16,951 research outputs found

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    ATLAS: A flexible and extensible architecture for linguistic annotation

    Full text link
    We describe a formal model for annotating linguistic artifacts, from which we derive an application programming interface (API) to a suite of tools for manipulating these annotations. The abstract logical model provides for a range of storage formats and promotes the reuse of tools that interact through this API. We focus first on ``Annotation Graphs,'' a graph model for annotations on linear signals (such as text and speech) indexed by intervals, for which efficient database storage and querying techniques are applicable. We note how a wide range of existing annotated corpora can be mapped to this annotation graph model. This model is then generalized to encompass a wider variety of linguistic ``signals,'' including both naturally occuring phenomena (as recorded in images, video, multi-modal interactions, etc.), as well as the derived resources that are increasingly important to the engineering of natural language processing systems (such as word lists, dictionaries, aligned bilingual corpora, etc.). We conclude with a review of the current efforts towards implementing key pieces of this architecture.Comment: 8 pages, 9 figure

    The DeepThought Core Architecture Framework

    Get PDF
    The research performed in the DeepThought project aims at demonstrating the potential of deep linguistic processing if combined with shallow methods for robustness. Classical information retrieval is extended by high precision concept indexing and relation detection. On the basis of this approach, the feasibility of three ambitious applications will be demonstrated, namely: precise information extraction for business intelligence; email response management for customer relationship management; creativity support for document production and collective brainstorming. Common to these applications, and the basis for their development is the XML-based, RMRS-enabled core architecture framework that will be described in detail in this paper. The framework is not limited to the applications envisaged in the DeepThought project, but can also be employed e.g. to generate and make use of XML standoff annotation of documents and linguistic corpora, and in general for a wide range of NLP-based applications and research purposes

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Extracting, Transforming and Archiving Scientific Data

    Get PDF
    It is becoming common to archive research datasets that are not only large but also numerous. In addition, their corresponding metadata and the software required to analyse or display them need to be archived. Yet the manual curation of research data can be difficult and expensive, particularly in very large digital repositories, hence the importance of models and tools for automating digital curation tasks. The automation of these tasks faces three major challenges: (1) research data and data sources are highly heterogeneous, (2) future research needs are difficult to anticipate, (3) data is hard to index. To address these problems, we propose the Extract, Transform and Archive (ETA) model for managing and mechanizing the curation of research data. Specifically, we propose a scalable strategy for addressing the research-data problem, ranging from the extraction of legacy data to its long-term storage. We review some existing solutions and propose novel avenues of research.Comment: 8 pages, Fourth Workshop on Very Large Digital Libraries, 201

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally
    corecore