
RISC-based architectures for
multiple robot systems

G Jimenez, J L Sevillano, A Civit-Balcells, F Diaz and A Civit-Breu outline
several multi-layered approaches to multiple robot system control

Several approaches to multiple robot system control a r e

discussed. In order to simplify the study a multilayered
model is proposed: a control layer which directly acts on
the dynamics of the manipulators, a coordination/
communication layer which makes all the manipulators
work together and a programming layer which interfaces
with the user. For the first layer two architectural altematives
are studied: a centralized single processor system and a
distributed multiprocessor with static task assignmenL For
the second case an implementation based on the i960
family of RISC processors is introduced. For the second
layer three possibilities are considered: serial interface,
parallel bus and local area network. The latter is carefully
studied and a low cost alternative to the standard
deterministic network MAP is introduced. This cell network
is based on the CSMA/DCR protocol implemented on the
i82596 coprocessor. Two alternatives are discussed for the
programming layer: a parallel programming language
based on a scene approach and a C extended language
used to program elementary tasks in a robot independent
way coupled with an intelligent scheduler used to assign
these tasks to the robot arms at run time.

multiple robots multiprocessor control systems RISC LANs
intelligent task scheduling

As industrial processes grow more complex and com-
petitiveness increases the use of multiple robots in work
cells (which also include sensors, feeders, machine tools
etc.) is becoming more common. The main problem in
these systems is the precise synchronization of the
elements that make up the cell. Thus the robot arms must
be coordinated not only among themselves but also with
the information that comes from vision and other sensors
and with the rest of the machines in the system. The
controllers that are currently used for robots do not
include facilities to perform these functions. This is mainly

Arquitectura de Computadores, Facultad de Informatica, Universidad de
Sevilla, Avda, Rei,,a Mercedes s/n, 41012, Sevilla, Spain
Paper received: 2 March 1992

caused because these controllers are designed for single
robot systems or very lightly coordinated systems.
Although I/O signals are readily accesible from user
programs they are wholly insufficient if any coordination
that requires a certain ammount of data communication is
necessary. It is a fact, and in our opinion one element that
strongly opposes robot growth, that many controllers only
permit the programming of a robot in a machine-specific
language. The situation is so bad that is not uncommon
that the same manufacturer uses one language for some
of its robots and a different one for others 1.

Turnkey solutions 2 include the use of serial RS232 (or
similar) channels usually available in robots to implement
the coordination of complex systems. This architecture
may not have the bandwidth required to support the
coordination traffic in the cell but, what is more important,
it limits the design of flexible systems which could be
used in many different applications.

These reasons have led several universities and
research centres to develop controllers that allow the
implementation of sophisticated multiple robot systems 2' 3.
An example of these is the Robotic Instruction Processing
System (RIPS) from the University of California, Santa
Barbara (Figure 1).

In general the implementation of a multiple robot
system requires:

• The design of new controllers that permit a better
monitoring of robots as well as effective dynamic
control which improves system performance.

• The development of coordination and communication
systems between the individual robot controllers.
Several altematives can be considered according to the
required degree of coordination. Among these are:

Serial communication. This is the simplest altemative
and should be used whenever its performance is
acceptable
Parallel bus interface (e.g. IEEE 488, VME, Multibus
II)

Network interface (e.g. MAP, Ethemet)
• The development of software packages that manage

the set of robots and their interface to the rest of the
cell in an efficient way.

0141-9331/92/040177-09 © 1992 ButtenNorth-Heinemann Ltd

Vol 16 No 4 1992 177

VME BUS PRIVATE RUg
PRIVATE BUS

Diagnost.[I t J I

! i

I RP -ROBOTIC PROCESSOR
~ost. BUS B2

I/0 i~ ~-o~
HANDLER

¢

SC -SERVO CONTROLLER

IF -INTERFACE CARD

S -SENSOR

SB -SENSOR PROCESSING
BOARD

Figure 1

PROGRAMMING

1

COORD I NAT I ON

COMMUN I CAT I ON

c o ~ n " R O L

Figure 2

It is convenient to divide the study of multiple robot
systems into several layers as is done in other areas of
computer science 4' s. The main advantage of this approach
is that every layer can be studied and designed separately
from the others. Figure 2 shows our division of a multiple
robot system. In this paper each layer is studied con-
sidering its interfaces with the ones above and below it.

CONTROLLERS FOR MULTIPLE ROBOT SYSTEMS

As robots have been assigned more difficult tasks and the
performance constraints have grown their control units
have become increasingly sophisticated 6. The first
industrial robots were controlled by s imple j r fono-
processors and their dynamic behaviour and user inter-
face were very poor. Controllers have evolved toward
multiprocessors as, for example, Silma's Adept One,

which is controlled by two Mb8000 ;~, and those developed
at Stanford 8, the University of Pennsylvania <~, MIT l n ~
Brown University 12, IBM 1~ etc. The main motive for thi~
evolution has been the possibility of increasing the
computational performance of the controller and thus
more powerful algorithms can be implemented in them.

Nowadays the trend is to use advanced processors
(mainly RISC 14'1s, DSP 16-19 or specific VLSI robotic

processors 3'2°) in these controllers so that the most
complex control policies can be implemented in low (ost
controllers.

