16 research outputs found

    Wireless Sensor Network with MIHOP technique & Mobile Sink

    Get PDF
    Various radio applications in wireless sensor network where sensor nod es operate on batteries so that energy consumption must be minimized while satisfying given throughput and delay requirements . A major portion of the energy expenditure is when the nodes close to the sensor network gateways used for data collection typical ly suffer a large overhead as these nodes must relay on data from the remaining network. In this paper we discuss various existing energy efficient schemes for WSN and one new method to achieve efficiency , is proposed. The MIHOP (MIMO and Multi - hop) meth od combines cluster - based virtual MIMO and multi - hop technologies. The multi hop mode is employed in transmitting data when the related sensors are located within a specific number of hops from the sink, and the virtual MIMO mode is used in transmitting da ta from the remaining sensor nodes. A controllable mobile sink that reduces the energy consumed in sensor transmission is also adopted fo r data collection

    Path-Constrained Data Gathering Scheme

    Get PDF
    Several studies in recent years have considered the use of mobile elements for data gathering in wireless sensor networks so as to reduce the need for multi-hop forwarding among the sensor nodes and thereby prolong the network lifetime Since typically practical constraints preclude a mobile element from visiting all nodes in the sensor network the solution must involve a combination of a mobile element visiting a subset of the nodes cache points while other nodes communicate their data to the cache points wirelessly This leads to the optimization problem of minimizing the communication distance of the sensor nodes while keeping the tour length of the mobile element below a given constraint In this paper we investigate the problem of designing the mobile elements tours such that the length of each tour is below a per-determined length and the number of hops between the tours and the nodes not included in the tour is minimized To address this problem we present an algorithmic solution that consider the distribution of the nodes during the process of building the tours We compare the resulting performance of our algorithm with the best known comparable schemes in the literatur

    Video Surveillance Over Wireless Sensor and Actuator Networks Using Active Cameras

    Get PDF
    Although there has been much work focused on the camera control issue on keeping tracking a target of interest, few has been done on jointly considering the video coding, video transmission, and camera control for effective and efficient video surveillance over wireless sensor and actuator networks (WSAN). In this work, we propose a framework for real-time video surveillance with pan-tilt cameras where the video coding and transmission as well as the automated camera control are jointly optimized by taking into account the surveillance video quality requirement and the resource constraint of WSANs. The main contributions of this work are: i) an automated camera control method is developed for moving target tracking based on the received surveillance video clip in consideration of the impact of video transmission delay on camera control decision making; ii) a content-aware video coding and transmission scheme is investigated to save network node resource and maximize the received video quality under the delay constraint of moving target monitoring. Both theoretical and experimental results demonstrate the superior performance of the proposed optimization framework over existing systems

    Analysis on Data Collection with Multiple Mobile Elements

    Get PDF
    Abstract-Exploring mobile elements to conduct data collection in wireless sensor networks offers a new approach to reducing and balancing the energy consumption of sensor nodes; however, the resultant data collection latency may be large due to the limited travel speed. Many research efforts have been made on reducing the data collection latency with the scenario where a single mobile element is available. A potential problem with this approach is the scalability, and a straightforward solution is to employ multiple mobile elements to collect data collaboratively. In this paper, the network where multiple homogeneous mobile elements are available is modeled as an M/G/c queuing system, and insights on the data collection performance are obtained through theoretically analyzing the measures of the queue. In addition, a heuristic formula to determine the optimal number of mobile elements is proposed based on this model. The accuracy of our modeling and analysis, along with the performance evaluation of the proposed heuristic formula, is verified through extensive simulation

    Covering tour problem with varying coverage: Application to marine environmental monitoring

    Get PDF
    In this paper, we present a novel variant of the Covering Tour Problem (CTP), called the Covering Tour Problem with Varying Coverage (CTP-VC). We consider a simple graph = ( ,), with a measure of importance assigned to each node in . A vehicle with limited battery capacity visits the nodes of the graph and has the ability to stay in each node for a certain period of time, which determines the coverage radius at the node. We refer to this feature as stay-dependent varying coverage or, in short, varying coverage. The objective is to maximize a scalarization of the weighted coverage of the nodes and the negation of the cost of moving and staying at the nodes. This problem arises in the monitoring of marine environments, where pollutants can be measured at locations far from the source due to ocean currents. To solve the CTP-VC, we propose a mathematical formulation and a heuristic approach, given that the problem is NP-hard. Depending on the availability of solutions yielded by an exact solver, we evaluate our heuristic approach against the exact solver or a constructive heuristic on various instance sets and show how varying coverage improves performance. Additionally, we use an offshore CO2 storage site in the Gulf of Mexico as a case study to demonstrate the problem’s applicability. Our results demonstrate that the proposed heuristic approach is an efficient and practical solution to the problem of stay-dependent varying coverage. We conduct numerous experiments and provide managerial insights.publishedVersio

    Efficient Aerial Data Collection with UAV in Large-Scale Wireless Sensor Networks

    Get PDF
    Data collection from deployed sensor networks can be with static sink, ground-based mobile sink, or Unmanned Aerial Vehicle (UAV) based mobile aerial data collector. Considering the large-scale sensor networks and peculiarity of the deployed environments, aerial data collection based on controllable UAV has more advantages. In this paper, we have designed a basic framework for aerial data collection, which includes the following five components: deployment of networks, nodes positioning, anchor points searching, fast path planning for UAV, and data collection from network. We have identified the key challenges in each of them and have proposed efficient solutions. This includes proposal of a Fast Path Planning with Rules (FPPWR) algorithm based on grid division, to increase the efficiency of path planning, while guaranteeing the length of the path to be relatively short. We have designed and implemented a simulation platform for aerial data collection from sensor networks and have validated performance efficiency of the proposed framework based on the following parameters: time consumption of the aerial data collection, flight path distance, and volume of collected data

    DESIGN OF MOBILE DATA COLLECTOR BASED CLUSTERING ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSNs) consisting of hundreds or even thousands of nodes, canbe used for a multitude of applications such as warfare intelligence or to monitor the environment. A typical WSN node has a limited and usually an irreplaceable power source and the efficient use of the available power is of utmost importance to ensure maximum lifetime of eachWSNapplication. Each of the nodes needs to transmit and communicate sensed data to an aggregation point for use by higher layer systems. Data and message transmission among nodes collectively consume the largest amount of energy available in WSNs. The network routing protocols ensure that every message reaches thedestination and has a direct impact on the amount of transmissions to deliver messages successfully. To this end, the transmission protocol within the WSNs should be scalable, adaptable and optimized to consume the least possible amount of energy to suite different network architectures and application domains. The inclusion of mobile nodes in the WSNs deployment proves to be detrimental to protocol performance in terms of nodes energy efficiency and reliable message delivery. This thesis which proposes a novel Mobile Data Collector based clustering routing protocol for WSNs is designed that combines cluster based hierarchical architecture and utilizes three-tier multi-hop routing strategy between cluster heads to base station by the help of Mobile Data Collector (MDC) for inter-cluster communication. In addition, a Mobile Data Collector based routing protocol is compared with Low Energy Adaptive Clustering Hierarchy and A Novel Application Specific Network Protocol for Wireless Sensor Networks routing protocol. The protocol is designed with the following in mind: minimize the energy consumption of sensor nodes, resolve communication holes issues, maintain data reliability, finally reach tradeoff between energy efficiency and latency in terms of End-to-End, and channel access delays. Simulation results have shown that the Mobile Data Collector based clustering routing protocol for WSNs could be easily implemented in environmental applications where energy efficiency of sensor nodes, network lifetime and data reliability are major concerns
    corecore