31 research outputs found

    DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering

    Full text link
    Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by the unknown light. Although the ambiguity is alleviated on non-Lambertian objects, the problem is still difficult to solve for more general objects with complex shapes introducing irregular shadows and general materials with complex reflectance like anisotropic reflectance. To exploit cues from shadow and reflectance to solve UPS and improve performance on general materials, we propose DANI-Net, an inverse rendering framework with differentiable shadow handling and anisotropic reflectance modeling. Unlike most previous methods that use non-differentiable shadow maps and assume isotropic material, our network benefits from cues of shadow and anisotropic reflectance through two differentiable paths. Experiments on multiple real-world datasets demonstrate our superior and robust performance.Comment: Accepted by CVPR 202

    Surface Appearance Estimation from Video Sequences

    Get PDF
    The realistic virtual reproduction of real world objects using Computer Graphics techniques requires the accurate acquisition and reconstruction of both 3D geometry and surface appearance. Unfortunately, in several application contexts, such as Cultural Heritage (CH), the reflectance acquisition can be very challenging due to the type of object to acquire and the digitization conditions. Although several methods have been proposed for the acquisition of object reflectance, some intrinsic limitations still make its acquisition a complex task for CH artworks: the use of specialized instruments (dome, special setup for camera and light source, etc.); the need of highly controlled acquisition environments, such as a dark room; the difficulty to extend to objects of arbitrary shape and size; the high level of expertise required to assess the quality of the acquisition. The Ph.D. thesis proposes novel solutions for the acquisition and the estimation of the surface appearance in fixed and uncontrolled lighting conditions with several degree of approximations (from a perceived near diffuse color to a SVBRDF), taking advantage of the main features that differentiate a video sequences from an unordered photos collections: the temporal coherence; the data redundancy; the easy of the acquisition, which allows acquisition of many views of the object in a short time. Finally, Reflectance Transformation Imaging (RTI) is an example of widely used technology for the acquisition of the surface appearance in the CH field, even if limited to single view Reflectance Fields of nearly flat objects. In this context, the thesis addresses also two important issues in RTI usage: how to provide better and more flexible virtual inspection capabilities with a set of operators that improve the perception of details, features and overall shape of the artwork; how to increase the possibility to disseminate this data and to support remote visual inspection of both scholar and ordinary public

