2,610 research outputs found

    Data-Driven Audio Feature Space Clustering for Automatic Sound Recognition in Radio Broadcast News

    Get PDF
    This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited. T. Theodorou, I. Mpoas, A. Lazaridis, N. Fakotakis, 'Data-Driven Audio Feature Space Clustering for Automatic Sound Recognition in Radio Broadcast News', International Journal on Artificial Intelligence Tools, Vol. 26 (2), April 2017, 1750005 (13 pages), DOI: 10.1142/S021821301750005. © The Author(s).In this paper we describe an automatic sound recognition scheme for radio broadcast news based on principal component clustering with respect to the discrimination ability of the principal components. Specifically, streams of broadcast news transmissions, labeled based on the audio event, are decomposed using a large set of audio descriptors and project into the principal component space. A data-driven algorithm clusters the relevance of the components. The component subspaces are used by sound type classifier. This methodology showed that the k-nearest neighbor and the artificial intelligent network provide good results. Also, this methodology showed that discarding unnecessary dimension works in favor on the outcome, as it hardly deteriorates the effectiveness of the algorithms.Peer reviewe

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

    Get PDF
    In this thesis, research on large vocabulary continuous speech recognition for unknown audio conditions is presented. For automatic speech recognition systems based on statistical methods, it is important that the conditions of the audio used for training the statistical models match the conditions of the audio to be processed. Any mismatch will decrease the accuracy of the recognition. If it is unpredictable what kind of data can be expected, or in other words if the conditions of the audio to be processed are unknown, it is impossible to tune the models. If the material consists of `surprise data' the output of the system is likely to be poor. In this thesis methods are presented for which no external training data is required for training models. These novel methods have been implemented in a large vocabulary continuous speech recognition system called SHoUT. This system consists of three subsystems: speech/non-speech classification, speaker diarization and automatic speech recognition. The speech/non-speech classification subsystem separates speech from silence and unknown audible non-speech events. The type of non-speech present in audio recordings can vary from paper shuffling in recordings of meetings to sound effects in television shows. Because it is unknown what type of non-speech needs to be detected, it is not possible to train high quality statistical models for each type of non-speech sound. The speech/non-speech classification subsystem, also called the speech activity detection subsystem, does not attempt to classify all audible non-speech in a single run. Instead, first a bootstrap speech/silence classification is obtained using a standard speech activity component. Next, the models for speech, silence and audible non-speech are trained on the target audio using the bootstrap classification. This approach makes it possible to classify speech and non-speech with high accuracy, without the need to know what kinds of sound are present in the audio recording. Once all non-speech is filtered out of the audio, it is the task of the speaker diarization subsystem to determine how many speakers occur in the recording and exactly when they are speaking. The speaker diarization subsystem applies agglomerative clustering to create clusters of speech fragments for each speaker in the recording. First, statistical speaker models are created on random chunks of the recording and by iteratively realigning the data, retraining the models and merging models that represent the same speaker, accurate speaker models are obtained for speaker clustering. This method does not require any statistical models developed on a training set, which makes the diarization subsystem insensitive for variation in audio conditions. Unfortunately, because the algorithm is of complexity O(n3)O(n^3), this clustering method is slow for long recordings. Two variations of the subsystem are presented that reduce the needed computational effort, so that the subsystem is applicable for long audio recordings as well. The automatic speech recognition subsystem developed for this research, is based on Viterbi decoding on a fixed pronunciation prefix tree. Using the fixed tree, a flexible modular decoder could be developed, but it was not straightforward to apply full language model look-ahead efficiently. In this thesis a novel method is discussed that makes it possible to apply language model look-ahead effectively on the fixed tree. Also, to obtain higher speech recognition accuracy on audio with unknown acoustical conditions, a selection from the numerous known methods that exist for robust automatic speech recognition is applied and evaluated in this thesis. The three individual subsystems as well as the entire system have been successfully evaluated on three international benchmarks. The diarization subsystem has been evaluated at the NIST RT06s benchmark and the speech activity detection subsystem has been tested at RT07s. The entire system was evaluated at N-Best, the first automatic speech recognition benchmark for Dutch

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Context based multimedia information retrieval

    Get PDF
    • 

    corecore