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Practical Opportunistic Data Collection in
Wireless Sensor Networks with Mobile Sinks

Shusen Yang, Usman Adeel, Yad Tahir, and Julie A. McCann

Abstract—Wireless Sensor Networks with Mobile Sinks (WSN-MSs) are considered a viable alternative to the heavy cost of
deployment of traditional wireless sensing infrastructures at scale. However, current state-of-the-art approaches perform poorly in
practice due to their requirement of mobility prediction and specific assumptions on network topology. In this paper, we focus on low-
delay and high-throughput opportunistic data collection in WSN-MSs with general network topologies and arbitrary numbers of mobile
sinks. We first propose a novel routing metric, Contact-Aware ETX (CA-ETX), to estimate the packet transmission delay caused by
both packet retransmissions and intermittent connectivity. By implementing CA-ETX in the defacto TinyOS routing standard CTP and
the IETF IPv6 routing protocol RPL, we demonstrate that CA-ETX can work seamlessly with ETX. This means that current ETX-
based routing protocols for static WSNs can be easily extended to WSN-MSs with minimal modification by using CA-ETX. Further,
by combing CA-ETX with the dynamic backpressure routing, we present a throughput-optimal scheme Opportunistic Backpressure
Collection (OBC). Both CA-ETX and OBC are lightweight, easy to implement, and require no mobility prediction. Through test-bed
experiments and extensive simulations, we show that the proposed schemes significantly outperform current approaches in terms of
packet transmission delay, communication overhead, storage overheads, reliability, and scalability.

Index Terms—opportunistic networks, sensor data collection, delay tolerant sensing, queueing networks
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1 INTRODUCTION

Wireless sensing technologies have been playing an increas-
ing important role in environment monitoring applications [1]–
[3]. Traditional multi-hop Wireless Sensor Networks (WSNs)
aims to support real-time data delivery (in hundreds of mil-
liseconds) [4]–[7], which may fail in large-scale sensing appli-
cations. This is because that thousands of sensor nodes would
be required to ensure both the sensing coverage and multi-
hop network connectivity, resulting in expensive deployment
cost and network congestions around the sink. Alternatively,
equipping sensing devices with cellular communication radios
can also support real-time data collection, but this will lead
to expensive phone bill costs (e.g. $4500 annual costs for 12
sensors reported in [8]) and short network lifetime caused by
the required high transmission power (e.g. typically 500 mW)
for long-range wireless communications.
In fact, many environment monitoring applications do not

have a strict real-time requirement (e.g. in minutes or hours)
such as temperature and urban noise monitoring [1], [9], [10].
For such applications, wireless devices carried by vehicles
or individuals (e.g. smart phones) can act as mobile sinks
to collect data from static sensors in an opportunistic way,
by using short-range wireless radios such as Bluetooth Low
Energy (BLE), WiFi direct, and Zigbee [11]–[13]. With the
increasing short-range communication capabilities of mobile
devices and their huge population, WSNs with mobile sinks
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(WSN-MSs) [9], [10], [14], [15] have a great potential to
become flexible and cost-effective solution to such delay-
tolerant sensing applications.
In a WSN-MS, a sensor node can either send its data directly

to a sink as it passes by, or it can send data via multi-hop routes
to other sensor nodes who currently have contact with, or who
will be likely in contact with a sink in the future. Therefore,
how to choose the best routes to efficiently forward sensor
data is a key issue for data collection in WSN-MSs. Although
this topic has received a reasonable amount of research to date,
most of them have limitations that affect their adoption in prac-
tice. Some approaches [9], [10], [15] require the prediction of
trajectories of the sinks, which incurs considerable overheads
and suffers from prediction errors or may not even be possible
in large-scale practical scenarios. While other schemes, such as
[14], focus on adaptively and smoothly updating routing tree
structures as a sink moves in the sensing area. These schemes
would suffer from heavy communications overheads in the
following cases: (1) WSN-MSs with large numbers of fast
moving sinks; (2) intermittently-connected WSN-MSs where
a sensor node cannot reach the sink through any end-to-end
path for reasonable periods of time (e.g. off-peak time in urban
roads in [2]). Furthermore, due to the opportunistic availability
of mobile sinks and heavy data traffic potentially produced by
ubiquitous sensors, throughput performance is an important
issue for data collection schemes in WSN-MSs. However, this
has received very little attention in current WSN-MS research.
To overcome the limitations of existing approaches, this

paper aims to develop high-throughput and low-delay oppor-
tunistic data collection approaches for practical WSNs-MSs
with general network topologies and sink mobility patterns
(e.g. connected or intermittently connected networks, arbitrary
numbers of sinks, and arbitrary reasonable sink movement
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speeds). The contributions of this paper are summarized as
follows:
1. Based on queuing analysis theory, we propose a novel

routing metric Contact-Aware ETX (CA-ETX) for WSN-MSs,
to effectively estimate the opportunistic link quality between
sensors and mobile sinks. Specifically, CA-ETX performs
an on-line measurement of the packet transmission delay
over each opportunistic link, by considering both intermittent
contact opportunities and the wireless unreliability during each
contact (i.e. data packet retransmissions). Beside its efficiency,
a major advantage of CA-ETX is that it can simultaneously
work with ETX, the most popular link quality metric used by
current WSN routing protocols including the defacto TinyOS
routing standard CTP [5] and the IETF IPv6 routing protocol
RPL [16]. By implementing CA-ETX in two popular WSN
operating systems TinyOS [17] and Contiki [18], we demon-
strate that CTP [5] and RPL [16] can be easily extended to
support delay-tolerant data collection in WSN-MSs by using
CA-ETX.
2. By integrating CA-ETX into stochastic Lyapunov opti-

mization theory, we propose a throughput-optimal approach,
Opportunistic Backpressure Collection (OBC), a joint multi-
path routing and scheduling protocol for WSN-MSs. In con-
trast to current data collection schemes in WSN-MSs, OBC
is lightweight, easy to implement, requires no mobility pre-
diction, and can support a large number of fast moving sinks.
To our knowledge, OBC is the first scheme that combines the
backpressure algorithm [19] and mobility awareness for WSN-
MSs. We implement OBC in both TinyOS [17] and a realistic
WSN simulator Castalia [20].
3. We construct real-world experiments and extensive sim-

ulations to evaluate the performance of CA-ETX and OBC
based on the IEEE 802.15.4 radio1. The evaluation results
show that both delay and packet loss performance of both CTP
and RPL can be significantly improved by simply adopting
CA-ETX over opportunistic sensor-sink links. In addition,
evaluation results demonstrate that OBC can achieve sig-
nificant performance improvements in terms of end-to-end
delay, storage overheads, energy efficiency, packet loss, and
scalability, compared with state-of-the-art approaches.
The remainder of this paper is organized as follows: the

next section discusses related work; we present our system
model in Section 3; Section 4 proposes the CA-ETX metric;
Section 5 presents the OBC protocol. Implementation details
and evaluation results are presented and discussed in Section
6; and finally we conclude the paper in Section 7.

