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Priority-based intersection management

with kinodynamic constraints

Jean Grégoire⋆ Silvère Bonnabel⋆ Arnaud de La Fortelle⋆†

Abstract— We consider the problem of coordinating a col-
lection of robots at an intersection area taking into account
dynamical constraints due to actuator limitations. We adopt
the coordination space approach, which is standard in multiple
robot motion planning. Assuming the priorities between robots
are assigned in advance and the existence of a collision-free
trajectory respecting those priorities, we propose a provably
safe trajectory planner satisfying kinodynamic constraints. The
algorithm is shown to run in real time and to return safe
(collision-free) trajectories. Simulation results on synthetic data
illustrate the benefits of the approach.

I. INTRODUCTION

A. Motivation

Human error is the sole cause in 57% of all road accidents

and is a contributing factor in over 90% [1], [2]. More-

over, traffic congestion motivates the research to improve

intersection traffic flow. Intelligent transportation systems are

expected to tackle both safety and efficiency issues in the

near future. Many systems have been proposed and they have

proved their ability to increase traffic efficiency – particularly

compared to traffic light systems – and to reduce the risk

of road accidents [3], [4], [5], [6], [7], [8]. Furthermore,

more generally, automated conflict management opens new

perspectives to improve railway [9] and air transportation

systems [10] efficiency. In transportation systems, safety is

usually centralized (e.g. air traffic control, rail management

systems) or at least managed locally in a centralized way

(e.g. traffic lights). In the future, we anticipate there will

be locally full information, e.g. through car-to-car commu-

nication being currently standardized. Obviously there will

be non-communicating entities, sometimes delays or sensing

errors, but our aim is to go from a centralized system in full

information down to more reactive schemes, ensuring safety

first.

B. Related work

The standard approach to multi robot motion planning is to

decompose the problem into two parts, as initiated in [11].

As presented in [12], the first one consists of determining

fixed paths along which robots cross the intersection. The

second one consists of computing the velocity profile of each

robot along its path: this is a well-known problem studied

for applications in automated guided vehicles (AGVs) and

robot manipulators.
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As first introduced in [13], [14], the path-velocity de-

composition enables to introduce an abstract space: the

coordination space. It is a standard approach to robot motion

planning [15], [16], and the motion planning problem in the

real space boils down to finding an optimal trajectory in the

coordination space that is collision-free with respect to an

obstacle region. The coordination space is a n-dimensional

space (where n denotes the number of robots in the intersec-

tion) and the obstacle-region has a cylindrical structure [17].

In [12], we have revisited the notion of priorities to propose

a novel framework for automated intersection management

based on priority assignment. It is a very intuitive notion:

the priority graph indicates the relative order of robots. Our

framework enables to decompose the motion planning prob-

lem problem in the coordination space into a combinatorial

problem: priority assignment, and a continuous problem:

finding an efficient trajectory with assigned priorities.

The ambition of this framework is to enable more robust-

ness and distribution in future automated intersection man-

agement systems. Indeed, existing intersection management

systems such as proposed in [6], [3], [8] plan the complete

trajectories of robots through the intersection and ensuring

safety requires robots to follow precisely the planned trajec-

tory. By contrast, if priorities only are planned, the priority

graph can be conserved even if some unpredictable event

requires a robot to slow down for some time.

It is now clear that the combinatorial problem of assigning

efficient priorities is inherently difficult, as noticed in [18]

and developed in the priority-based framework in [12]. As a

result, we will only consider in the present paper the issue of

planning ”good” trajectories for already assigned priorities.

When the robots can start and stop instantaneously, it is rela-

tively easy to define an optimal trajectory for fixed priorities.