In general multiple robot controllers are extensions of
single robot controllers but with a greater throughput and
I/O capabilities. These systems can be distributed or
centralized.

Centralized multiple robot control systems

In this kind of system the control algorithms for all the
robot arms are implemented in a single processing
system, mono or multiprocessor, without a fixed assign-
ment of processors to the arms. The centralized control
systems can be divided into those that use a single global

control algorithm and those that have separate processes
for the control of each arm. 1his last case is, from the
software point of view, equivalent to a distributed system
but with the maximum number of arms limited by the
computing capabilities of the processing system. If a
single CPU is used then an upper limit on the number of
arms is the quotient of the required sampling period and
the time taken by the processor to implement the control
algorithm for each arm. If a m ultiprocessor is used the load
balancing algorithms can represent an important overhead
and if the system distributes the processing dynamically
among CPUs then execution times are difficult to predict
and thus it is difficult (or impossible) to use this
configuration in real-time controllers. As a consequence,
global control with a single processor or several processors
with a static task assignment is the only option where
centralized control becomes attractive.

We define a completely centralized control as a system
where all the arms are considered as a single robot whose
degree of freedom is the sum of those of the individual
arms. A good term for this type of system is multiple arm
robot. The controller for this robot can be, in principle,
like that of a traditional single arm but with two important
characteristics: it must be capable of interfacing with a
great number of actuators and it must be powerful
enough to run both the control and the coordination
algorithms. The first requirement implies an important I/O
handling capability while the second imposes a lower
limit on the processing throughput of the system for a
certain number of arms.

A system where these requirements are fulfilled is
described in Reference 21. This system, which is currently
under development, is a heterogeneous RISC multi-
processor. An i860 with 80 MFLOPS single precision peak
performance is used to implement the control and
coordination algorithm. This processor is not intended for
real-time applications and, thus, its I/O capabilities are
very poor. A good companion for this processor is the high
performance I/O oriented i960CA superscalar micro-
controller with very short interrupt response times. This
system has been simulated running multiple copies of a
single arm adaptive controller 22 and it has been shown

178 Microprocessors and Microsystems

that, in this way, up to eight SCARA arms (4 DOF) can be
easily controlled. In the test a sinusoidal trajectory with a
1 ms sampling period has been used. The vector cap-
abilities of the i860 processor are well suited for this
algorithm which does not use matrix inversion and where
the inner loop is a matrix product in which the i860 can
reach its peak FP performance 23. An interesting fact is that
a C vectorizer is not available for this processor (at least to
the authors' knowledge) and this requires writing part of
the code in Fortran (using the VAST-2 Fortran Vectorizer
for the i86024) or coding the calls to the vector maths

library by hand.
The main difficulty for experimenting with global

control is that there are no computationally efficient
algorithms available.

In the case of completely centralized control there is
little independence between the layers in Figure2.
Coordination and control can be considered as a single
layer and the communication sublayer is unnecessary.

Distributed multiple robot control systems

In these systems there is a controller for each arm. One of
the advantages of these systems is that they are easily
expandable. From the hardware point of view adding a
robot only requires the addition of a new controller. From
the software side it is usually a very simple task also. This
type of system permits the implementation of a centralized
or a distributed control policy. In the latter case co-
ordination requires the transmission of the status of every
controller to all the others. As we will see later centralized
coordination is easier to implement, although the hard-
ware that we will introduce is equally suited for the
distributed approach.

The multiple arm controllers can reuse an important
part of the design of traditional single arm controllers, but
two important aspects must be modified:

• Control software should allow supervision by the
coordination layer

• The hardware implementation should include an
adequate communication channel.

The first requirement makes the implementation of a
multiprocessor for the control of each arm attractive (as in
Figure 1). In our case we have adopted a biprocessor
structure. One of the processors implements the control
algorithm while the other handles the communications
with the coordination layer. This processor interprets the
received messages and translates trajectories into a form
that can be easily used by the control processor.

The kind of algorithms that should be implemented is
an important factor in the selection of the processors for
the controller. We decided that the control processor
should be able to execute advanced algorithms such as
adaptive, learning control or mixed techniques 21 . This led
us to choose RISC processors that were specially suited
for embedded applications such as those in the i960
family. It is impo-rtant to point out that the task of the
controllers requires 'environment sensitive' processors.
This means that interrupt latency and processing overhead
have to be kept to a minimum. A microcoded CISC
requires several cycles to complete its current instruction
and save its environment. The RISC philosophy of very
short instructions and a larged framed register set makes it

possible to finish the instruction and save the state in one
or, at least, very few cycles. In an early design the control
processor was implemented with an i960KB and an
i960CA was used to handle communications with the
coordinator. The controllers were connected to the
coordinator through a Mult ibusll (Figure 4). The system
was used to control four-axis SCARA robots.

The i960CA superscalar processor is optimized for data
communication and is very well suited to control the MBII
interface. This RISC is interesting mainly for two reasons:
its great processing power and its quick interrupt
mechanism. The processing power is due to a simple but
highly efficient instruction set together with a micro-
architecture that permits up to three instructions/clock
(up to 120 native MIPS). An internal 1 k instruction cache
together with a 1 k internal RAM from which four 32-bit
words can be read in a single cycle contribute to the
speed of this processor.

