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Abstract—Exploring mobile elements to conduct data collection
in wireless sensor networks offers a new approach to reducing
and balancing the energy consumption of sensor nodes; however,
the resultant data collection latency may be large due to the
limited travel speed. Many research efforts have been made on
reducing the data collection latency with the scenario where a
single mobile element is available. A potential problem with this
approach is the scalability, and a straightforward solution is to
employ multiple mobile elements to collect data collaboratively.
In this paper, the network where multiple homogeneous mobile
elements are available is modeled as an M/G/c queuing system,
and insights on the data collection performance are obtained
through theoretically analyzing the measures of the queue. In
addition, a heuristic formula to determine the optimal number of
mobile elements is proposed based on this model. The accuracy of
our modeling and analysis, along with the performance evaluation
of the proposed heuristic formula, is verified through extensive
simulation.
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I. INTRODUCTION

Data collection is one of the most important applications of
wireless sensor networks [1]. Typically, data collection only
relies on wireless communications between sensor nodes and
the sink node, which may excessively consume the limited
energy supply of sensor nodes due to super-linear path loss
exponents. Furthermore, sensor nodes near the sink tend to
consume energy much faster than others since the data aggre-
gation towards the sink imposes them much heavier volumes
of traffic to transmit, which results in a very unbalanced energy
usage in the network and degrades the overall network lifetime.

Another data collection approach in wireless sensor net-
works utilizes the controlled mobility of certain devices,
referred to as mobile elements (MEs) in this paper [2], [3].
By utilizing mobile elements, not only more energy can be
conserved and balanced on sensor nodes, but also the com-
munications and networking become possible in very sparse
networks with the “store-carry-forward” approach. The main
challenge for this mobility-assisted approach is the relatively
lower speed of mobile elements, which may result in a much
higher data collection latency. Many efforts, focusing on the
case where a single mobile element is available to carry out the
data collection, have been made to address this problem [4],
[5]. A critical bottleneck of this approach is its scalability:
the single mobile element may not be enough for a given
latency requirement when the number of sensor nodes is large;
furthermore, the energy supply for the mobile element itself

may impose another issue if sensor nodes are deployed in a
wide area [6].

Employing more mobile elements is a straightforward ap-
proach to improving the scalability. An intuitive idea is to
divide the sensing field to several subfields with similar areas,
according to the number of available mobile elements, and
treat them as several smaller-scale networks where a single
mobile element exists [7]. However, this approach assumes the
number of mobile elements is given, which in turn is a critical
to-be-determined factor for the network planner in practice: a
smaller number of mobile elements may be not enough to
guarantee a given performance requirement, while increasing
it will introduce more costs in both network deployment and
operation. Determining the optimal number of mobile elements
is an important issue on this topic [5], which is proved to be
NP-hard [8]. Another limitation with this approach is that all
these mobile elements have to be active all the time, even if
the task of data collection in the network is light and they will
be idle for most of the time.

In this paper, we tackle this problem with a different
approach. Observing the fact that the traveling time of mobile
elements is usually the dominating one when compared with
the actual data transmission time with sensor nodes, we first
model the network as an M/G/c queuing system with a given
number of mobile elements, and obtain its system measures to
gain insights on the performance of data collection, which in
turn provide us guidelines to determine whether these mobile
elements are enough for a specific performance requirement.
Since evaluating the performance of an M/G/c queue is ana-
lytically intractable [9], approximation approaches are adopted
to obtain the system measures of the queue, which are of both
low computation complexity and high approximation accuracy.
Furthermore, we propose a heuristic formula to determine the
optimal number of mobile elements based on the analytical
results of the queuing model, which is of great practical value
since the parameters involved can be easily estimated in real
applications and for the devices adopted.

The contributions of this paper are threefold. We model the
network where multiple homogeneous mobile elements exist
as an M/G/c queuing system, and present its system measures
to shed light on the network performance. Second, a heuristic
formula to determine the optimal number of mobile elements
is proposed as well. Third, the correctness of our modeling and
analysis, along with the performance of the proposed heuristic
formula, is verified through extensive simulation.



The rest of this paper is organized as follows. The related
work on mobility-assisted data collection in wireless sensor
networks is given in Section II. We formulate the problem
and highlight our approaches in Section III. In Section IV, we
present the M/G/c queue-based analytical model, from which
we derive the performance metrics of the queuing system, and
we present the evaluation results in Section V. The heuristic
formula to calculate the optimal number of mobile elements
is presented in Section VI, and we conclude this paper in
Section VII.

