

prec 149 4.6 47k 71k 109 9.9 117k 173k
prec_swap 158 5.1 41k 61k 114 7.5 74k 111k

pmtn_prec 743 5.6 690 332 584 10.6 6.2k 7.0k

(a) Cost-based filtering.

opt t̃ ñ b̃

pmtn_sweep 764 7.6 261 46

order 785 7.7 296 68
heavy 782 7.0 213 15
order+heavy 807 5.9 190 9

clauses 456 64.5 89 13

(b) Constraint models.

Table 1: Results on 818 non-trivial instances with less than 200 jobs.

then to solve more than 20 instances out the 75 remaining instances while greatly
reducing the tree size. With top-down instead, cost-based filtering occurs less of-
ten as the upper bound is not tight anymore. The second relaxation (prec) is
much less effective, because it ignores the release dates which are an important
information, especially at the beginning of the search when only a few disjunc-
tions are fixed. It even hinders the preemptive relaxation when both relaxations
(pmtn+prec) are used. However, as the lower bounds are less tight, cost-based
filtering appears as an improvement even with the top-down procedure.

Model Reinforcement. From the results above, we retain now the bottom-up
procedure on the pmtn_sweep model. Table 1b shows how the model is reinforced
by each type of redundant structural constraints: the clauses are both time and
memory consuming, while heavy and order allow to solve 18 and 21 additional
instances. Actually, they are even complementary since only 11 instances remain
unsolved by stating both heavy and order.

Comparisons of Branching Strategies and to a “Natural” Approach.
Branching strategies in scheduling can be divided into two main families: assign-
ing starting times (e.g. setTimes [18]) or fixing precedences (e.g. profile [19]
and slack/wdeg [20]). The top part of Table 2 show the behavior of our best
model (pmtn_sweep+heavy+order) in function of the different strategies

opt t̃ ñ b̃

lex 899 9.9 246 9
profile 867 11.9 505 1
slack/wdeg 805 13.7 556 1
setTimes 490 3.5 77 95

natural_bu 390 2.7 1.9k 9.1k
natural_td 311 3.4 3.6k 15.1k

Table 2: Main Results.

within a bottom-up procedure. They are compared on the whole
set of 995 non-trivial instances with up to 400 jobs.
In the context of lateness minimization, profile and
slack/wdeg do not help when compared to the static lex strat-
egy. In fact, the increased depth of the search tree prevents
to prove optimality when the algorithm starts to backtrack.
setTimes is not compatible at all with our model as many
relaxed solutions become infeasible because of fixed starting
times. Actually, this “natural” strategy is not more effective
with the “natural” model (i.e. the heavy model without relaxation), as shown
by the results in the bottom part of Table 2. These last results confirm the pre-
dominance of relaxation-based reasoning over redundant structural constraints
or branching strategies, when optimizing other objectives than the makespan in
a scheduling problem of that kind.

Bibliography

[1] Rina Dechter. Temporal constraint networks. In Constraint Processing,
pages 333–362. Morgan Kaufmann, San Francisco, 2003.

[2] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based
scheduling: applying constraint programming to scheduling problems, vol-
ume 39 of International Series in Operations Research and Management
Science. Springer, 2001.

[3] Peter Brucker. Scheduling algorithms. Springer Verlag, 2007.
[4] Claude Le Pape. Constraint-based scheduling: A tutorial. In First Interna-

tional Summer School on Constraint Programming, 2005.
[5] Filippo Focacci, Andrea Lodi, and Michela Milano. Cost-based domain fil-

tering. In Joxan Jaffar, editor, Proceedings of the 5th International Confer-
ence on Principles and Practice of Constraint Programming (CP 1999), vol-
ume 1713 of Lecture Notes in Computer Science, pages 189–203. Springer,
1999.

[6] P. Baptiste, C. Le Pape, and L. Péridy. Global constraints for partial csps:
A case-study of resource and due date constraints. Principles and Practice
of Constraint Programming, pages 87–101, 1998.

[7] Philippe Baptiste, Jacques Carlier, and Antoine Jouglet. A branch-and-
bound procedure to minimize total tardiness on one machine with arbitrary
release dates. European Journal of Operational Research, 158(3):595–608,
2004.

[8] A. Kéri and T. Kis. Primal-dual combined with constraint propagation for
solving rcpspwet. Operations Research Proceedings 2005, pages 685–690,
2006.

[9] Jean-Noël Monette, Yves Deville, and Pascal Van Hentenryck. Justin-time
scheduling with constraint programming. In International Conference on
Automated Planning and Scheduling (ICAPS’09), pages 241–248, 2009.

[10] A. Kovács and J.C. Beck. A global constraint for total weighted completion
time for unary resources. Constraints, 16(1):100–123, 2011.

[11] Antoine Jouglet. Single-machine scheduling with no idle time and release
dates to minimize a regular criterion. Journal of Scheduling, to appear.
URL http://dx.doi.org/10.1007/s10951-010-0185-x.

[12] Arnaud Malapert, Christelle Guéret, and Louis-Martin Rousseau. A con-
straint programming approach for a batch processing problem with non-
identical job sizes. European Journal of Operational Research, 2011.

[13] Peter Brucker, Sigrist Knust, and Christoph Dürr. The scheduling zoo.
http://www.lix.polytechnique.fr/d̃urr/query/.

[14] H. Bräsel, L. Dornheim, S. Kutz, M. Mörig, and I. Rössling. Lisa-a library
of scheduling algorithms. 2006.

[15] Jean-Noël Monette, Yves Deville, and Pascal Van Hentenryck. Aeon: Syn-
thesizing scheduling algorithms from high-level models. Operations Research
and Cyber-Infrastructure, pages 43–59, 2009.

http://dx.doi.org/10.1007/s10951-010-0185-x

10 A. Malapert, S. Demassey, J.-C. Régin

[16] Z. Liu. Single machine scheduling to minimize maximum lateness subject
to release dates and precedence constraints. Computers & Operations Re-
search, 37(9):1537–1543, 2010.

[17] Choco. http://choco.mines-nantes.fr.
[18] Claude Le Pape, Philippe Couronne, Didier Vergamini, and Vincent Gos-

selin. Time-versus-capacity compromises in project scheduling. In Pro-
ceedings of the Thirteenth Workshop of the U.K. Planning Special Interest
Group, 1994.

[19] J. Christopher Beck, Andrew J. Davenport, Edward M. Sitarski, and
Mark S. Fox. Texture-based heuristics for scheduling revisited. In
AAAI/IAAI, pages 241–248, 1997.

[20] Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert. Closing the
open shop: Contradicting conventional wisdom. In Ian P. Gent, editor,
Proceedings of the 15th International Conference on Principles and Practice
of Constraint Programming (CP 2009), volume 5732 of Lecture Notes in
Computer Science, pages 400–408. Springer, 2009.

http://choco.mines-nantes.fr

	Beyond Cmax: an optimization-oriented framework for constraint-based scheduling
	The Optimization-oriented Framework
	Relaxations in CP-based B&B.
	Specifications of the Framework.

	Application to 1|rj|Lmax
	Basic Constraint Model.
	Model Reinforcement.
	Cost-based Domain Filtering.

	Experimental Results
	Domain Initialization
	Performance of the Relaxation-based Constraints.
	Model Reinforcement.
	Comparisons of Branching Strategies and to a ``Natural'' Approach.