    Communication of Digital Material Appearance Based on Human Perception

    Get PDF
    Im alltägliche Leben begegnen wir digitalen Materialien in einer Vielzahl von Situationen wie beispielsweise bei Computerspielen, Filmen, Reklamewänden in zB U-Bahn Stationen oder beim Online-Kauf von Kleidungen. Während einige dieser Materialien durch digitale Modelle repräsentiert werden, welche das Aussehen einer bestimmten Oberfläche in Abhängigkeit des Materials der Fläche sowie den Beleuchtungsbedingungen beschreiben, basieren andere digitale Darstellungen auf der simplen Verwendung von Fotos der realen Materialien, was zB bei Online-Shopping häufig verwendet wird. Die Verwendung von computer-generierten Materialien ist im Vergleich zu einzelnen Fotos besonders vorteilhaft, da diese realistische Erfahrungen im Rahmen von virtuellen Szenarien, kooperativem Produkt-Design, Marketing während der prototypischen Entwicklungsphase oder der Ausstellung von Möbeln oder Accesoires in spezifischen Umgebungen erlauben. Während mittels aktueller Digitalisierungsmethoden bereits eine beeindruckende Reproduktionsqualität erzielt wird, wird eine hochpräzise photorealistische digitale Reproduktion von Materialien für die große Vielfalt von Materialtypen nicht erreicht. Daher verwenden viele Materialkataloge immer noch Fotos oder sogar physikalische Materialproben um ihre Kollektionen zu repräsentieren. Ein wichtiger Grund für diese Lücke in der Genauigkeit des Aussehens von digitalen zu echten Materialien liegt darin, dass die Zusammenhänge zwischen physikalischen Materialeigenschaften und der vom Menschen wahrgenommenen visuellen Qualität noch weitgehend unbekannt sind. Die im Rahmen dieser Arbeit durchgeführten Untersuchungen adressieren diesen Aspekt. Zu diesem Zweck werden etablierte digitalie Materialmodellen bezüglich ihrer Eignung zur Kommunikation von physikalischen und sujektiven Materialeigenschaften untersucht, wobei Beobachtungen darauf hinweisen, dass ein Teil der fühlbaren/haptischen Informationen wie z.B. Materialstärke oder Härtegrad aufgrund der dem Modell anhaftenden geometrische Abstraktion verloren gehen. Folglich wird im Rahmen der Arbeit das Zusammenspiel der verschiedenen Sinneswahrnehmungen (mit Fokus auf die visuellen und akustischen Modalitäten) untersucht um festzustellen, welche Informationen während des Digitalisierungsprozesses verloren gehen. Es zeigt sich, dass insbesondere akustische Informationen in Kombination mit der visuellen Wahrnehmung die Einschätzung fühlbarer Materialeigenschaften erleichtert. Eines der Defizite bei der Analyse des Aussehens von Materialien ist der Mangel bezüglich sich an der Wahnehmung richtenden Metriken die eine Beantwortung von Fragen wie z.B. "Sind die Materialien A und B sich ähnlicher als die Materialien C und D?" erlauben, wie sie in vielen Anwendungen der Computergrafik auftreten. Daher widmen sich die im Rahmen dieser Arbeit durchgeführten Studien auch dem Vergleich von unterschiedlichen Materialrepräsentationen im Hinblick auf. Zu diesem Zweck wird eine Methodik zur Berechnung der wahrgenommenen paarweisen Ähnlichkeit von Material-Texturen eingeführt, welche auf der Verwendung von Textursyntheseverfahren beruht und sich an der Idee/dem Begriff der geradenoch-wahrnehmbaren Unterschiede orientiert. Der vorgeschlagene Ansatz erlaubt das Überwinden einiger Probleme zuvor veröffentlichter Methoden zur Bestimmung der Änhlichkeit von Texturen und führt zu sinnvollen/plausiblen Distanzen von Materialprobem. Zusammenfassend führen die im Rahmen dieser Dissertation dargestellten Inhalte/Verfahren zu einem tieferen Verständnis bezüglich der menschlichen Wahnehmung von digitalen bzw. realen Materialien über unterschiedliche Sinne, einem besseren Verständnis bzgl. der Bewertung der Ähnlichkeit von Texturen durch die Entwicklung einer neuen perzeptuellen Metrik und liefern grundlegende Einsichten für zukünftige Untersuchungen im Bereich der Perzeption von digitalen Materialien.In daily life, we encounter digital materials and interact with them in numerous situations, for instance when we play computer games, watch a movie, see billboard in the metro station or buy new clothes online. While some of these virtual materials are given by computational models that describe the appearance of a particular surface based on its material and the illumination conditions, some others are presented as simple digital photographs of real materials, as is usually the case for material samples from online retailing stores. The utilization of computer-generated materials entails significant advantages over plain images as they allow realistic experiences in virtual scenarios, cooperative product design, advertising in prototype phase or exhibition of furniture and wearables in specific environments. However, even though exceptional material reproduction quality has been achieved in the domain of computer graphics, current technology is still far away from highly accurate photo-realistic virtual material reproductions for the wide range of existing categories and, for this reason, many material catalogs still use pictures or even physical material samples to illustrate their collections. An important reason for this gap between digital and real material appearance is that the connections between physical material characteristics and the visual quality perceived by humans are far from well-understood. Our investigations intend to shed some light in this direction. Concretely, we explore the ability of state-of-the-art digital material models in communicating physical and subjective material qualities, observing that part of the tactile/haptic information (eg thickness, hardness) is missing due to the geometric abstractions intrinsic to the model. Consequently, in order to account for the information deteriorated during the digitization process, we investigate the interplay between different sensing modalities (vision and hearing) and discover that particular sound cues, in combination with visual information, facilitate the estimation of such tactile material qualities. One of the shortcomings when studying material appearance is the lack of perceptually-derived metrics able to answer questions like "are materials A and B more similar than C and D?", which arise in many computer graphics applications. In the absence of such metrics, our studies compare different appearance models in terms of how capable are they to depict/transmit a collection of meaningful perceptual qualities. To address this problem, we introduce a methodology to compute the perceived pairwise similarity between textures from material samples that makes use of patch-based texture synthesis algorithms and is inspired on the notion of Just-Noticeable Differences. Our technique is able to overcome some of the issues posed by previous texture similarity collection methods and produces meaningful distances between samples. In summary, with the contents presented in this thesis we are able to delve deeply in how humans perceive digital and real materials through different senses, acquire a better understanding of texture similarity by developing a perceptually-based metric and provide a groundwork for further investigations in the perception of digital materials