The i960KB is not superscalar and thus it is limited to
one instruction/clock (up to 33 native MIPS). The reason
for selecting this processor for control is that it includes an
internal FP unit which is essential for some control
algorithms. The FP instructions as well as the memory
references can be overlapped with other instructions,
thus contributing to program speed up.

For the implementation of our system two commercially
available boards have been used:

• XCRC/KB, a modification of an Intel i960KB board
specially adapted to SCARA robot control.

• MIB II 960/110 (RISC Development Board), an MBII
board based on the 960CA with a prototyping area for
user expansion.

Both processors have to communicate in an efficient
form. Our approach is to use a dual-port memory for this
purpose. In this memory the i960KB leaves trajectory
data and the i960CA checks for possible conflicts. All this
must be done in real time. The arm controller is shown
in Figure 3.

If the i960CA has to run with zero wait states (not really
necessary in our application) the memory access time
must be under 40 ns. Dual port 32k memories with 35 ns
access times are currently available 25 and thus inter-
processor communications are very simple from the
hardware side. These communications are completed by
the use of interrupts.

This system has been designed for centralized co-
ordination where the coordinator sends, among other
messages, trajectory information. This information is
received by the arm communication controller (i960CA)
and passed to the arm dynamic controller (i960KB). In this
case there are six types of messages between the
controllers 26.

From KB to CA:

1) STOP__D: Tells the communications controller that
the trajectory cannot be completed (usually due to an
obstacle interrupt).

2) TRAJECTORY END: Tells the communications con-
troller that the trajectory has ended.

3) TRAJECTORY__POINT: Tells the communications
controller that a trajectory point has been calculated
and must be checked for possible conflicts.

From CA to KB:

4) STOP_C: Tells the dynamic controller to stop the arm.
This can be due to an emergency stop (sent as a

Vol 16 No 4 1992 179

X C R C B O A R D

] s12 xR !

DRAM HENORY]

1-4 ~ r r E s , r
STATIC COLUMN[

I960KB

PROCESSOR

SERVO-HOTORS

L CONTROL

I

ENCODERS
INTERFACE

TO POWER
STAGE

I / 0 PROTOTYPING

AREA

I~JAL-PORT RAM

DRAN NENORY

2 HBYTES

I960CA

PROCESSOR

MIR I I 9 6 0 / 1 1 0

II
PSB

INTERFACE

(~=C)

11~3B

Figure 3

DATA & CONTROL BUS

_ _ I ADDRESS BUS

broadcast message) or the detection by the com-
munication controller of the entrance into an unavailable

interference zone.
5) TRAJECTORY: Tells the dynamic controller that a

trajectory description is available in a mail box in

shared memory.
6) CONTINUE: Tells the dynamic controller to continue a

trajectory that was stopped by STOP_C.

These messages can be implemented through structures

in shared memory and interrupts.
The overall controller process is as follows. Once a

trajectory is received by the KB it starts calculating points
and leavingthem in shared memory. For each point atype
three interrupt is generated, telling the CA to check for
possible conflicts. The calculation/checking/control is
pipelined i.e. when the KB is calculating point i, the CA is
checking point i-I and the KB control is acting over point i-
offset. The value of the offset variable depends on the
maximum speed, the inertial parameters of the robot and

the characteristics of the actuators (the robot cannot
stop instantaneously). The points involved in the pipeline
are stored in a circular queue of length offset +2.

C O O R D I N A T I O N

Several degrees of coordination are possible 27. Applica-
tions usually require a certain degree of coordination but
this degree can also be limited by system characteristics.
We now consider two main cases: tight and loose

coordination.

T ight coordinat ion

A tightly coordinated system requires that the kinemati<
variables of the arms (position, velocity and acceleration>

should be coordinated at every instant. This means, as
stated, that the system can be considered as a multiple-
arm robot. In such a system a trajectory is defined as the

temporal evolution of the coordinates of all the arms in
the system. The control should use a centralized approach
and the processing system should be able to handle
matrix operations, where the dimension of the matrices is

the sum of the degrees of freedom in the system.
The biggest advantage of tight coordination is that it

permits adequate modelling of all the dynamic couplings

in the system and, thus, the flexibility is a maximum. As an

example, two arms could manipulate objects by estab-
lishing a constraint in the system matrix or this matrix
could be used to determine the physical interference of

any arms.
The problem with this type of coordination is the huge

amount of calculations that must be carried out in real
time. One must always bear in mind that in the robot
environment the only processors that can realistically be
used are single or clustered microprocessors.

L o o s e c o o r d i n a t i o n

In this case the object of coordination is to prevent
physical interference between the arms, thus permitting

their cooperation by sharing resources (tools or working
zones). In our approach the global working zone (i.e. the
total of all the robot working zones) is divided into logical
subzones. These subzones can change with time but we

impose the condition that this change will only take place
when all the robots are stopped. All zones that may be
used are defined before the system starts operating and

later they are activated or deactivated at run time.
There are two main types of shared resource manage-

ment:

• Exclusive use: In this case resources can only be used
by one robot at a time. Thus a robot would not be

allowed to enter a zone that is already owned by
another. Of course, it would also be impossible for a

robot to use a tool if it was already being used by

another.
• Simultaneous use with restrictions: In this case several

robots can share a zone but only one of them at a time
can move inside it. Tools are, of course, always

exclusive resources.