This trajectory is referred to as the left-greedy trajectory [18],

[12]. However, taking into account acceleration (and higher

derivatives) constraints turns the optimization problem into a

”highly non-trivial” problem (as suggested in the conclusion

of the paper [18]). In the present paper, we address the

challenging problem of finding safe trajectories that respect

this type of constraints. In [19], the problem is formulated

as a mixed integer nonlinear programming problem, and the

solution proposed is suitable only for a ”reasonable” and

fixed number of robots. Moreover, priority assignment and

trajectory planning are not decoupled. In the present paper,

we focus on a low complexity solution to the trajectory

planning problem with assigned priorities which is applicable

for a large and potentially varying number of robots.



C. Contributions

We introduce a theoretical tool: the braking trajectory,

which is a virtual trajectory obtained letting all robots slow-

ing down as much as possible to stop. The key idea of the

paper is to ensure that at every time-step, the (virtual) braking

trajectory is collision-free. With the proposed planner, robots

are maximally aggressive, i.e. always maximize the distance

travelled at every time-step. However, they do not accelerate

if the virtual braking trajectory becomes unsafe or violates a

priority, i.e. they ensure the existence of a failsafe maneuver

for the system of robots at any time. We present a trajectory

planner with assigned priorities that consists of just-in-time

braking and is proved to return collision-free trajectories

respecting the assigned priorities.

Section II and III present the modelling assumptions and

recall the basics of the priority-based framework of [12].

Section IV introduces the motion planner algorithm along

with its safety guarantees. Finally, simulation results of

Section V illustrate the efficiency of the approach.

II. MODELLING ASSUMPTIONS

A. The coordination space

We assume that robots are constrained to follow prede-

fined paths to go through the intersection. The paths are

not necessarily straight lines: robots are just considered as

driving along fixed tracks. This can be achieved by a low-

level controller. This standard assumption [13], [20], [21],

[22], [7] fits well intersections in a road network, where

robots travel along lanes.

Every robot i follows a particular path γi and we denote

xi ∈ R its curvilinear coordinate along the path. The

configuration of the system of robots is x = (xi)i∈{1...n} and

we denote x(t) the evolution of x through time t ∈ [0, T ].
Figure 1 illustrates the path following assumption.
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Fig. 1. The path following assumption. All robots in the same lane
(depicted with the same color) travel along the same geometric path with
independent velocity profiles.

The configuration space χ is known as the coordination

space [23], [17], [13]. In the rest of the paper, {ei}1≤i≤n

denotes the canonical basis of χ. The use of the coordination

space and the results of this paragraph are standard [17].

As every robot occupies a non-empty geometric region,

some configurations must be excluded to avoid collisions

between robots. The obstacle region χobs is the open set

of all collision configurations. χfree = χ\χobs denotes the

obstacle-free space.

A collision occurs when two robots occupy a common

region of space, so that the obstacle region can be described

as the union of n(n−1)/2 open cylinders χobs
ij corresponding

to as many collision pairs: χobs = ∪i>jχ
obs
ij . Each cylinder

χobs
ij is assumed to have an open bounded convex cross-

section (in the plane generated by ei and ej). Figure 2

displays the obstacle region and a collision configuration for

a two-path intersection. We assume χobs 6= ∅ (otherwise,

coordination is not required), so the boundedness condition

ensures that inf χobs and supχobs both exist.
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χobs

Υ1 
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Fig. 2. The left drawing depicts two robots in collision in a 2-path-
intersection. The right drawing depicts the corresponding configuration in
the coordination space that belongs to the obstacle region.

B. Kinodynamic constraints

In this paper, we propose to take into account the technical

constraints of the robots at the motion planning phase.

These include kinematic constraints (maximum velocity,

maximum curve radius, etc.) and dynamic constraints (lim-

ited acceleration, adherence, jerk, etc.). Let p denote the

degree of the constraints and n the number of robots. Let

s(t) = (x x′ · · ·x(p))(t) ∈ R
n×(p+1) denote the state of the

system. We let x(t) = π(s(t)) denote the first column

of the state s(t), that is the position of all robots. We

say a trajectory x respects the kinodynamic constraints C
if: ∀i ∈ {1...n}, ∀t ∈ [0, T ], we have si(t) ∈ Ci with

Ci ⊂ R
p+1 representing the constraints for robot i and

C =
∏

i∈{1...n} Ci ⊂ R
n×(p+1).