    On-site surface reflectometry

    Get PDF
    The rapid development of Augmented Reality (AR) and Virtual Reality (VR) applications over the past years has created the need to quickly and accurately scan the real world to populate immersive, realistic virtual environments for the end user to enjoy. While geometry processing has already gone a long way towards that goal, with self-contained solutions commercially available for on-site acquisition of large scale 3D models, capturing the appearance of the materials that compose those models remains an open problem in general uncontrolled environments. The appearance of a material is indeed a complex function of its geometry, intrinsic physical properties and furthermore depends on the illumination conditions in which it is observed, thus traditionally limiting the scope of reflectometry to highly controlled lighting conditions in a laboratory setup. With the rapid development of digital photography, especially on mobile devices, a new trend in the appearance modelling community has emerged, that investigates novel acquisition methods and algorithms to relax the hard constraints imposed by laboratory-like setups, for easy use by digital artists. While arguably not as accurate, we demonstrate the ability of such self-contained methods to enable quick and easy solutions for on-site reflectometry, able to produce compelling, photo-realistic imagery. In particular, this dissertation investigates novel methods for on-site acquisition of surface reflectance based on off-the-shelf, commodity hardware. We successfully demonstrate how a mobile device can be utilised to capture high quality reflectance maps of spatially-varying planar surfaces in general indoor lighting conditions. We further present a novel methodology for the acquisition of highly detailed reflectance maps of permanent on-site, outdoor surfaces by exploiting polarisation from reflection under natural illumination. We demonstrate the versatility of the presented approaches by scanning various surfaces from the real world and show good qualitative and quantitative agreement with existing methods for appearance acquisition employing controlled or semi-controlled illumination setups.Open Acces

    Multispectral RTI Analysis of Heterogeneous Artworks

    Get PDF
    We propose a novel multi-spectral reflectance transformation imaging (MS-RTI) framework for the acquisition and direct analysis of the reflectance behavior of heterogeneous artworks. Starting from free-form acquisitions, we compute per-pixel calibrated multi-spectral appearance profiles, which associate a reflectance value to each sampled light direction and frequency. Visualization, relighting, and feature extraction is performed directly on appearance profile data, applying scattered data interpolation based on Radial Basis Functions to estimate per-pixel reflectance from novel lighting directions. We demonstrate how the proposed solution can convey more insights on the object materials and geometric details compared to classical multi-light methods that rely on low-frequency analytical model fitting eventually mixed with a separate handling of high-frequency components, hence requiring constraining priors on material behavior. The flexibility of our approach is illustrated on two heterogeneous case studies, a painting and a dark shiny metallic sculpture, that showcase feature extraction, visualization, and analysis of high-frequency properties of artworks using multi-light, multi-spectral (Visible, UV and IR) acquisitions.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091the DSURF (PRIN 2015) project funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    VQ-NeRF: Neural Reflectance Decomposition and Editing with Vector Quantization

    Full text link
    We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.Comment: Accepted by TVCG. Project Page: https://jtbzhl.github.io/VQ-NeRF.github.io