This division can be simplified if we redefine the concept
of resource and consider that the movements inside a

zone can be treated as one.
Each of the cases has associated problems. In the first

all the necessary conditions for deadlock 28 hold so it is
necessary to consider this possibility and handle it
adequately. In the second case logical deadlock is not
possible because if a robot that has the ownership of
movement in its zone wants to enter another and it is not
granted the resource it will stop at the border of the zones
and liberate the resource that it already owned. Thus it is
not necessary for any robot to hold two movement
resources at a time and so one of the conditions for
deadlock does not hold. Of course this system can block
for other reasons:

180 Microprocessors and Microsystems

• Tool deadlock: Tools are still exclusive use shared
resources.

• Geometric deadlock: A robot that has movement
permission may not be able to move using the desired
trajectory if there are stationary robots that interfere
with it. In this case an alternative trajectory should be
calculated. This approach is suitable for most assembly
tasks but is completely inadequate for welding or
gluing.

In loose coordination robots are considered as
independent units and thus it is necessary to establish
which information they must share for the synchronization
and coordination of the system. This information depends
on the coordination structure that is used. There are two
possibilities:

• Centralized coordination, in which every element in
the system demands information from a central
coordinator which makes the decisions on resource
allocation and global synchronization.

• Distributed coordination, in which every element
needs to know the information about those that may
interfere with it.

In any case communications are through messages that
include trajectories and coordination traffic.

Even though both options can be justified, distributed
coordination is more complex. The causes for this are:

• It requires higher coordination traffic. In case of conflict
every robot asks its neighbours for their status.

• It is more difficult to alter in run time the tasks that have
been sent to robots.

• The cost and complexity are higher because functions
that would otherwise be centralized have to be
repeated in all elements.

In any case, a system with enough communication
bandwidth can easily support distributed coordination.
From now on we will limit the discussion to the easier
centralized coordination scheme. It is important to note
that having a central coordinator does not mean that
control cannot be distributed in the system. Both layers
(Figure 2) are independent. There could also be different
levels of centralization according to the functions assigned
to the coordinator.

For all these reasons we propose a system based on
centralized loose coordination which considers movement
in the interference zones as a shared resource. Thus, in
this system, the coordinator may have to compute an
alternative trajectory if the originally programmed one
would cause a collision. Experience from other areas of
computer science (like operating systems and multi-
processors) in resource sharing can be applied in this type
of system. Communications will be handled by a small set
of messages 21. These include:

From robot controller to coordinator'.

• Request to move in a shared zone (includes zone
selection).

• Position information. This message is transmitted by
robot controllers when they stop inside a shared zone
in a position different from the end point of their
assigned trajectory.

• Zone release. Robots send this message when they
leave a conflict zone.

• Trajectory end.
• Alarm.

From coordinator to robot controller:

• Trajectory description and start command. Sends the
definition of a trajectory that should be immediately
executed.

• Sleep. Tells the controller that the zone movement
requested is not available and thus the robot should
stop at its border. If a robot is already in a zone and a
trajectory is sent to it by the coordinator this implies
that it has permission to move within that zone.

• Wake up. Tells a robot that has received a stop
message that it can continue its trajectory.

• Shared zone grant. Tells a robot that it can move in the
requested zone.

• Active zone grant. This message is used to change the
active zones.

• Alarm.

COMMUNICATIONS

In this part of the paper we will study the three altematives
presented before for multiple robot communications.

Serial interface

In the simplest systems serial lines can be used for the
robots to communicate with the central coordinator 2. Its
simple implementation using commercial controllers and
its low cost make this type of system the most common in
current industrial applications. Two types of organization
can be considered:

• Star topology. In this approach a dedicated serial line
connects each robot to the coordinator. This is the
most common case and is suitable for systems with a
small number of arms and low speed and response
time requirements.

• Bus topology. This is much less common because not
all serial interface devices permit this configuration.
The bandwidth of the serial channel (usually around
10 kb s-1) is shared among all the devices and thus this
approach is not suitable for any type of multiple robot
system.

Parallel interface

Nowadays very high performance multiple robot systems
use parallel buses. Although the most popular is VME
(Figure 1), Multibusll is, in our opinion, the best altemative
for this type of message based application 29. Mult ibusll
has a separate address space for message passing and the
standard interface chip for this bus (MPC, message
passing coprocessor) handles communicatins using this
space with very little assistance from the processor. Other
important characteristics of this bus are its synchronous
nature and its high bandwidth (40 Mbyte s -1). An interesting
possibility is that several operating systems can be run on
a single bus. There is a standard message passing protocol
(Intel transport protocol) that is used by all system
software in the multibus system and thus messages can be
easily passed between processors running different
operating systems, or kernels 3°, 31.