2 RELATED WORK
Data collection in WSN-MSs. There are several data

collection protocols for WSN-MSs [9], [10], [14], [15], [21].
Lee et al. [15] propose a routing protocol based on information
potentials [22] and a constructed mobility graph. However,

1. It is worth noting that although our implementation and evaluation
are based on IEEE 802.15.4 radio, the principles of CA-ETX and OBC
can be straightforwardly adopted for WSN-MSs with other short-range
communication radios such as WiFi Direct and Bluetooth. However, the
link-layer interface should be specifically designed according to the actual
communication radios used.

this scheme requires mobility prediction and may suffer from
heavy communication overheads when there are a large num-
ber of mobile sinks. WARP [23] and the routing protocol
developed by Li et al. [14] are based on fast and efficient
routing structure repairs, but are still limited to single mobile
sink settings. Data Stashing [10] supports multiple mobile
sinks but requires mobility prediction, network-wide flooding,
and linear programming solving on each node, leading to large
communication and computational overheads. Furthermore,
none of these approaches focus on throughput performance.
Wireless Routing Metrics. In static wireless networks such

as typical multi-hop WSNs, routing metrics like the well-
known Expected Transmission Count (ETX) [24] estimate the
packet transmission delays caused by link unreliability (i.e.
retransmissions). In mobile networks such as Delay Tolerant
Networks(DTNs), routing metrics such as inter-contact time
[25], contact probabilities [26], or social network based met-
rics such as centrality [27] are widely used. However, all these
metrics ignore the channel quality of the temporary connected
wireless link. In contrast to existing routing metrics, CA-ETX
is specifically designed for the WSN-MSs and can efficiently
estimate packet waiting times in data buffers, which is the
major delay of per-hop packet transmission in WSNs-MSs.
Backpressure Algorithms [6], [19] are well-known for

their optimal throughput but poor delay performance. There
are several backpressure algorithms applied to mobile multi-
hop networks [28]–[30]. Recent interesting work, BWAR [31],
develops an adaptive redundancy technique for backpressure
routing in DTNs. However, the idea of BWAR cannot be
applied to WSN-MSs, in which packet replication should not
be used due to the limited bandwidth resource of low-power
wireless links. Ryu et al [29], [30] study the backpressure flow
control and routing problem in disconnected static wireless
networks with mobile relays and predetermined gateways.
In contrast, our work focuses on WSN-MSs where each
sensor node could dynamically serve as a gateway at every
opportunistic contact with a mobile sink. Our previous workes
[27], [32] focus on the economic and social aspects of self-
interest human relays; whereas the OBC algorithm proposed
in this paper seamlessly combines CA-ETX and backpressure
routing to improve the delay and throughput performance of
data collection in WSN-MSs.

3 SYSTEM MODEL
We consider a WSN-MS consisting of static sensor nodes

and mobile sinks to collect sensor data using short-range
communication radios (e.g. Bluetooth, Zigbee, or WiFi direct).
If a sensor node is in contact with a mobile sink, it forwards
its sensor data to a mobile sink directly; otherwise, it stores
the data and waits for its next connection to a mobile sink
or forwards its sensor data through other sensor nodes to a
mobile sink in a multi-hop fashion. Topologically, the network
consisting of all static sensor nodes could be either connected
or disconnected . Let the sets of all sensor nodes and mobile
sinks be Ns and Nm respectively, and denote N = Ns∪Nm.
The network operates in discrete time slots (e.g. seconds)
t = 0, 1, ....
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3.1 Packet Reception Probability and Expected
Transmission Count
To model the unreliable wireless transmissions, we define

the packet reception probability (PRR) over a wireless link
(x, y), 0 ≤ PRRx,y(t) ≤ 1, as the probability of successfully
transmitting a data packet with acknowledgement from node x
to y, at slot t. PRRx,y(t) is assumed to be constant within the
duration of a slot, but can vary over slots and across different
wireless links, due to the time-varying wireless channel quality
and intermittent connectivity between static sensor nodes and
mobile sinks.
From basic probability theory, we can see that the value of

PRR is the reciprocal of the well-known Expected Transmis-
sion Count (ETX) [24], i.e. the average number of times that a
packet with acknowledgement needs to be successfully trans-
mitted. Specifically, consider a given PRR value PRRx,y(t),
the corresponding ETX value, ETXx,y(t) can be computed
as

ETXx,y(t) =
1

PRRx,y(t)
≥ 1 (1)

3.2 Link-layer Channel Capacity
Based on the definition of PRR, we define the logical link-

layer capacity of a wireless link from node x ∈ N to node
y ∈ N at time t,

cx,y(t) = cmaxPRRx,y(t) =
cmax

ETXx,y(t)
≥ 0 (2)

i.e. the maximum (integer) number of sensor data packets
(or bits) with acknowledgements that can be successfully
transmitted from x to y at slot t. Here cmax is the maximal
possible cx,y(t), ∀t, which is bounded by the data rate of
the wireless radio. For instance, experimental studies show
that a commonly-used IEEE 802.15.4 transceiver, CC2420
(e.g. [33]), can achieve a data rate of approximate 160 40-
bytes packets per second [34] in practice. If cx,y(t) > 0, we
say nodes x and y are in contact at slot t; otherwise (i.e.
cx,y(t) = 0), they are not in contact at slot t.

3.3 WSN-MS as a Time-varying Weighted Graph
The states of WSN-MS at a given slot t ≥ 0 can be

represented as a directed, complete, and time-varying weighted
graph G(N,L, c(t)), where L represents the set of all possible
wireless links between each pair of nodes in N , and the
|L|-dimensional vector c(t) represents the vector of channel
capacities over all wireless links at slot t. Since the potential
sparsity of the network, most entries of c(t) are zero at any
given t.
It can be seen that c(t) can characterize the time-varying

channel capacities of the WSN-MS caused by both slow fading
between the static sensor nodes and fast fading between sensor
nodes and the mobile sinks. Therefore, c(t) also implies the
stochastic process of sink mobility. We assume that c(t) is an
ergodic Markov chain that takes values on a finite (but which
can be arbitrary large) discrete state space S, and it has the
stationary distribution probability πc for each channel capacity
state c.

Fig. 1. An example for CA-ETX gradient in an oppor-
tunistic contact graph for WSN-MS. (a) An example op-
portunistic contact graph with link CA-ETX values, where
solid and dashed lines represent sensor-to-sensor links
and sensor-VS links respectively; (b) corresponding node
CA-ETX values; and (c) CA-ETX gradient and corre-
sponding opportunistic shortest path routes.

It has been shown that many real mobility traces exhibit a
high degree of spatial regularity [35]–[37]. In the context of
WSN-MS, this means that mobile sinks appear in some spe-
cific locations with a higher probability than others, resulting
in heterogeneous opportunities of sensor nodes to meet mobile
sinks. For instance, sensor nodes in shopping centers should
have more opportunities to meet mobile sinks than those in
park.

4 CONTACT-AWARE ETX
In this section, we will first present the concept of CA-

ETX gradient defined in an opportunistic contact graph from
a global perspective. Then we will discuss in detail how to
compute the CA-ETX value for each opportunistic link at real
time.

4.1 Opportunistic Contact Graph
We consider anycast sensor data traffic in this paper, i.e.

the destination of each sensor data packet can be any mobile
sink2. This allows us to use a virtual sink V S to represent all
the mobile sinks in Nm. We define the opportunistic contact
graph as Go(No, Lo), where No = Ns∪{V S} represents the
set of all sensor nodes and the virtual sink, and Lo represents
the set of all sensor-to-sensor and sensor-VS links,

Lo = Ls ∪ {(x, V S) : x ∈ Ns}

where Ls is the set of all wireless links between sensor nodes.