Note that every robot can have different constraints Ci,

and Ci can not necessarily be expressed in a product form

(for example, the constraint on the velocity can depend on

the position).

We assume that the kinodynamic constraints are such that

the set of reachable positions from a given state in finite time

is bounded. More precisely, the set of reachable positions

from state s0 in a time-length t:

χreach(s0, t) =

{

x(t)

∣

∣

∣

∣

x respects the constraints C
s(0) = s0

}

(1)

is assumed to be continuous with respect to s0 and to be

a bounded hypercube of x0 + R
n
+. Note that, the above

assumptions imply in particular that:

1) robots cannot travel backwards in the intersection,



2) and from a given state s0, the set of reachable positions

in finite time is bounded, and the bounds depend on the

state s0 of the robots (position, velocity, acceleration,

etc.).

III. THE PRIORITY-BASED FRAMEWORK

In this section, we recall the basics of priority-based

intersection management introduced in our previous work

[12].

A. The priority graph

Consider the region χobs
i≻j defined as follows and depicted

in Figure 3:

χobs
i≻j = χobs

ij − R+ei + R+ej (2)
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Fig. 3. The top drawings represent in the plane (xi, xj) the obstacle

region χobs, a collision-free trajectory xi≻j respecting priority i ≻ j

and a collision-free trajectory xj≻i respecting priority j ≻ i. The bottom

drawings depict χobs

i≻j and χobs

j≻i.

We define a natural binary relation corresponding to pri-

ority relations between robots. A collision-free trajectory x
induces a binary relation ≻ on the set {1...n} as follows. For

i 6= j s.t. χobs
ij 6= ∅, i ≻ j if x is collision-free with χobs

i≻j .

The priority relation can be described by a graph G
with nodes {1...n}, where each edge represents the relative

priority of a pair of robots. Given a collision-free trajectory

x, the priority graph is defined as the oriented graph G whose

vertices are V (G) = {1...n} and such that there is an edge

from i to j if i ≻ j, we write (i, j) ∈ E(G) where E(G)
denotes the edge set. An example of a priority graph for 3

robots along 3 distinct paths is described in Figure 4.

B. Problem formulation

The initial state of the robots is sinit, and the goal region

is χgoal =
(

supχobs + R
n
+

)

⊂ χfree. A feasible trajectory

for the considered problem is a trajectory x : [0, T ]→ χfree

respecting constraints C such that s(0) = sinit and x(T ) ∈
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Fig. 4. Two representations of priority relations. Robots along a path in
foreground have priority over robots along a path in background.

χgoal. The multiple robot motion planning problem consists

of finding a feasible trajectory. The benefit of the priority-

based approach is that the priority graph captures the discrete

part of the problem that consists of assigning the relative

order of robots through the intersection.

When the priority graph G is fixed, for all (i, j) ∈ E(G),
the trajectory must be collision-free with regards to χobs

i≻j .

Given, a priority graph G, the collision region with regards

to priorities G is merely defined as:

χobs
G =

⋃

(i,j)∈E(G)

χobs
i≻j (3)

It is natural to define χfree
G = χ \ χobs

G , so that {χfree
G , χobs

G }
form a partition of χ. In this paper, we focus on the problem

on finding a feasible trajectory respecting assigned priorities,

i.e. a trajectory x : [0, T ] → χfree
G respecting constraints C

such that s(0) = sinit and x(T ) ∈ χgoal.

IV. MOTION PLANNER WITH ASSIGNED PRIORITIES

The key idea is that if robots wait to be at the boundary

of the collision region to brake (as it is the case without

dynamic constraints in [12]), collisions will occur because

robots can not stop instantly. That is why we need to

anticipate the approach of the collision region. This can be

done introducing two virtual trajectories as follows.

