27 research outputs found

    Data quality issues in environmental sensing with smartphones

    Get PDF
    This paper presents the results of a study about the performance and, consequently, challenges of using smartphones as data gatherers in mobile sensing campaigns to environmental monitoring. It is shown that there are currently a very large number of devices technologically enabled for tech-sensing with minimal interference of the users. On other hand, the newest devices seem to broke the sensor diversity trend, therefore making the approach of environmental sensing in the ubiquitous computing scope using smartphones sensors a more difficult task. This paper also reports on an experiment, emulating different common scenarios, to evaluate if the performance of environmental sensor-rich smartphones readings obtained in daily situations are reliable enough to enable useful collaborative sensing. The results obtained are promising for temperature measurements only when the smartphone is not being handled because the typical use of the device pollutes the measurements due to heat transfer and other hardware aspects. Also, we have found indicators of data quality issues on humidity sensors embedded in smartphones. The reported study can be useful as initial information about the behaviour of smartphones inner sensors for future crowdsensing application developers.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    OppNet: Enabling citizen-centric urban IoT data collection through opportunistic connectivity service

    Get PDF
    Urban IoT data collection is challenging due to the limitations of the fixed sensing infrastructures. Instead of transmitting data directly through expensive cellular networks, citizen-centric data collection scheme through opportunistic network takes advantage of human mobility as well as cheap WiFi and D2D communication. In this paper, we present OppNet, which implements a context aware data forwarding algorithm and fills the gap between theoretical modelling of opportunistic networking and real deployment of citizen-centric data collection system. According to the results from a 3-day real-life experiment, OppNet shows consistent performance in terms of number of hops and time delay. Moreover, the underlying social structure can be clearly identified by analysing social contact data collected through OppNet

    The Internet of Things Has a Gateway Problem

    Full text link
    The vision of an Internet of Things (IoT) has captured the imag-ination of the world and raised billions of dollars, all before we stopped to deeply consider how all these Things should connect to the Internet. The current state-of-the-art requires application-layer gateways both in software and hardware that provide application-specific connectivity to IoT devices. In much the same way that it would be difficult to imagine requiring a new web browser for each website, it is hard to imagine our current approach to IoT connec-tivity scaling to support the IoT vision. The IoT gateway problem exists in part because today’s gateways conflate network connectiv-ity, in-network processing, and user interface functions. We believe that disentangling these functions would improve the connectivity potential for IoT devices. To realize the broader vision, we propose an architecture that leverages the increasingly ubiquitous presence of Bluetooth Low Energy radios to connect IoT peripherals to the Internet. In much the same way that WiFi access points revolution-ized laptop utility, we envision that a worldwide deployment of IoT gateways could revolutionize application-agnostic connectivity, thus breaking free from the stove-piped architectures now taking hold. In this paper, we present our proposed architecture, show example applications enabled by it, and explore research challenges in its implementation and deployment

    Mobility-driven BLE transmit-power adaptation for participatory data muling

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centre @ Singapore Funding Initiativ

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    Analysis of smartphone user mobility traces for opportunistic data collection in wireless sensor networks

    Get PDF
    The increasing ubiquity of smartphones coupled with the mobility of their users will allow the use of smartphones to enhance the operation of wireless sensor networks. In addition to accessing data from a wireless sensor network for personal use, and the generation of data through participatory sensing, we propose the use of smartphones to collect data from sensor nodes opportunistically. For this to be feasible, the mobility patterns of smartphone users must support opportunistic use. We analyze the dataset from the Mobile Data Challenge by Nokia, and we identify the significant patterns, including strong spatial and temporal localities. These patterns should be exploited when designing protocols and algorithms, and their existence supports the proposal for opportunistic data collection through smartphones

    Practical opportunistic data collection in wireless sensor networks with mobile sinks

    Get PDF
    Wireless Sensor Networks with Mobile Sinks (WSN-MSs) are considered a viable alternative to the heavy cost of deployment of traditional wireless sensing infrastructures at scale. However, current state-of-the-art approaches perform poorly in practice due to their requirement of mobility prediction and specific assumptions on network topology. In this paper, we focus on lowdelay and high-throughput opportunistic data collection in WSN-MSs with general network topologies and arbitrary numbers of mobile sinks. We first propose a novel routing metric, Contact-Aware ETX (CA-ETX), to estimate the packet transmission delay caused by both packet retransmissions and intermittent connectivity. By implementing CA-ETX in the defacto TinyOS routing standard CTP and the IETF IPv6 routing protocol RPL, we demonstrate that CA-ETX can work seamlessly with ETX. This means that current ETXbased routing protocols for static WSNs can be easily extended to WSN-MSs with minimal modification by using CA-ETX. Further, by combing CA-ETX with the dynamic backpressure routing, we present a throughput-optimal scheme Opportunistic Backpressure Collection (OBC). Both CA-ETX and OBC are lightweight, easy to implement, and require no mobility prediction. Through test-bed experiments and extensive simulations, we show that the proposed schemes significantly outperform current approaches in terms of packet transmission delay, communication overhead, storage overheads, reliability, and scalability
    corecore