4.2 Muti-hop CA-ETX Gradient
For each opportunistic link (x, y) in Lo, we define a metric

CA-ETXx,y, to estimate the packet transmission delay over
this link. The computation of link CA-ETX values will be
discussed in detail in Subsection 4.3. Based on the link CA-
ETX values, each sensor node x can compute its node CA-
ETX value, CA-ETXx in a recursive and fully distributed

2. It is straightforward to extend our work to multi-commodity traffic
models, by defining a virtual sink for each commodity.
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Each sensor node x in N
s performs the following operations:

1: if x is in contact with a mobile sink m then
2: x forwards its data to m;
3: else if OP (x) is the virtual sink then
4: x waits for a sink;
5: else
6: x forwards its data to OP (x);
7: end if

Fig. 2. The pseudo code of distributed shortest path
routing based on CA-ETX gradient.

way:

CA-ETXx = min
y∈No

x

(CA-ETXx, CA-ETXy+CA-ETXx,y)

(3)
where

No
x = {V S} ∪ {y : (x, y) ∈ Ls} (4)

represents the opportunistic contact neighbor set of x. Specifi-
cally, the CA-ETX value of the virtual sink CA-ETXV S = 0.
For instance, Fig.1 (a) shows an opportunistic contact graph
example with the CA-ETX value for each link. Fig. 1 (b)
shows corresponding node CA-ETX values computed by using
Eq. (3) recursively.
Remark 1. It can be seen that the recursive computation
of node CA-ETX value over an opportunistic contact graph
follow the same form of the computation of node ETX value
over a statically-deployed network. This enables us to easily
extend current ETX-based WSN routing protocols (e.g. CTP
and RPL) to WSN-MS scenarios by using CA-ETX.
For each sensor node x, let OSP (x, V S) be the shortest

path from x to the virtual sink V S in the opportunistic contact
graph Go(No, Lo), i.e. OSP (x, V S) is the path with the
minimal total link CA-ETX values from x to V S. It is easy
to verify that the node CA-ETX value of each sensor node
x represents the total link CA-ETX values of all links in
OSP (x, V S).

CA-ETXx =
∑

(i,j)∈OSP (x,V S)

CA-ETXi,j

For each sensor node x, define its opportunistic parent

OP (x) = arg min
y∈No

x

(CA-ETXy + CA-ETXx,y) (5)

whereN0
x is the opportunistic contact neighbor set of x defined

in Eq. (4). For instance, Fig. 1 (c) shows the opportunistic
parents of all sensor nodes based on their node CA-ETX
values.
With the CA-ETX gradient defined by the opportunistic

parents of each sensor node, the opportunistic shortest path
routing can be easily performed in a fully distributed way,
which is summarized in Fig.2. For instance, sensor node A
in Fig. 1 (c) will forward data to its opportunistic parent B,
if it is not in contact with any mobile sink; otherwise, it will
forward data to the mobile sink directly. This is different from
ETX-based routing, where each node always send data to its
parents.

4.3 Link CA-ETX Calculation
4.3.1 Packet Service Time (PST)
We consider each link (x, y) in Lo as a queue with time-

varying Packet Service Times (PSTs) µx,y(t), t ≥ 0, which is
the time duration required for a successful packet transmission
over link (x, y) at slot t.
If (x, y) is a sensor-sensor link, µx,y(t) depends on wireless

transmission rate, and can be easily computed as

µx,y(t) = 1/cx,y(t), ∀t ≥ 0 (6)

For instance, consider a maximum data rate of approximate
160 40-bytes packets per second achieved by CC2420 radio
[34], the PST is always larger than 6.25 milliseconds. Consider
the definition of logical link-layer channel capacity (2) and
PST (6), we can see the the classic time-average ETX value
over link (x, y) is

ETXx,y = E[µx,y(t)]c
max = µx,yc

max (7)

where E[·] is the expectation operator and µx,y is the long-term
mean of µx,y(t).
For a sensor-VS link (x, V S), its PST at a given slot t can

be computed as

µx,V S(t) =

{
1/cx,m(t), CBn

x ≤ t ≤ CEn
x

CBn+1
x − t+ 1/cx,m(CBn+1

x ), otherwise
(8)

where CBn
x and CEn

x , n ≥ 1 are the first and last time
slots of the nth contact between x and any mobile sink m
respectively, shown in Fig. 3. According to Eq. (8), PSTs for
sensor-VS links depend on the durations of each contacts ,
the inter-contact times (i.e. durations between each contact),
as well as the wireless link quality during each contact, which
cannot be reflected in existing routing metrics, such as ETX,
contact probability, or inter-contact time.

4.3.2 Opportunistic Link as a G/G/1 Queue
Due to the complex dynamics of the system, we do not

assume any specific distribution of both the arrival process
and service times over each opportunistic link (x, y) ∈ Lo.
Therefore, we model each link in Lo as a G/G/1 queue (i.e.
general distributions for packet inter-arrival and service times).
From queueing theory, the average packet waiting time wdx,y
in the link queue (x, y) can be approximately represented as:

wdx,y ≈
σa
x,y + σs

x,y

2(χx,y − µx,y)
(9)

where µx,y and σs
x,y are the standard mean and variance

of PST over link (x, y) respectively, and χx,y and σa
x,y are

the mean and variance of packet arrival intervals respectively.
From (9), we can see that wdx,y is an increasing function of
both µx,y and σs

x,y . Therefore, we define the CA-ETX value
for each link (x, y) ∈ No as

CA-ETXx,y = (σs
x,y/σ̃

s
x,y)c

maxµx,y (10)

where σ̃s
x,y is the variance of the PST during each contact

between x and y, i.e. if (x, y) is a sensor-sensor link, σ̃s
x,y =
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Fig. 3. An example to show how to compute and update CA-ETX value for sensor-VS links.

Fig. 4. An simple WSN-MS example to illustrate the
impacts of sink movement (speed and trajectory) on PST
behaviors and packet transmission delay.

σs
x,y is the variance of all PST samples; if (x, y) is a sensor-VS

link, σ̃s
x,y is the variance of all PST samples during CBn

x ≤
t ≤ CEn

x , n ≥ 1. The aim of normalizing σs
x,y by σ̃s

x,y is to
follow the concept of classic ETX, which further facilitates its
use in current ETX-based routing protocols with the minimal
modification. As a result, we have:

CA-ETXx,y =

{
cmaxµx,y = ETXx,y y ∈ No

x − {V S}

(σs
x,y/σ̃

s
x,y)c

maxµx,y y = V S
(11)

4.4 Updating CA-ETX for Sensor-VS links
For a sensor-VS link (x, V S), PST samples can be easily

estimated when x transmits each packet to any mobile sink
at run time. For each new PST sample, the values of µx,y,
σs
x,y , and σ̃s

x,y can be updated based on an efficient online
algorithm presented in Appendix A, which can be found in
the supplemental material.
However, when x is not in contact with any sink, PSTs of

a sensor-VS link (x, V S) could be very large (e.g. in minutes
or even hours), as shown in Fig. 3, while typical PSTs when
x is in contact with a sink is in tens of milliseconds. As a
result, simply updating CA-ETXx,V S after each PST sample
(e.g. the red time point in Fig. 3) would result in the CA-
ETX gradient react slowly to the network dynamics. We solve
this problem by using a virtual PST sample shown in Fig. 3
before a large real PST sample is obtained. This virtual sample
(and also CA-ETXx,V S) is updated at time points (e.g. green

time points in Fig. 3) with a small interval (e.g. current mean
service time µx,V S). The virtual sample is abandoned when
the real large service time sample is obtained.