A. Introducing maximal and minimal trajectories

The minimal (resp. maximal) trajectory from state s0,

denoted x(s0, t) (resp. x(s0, t)), are defined bellow:

x(s0, t) = minχreach(s0, t)

x(s0, t) = maxχreach(s0, t)

These are the lower and upper bounds of the hypercube

χreach(s0, t). One can view the minimal trajectory as a brak-

ing trajectory, and the maximal trajectory as an accelerating

trajectory. The concepts are illustrated by Figure 5 where the

kinodynamic constraints have the special following form:

Cacc
i =

{

(xi, x
′
i, x

′′
i )

∣

∣

∣

∣

0 ≤ x′
i ≤ vmax

i

amin
i ≤ x′′

i ≤ amax
i

}

(4)
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Fig. 5. The left drawing depicts an example of kinodynamic constraints
where robots have uniform minimal/maximal velocity and acceleration along
their paths. The right drawing depicts the corresponding minimal/maximal
trajectories x(s(t0), t) and x(s(t0), t).

B. The motion planner

The time t is first discretized, and the trajectory of the

robots x(t) is computed iteratively as described in the

following Algorithm 1. Indeed, at every time-step t, the

trajectory up to time t+∆T can be computed as follows:

• Cycling through all robots, we select a particular robot

i (line 5);

• We compute a virtual path χvirtual (line 12) that would

be followed by the robots if:

– in the next time step, robot i accelerates as much as

possible while all other robots decelerate as much

as possible (lines 6-11);

– afterwards, all robots including i brake as much as

possible (see the second term of the concatenation

at line 12)

• If this virtual path is such that no collision and priorities

are respected, it means there exists a failsafe maneuver

such that robot i accelerates as much as possible in the

next time step, and we let it do so. Otherwise, robot

i must brake (lines 14-18). Thus, at each time-step t,
each robot i exclusively follows its maximal or minimal

trajectory in the next time-step.

The defined trajectory thus appears as a natural extension

of the left-greedy trajectory introduced in [18], in the sense

that in the absence of kinodynamic constraints (p = 1), it

coincides with it. Indeed, in this case the robots can stop

instantly and the block from Line 6 to Line 17 simply

consists of checking that maximum speed during the next

time-step is safe: if it is not the case the robot is stopped.

Note also that if the state s(t) is such that the braking

trajectory from s(t) is collision-free, the state s(t) is not an

”Inevitable Collision State” (ICS), as defined in [24] because

the braking trajectory is collision-free, that is, there exists a

particular collision-free trajectory starting from state s(t).

C. Safety guarantees

The theorem below exhibits the safety guarantee provided

by the proposed motion planner.

Theorem 1 (Safety guarantees). Assume that there exists

some feasible trajectory respecting priorities defined by G
and the initial state sinit is such that the initial braking

Algorithm 1 The motion planner with assigned priorities

Input: sinit, feasible priority graph G
function MAXIMALLYAGRESSIVETRAJECTORY

T ← 0
s(0)← sinit

while x(T ) /∈ χgoal do

5: for i ∈ {1...n} do

for t ∈ [0,∆T ] do

for j 6= i do

s̃j(t)← sj(s(T ), t)
end for

10: s̃i(t)← si(s(T ), t)
end for

χvirtual ← π(s̃([0,∆T ])) ∪ x(s̃(∆T ),R+)
if ∃(j, i) ∈ E(G) s.t. χvirtual∩χobs

j≻i 6= ∅ then

si(T +∆T )← si(s(T ),∆T )
15: else

si(T +∆T )← si(s(T ),∆T )
end if

end for

T ← T +∆T
20: end while

return (x(t))t=0···T

end function

trajectory x(sinit, t) is collision-free. Then, for sufficiently

small ∆T , Algorithm 1 terminates and returns a (collision-

free) feasible trajectory respecting priorities G.

