277 research outputs found

    Priority-based intersection management with kinodynamic constraints

    Get PDF
    We consider the problem of coordinating a collection of robots at an intersection area taking into account dynamical constraints due to actuator limitations. We adopt the coordination space approach, which is standard in multiple robot motion planning. Assuming the priorities between robots are assigned in advance and the existence of a collision-free trajectory respecting those priorities, we propose a provably safe trajectory planner satisfying kinodynamic constraints. The algorithm is shown to run in real time and to return safe (collision-free) trajectories. Simulation results on synthetic data illustrate the benefits of the approach.Comment: to be presented at ECC2014; 6 page

    Using Genetic Algorithms with Variable-length Individuals for Planning Two-Manipulators Motion

    Get PDF
    International Conference on Artificial Neural Networks and Genetic Algorithms. 01/01/1997. NorwichA method based on genetic algorithms for obtaining coordinated motion plans of manipulator robots is presented. A decoupled planning approach has been used; that is, the problem has been decomposed into two subproblems: path planning and trajectory planning. This paper focuses on the second problem. The generated plans minimize the total motion time of the robots along their paths. The optimization problem is solved by evolutionary algorithms using a variable-length individuals codification and specific genetic operators

    Control of intelligent robots in space

    Get PDF
    In view of space activities like International Space Station, Man-Tended-Free-Flyer (MTFF) and free flying platforms, the development of intelligent robotic systems is gaining increasing importance. The range of applications that have to be performed by robotic systems in space includes e.g., the execution of experiments in space laboratories, the service and maintenance of satellites and flying platforms, the support of automatic production processes or the assembly of large network structures. Some of these tasks will require the development of bi-armed or of multiple robotic systems including functional redundancy. For the development of robotic systems which are able to perform this variety of tasks a hierarchically structured modular concept of automation is required. This concept is characterized by high flexibility as well as by automatic specialization to the particular sequence of tasks that have to be performed. On the other hand it has to be designed such that the human operator can influence or guide the system on different levels of control supervision, and decision. This leads to requirements for the hardware and software concept which permit a range of application of the robotic systems from telemanipulation to autonomous operation. The realization of this goal requires strong efforts in the development of new methods, software and hardware concepts, and the integration into an automation concept

    Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    Get PDF
    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace

    Coordination of several robots based on temporal synchronization

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper proposes an approach to deal with the problem of coordinating multi-robot systems, in which each robot executes individually planned tasks in a shared workspace. The approach is a decoupled method that can coordinate the participating robots in on-line mode. The coordination is achieved through the adjustment of the time evolution of each robot along its original planned geometric path according to the movements of the other robots to assure a collision-free execution of their respective tasks. To assess the proposed approach different tests were performed in graphical simulations and real experiments.Postprint (published version

    Collision avoidance for persistent monitoring in multi-robot systems with intersecting trajectories

    Get PDF
    Persistent robot tasks such as monitoring and cleaning are concerned with controlling mobile robots to act in a changing environment in a way that guarantees that the uncertainty in the system (due to change and to the actions of the robot) remains bounded for all time. Prior work in persistent robot tasks considered only robot systems with collision-free paths that move following speed controllers. In this paper we describe a solution to multi-robot persistent monitoring, where robots have intersecting trajectories. We develop collision and deadlock avoidance algorithms that are based on stopping policies, and quantify the impact of the stopping times on the overall stability of the speed controllers.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1051)National Science Foundation (U.S.). Graduate Research Fellowship Program (Award 0645960)Boeing Compan

    RISC-based architectures for multiple robot systems

    Get PDF
    Several approaches to multiple robot system control are discussed. In order to simplify the study a multilayered model is proposed: a control layer which directly acts on the dynamics of the manipulators, a coordination/communication layer which makes all the manipulators work together and a programming layer which interfaces with the user. For the first layer two architectural alternatives are studied: a centralized single processor system and a distributed multiprocessor with static task assignment. For the second case an implementation based on the 1960 family of RISC processors is introduced. For the second layer three possibilities are considered: serial interface, parallel bus and local area network. The latter is carefully studied and a low cost alternative to the standard deterministic network MAP is introduced. This cell network is based on the CSMA/DCR protocol implemented on the i82596 coprocessor. Two alternatives are discussed for the programming layer: a parallel programming language based on a scene approach and a C extended language used to program elementary tasks in a robot independent way coupled with an intelligent scheduler used to assign these tasks to the robot arms at run time

    Task-Space Decomposed Motion Planning Framework for Multi-Robot Loco-Manipulation

    Get PDF
    corecore