4.5 Discussion

For a sensor node x, it is easy to see that the mean of the
PST µx,V S depends on its contact probability with any mobile
sink and link quality during each contact, while the variance
σs
x,y mainly depends on the inter-contact time between x

and any mobile sink. It is also not difficult to verify that
the former depends on a spatial distribution of mobile sinks
and deployments of sensor nodes, while the latter is greatly
affected by the movement speeds of the mobile sinks.
We designed a simple proof-of-concept simulation based

on Castalia [20] to illustrate above discussions. We consider
a WSN-MS with two sensor nodes (A and B) and two mobile
sinks moving repeatedly between two points ( L1, L2 for
sink 1, and L3, L4 for sink 2) with distances of 150 meters
respectively, illustrated in Fig.4. The transmission range of
all nodes are about 50 meters (0 dbm transmission power).
Each sensor node produces one 34-byte packet per second, and
transmits the data to the mobile sinks using CA-ETX gradient
based shortest path routing. We conduct the following studies:

4.5.1 PST Illustration.

We first study the impact of inter-contact time and contact
duration on PST, by fixing the location of sink 1 at L1,
setting d = 30, and changing the movement speed of sink
2. In this simulation, sink 1 can never communicate with
the two sensor nodes, while sink 2 can communication with
B intermittently. From Fig.5 (a) and (b), we can see that
a change of movement speed will not affect the mean of
contact probability (53.3%) and the mean of packet service
time (µB,V S =163 milliseconds), but will result in smaller
inter-contact time and PST variance σs

B,V S . As a result, packet
transmission delay decreases as we increase the movement
speed of sink 2, shown as Fig.5 (c). This verifies our queueing-
theoretical analysis and discussions. In addition, Fig.5 (b)
and (c) also demonstrate that the queueing delay (packet
waiting time in queues) is the the major part of end-to-end
delay (several seconds) in intermittently-connectedWSN-MSs,
compared with data transmission delay (tens of milliseconds)
caused by limited wireless channel capacity.
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Fig. 5. An illustrative example to demonstrate the impacts
of sink movement speeds and sensor deployment on
PSTs and transmission delay: in (a), (b), and (c), sink 1
was fixed at L1 shown in Fig.4 and d = 30 m; in (d), sink
1 moves with a fixed speed of 2 m/s and d = 35 m.

4.5.2 Efficiency of CA-ETX.

To illustrate the efficiency of CA-ETX, we used the fol-
lowing three metrics to measure the delay of sensor-VS
links (A, V S) and (B, V S): (1) CA-ETXx,V S , (2) µx,V S

(pure mean), and (3) σs
x,V S (pure variance). In this set of

simulations, we set the speed of sink 1 as 2 m/s and d = 35.
From Fig.5 (d), we can see all three metrics achieve nearly
same delay when sink 2 moved slower than 2 m/s. This is
because the majority of sensor data packets were transmitted
through route B→ A→ sink 1 (because d = 35 > 30). When
sink 2 moved faster than 2 m/s, most data were transmitted
through path A→ B→ sink 2 by using pure variance and
CA-ETX, while route B→ A→ sink 1 was still the major
path chosen by using pure mean. This results in a much faster
delay reduction of CA-ETX and pure variance than that of
pure mean, as the speed of sink 2 increases.

Since real sink mobility (e.g. walking people, bikes, and ve-
hicles) exhibits the regular spatial behavior and heterogeneous
movement speeds [35], [36], this simple illustrative example
demonstrates the potential of CA-ETX in practical WSN-MSs.
For instance, by using CA-ETX, data packets would be relayed
via sensor nodes close to a fast moving highway rather than
via nodes close to a pedestrian path when they have similar
probability to contact a mobile sink, resulting in better network
performance.
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Fig. 6. Illustration of a WSN-MS (400 sensors and 50
mobile sinks) for the proof-of-concept simulation of CA-
ETX, where the blue lines represents the wireless links
between sensor nodes and background color visualizes
sink movement, i.e. a given color presents the percentage
of time a sink visited a given location (sink appearance
probability).

4.5.3 CA-ETX in a Large-scale WSN-MS
To further illustrate the efficiency of CA-ETX, we con-

structed another two sets of simulations using a large-scale
WSN-MS with 400 sensor nodes and 50 mobile sinks in a
1000 m×1000 m area, illustrated in Fig.6. We use a realistic
mobility model HHW [38] to simulate human mobility be-
haviors such as the spatial regularity (see the heterogeneous
distribution of sink appearance probability shown in Fig.6).
The sink movement speeds were fixed to 5m/s and uniformly
distributed between 1m/s and 9m/s in the first and second sets
of simulations respectively. Other simulation settings are the
same as that in Subsection 6.4.2. Due to the same mean of
sink movement speeds (i.e. 5m/s), the average packet service
times are similar for both simulations. However, the variances
of PSTs σs

x,V S are different, resulting in significant delay
performance difference summarized in Table 1. Since CA-ETX
manages to provide a fine estimation of the packet waiting
time over each sensor-VS link, it achieves the best delay
performance in both simulations, as shown in Table 1.

5 THE OBC ALGORITHM
By forwarding sensor data through the minimal-cost routes,

shortest path routing has good delay performance especially
in WSN-MSs with light sensor data traffic load. However, the
poor throughput performance of shortest-path routing limits
its practical applications in WSN-MSs with potential large
volume of sensor data traffic. Therefore, this section develops a
novel throughput-optimal algorithm, OBC, by integrating CA-
ETX into the backpressure algorithm for WSN-MSs. Before
presenting OBC, we first model the WSN-MS as a dynamic
networked queuing system.
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TABLE 1
End-to-end delay (in seconds) of opportunistic shortest

path routing with different link metrics.

CA-ETX Pure Mean Pure Variance
simulation 1 (5m/s) 4.96 17.12 9.82
simulation 2 (1-9m/s) 6.73 27.25 8.35

5.1 Queueing Dynamics
Every sensor node x ∈ Ns collects data at a sensing rate

of rx3. Let 0 ≤ fx,y(t) ≤ cx,y(t) represent the actual amount
of sensor data transmitted over the wireless link (x, y) at slot
t. Define

Nx(t) := {y : cx,y(t) > 0, y ∈ N} (12)

as the set of node x’ all current neighbors. Each sensor node
maintains a queue (i.e. data buffer) to store the sensor data
packets received from other sensor nodes and produced by
itself. Let Qx(t) ≥ 0 be the queue backlog (or queue length)
of x ∈ Ns at slot t ≥ 0. From slot t to t+ 1, queue backlog
updates as follows:

Qx(t+1) = |Qx(t)−fout
x (t)|++rx+f in

x (t), ∀x ∈ Ns (13)

where f in
x (t) and fout

x (t) are the amount of total incoming
and outgoing data of node x at slot t respectively, i.e.

f in
x (t) =

∑

y∈Nx(t)

fy,x(t), fout
x (t) =

∑

y∈Nx(t)

fx,y(t)

and for any real number a, the operator |a|+ = a if a > 0;
|a|+ = 0 otherwise. It is worth noting that the queue backlog
Qm(t) = 0, for all m ∈ Ns, t ≥ 0.

5.2 Link Rate Region
We say a set of wireless links in L are contention-free if they

can be active (i.e.transmitting) simultaneously, which depends
on the interference relations between them. For a channel state
c, we define a L-dimensional contention-free link rate vector
µ(c), where each entry l is the capacity cl of the link l if
link l is scheduled to transmit; otherwise, entry l is zero. The
wireless links associated with the non-zero entries in µ(c) are
contention free. We further define the link rate region Γ(c(t))
associated with channel state c(t) as the convex hull of all
possible contention-free link rate vectors.

5.3 Network Capacity Region
We define a network capacity region Λ by saying that any

given r ∈ Λ if there exists a joint routing and scheduling
algorithm that controls fx,y(t), (x, y) ∈ L at every slot t ≥ 0
such that

fout
x − rx − f in

x = 0, ∀x ∈ Ns (14)
f(t) ∈ Γ(c(t)), ∀t (15)

where fout
x and f in

x are the long-term averages of f in
x (t)

and fout
x (t) respectively, and f(t) is the vector of all

3. We assume the constant sensing rate for analytical brevity. However, it
is straightforward to extend our results to general ergodic sensing rates.

fx,y(t), (x, y) ∈ L. Constraints (14) and (15) state the
flow conservation law and the link rate region constraint
respectively.