Proof. It is assumed that that there exists some feasible

trajectory respecting priorities defined by G, so that G is a

feasible priority graph as defined in [12], and the trajectory

cannot reach a deadlock configuration (for sufficiently small

∆T ). Until χgoal is reached, at any time there is at least one

robot i0 at a coordinate lower than sup{xi0 : x ∈ χobs}
moving forward. Indeed if this was not true it would mean

that the robots have reached a deadlock configuration. There

is thus a lower bound, say µ, for the distance travelled by

some of the robots in a time-length ∆T , depending on the

constraints. This implies x necessarily reaches χgoal in finite

time (of order at most O(n/µ)) and Algorithm 1 terminates.

Now we prove that, at every time step, the braking trajec-

tory from the current state is collision-free. We begin with a

preliminary useful property, that is a direct consequence of

the definition of χobs
j≻i and is easily seen on Figure 3.

Property 1. Given i, j ∈ {1...n} and two configurations

x, y ∈ χ satisfying yj ≥ xj and yi ≤ xi, we have:

x ∈ χfree
j≻i ⇒ y ∈ χfree

j≻i (5)

The initial braking trajectory x(sinit, t) is assumed to

be collision-free. Now, assume that for some t0 = k∆T ,

x(s(t0), t) is collision-free. In the next time step, for any

priority (j, i) ∈ E(G), there are two options for the robot

with lower priority:



• either i brakes as much as possible. The fact that

x(s(t0), t) is collision-free with χobs
j≻i implies that

x(s(t0 + ∆T ), t) is also collision-free by Property 1,

since we have for all t ≥ 0:

xi(s(t0 +∆T ), t) = xi(s(t0), t+∆T ) (6)

xj(s(t0 +∆T ), t) ≥ xj(s(t0), t+∆T ) (7)

• or i accelerates as much as possible; in this case, the

virtual path χvirtual is collision-free with respect to

χobs
j≻i. Then, consider the state s̃(∆T ) defined as:

s̃j(∆T ) = sj(s(t0),∆T ) (8)

s̃i(∆T ) = si(s(t0),∆T ) (9)

Since the virtual path χvirtual is collision-free with

χobs
j≻i, x(s̃(∆T ), t) is also collision-free (see the second

term in the concatenation at Line 12). It implies that

x(s(t0 + ∆T ), t) is also collision-free by Property 1,

since we have for all t ≥ 0:

xi(s(t0 +∆T ), t) = xi(s̃(∆T ), t) (10)

xj(s(t0 +∆T ), t) ≥ xj(s̃(∆T ), t) (11)

Hence, at every time step, the braking trajectory is

collision-free. Now, we prove that there is no collision

between time steps. Again, at every time step t0 = k∆T ,

the are two options:

• either i brakes as much as possible. The fact that

x(s(t0), t) is collision-free with χobs
j≻i implies that for

t ∈ [t0, t0 + ∆T ], s(t) is also collision-free by Prop-

erty 1, since we have for all t ∈ [t0, t0 +∆T ]:

xi(t) = xi(s(t0), t) (12)

xj(t) ≥ xj(s(t0), t) (13)

• or i accelerates as much as possible; in this case, the

virtual path χvirtual is collision-free with respect to

χobs
j≻i. Then, consider the trajectory x̃(t) for t ∈ [0,∆T ]

defined as:

x̃j(t) = xj(s(t0), t) (14)

x̃i(t) = xi(s(t0), t) (15)

Since χvirtual is collision-free with χobs
j≻i, x̃(t) is also

collision-free (see the first term in the concatenation at

Line 12). It implies that s(t) is also collision-free for

t ∈ [t0, t0 +∆T ] by Property 1, since we have:

si(t) = s̃i(t− t0) (16)

sj(t) ≥ s̃j(t− t0) (17)

As a result, x is collision-free with respect to χobs
G at every

time-step and reaches χgoal: it is a collision-free feasible

trajectory respecting priorities G.