Vol 76 No 4 1992 181

ARH 1 ARId 2 ARM ~ ARM 4

POWER POWER i [POWER
S T A G E : S T A G E ~ S T A G E • " •

i! Bo, o BO,.o J [Bo, o I i

ROBOT & R O B O T & C O N S O L E

ENV IRONMENT ENVIRONMENT
SENSORS ACTUATORS

Figure 4

A Multibus II based multiple robot system is shown in
Figure 4 and described extensively in Reference 26. This

system uses the boards that have already been discussed.
Although the system was originally designed for SCARA

robots there is no reason why it could not be used with

other types of system.
Unsolicited packets (intelligent interrupts) are used to

transmit coordination messages. These messages have 20
bytes for user information, which is more than enough for
our purpose. Trajectories have to be sent using solicited

messages due to the large amount of data that they
require (type, parameters, initial and final point, linkage
conditions etc.). For information from sensors and I/O

devices the type of message would depend on the
amount of information that must be included in the

message. For alarms, unsolicited broadcast messages are

used.

Network interface

The local area network that is commonly used for
industrial applications is the standard IEEE 802.4 'Token
Bus' which is the protocol specified in the manufacturing
automation protocol (MAP)]2. However, its cost and

complexity make it very difficult to use in a multiple robot
system. The simplified version MiniMAP, in which the
delay is limited by eliminating the high level protocol
layers, is still inadequate: the problem is that the
underlying token bus access protocol is too slow in
itself 33. Another widely used network, Ethernet]4, is non-
deterministic and therefore it is not suited for these

applications.
We consider that a good solution is the use of a new

access protocol (CSMA/DCR deterministic collision
resolution) which is implemented on the Intel i82596
family of LAN coprocessors 3s. This protocol is equivalent
to that of Ethemet (CSMA/CD IEEE 802.3) but with a
different approach to collision resolution. In Ethernet a
probabilistic algorithm (exponential backof0 is used to
compute the retransmission delays, while in CSMA/DCR
the collision resolution period is divided into slots (units
of time) and each station is assigned one of them

(Figure 5). After a collision is detected, and the jam period
is over, every station transmits only in its (orresponding
slot. This means that stations transmit in a predefined

order in a way that is very similar to that used in token
passing nets (Figure 5). Of course, this method is not
optimal in the sense that mean delays are higher than in
the probabilistic Ethemet approach. What happens is that
these delays are upper bounded because, in the worst
case, collision resolution periods follow one another with
no idle period between them.

In a collision the time between the first transmission

and the moment when all stations sense the channel idle

is y + ~-, y = 2~- + jam + ~', with ~ representing the end to
end propagation delay in the bus and c the estimated
collision detection time in every station 36. Thus the
maximum delay is:

Dma x = N + r + IFS + IFS + ~" + r

where N is the number of stations, X the length of the

packets and R the data rate of the network.
This enables calculation of the maximum delay of a

message in our system. Also, from a hardware point of
view, the great experience with design and support of

Ethernet networks can be used with the CSMA/DCR

protocol. As a result this low cost, fully deterministic
network is a very interesting alternative for multiple robot
systems. In order to verify this we must check the
maximum delay and required bandwidth for any system

configuration. As a worst case we could consider a system
made by 10 stations, one coordinator and nine robots
connected by a 100 m bus. This is not a realistic multiple
robot system nowadays but it can be used as a worst case
to see if the network suits our requirements. The longest
possible message transmitted by the coordinator is a

trajectory, while in the case of a robot it is a point.
Supposing this situation we have:

D = + r + IFS + (N - l) + r + +lFS+y+r
• /

where X t is the length of a ' trajectory information and start

order ' while Xp is the length of a 'posit ion information'

message. For this last message we need to send:

• 1 byte for message type
• 24 bytes (six degrees of freedom * four bytes) for robot

position

• 26 bytes overhead.

This means that Xp = 51 bytes. In the case of the
'trajectory information and start order' message we need

to send:

• 1 byte for message type

• 1 byte for trajectory type, velocity and continuity
information (to inform the controller whether it should
stop at the end of the trajectory)

• A field that depends on the type of trajectory and
which in the most favourable case would only include
the end point (24 bytes). For our system the least
favourable case is a five-point interpolated trajectory
(120 bytes)

• 26 bytes overhead

Thus X t = 148 bytes and D m a x = 604/Is, with the standard
network parameters, which is acceptable since the typical

182 Microprocessors and Microsystems

JAM -1 - 1 1
TRANSMISSION TRANSMISSION

I I I
~---) (> () ~--9 () () e---) ~---

IFS SLOT1 SLOT2 IFS SLOT3 SLOT4 IFS

IFS =- Interframe Spacing.

Figure 5

sampling period of robotic systems is about 1 ms. This
delay can be substantially reduced by using non-standard
parameters. For example, the slot-time must be higher
than Jam + 2c, the higher collision fragment. The standard
value, 51.2ps, equals the transmission time of the
shortest message (64 bytes excludingthe preamble) and it
is slightly higher than the maximum Jam + 2v for a 2500 m
bus length (49.8 ps). However, a much lower value can be
used in a shorter bus where v is much shorter. Interframe
spacing can be reduced to 3.2/~s and the data rate can be
increased to 20 Mb s -1 .