5.4 OBC Algorithm
At each slot t ≥ 0, the OBC algorithm operates as follows:
1.Weight Calculation. Each sensor node x ∈ Ns computes

the weight wx,y(t) for each of its current neighbors y ∈ Nx(t),

wx,y(t) = (Qx(t)/ϕx −Qy(t)/ϕy)cx,y(t) (16)

where
ϕx =

1

CA-ETXx,V S

is called the Gateway Quality (GQ) of sensor node x. To
guarantee the stability of OBC in theory, we set deterministic
lower and upper bounds for all sensor nodes x ∈ Ns, i.e.
0 < ϕmin ≤ ϕx ≤ ϕmax < ∞. In addition, we set ϕm for
each mobile sink m as any fixed non-zero value between ϕmin

and ϕmax, which has no impact on OBC algorithm.
2. Scheduling. The set of scheduled links F ∗(t) is chosen

as

F ∗(t) = arg max
F (t)∈Γ(c(t))

∑

(x,y)∈F (t)

wx,y(t) (17)

It is clear that F ∗(t) is the set of contention-free links with
the maximum aggregated weights at slot t. Current solutions
to compute the optimal F ∗(t) are all centralized and computa-
tional complex. However, sub-optimal F ∗(t) can be computed
in a fully distributed way by using the lightweight Longest
Queue First (LQF) approach [39], [40], which has been shown
to have a close-to-optimal performance in practice. This will
be discussed in detail in Subsection 6.1.
3. Routing and Forwarding. Based on F ∗(t), each sensor

node x ∈ Ns transmits a sensor data packet to the next one-
hop node by setting fx,y(t), y ∈ Nx(t) as follows:

fx,y(t) =

{
cx,y(t) (x, y) ∈ F ∗(t) ∧ wx,y(t) > 0

0 otherwise

Hence, each node x chooses the next hop node y such that link
(x, y) is scheduled and wx,y(t) > 0 (routing), then transmits
cx,y(t) amount of data packets to y (forwarding).
4. Queue Update. Each sensor node x updates its queue

backlog using (13).

5.5 Discussions
It has been shown that classic backpressure routing can

be directly used in mobile networks [6], since the long-term
queue gradient can be automatically established for dynamic
networks. From the theoretical point of view, this is because
backpressure routing inherently minimize the per-slot Lya-
punov drift in order to stabilize all queues in the network from
a infinite-horizon perspective. However, the queue gradient
would react much slower than the changes of network states
(e.g. sink locations), resulting in long data delivery paths and
significant routing loops in practice.
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In order to accelerate the system reaction speed, OBC
seamlessly combines mobility awareness (i.e. CA-ETX) and
queue gradient of backpressure algorithm in its weight cal-
culation (16). Here, sensor nodes with higher GQs have
higher opportunities to receive more packets than those with
lower GQs. Since the packet waiting time over opportunistic
sensor-VS links can be estimated by CA-ETX, the packet
transmission delay can be significantly reduced, compared
with classic backpressure algorithm.
It can be seen that OBC is quite lightweight when a

lightweight distributed scheduling algorithm is adopted. In ad-
dition, it is worth noting that OBC does not require predicting
any future knowledge of the network, and makes routing and
scheduling decisions based on current network information
only. Theorem 1 below demonstrates the throughput optimality
of OBC.
Theorem 1. Given any traffic arrival (i.e. sensing rate vector)
r such that r+ ε ∈ Λ for any ǫ > 0, the OBC algorithm (with
optimal scheduler) can stabilize all queues, i.e.

lim sup
K→∞

1

K

K∑

t=1

∑

x∈N

E[Qx(t)] < ∞

Proof. The proof of Theorem 1 is presented in Appendix B,
which can be found in the supplemental material. �

6 EVALUATION
In this section, we will construct extensive real-world ex-

periments and simulations to evaluate the proposed CA-ETX
metric and OBC algorithm. Our evaluation are based on two
popular WSN and IoT operating systems, TinyOS [17] and
Contiki OS [18]; and a realistic WSN simulator Castalia [20].
We applied the CA-ETX metric to the defacto TinyOS

routing standard CTP [5] and the IETF IPv6 routing protocol
RPL (in Contiki OS) [16], [41], and implemented the OBC
algorithm in both TinyOS and the Castalia simulator, as
shown in Table 2. In addition, we adopted the following
implementation approaches in our evaluations.
Sink Discovery and Neighbor Management. In our eval-

uation, each mobile sink declares its presence to its current
nearby sensor nodes by periodically broadcasting one-hop
beacons. We set the beacon broadcasting interval of mobile
sink Tsink as 1 second and 250 milliseconds for testbed
experiments and simulations respectively, as shown in Table
3. Each sensor node also broadcasts a beacon per second
to inform its local information (e.g. queue backlog) to its
neighbors. In addition, each node updates its neighbor table
every Tneighbor = 50 milliseconds. To reduce the control
packets, we implemented the overhearing (or snooping) mech-
anism (e.g. [6]). Here, each data packet or acknowledgment
message includes the sender’s local information in a packet
header filed. A node (sensor node or mobile sink) does not
need to broadcast a beacon in a broadcasting interval, if it
has already sent a data packet or replied an acknowledgment
in the same broadcasting interval. It can be seen that our
implementation achieves both precise and lightweight sink
discovery and neighbor table updating.

TABLE 2
Implementation details

Protocol CA-ETX (CTP) CA-ETX (RPL) OBC (testbed)
Platform TinyOS Contiki OS TinyOS

Code Changed 35 lines 68 lines -
Total RAM (kB) 3.1 9.8 2.7
Total ROM (kB) 30.5 42.5 26.9

Distributed Scheduling. The optimal solution to the
scheduling problem (17) is centralized and NP-hard for practi-
cal wireless networks with general interference relations (e.g.
[42]), which is therefore intractable in practical WSN-MSs. To
solve this problem, we implemented a fully distributed sub-
optimal scheduler, the greedy Longest Queue First (LQF),
which can achieve a near-optimal performance in practical
wireless networks [40], [43], [44]. Due to the page limit, we
do not describe the details of distributed LQF implementation,
which can be found in [40].
CSMA-Based WSN-MSs. Consider the discrete time slot

modeling in our system, the distributed OBC with LQF
scheduler can be directly used in synchronized TDMA net-
works. However, Since most current wireless devices adopt
CSMA-based radios, our evaluation used an efficient technique
proposed in [45], [46] to implement OBC with LQF in a
fully asynchronous way: If a link (x, y) is scheduled to
transmit (decision made by OBC with LQF), node x will
reduce its CSMA backoff window size to aggressively access
the channel; otherwise, x accesses the channel with normal
backoff window size.

6.1 Implementation
6.2 Evaluation Summary and Parameter Setting
Throughout the evaluation, we collected the following four

metrics to measure the performance of all protocols.
• End-to-End Delay. The time taken for every packet from
source to destination.

• Queue Backlog. The number of data packets in each
node’s data buffer, which indicates the storage efficiency.

• Communication Overhead. The number of transmitted
and received packets (including all data and control
packets) per node per second. This performance metric
can measure the efficiency of routing algorithm in terms
of energy and bandwidth consumptions.

• Packet Loss Rate. The percentage of lost data packets, in-
dicating the reliability performance. Here, the remaining
packets at the end of each evaluation was not considered
as packet losses.

Table 3 summarizes the parameter settings of our evaluation,
which will be discussed in detail in specific subsections below.