    Advanced methods for relightable scene representations in image space

    Get PDF
    The realistic reproduction of visual appearance of real-world objects requires accurate computer graphics models that describe the optical interaction of a scene with its surroundings. Data-driven approaches that model the scene globally as a reflectance field function in eight parameters deliver high quality and work for most material combinations, but are costly to acquire and store. Image-space relighting, which constrains the application to create photos with a virtual, fix camera in freely chosen illumination, requires only a 4D data structure to provide full fidelity. This thesis contributes to image-space relighting on four accounts: (1) We investigate the acquisition of 4D reflectance fields in the context of sampling and propose a practical setup for pre-filtering of reflectance data during recording, and apply it in an adaptive sampling scheme. (2) We introduce a feature-driven image synthesis algorithm for the interpolation of coarsely sampled reflectance data in software to achieve highly realistic images. (3) We propose an implicit reflectance data representation, which uses a Bayesian approach to relight complex scenes from the example of much simpler reference objects. (4) Finally, we construct novel, passive devices out of optical components that render reflectance field data in real-time, shaping the incident illumination into the desired imageDie realistische Wiedergabe der visuellen Erscheinung einer realen Szene setzt genaue Modelle aus der Computergraphik für die Interaktion der Szene mit ihrer Umgebung voraus. Globale Ansätze, die das Verhalten der Szene insgesamt als Reflektanzfeldfunktion in acht Parametern modellieren, liefern hohe Qualität für viele Materialtypen, sind aber teuer aufzuzeichnen und zu speichern. Verfahren zur Neubeleuchtung im Bildraum schränken die Anwendbarkeit auf fest gewählte Kameras ein, ermöglichen aber die freie Wahl der Beleuchtung, und erfordern dadurch lediglich eine 4D - Datenstruktur für volle Wiedergabetreue. Diese Arbeit enthält vier Beiträge zu diesem Thema: (1) wir untersuchen die Aufzeichnung von 4D Reflektanzfeldern im Kontext der Abtasttheorie und schlagen einen praktischen Aufbau vor, der Reflektanzdaten bereits während der Messung vorfiltert. Wir verwenden ihn in einem adaptiven Abtastschema. (2) Wir führen einen merkmalgesteuerten Bildsynthesealgorithmus für die Interpolation von grob abgetasteten Reflektanzdaten ein. (3) Wir schlagen eine implizite Beschreibung von Reflektanzdaten vor, die mit einem Bayesschen Ansatz komplexe Szenen anhand des Beispiels eines viel einfacheren Referenzobjektes neu beleuchtet. (4) Unter der Verwendung optischer Komponenten schaffen wir passive Aufbauten zur Darstellung von Reflektanzfeldern in Echtzeit, indem wir einfallende Beleuchtung direkt in das gewünschte Bild umwandeln

    Utilisation de l'Apparence pour le Rendu et l'édition efficaces de scènes capturées