These considerations have led to a modification in the
former controller (Figure 4). The MIB II 960/110 board has
been substituted by an EVQT960E20 with an i82596 LAN
coprocessor (Figure 6). In Figure 7 the complete system
configuration is shown.

The coprocessor communicates with its associated
CPU using shared memo,/3s. Part of this memory is used
as a command list where the CPU writes the commands
that should be executed by the LAN coprocessor. In
particular, the most common command TRANSMIT
includes the destination station, the packet length and a
pointer to the actual data to be sent. Commands can be
chained in memory and, thus, long data fields can be
broken into smaller packets. Also, when the message
queue increases, as many buffers as necessary can be
assigned in memory. Using adequate software it is easy to
order the TRANSMIT commands in the list according to
the priority of their associated packet. It is important to
know that the i82596 has a 64 byte transmission FIFO and,
thus, part of the first packet in the queue may have been
read into this structure. This means that if a new packet is
generated it cannot be placed in the first position in the
queue but at most in the second, regardless of its priority
level. This kind of service is called non-preemptive.

PROGRAMMING/USER INTERFACE

The ideas behind the system software for our multiple
arm system changed drastically during the project
execution. The high level layers have not been imple-
mented yet and thus further changes will probably be
implemented in the future.

The first step was the development of a universal
compiler for SCARA robots, 'ALFIR '3z, which permitted us
to have a single language interface for all the robots in the
system. Later commercial controllers proved to be
inadequate for the type of coordination required to
implement our system. That meant that all arms had to be
fitted with a special controller that directly understood a
common intermediate language. With this decision ALFIR
was not needed any more.

In a later stage the idea for a complete programming
environment for the multiple arm system (EMR 38) was
developed. This environment included:

• ALMA: A language for multiple arms that was supposed
to be a Pascal-like robot language with parallel
capabilities.

• TDL: A trajectory description language that permitted
learned and taught trajectories to be mixed and kept in
a robot independent intermediate code.

• SDL: Subzone description language. This permits the
description of subzone walls that can be later activated
or deactivated at run time.

At this moment TDL and a simplified version of SDL are
still under development but ALMA is undergoing extensive
modification. The causes for this are:

• ALMA is an oriented language in the sense that any task
is explicitly assigned to one arm. This makes the
programming task difficult because it has to be
decided a priori what tasks will be assigned to each
robot.

XCRC BOARD

i,~ i

1960KB

PROCESSOR I

~ Q ~ o ~ o I L*~ ~i

Figure 6

L

DATA & CONTROL BUS

1 ADDRESS BUS

A R H 1 A P ~ 2 A P ~ 3 A P ~ 4 • • .

CONTROL ARM CONTROL ARM CONTROL ARM CONTROL • • .

BOARD BOARD BOARD BOARD

,H q I I
i L A N ! " • .

(~)

COORDINATOR 82596 BASED

1860EVAT LAN BOARD

Figure 7

SENSOR

PROCESSING

BOARD

l
SENSOR

HOST
DIGITAL I/O

180386
BOARD

1 1
ROBOT & CONSOLE

I~IV IRONMENT

Vol 16 No 4 •992 183

• ALMA includes two possibilities for the description of
parallel programs. The first is based in the scene idea
where any robot included in a scene when it has
finished its task will wait for the others to finish. The
second approach is to use elementary tasks and
explicitly include dependences in their description.

• ALMA is general while our specific interests relate
mainly to assembly. Thus ALMA does not understand
about parts and the possibility of waiting for them.

• ALMA is Pascal-like while in our environment C is more
common.

• The development of ALMA would require a huge effort
and would not bring any significant achievement from
a research point of view.

These facts have made us break with our past work and
start to develop a new idea in multiple arm programming
which replaces the parallel multiple arm compiler with
two new tools: a C language library for task description
and a multiple arm task scheduler 39. The C library permits
the description of robot independent elementary tasks
(tasks that should be performed by a single robot). It also
permits the execution of trajectories learned through TDL
and the inclusion of task and part prerequisites for starting
the task. The scheduler would be the newest and most
difficult part of the system since it would be in charge of
selecting when a task has to be performed and which
robot has to be assigned to the task.

There are many important difficulties for the develop-
ment of the multiple arm robot scheduler. Among them
we will highlight the fact that the robots in the system may
have different capabilities and performance. Another
important fact is that parts may not come in fixed order,
times or positions. These facts, and the huge number of
possible alternatives, make the use of many current
scheduling tools difficult for this problem. The use of
artificial intelligence techniques 4° for the implementation
of the scheduler seems to be the only possibility
considering the real-time requirements of the problem.

Another approach would be to make the system part
driven, in the sense that part descriptions would have
associated prerequisites and associated tasks. This approach
would be very attractive from a user point of view, making
programming quite simple. The problem is that some
tasks cannot be associated with a single part but have to
be carried out when a set of independent parts has been

assembled. Here we say that parts are independent if
none of them is a prerequisite to another.

A very important issue is the relation between low level
coordination and high level scheduling. The scheduler
assigns elementary tasks to arms. These tasks are com-
posed of trajectories. When a trajectory is executed the
arm processors continuously monitor it to find whether it
will enter an interference subzone. When this happens a
message is sent to the coordinator asking for the resource.