6.3 Evaluation of CA-ETX
In this subsection, we demonstrate how to use the CA-ETX

metric to extend current WSN routing protocols to WSN-MSs.
Specifically, we first applied CA-ETX to CTP [5], and evaluate
the performance improvement through a testbed experiment
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TABLE 3
Summary of Evaluation Parameter Settings

Evaluation CA-ETX Evaluation (Subsection 6.3) OBC Evaluation (Subsection 6.4)
Method Testbed Simulation Testbed Simulation
Protocols CTP(CA-ETX vs ETX) RPL(CA-ETX vs ETX) OBC&BCP OBC BP MG-IP
Platform TinyOS/MicaZ Contiki/Cooja TinyOS/MicaZ Castalia Castalia Castalia

MAC Layer IEEE 802.15.4 IEEE 802.15.4 IEEE 802.15.4 CSMA+LQF CSMA+LQF CSMA
TX power -25 dbm 0 dbm -25 dbm 0 dbm 0 dbm 0 dbm
Mobility Real Mobility HHW Model Real Mobility HHW Model HHW Model HHW Model
Prediction no no no no no more than 95% accuracy
Packet Size 34 Bytes 40 Bytes 34 Bytes 34 Bytes

Retransmission 10 times 10 times 10 times 10 times
Scale 20 sensors+2 sinks 200 sensors+10 sinks 20 sensors+2 sinks up to 1000 sensors+20 sinks
Tsink 1 second 250 milliseconds 1 second 250 milliseconds

Tneighbor 50 milliseconds 50 milliseconds 50 milliseconds 50 milliseconds
Buffer size 20 packets 40 packets 20 packets 300 packets

Fig. 7. Sensor Deployments for the ETX and CA-ETX
(with CTP) experiments.

using TinyOS based MicaZ motes. Then, we constructed a
simulation using Cooja, the simulator of Contiki OS [18], to
demonstrate the performance gain of RPL [16] by using CA-
ETX.

6.3.1 CA-ETX with CTP
We constructed experiments using MicaZ motes to evaluate

the practical performance of applying CA-ETX in CTP [5].
As shown in Table 2, only 35 lines of nesC code is used to
implement CA-ETX in CTP. We compared the performance of
CTP with ETX and CTP with CA-ETX by using the following
methods:
As shown in Fig.7 and Fig.8, two WSN-MSs were con-

currently deployed for the ETX and CA-ETX experiments
respectively in London Hyde Park. Each WSN-MSs consisted
of 20 sensor nodes (i.e. the blue cycles in Fig. 8(a)), which
were deployed in a grid topology with a cell size of two
meters. The mobile sinks were held by two researchers respec-
tively (each researcher carries two sinks for ETX and CA-ETX
respectively). The experiment lasted for 20 minutes during
which the two researchers (mobile sinks) roamed around the
deployment area, simulating both high probabilities of visiting
some hot points (i.e. red circles and stars in 8(a)) and other
low probability locations. Therefore, the two WSN-MSs had
the exactly same deployments and sink mobility. In order to

(a) connectivity visualization (b) sink mobility

Fig. 8. Visualization of the ETX and CA-ETX (with
CTP) testbed experiment settings: (a) Sensor deployment
topology and mobility hot spots, (b) the sequences of
neighbor numbers of the two sinks.

avoid inter-interference between the two WSN-MSs, they were
operated on two orthogonal channels of the CC2420 radio
(channels 13 and 26) respectively. In addition, neither channel
experienced interference by other external 2.4 GHz wireless
transmissions during the experiment, as no WiFi signal was
detectable around the deployment area.
Fig.8 illustrates above experiment scenarios, where the

diameter of each blue cycle in Fig.8(a) is linearly proportional
to the percentage of time that the corresponding sensor node
was in contact with a mobile sink; the width of each blue line
is linearly proportional to the percentage of time that corre-
sponding pair of sensors were connected as neighbors; and
Fig.8(b) illustrates the time sequences of neighbor numbers of
the two mobile sinks4.
In this experiment, the packet size, node transmission power,

and sensing rate, were set as 34 bytes, -25 dBm (results in
around 2-3 meter transmission range), and one packet per
five seconds for each sensor node respectively. Fig. 9 shows
the Cumulative distribution function (CDF) of the end-to-end

4. Since the collected illustration results are almost same for the two WSN-
MSs with orthogonal channels, we plot the CA-ETX experiment results in
Fig.8 for brevity.
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Fig. 9. Packet loss rate and CDF of end-to-end delay:
CTP with ETX and CA-ETX.

packet transmission delays. It can be seen that more than 90%
of packets were transmitted within 10 seconds by using CTP
with CA-ETX, while only 40% packets in the CTP with ETX
experiment achieved this performance. The average delay of
the CA-ETX experiment is 3.6 seconds, which is 73% less
than that of ETX experiment (i.e. 13.4 seconds).

TABLE 4
End-to-end delay (in seconds) of opportunistic shortest

path routing with different link metrics.

queue backlog Tx/Rx Rate
CTP with ETX 10.32 packets 5.63 packets/node/second
CTP with CA-ETX 7.83 packets 5.77 packets/node/second

As shown in Fig.9 and Tab.4, CTP with CA-ETX also
achieves smaller packet loss rate, lighter average storage
overhead (queue length) and similar communication overhead
(Tx/Rx rate), compared with CTP with ETX. This experiment
shows that although the real-time routing protocol CTP is
originally designed for static WSNs, it has a great potential
to be extended to support delay-tolerant data traffic in the
intermittently-connected WSN-MSs, by using CA-ETX.

6.3.2 CA-ETX with RPL
In this subsection, we evaluated the performance of RPL

with CA-ETX by using Cooja, the simulator of Contiki OS. As
shown in Table 2, we modified 68 lines of code to implement
CA-ETX and an enhanced loop detection scheme to RPL. We
also changed some codes in Contiki’s IPv6 stack to support
node mobility and delay-tolerant applications, including imple-
menting a queue at the network layer, faster neighbour table
updates, and broadcasting neighbour solicitation messages
more frequently.
In this set of simulations, we consider a multi-hop WSN-

MS consisting of 200 randomly-deployed sensor nodes and 10
mobile sinks in a 500 m×500 m simulation area. Each sensor
node generated one UDP packet (40 bytes) per 40 seconds.
We use a realistic mobility model, the Heterogeneous Human
Walk (HHK) model [38] to simulate sink mobility. The sink
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RPL/IPv6 with CA−ETX (packet loss rate 6.37%)
RPL/IPv6 with ETX (packet loss rate 6.18%)

Fig. 10. Packet loss rate and CDF of end-to-end delay:
Modified RPL/IPv6 with ETX and CA-ETX.

movement speeds were randomly set between 1 m/s and 9 m/s
respectively. Each simulation lasted for 2000 seconds. Fig. 10
shows the CDF of end-to-end delay for the modified RPL/IPv6
with ETX and CA-ETX respectively.
It can be seen from Fig.10 that using ETX and CA-ETX

result in similar packet loss rates of RPL, and the transmission
delay of around 20% data packets are similar (less than
1 seconds) when using the two metrics. These 20% data
packets could be either sent from sensor nodes directly to the
sink within one-hop, or through temporally existing multi-hop
paths. In comparison to ETX, however, CA-ETX significantly
reduces the delay of data packets (around 80%) that were
transmitted through opportunistic multi-hop paths. As a result,
the overall average of end-to-end delay of RPL with ETX
(19.92 seconds in average) is approximately three times larger
than that of CA-ETX (6.63 seconds in average).