V. SIMULATIONS

The algorithms presented in this paper have been imple-

mented into a simulator coded in Java. Our algorithms have

proved their ability to run in real-time.

A. Setting and results

Only straight paths are implemented (for simplicity’s sake)

and all robots are supposed to be circle-shaped with a

common radius R. The kinodynamic constraints of the robots

concern only the maximal velocity and minimal/maximal

acceleration. Moreover, all robots are supposed to have

identical kinodynamic constraints.

∀i ∈ {1...n}, Cacc
i =

{

(xi, x
′
i, x

′′
i )

∣

∣

∣

∣

0 ≤ x′
i ≤ vmax

amin ≤ x′′
i ≤ amax

}

.

(18)

In the simulation results presented in this section, we

take as priority assignment policy the maximally aggressive

priority assignment policy that consists for every robot of

taking priority over another robot if it reaches the conflicting

region first. This priority assignment policy can lead to

deadlock configurations (see [12]), but with a very small

probability in case of low traffic density as in the presented

simulations. This policy is used for the sake of simplicity, the

priority assignment policy not being the focus of this paper.

Simulations have been carried out for the 4-path-

intersection depicted in Figure 7. At full speed, the distance

travelled in one time-step is R and at full acceleration, 20

time-steps are required for the robots to reach full speed.

Figure 6 depicts the increase in travel time for different

traffic densities. The increase in travel time is the delay due

to coordination, i.e. the difference with the ideal travel time

which is the travel time of robots in the absence of other

robots. It is expressed in percentage of the ideal travel time.

The increase in travel time vanishes as the density approaches

0 since it becomes very unlikely that they need to coordinate

to avoid collisions. The traffic density in percentage is the

ratio between the actual traffic density and the maximum

traffic density (continuous flow of robots). The robots are

generated randomly at a constant rate over time. The video

of the simulation for a traffic density of 10% is available at

http://youtu.be/bJHdf3AbIlI.
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Fig. 6. Simulation results: plot of the averaged increase in travel time
against the traffic density for the intersection of Figure 7
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Fig. 7. The 4-path-intersection used for simulations

B. Comments

First of all, our algorithm succeeds to work in real time,

and one can observe in simulations (notably on the video)

that collisions never occur. This confirms the fact that the

planner guarantees safety under dynamic constraints. One

can see in Figure 6 that at a traffic density of 10% on each

path, the increase in travel time due to coordination to avoid

other robots is less than 15% which seems a low price to

pay to ensure safe coordination. Note that we do not present

simulation results at higher traffic densities because it would

require to define a more complex priority assignment policy

(at least to avoid deadlocks), which is a challenge in itself,

and beyond the scope of the present paper.

VI. CONCLUSIONS AND DISCUSSION

The results presented in this paper prove that when

priorities are assigned, it is possible to plan a safe and

quite efficient trajectory respecting the priority graph and

the dynamic constraints of the robots. The use of the braking

trajectory enables to anticipate the need to brake just-in-time,

and as a byproduct provides robustness guarantees since

there exists a collision-free braking maneuver at any time.

If the robots drift from the planned trajectory but if no

priority has been violated, it is possible to run the motion

planner from a new initial state to get a new feasible

trajectory respecting the assigned priorities. This reflects that

the method proposed in this paper is inherently a feedback

motion planning approach (see [17], chapter 8). We are

currently turning the planning algorithms of this paper into

a feedback control law that aims at coordinating robots with

assigned priorities. The idea is to define a control law gG(s)
that maps every state s to the control to apply in the next

time step. The control law gG is in charge of coordination,

ensuring that collisions are avoided and that priorities G are

respected. Robots do not have to follow precisely a planned

trajectory, they just have to be aware of the priorities and

to respect the control law. The benefit of the approach is

that it ensures safe coordination as long as priorities G
are respected, which is much easier to robustly ensure than

following precisely a planned trajectory. This opens avenues

to build multiple robot coordination systems much more

robust with regards to uncertainty in control and sensing.
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