    Get PDF
    Computer graphics strives to render synthetic images identical to real photographs. Multiple rendering algorithms have been developed for the better part of the last half-century. Traditional algorithms use 3D assets manually generated by artists to render a scene. While the initial scenes were quite simple, the field has developed complex representations of geometry, material and lighting: the three basic components of a 3D scene. Generating such complex assets is hard and requires significant time and skills by professional 3D artists. In addition to asset generation, the rendering algorithms themselves involve complex simulation techniques to solve for global light transport in a scene which costs more time.As the ease of capturing photographs improved, Image-based Rendering (IBR) emerged as an alternative to traditional rendering. Using captured images as input became much faster than generating traditional scene assets. Initial IBR algorithms focused on creating a scene model using the input images to interpolate or warp them and enable free-viewpoint navigation of captured scenes. With time the scene models became more complex and using a geometric proxy computed from the input images became an integral part of IBR. Today using a mesh reconstructed using Structure-from-Motion (SfM) and Multi-view Stereo (MVS) techniques is widely used in IBR even though they introduce significant artifacts due to noisy reconstruction.In this thesis we first propose a novel image-based rendering algorithm, which focuses on rendering a captured scene with good quality at interactive frame rates}. We study different artifacts from previous IBR algorithms and propose an algorithm which builds upon previous work to remove such artifacts. The algorithm utilizes surface appearance in order to treat view-dependent regions differently than diffuse regions. Our Hybrid-IBR algorithm performs favorably against classical and modern IBR approaches for a wide variety of scenes in terms of quality and/or speed.While IBR provides solutions to render a scene, editing them is hard. Editing scenes require estimating a scene's geometry, material appearance and illumination. As our second contribution \textbf{we explicitly estimate \emph{scene-scale} material parameters from a set of captured photographs to enable scene editing}. While commercial photogrammetry solutions recover diffuse texture to aid 3D artists in generating material assets manually, we aim to \emph{automatically} create material texture atlases from captured images of a scene. We take advantage of the visual cues provided by the multi-view observations. Feeding it to a Convolutional Neural Network (CNN) we obtain material maps for each view. Using the predicted maps we create multi-view consistent material texture atlases by aggregating the information in texture space. Using our automatically generated material texture atlases we demonstrate relighting and object insertion in real scenes.Learning-based tasks require large amounts of data with variety to learn the task efficiently. Using synthetic datasets to train is the norm but using traditional rendering to render large datasets is time consuming providing limited variability. We propose \textbf{a new neural rendering-based approach that learns a neural scene representation with variability and use it to generate large amounts of data at a significantly faster rate on the fly}. We demonstrate the advantage of using neural rendering as compared to traditional rendering in terms of speed of generating dataset as well as learning auxiliary tasks given the same computational budget.L’informatique graphique a pour but de rendre des images de synthèse semblables à des photographies. Plusieurs algorithmes de rendu ont été développés au cours du dernier demi-siècle, principalement pour restituer des scènes à base d'éléments 3D créés par des artistes. Alors que les scènes initiales étaient assez simples, des représentations plus complexes de la géométrie, des matériaux et de l'éclairage ont été développés. Créer des scènes aussi complexes nécessite beaucoup de travail et de compétences de la part d'artistes 3D professionnels. Au même temps, les algorithmes de rendu impliquent des techniques de simulation complexes coûteuses en temps, pour résoudre le transport global de la lumière dans une scène.Avec la popularité grandissante de la photo numérique, le rendu basé image (IBR) a émergé comme une alternative au rendu traditionnel. Avec cette approche, l'utilisation de photos comme données d'entrée est devenue beaucoup plus rapide que la génération de scènes classiques. Les algorithmes IBR se sont d’abord concentrés sur la restitution de scènes pour en permettre une exploration libre. Au fil du temps, les modèles de scène sont devenus plus complexes et l'utilisation d'un proxy géométrique inféré à partir d’images est devenue la norme. Aujourd'hui, l'utilisation d'un maillage reconstruit à l'aide des techniques Structure-from-Motion (SfM) et Multi-view Stereo (MVS) est courante en IBR, bien que cette utilisation introduit des artefacts importants. Nous proposons d'abord un nouvel algorithme de rendu basé image, qui se concentre sur le rendu de qualité et en temps interactif d'une scène capturée}. Nous étudions différentes faiblesses des travaux précédents et proposons un algorithme qui s'appuie sur ces travaux pour obtenir de meilleurs résultats. Notre algorithme se base sur l'apparence de la surface pour traiter les régions dont l'apparence dépend de l'angle de vue différemment des régions diffuses. Hybrid-IBR obtient des résultats favorables par rapport aux approches concurrentes pour une grande variété de scènes en termes de qualité et/ou de vitesse.Bien que l'IBR soit une bonne solution de rendu, l'édition de celle-ci est difficile sans une décomposition en différents éléments : la géométrie, l'apparence des matériaux et l'éclairage de la scène. Pour notre deuxième contribution, \textbf{nous estimons explicitement les paramètres de matériaux à \emph{l'échelle de la scène} à partir d'un ensemble de photographies, pour permettre l'édition de la scène}. Alors que les solutions de photogrammétrie commerciales calculent la texture diffuse pour assister la création manuelle de matériaux, nous visons à créer \emph{automatiquement} des atlas de texture de matériaux à partir d'un ensemble d'images d'une scène. Nous nous appuyons sur les informations fournis par ces images et les transmettons à un réseau neuronal convolutif pour obtenir des cartes de matériaux pour chaque vue. En utilisant toutes ces prédictions, nous créons des atlas de texture de matériau cohérents pour toutes les vues en agrégeant les informations dans l'espace texture. Nous démontrons l'utilisation de notre atlas de texture de matériaux généré automatiquement pour rendre des scènes réelles avec un changement d’illumination et avec des objets virtuels insérés.L'apprentissage profond nécessite de grandes quantités de données variées. L'utilisation de données synthétiques est courante, mais l'utilisation du rendu traditionnel pour créer ces données prend du temps et offre une variabilité limitée. Nous proposons \textbf{une nouvelle approche basée sur le rendu neuronal qui apprend une représentation de scène neuronale avec paramètres variables, et l'utilise pour générer au vol de grandes quantités de données à un rythme beaucoup plus rapide}. Nous démontrons l'avantage d'utiliser le rendu neuronal par rapport au rendu traditionnel en termes de budget de temps, ainsi que pour l'apprentissage de tâches auxiliaires avec le même budget de calcul
    corecore