6.4 Evaluation of OBC
6.4.1 Testbed Experiments
In this subsection, we compared OBC with a practical

backpressure-basedWSN routing protocol BCP [6], using real-
world experiment with TinyOS-based MicaZ motes. Since
BCP is a pure backpressure routing protocol without schedul-
ing, we only compared the routing part of OBC with BCP
for fairness. The method of this experiment was the same as
that of the CA-ETX experiment in Subsection 6.3.1 but sensor
layouts and sink mobility were different, which are illustrated
in Fig. 11. In addition, sensing rates of OBC and BCP were
set as one packet per two seconds, while all other parameter
settings were the same as that in the CA-ETX experiment.
As shown in Fig. 12, OBC significantly outperforms BCP in

end-to-end delay, storage overhead, and communication over-
head, while achieving similar packet loss rates as BCP. When
a sensor node x transmits data packets to a mobile sink in the
WSN-MS running BCP, its queue length reduces, resulting in
a queuing gradient towards x. However, the mobile sink may
disconnect from x before the convergence of such a gradient,
resulting in severe routing loops. Such time-varying queue
gradients caused by sink mobility aggravate the hop count
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(a) connectivity visualization (b) sink mobility

Fig. 11. Visualization of the BCP and OBC testbed
experiment settings: (a) Sensor deployment topology and
mobility hot spots, (b) the number of neighbors for the two
sinks.

performance of pure backpressure routing which is known to
perform poorly already in static networks (e.g. [47]). In OBC,
however, data packets are continuously forwarded to sensor
nodes with low node CA-ETX values, which significantly
reduces convergent time therefore mitigates routing loops (i.e.
CA-ETX gradient helps the convergence of queue gradient).
This results in much less unnecessary data transmissions (46%
less average TX/RX rates), as shown in Fig. 12(c).
Furthermore, the network capacity resource (i.e. opportunis-

tic contacts between sensors and mobile sinks) is better utilized
by OBC, compared with BCP. This is because that a sensor
node cannot transmit data to any nearby mobile sink during
the slots when its queue is empty, while OBC minimizes
the number of such slots by ensuring that better gateways
(sensors with lower CA-ETX value) have high probability
to receive more data. However, BCP treats all sensor nodes
homogeneously and inherently tries to balance all queues in
the network. Therefore, the probability of empty queues in
good gateways is much higher, resulting in a waste of sensor-
sink contact opportunities.
Due to the the better network capacity resource usage and

less data forwarding hops (less routing loops), OBC achieves
much less network congestion and therefore much smaller
queue backlog (59.1% in average) and less end-to-end delay
(38.2% in average) than BCP, shown in Fig. 12 (b) and (a)
respectively.

6.4.2 Simulation Study
We constructed extensive simulations to further evaluate the

performance of OBC, in terms of throughput, adaptability to
sink movement, and scalability.
Simulation Settings. We compared OBC with a state-of-

the-art protocol in WSN-MS that is based on mobility graph
and information potentials (MG-IP) [15], and the classic
backpressure routing/scheduling algorithm (BP). As shown in
Table. 3, all the three protocols were implemented on the top
of Castalia CSMA link layer. We implemented LQF and the
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Fig. 12. OBC experiment results.

back-off window adjustment technique [45] for the distributed
scheduling of OBC and BP.
It is worth noting that OBC and BP do not require any

knowledge of the future system states, but MG-IP requires to
forecast future sink mobility. In our simulations, we set the
mobility prediction accuracy of a mobile sink m, PACm as
a decreasing function of m’s speed spdm for MG-IP

PACm =

{
(100− spdm/4)%, if spdm ≤ 20 (m/s)

95% otherwise
(18)

which is much higher than the accuracy of prediction methold
reported in [15]. The aim of this setting is to show the
limitations of prediction-based WSN-MS protocols, and to
demonstrate that OBC can significantly outperform MG-IP
even when its prediction accuracy is nearly perfect. Every
simulation was run five times to obtain the average result.
Impacts of Traffic Loads. Fig. 13(a)-(d) show the perfor-

mance of the three algorithms with different sensing rate in
a WSN-MS consisting of 200 sensor nodes and 4 mobile
sinks, in a 600m × 600m area. The average sink mobility
speed is 5m/s. As shown in Fig. 13(a), MG-IP and BP show
opposite trends when the network data traffic changes. In
general, end-to-end delay mainly depends on two factors:
queue backlog (i.e. Little’s Theorem) and routing path length.
Since the routing decision of the mobility-aware MG-IP is
independent of network traffic, it suffers from larger delay in
simulations with heavier network traffics, caused by monotoni-
cally increased queue length shown in Fig. 13(b). However, BP
makes routing decision based on queue backlogs. As network
traffic load increases, its delay decreases. This is because
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(c) communication overhead
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(e) end-to-end delay
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(f) storage overhead
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(g) communication overhead
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(h) packet loss rate
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Fig. 13. Simulation results of OBC, BP, and MG-IP:(a)–(d) with different sensing rates (average sink speed is 5 m/s,
each simulation has 200 sensors and 4 sinks in a 600m×600m area.); (e)–(h) with different sink speed (sensing rate
is 2 packets per minute); (i) –(l) with different scale WSN-MSs (average sink speed and sensing rate are 5 m/s and 2
packets per minute respectively, the average node density of different scale networks remained the same, by adjusting
the size of corresponding simulation areas;(m)–(p) with different network density (average sink speed and sensing
rate are 5 m/s and 2 packets per minute respectively. Each simulation has 10 sinks and in a 600m×600m area.).
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the reduced routing loop is a more dominant factor than
the increased queue backlog5. Fig. 13(b) and (c) respectively
show that purely queue-aware BP achieves better queue length
but worse communication overhead than the purely mobility-
aware MG-IP. By combining mobility and queue awareness,
OBC achieves the best delay performance in almost all these
simulations. Finally, the packet drops of MG-IP are caused by
both wireless contentions and imperfect mobility predictions,
leading to worse reliability performance than BP and OBC (no
prediction requirement), as shown in Fig. 13(d).
Impacts of Sink Movement Speed. Fig. 13(e)-(h) show

the performance of the three algorithms with different sink
movement speeds. In this set of simulations, the WSN-MS
also consists of 200 sensor nodes and 4 mobile sinks in a
600m × 600m area. As the sinks moved faster, the variance
of packet service times over sensor-VS links decreases, as
we discussed in Subsection 4.5. This results in faster packet
transmission, lighter network congestion, and less routing
loops, for all three routing protocols, shown in Fig. 13(e)-
(f) respectively. In addition, MG-IP exhibits a large packet
loss rate in simulations with high-speed mobile sinks, caused
by non-ignorable mobility prediction errors, while BP and
OBC are relatively insensitive to sink movement speed in
terms of transmission reliability. Furthermore, that reliability
performance of MG-IP would be significantly degraded in
practical WSN-MSs, where high prediction accuracy (e.g.
more than 95% in our simulations) is impossible to achieve.
Scalability Study. Since all three protocols only require local

information (i.e. queue backlogs, CA-ETX, and information
potentials) to make routing and data forwarding decisions,
their control complexities are O(1) with respective to the net-
work size, which demonstrates their potential to scale to large
WSNs-MSs. However, the simulation results shown in Fig. 13
(i)- (l) demonstrate that the performance of all three protocols
generally decreases as the network scale increases, but the
performance degradation speed of OBC is the slowest. It can
also be seen that OBC outperforms the other two protocols in
both small-scale and large-scale WSN-MSs. Besides network
size, routing protocols in WSN-MSs are also expected to scale
with respect to the number of sinks. Both OBC and BP only
require to maintain one data queue for anycast data traffic, and
adopt lightweight mobility scheme (i.e. one-hop beacon and
CA-ETX) without maintaining any information of a specific
moving sink. Therefore, they are relatively insensitive to sink
population. In contrast, MG-IP needs to store n information
potential values for n mobile sinks respectively.
Impacts of Network Density. Fig. 13(m)-(p) show the per-

formance of the three algorithms in networks with different
density. As the number of sensor node increases, the network
become denser and therefore more connected. We can see that
when network becomes denser, all three protocols perform
significantly better in terms of end-to-end delay , while slightly
worse in terms of storage overhead and packet loss rate. It

5. Similar observations are also reported in static networks (e.g. [47]).
Typically, when we increase the network traffic load, the delay of multipath
backpressure routing first increases (due to the domination of reduced hop
counts), and then decreases (caused by the domination of increased queue
backlog). Our results belongs to the first phase.

can be seen that although OBC has the similar performance
as MG-IP in communication overhead and BP in reliability, it
significantly outperforms other two protocols in terms of delay
and storage overhead for all simulations.