The coordinator checks whether the zone is available and
then checks the original trajectory for any collision with a
static robot in the subzone. If the original trajectory led to
a collision it is modified to a new collision-free path. Thus
the coordinator can send three different kinds of message
when an arm asks for the interference zone: 'stop',
'continue' or 'continue with alternative trajectory'. Clearly
the result of this interrogation affects task completion
times not only of the requesting task but possibly of other
tasks in the system. This means that, as the scheduler
controls the assignment and execution order of tasks, it

should include the coordination policy m its dec~sio~
making mechanism. In other words, if a task can be
assigned to a robot that will not have resource or coilisior~
conflicts this is a favourable score for that assignment.

This scheduling mechanism requires calculating robot
entering points into collision zones and trajectories
before they are actually sent to the robots. What is more
important, calculations have to be carried out not only for
the final task scheduling but for several other alternatives.
If this operation has to be carried out in real time, even
with a multiprocessor system, a strong tree-pruning
algorithm has to be used to minimize the alternatives and
collision detection and alternative trajectory calculations
have to be greatly simplified. Simplifying collision detection
and alternative trajectory calculation usually means
operating with coarser space grids, thus reducing the
number of possibilities but, as a side effect, making
trajectories possible in the real world impossible for the
system. In practice a compromise will be required
between high speed calculation and accuracy of
representation.

REFERENCES

1 Bonner, S and Shin, K G 'A comparative study of
robot languages' Computer (December 1982)

2 Franke, E 'Communications and control in robot
workcells' Tutorial, Int. Robots & Vision Automation
Show and Conference, Detroit, MI (October 1991)

3 Wang, Y and Burner, S E 'A new architecture for robot
control' Proc. 1987 IEEE Int. Conf. on Robotics and
Automation, Raleigh, NC Vol 2 (April 1987)
pp 664-670

4 Day, J D and Zimmermann, H 'The OSI reference
model' Proc. IEEE Vol 71 (December 1983)
pp 1334-1340

5 Tanenbaum, A S Structured Computer Organization
(3rd edition) Prentice Hall, Englewood Cliffs, NJ
(I 990)

6 Graham, J H 'Special computer architectures for
robotics: tutorial and survey' IEEE Trans. Robotics
Aurora. Vol 5 No 5 (October 1989)

7 Craig, l Adaptive Control of Mechanical Manipulators
Addison-Wesley, Reading, MA (1986)

8 Chen, J B, Fearing, R S, Armstrong, B S and Burdick,
J W 'NYMPH: A multiprocessor for manipulation
applications' Proc. 1986 IEEE Int. Conf. on Robotics
and Automation, San Francisco, CA Vol 3 (April 1986)
pp 1731-1736

9 Paul R P and Zhang, H 'Design of a robot force/motion
server' Proc. 1986 IEEE Int. Conf. on Robotics and
Automation, San Francisco, CA Vol 3 (April 1986)
pp 1878-1883

10 Narasimhan, S et al. ' Implementation of control
methodologies on the computational architecture for
the Utah/MIT hand' Proc. 1986 IEEE Int. Conf. on
Robotics and Automation, San Francisco, CA Vol 3
(April 1986) pp 1884-1889

11 Narasimhan, Set aL 'Condor: A revised architecture
for controlling the Utah/MIT hand' Proc. 1988 IEEE
Int. Conf. on Robotics and Automation, Philadelphia,
PA Vol 1 (April 1988) pp 446-449

12 Kazanzides, Pet aL 'A multiprocessor system for real-

184 Microprocessors and Microsystems

time robotic control' Inform. ScL Vol44 (1988)
pp 225-247

13 Korein, J U et al. 'A configurable system for auto-
mation programming and control' Proc. 1986 IEEE Int.
Conf. on Robotics and Automation, San Francisco, CA
Vol 3 (April 1986) pp 1871-1877

14 Buhler, M e t al. 'The Yale real-time distributed
control system: XP/DCS version 1.0' 2nd Ann.
Workshop on Parallel Computing, Portland, OR (April
1988)

15 Amaya, C et al. 'Risc Multiprocessor for SCARA robot
control' IEEE Workshop on Sensorial Zaragoza,
Spain (1989)

16 Caselli, S et al. 'Performance evaluation of processor
architectures for robotics' Proc. of IEEE COMPEURO'91,
Bologna, Italy (May 1991) pp 667-671

17 Ish-Shalom, J and Kazanzides, P 'SPARTA: Multiple
signal processors for high-performance robot control'
IEEE Trans. Robotics Auto. Vol 5 No 5 (October
1989)

18 Kanade, T el al. 'Real-time control of CMU direct-
drive arm II using customized inverse dynamic' Proc.
23rd IEEE CDC, Las Vegas, NV (Dec. 1984)
pp 1345-1352

19 Wu, C H and Koch, P N 'Design of robot joint se~o
development system' Proc. 24th IEEE CDC, Ft.
Lauderdale, FL (December 1985) pp 344-349

20 Olson, D E et aL 'Systolic architectures for com-
putation of de Jacobian for robot manipulators' in
Graham, I (Ed) Compu te r Architectures for Robotics

and Automat ion , Gordon and Breach, New York
(1987)

21 Jimenez, G etaL 'Development and implementation
of advanced multiple robot controllers' 22nd Int.
Symp. on Industrial Robots, Detroit, MI (October
1991)

22 Lin, Guo and Angeles,) 'Controller estimation for the
adaptive control of robotic manipulators' IEEE Trans.
Robotics Autom. Vol 5 No 3 (June 1989)

23 80860 Programmer's Reference Manual Intel Corp.
(I 990)

24 Fortran-860 Compi le r and VAST-2 Fortran Vectorizer

for the i860 Manuals

25 MOS Memory Products Toshiba (1989)
26 |imenez, G e l al. 'Risc multiprocessor for multiple

Scara robot control' Proc. Int. Symposium Mini and
Microcomputers and their Applications, Lugano,
Switzerland (June 1990)

27 Civit, A et al. 'Multiple Robot Coordination using
Multiprocesisng Primitives' ISMM Symp. Computer
Applications in Design, Simulation and Analysis, New
Orleans (March 1990)

28 Maekawa el al. Operat ing Systems, Advanced

Concepts Benjamin Cummins (1987)
29 Hyde, J 'The Multibus II bus structure' in Di Giacomo

(Ed) Digital Bus Handbook McGraw-Hill, New York
(1990)

30 MUL TIBUS II Bus Architecture Specification Handbook

Intel Corp. (1986)
31 MULTIBUS II Transport Protocol Specif ication and

Designer's Guide Intel Corp. (1986)
32 Kaminski, M A 'Protocols for communicating in the

factory' IEEE Spectrum (April 1986) pp 56-62
33 Shin, K G 'Real-time communications in a computer-

controlled workcell' IEEE Trans. Robotics Au tom.

Vol 7 No I (February 1991)

34 Shoch, J F et aL 'Evolution of the Ethernet local
computer network' Compu te r (August 1982)
pp 10-27

35 82596 User's Manua l Intel Corporation (1989)
36 Tobagi, F A and Hunt, V B 'Performance analysis of

carrier sense multiple access with collision detection'
Comput . Networks Vol 4 No 5 (October-November
1980) pp 245-259

37 Diaz, E et al. 'ALFIR: A language for industrial robots'
Proc. ISMM Int. Symp. Industrial, Vehicular and Space
Applications of Microcomputers , New York (October
1990)

38 Sevillano, J Leta l . 'EMR: An environmentfor multiple
robot programming' 22nd Int. Symp. on Industrial
Robots, Detroit, MI (October 1991)

39 Baker, K R In t roduct ion to Sequencing and Scheduling

John Wiley, New York (1974)
40 Yazdani, M (Ed) Arti f icial Intell igence, Principles and

Appl icat ions Chapman and Hall Computing, London
(1986)

41 Ryan, D P'lnte180960: An architecture optimized for
embedded control' IEEE Micro. Vol 8 No 3 (June
1988)

42 Janetzky, D and Watson, K S 'Performance evaluation
of the MAP token bus in real time applications' in
Kummerle, K, Tobagi, F A and Limb, J O (Eds)
Advances in Local Area Networks IEEE Press (1987)

Gabriel lim~nez Moreno received his Masters in
physics (electronics) and his PhD from the
University of Sevilla, Spain. After working for
several months with Alcatel he was granted a
fellowship from the Spanish Science and
Technology Commission (CICYT). Currently he
is Associate Professor of Computer Architecture
in the University of Sevilla. He is the author of
various papers and research reports on robotics
and computer architecture. He is also Assistant

Editor for the Journal of Computer and Software Engineering.

]os~ Luis Sevillano Ramos received his Masters
in physics (electronics) from the University of
Sevilla, Spain, in 1990. From 1989 to 1991 he
was a researcher supported by the Spanish
Science and Technology Commission (CICYT).
He is currently Assistant Professor of Computer
Architecture in the University of Sevilla, where
he also works towards a PhD degree. He is the
author of various papers and research reports on
robotics and computer communications.

Anton Civit Balcells received his Masters in
physics (electronics) and his PhD from the
University of Sevilla, Spain in 1984 and 1987
respectively. After working for several months
with Hewlett-Packard he joined the University
of Sevilla where he is currently Profesor Titular of
Computer Architecture. He is the author of
various papers and research reports on
computer architecture and robotics.

Vol 16 No 4 1992 185

Fernando Diaz del Rio received his degree in

electronic physics from Seville University in
1990. From July 1990 to April 1991 he was with

Abengoa-Control Data developing a new
control system in electrical supply systems. He
currently holds a Fellowship from the ClCYT at

the University of Seville, where he works

towards his PhD. His research interests include

multiple robot coordination and control.

AntOn Civit Breu received his degree in physi~ ,
from the University of Barcelona in 1951 and h~s

PhD from the University of Madrid in 19~6. He
has published more than 40 papers, two tt~J~ks
and has directed more than 20 PhD theses. He

has worked it] analogue electronics, medJ(a/

electronics and train safety sy.stems. His (urrent

research interests include rctboti(s, cnr~trol
system desi~4n and electric mot(;r (nntrol

186 M i c r o p r o c e s s o r s a n d M i c r o s y s t e m s