7 CONCLUSION
In this paper, we study how to improve the delay and

throughput performance for delay-tolerant data collection ap-
plications in Wireless Sensor Networks with Mobile Sinks
(WSN-MSs). We propose a novel routing metric, CA-ETX,
based on queueing analysis theory to estimate the packet
transmission delay over opportunistic links. By implementing
CA-ETX in CTP and RPL, we demonstrate that current ETX-
based routing protocols for WSN with static sinks can be easily
applied to WNS-MSs by using CA-ETX. We also introduce
a throughput-optimal data collection scheme, OBC, by inte-
grating CA-ETX into the Lyapunov optimization framework.
In contrast to current WSN-MS schemes, OBC does not
require any mobility prediction and performs well in large-
scale sensor networks with multiple fast moving sinks. Test-
bed experiments and extensive simulations demonstrate that
OBC significantly outperforms state-of-the-art approaches. In-
teresting future directions are the extension of our approach
to the duty-cycled WSN-MSs.
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APPENDIX A
ONLINE COMPUTATION OF MEAN AND VARI-
ANCE

Consider a sequence of samples X(1), X(2), ...,. When the
nth sample X(n) is obtained, the mean µ(n) and variance σ(n)

of these n samples can be updated as

µ(n) = µ(n−1) +
1

n
(X(n) − µ(n−1)) (19)

σ(n) = σ(n−1) + (n− 1)(X(n) − µ(n))(
X(n) − µ(n)

n
)(20)

with µ(1) = X1 and σ(1) = 0 [48].

APPENDIX B
PROOF OF THEOREM 1
Let the N -dimensional vector Q(t) be the queue backlogs

of all nodes in the WSN-MSs at slot t. Define △Qx(t) =
Qx(t+1)−Qx(t). According to (13), we have△Qx(t) ≤ rx+
f in
x (t)−fout

x (t). Define a constant valueW = 1
ϕmin |N |(rmax+

2|N |cmax)2 where rmax = maxx∈Ns rx. We then define the
Lyapunov function V (t) =

∑
x∈N Q2

x(t)/ϕx and consider the
its 1-slot drift:

△1V (t)

= V (t+ 1)− V (t)

=
∑

x∈N

(2Qx(t)△Qx(t) +△Q2
x(t))/ϕx

≤ W + 2
∑

x∈N

Qx(t)△Qx(t)/ϕx

≤ W + 2
∑

x∈N

Qx(t)(rx + f in
x (t)− fout

x (t))/ϕx

= W + 2
∑

x∈N

(
Qx(t)

ϕx

rx −
∑

y∈Nx(t)

(
Qx(t)

ϕx

−
Qy(t)

ϕy

)fx,y(t))

It is clear that OBC choose fx,y(t), ∀t ≥ 0 to minimize the
right-hand side of above inequality over all possible other
algorithms. Hence we have

△1V (t) ≤ W +2
∑

x∈N

1

ϕx

Qx(t)(rx+ f̃ in
x (t)− f̃out

x (t)) (21)

where f̃ in
x (t) and f̃ in

x (t) are the routing and scheduling
decision made by any other algorithm ξ̃ which is independent
of queue backlogs.
Since the channel capacity c(t) is a discrete finite state

ergodic Markov chain, we use a sequence Ti, i ≥ 0 to
represents recurrence times to the initial state c(0). It is clear
that Ti, i ≥ 0 is a i.i.d. sequence with E[Ti] = 1/πc(0). Also,
it is known that the first and second moments of sequence Ti

are finite, which are denoted as E[T ] and E[T 2] respectively.
Finally, we define si =

∑i−1
τ=0 Tτ , i.e. the time of the ith

revisitation to channel state c(0). Consider the variable Ti-
slots drift of the Lyapunov function

△Ti
V (si)

= V (si+1)− V (si)

=

si+Ti−1∑

t=si

(V (t+ 1)− V (t))

≤
W

2
(T 2

i + Ti)

+2
∑

x∈N

Qx(si)

ϕx

si+Ti−1∑

t=si

(rx + f̃ in
x (t)− f̃out

x (t)) (22)

where the equality is because of (21) and the fact for any
si ≤ t ≤ si + Ti − 1,

|Qx(t)−Qx(si)|/ϕx ≤ (t− si)W/|N | (23)

Now we consider the conditional expectation of the variable
Ti-slots drift (22)

E[△Ti
V (si)|Q(si)]

≤ E[
W

2
(T 2

i + Ti) + 2
∑

x∈N

Qx(si)

ϕx

si+Ti−1∑

t=si

(rx

+ f̃ in
x (t)− f̃out

x (t))|Q(si)]

=(a)
W

2
(E[T 2] + E[T ])

+2
∑

x∈N

Qx(si)

ϕx

E[

si+Ti−1∑

t=si

(rx + f̃ in
x (t)− f̃out

x (t))]

=(b)
W

2
(E[T 2] + E[T ])

+2
∑

x∈N

Qx(si)

ϕx

E[T ](rx + E[f̃ in
x (t)− f̃out

x (t))] (24)

where the equality (a) is because both recurrence time Ti and
the algorithm ξ̃ are independent of queue backlogs Q(si);
and the equality (b) is based on the renewal reward theory.
Consider (24), ϕx ≤ ϕmin and the fact that r+ ε is inside the
capacity region, we have

E[△Ti
V (si)|Q(si)]

≤
W

2
(E[T 2] + E[T ])−

2εE[T ]

ϕmin

∑

x∈N

Qx(si) (25)

Taking expectations of the above, summing the resulting
telescoping series over i ∈ {0, 1, ...I − 1}, dividing by
2εE[T ]/ϕmin,rearranging the terms, and using the fact that
V (0) = 0 and V (si ≥ 0), ∀i, we have:

I−1∑

i=0

∑

x∈N

E[Qx(si)] ≤
IWϕmin(E[T 2] + E[T ])

4εE[T ]
(26)

Consider (23), we have
si+Ti−1∑

t=si

∑

x∈N

Qx(t) ≤ Ti

∑

x∈N

Qx(si) +
ϕmaxW (T 2

i − Ti)

2

(27)
Combine(26) and (27), and we have
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si+Ti−1∑

t=0

∑

x∈N

E[Qx(t)] ≤
IWϕmin(E[T 2] + E[T ])

4ε

+
IϕmaxW (E[T 2]− E[T ])

2
(28)

Let K = si + Ti − 1, dividing both sides by K , taking an
expectation and lim sup over both sides, we have

lim sup
K→∞

1

K

K∑

t=0

∑

x∈N

E[Qx(t)]

≤
Wϕmin(E[T 2] + E[T ])

4εE[T ]
+

ϕmaxW (E[T 2]− E[T ])

2E[T ]
< ∞

This completes the proof of Theorem 1.