II. RELATED WORK

Recent research has shown that mobility-assisted data col-
lection has many advantages over the traditional approaches,
e.g., direct communication and multihop forwarding. A lot of
efforts have been made to explore the scenario where a single
mobile element is available to conduct the data collection, in
terms of both scheme design [5] and performance analysis [4].

A path selection algorithm for the mobile element was
proposed in [5], which starts with a connected dominating set
of the network, then gets a minimum spanning tree based on
it, and finally generates a Hamiltonian circuit for the mobile
element. The resultant data collection path frees sensor nodes
from their routing obligations and data aggregation becomes
more secure. [4] modeled the network where a single mobile
element is available as an M/G/1 queue, and several critical
performance metrics, e.g., the average service time, and the
average and the distribution of the queue length, were derived
and verified.

A potential bottleneck of a single mobile element is its scal-
ability, and employ more mobile elements for data collection
is a straightforward approach to addressing it. [6] was an early
work that focused on the multiple mobile elements scenario,
where the mobile elements can only travel along fixed straight
tracks to collect data from sensor nodes. Load balancing
among mobile elements was also considered in terms of the
number of sensor nodes served by each mobile element. A
proactive data reporting protocol, SinkTrail, was proposed
in [10], which established a logical coordinate system for
predicting and tracking mobile sinks. It has been shown that
SinkTrail achieves energy efficient data forwarding to multiple
mobile sinks, and effectively reduces the number of sink-
location broadcast messages. A tour design algorithm for the
mobile elements was proposed in [3], which minimizes the
number of mobile elements according to the constraints in both
distance and time. In [2], an adaptive data gathering protocol
that employs multiple mobile elements to help wireless sensor
networks achieve both energy efficiency and low data collec-
tion latency was presented, which adopted a virtual elastic-
force model to adjust the travel speed and direction of mobile
elements.

It was proved in [8] that determining the minimum number
of required mobile elements with a given latency requirement
is NP-hard and cannot be approximated within a factor of 2.
Although that paper originally dealt with the problem of sweep
coverage with mobile sensors, the results can also be applied

to the problem of mobility-assisted data collection with simple
transformation.

Most existing work on data collection with multiple mobile
elements focuses on scheme design, i.e., how the mobile
elements should collaborate to collect data in the network,
in order to guarantee an acceptable QoS of data collection, in
terms of energy efficiency of sensor nodes, data collection
latency, load balancing among mobile elements, etc. Our
approach in this paper is to theoretically analyze the QoS of
data collection through a queue-based model, and observing its
NP-hardness, we also propose a heuristic formula to determine
the optimal number of mobile elements based on this model.
To the best of our knowledge, this is the first attempt in the
literature to analytically evaluate the QoS of data collection
with multiple mobile elements, and to determine the optimal
number of mobile elements as well.

III. PRELIMINARIES

Aiming to achieve a balance between the data collection
latency and the deployment/operation costs of mobile elements
(MEs), we consider the scenario where multiple homogeneous
MEs are available to collect data from static sensor nodes.
Sensor nodes initiate data collection requests when they have
enough data to report, which are forwarded to the MEs by
adopting certain existing ME-tracking protocols [11]. The
MEs maintain a service queue for received data collection
requests, and serve them with the first-come-first-serve (FCFS)
discipline. By serving a request, we mean that one of the
MEs moves to the sensor node that sends the request, and
collects data from that node through short-range wireless
communications.

Since the typical data relay speed in sensor networks is
much faster than the travel speed of MEs [12], and efficient
protocols for ME-tracking exist in the literature, we assume
the time since a request is sent by a sensor node till it is
received by the MEs is small and negligible. Note that usually
these ME-tracking protocols rely on the multi-hop forwarding
among sensor nodes. Thus instead of using these protocols to
carry the sensory data to the MEs directly, which usually are
of much larger size, only the requests for data collection is
forwarded to reduce the communication overhead of sensor
nodes.

We assume a Poisson arrival process for the data collection
requests. This assumption holds since that first, the number of
sensor nodes in the sensing field is relatively large, and second,
the probability for a sensor node to initiate a data collection
request is relatively small. Theoretically, if the size of client
population of a queuing system is relatively large and the prob-
ability by which clients arrive at the queue is relatively low at
certain time, the arrival process can be adequately modeled as
a Poisson process [27]. This assumption is further confirmed
in Section V. Our approach is to model the network as an
M/G/c queuing system, i.e., the homogeneous MEs as servers
and data collection requests as clients. With this modeling, the
data collection latency of our focus is equivalently the response
time of clients in the queue-based model, and we derive



analytical results on the latter to shed light on the former,
based on which, we also propose a simple heuristic formula
to determine the optimal number of MEs given a specific
performance requirement, to achieve the desired balance.

IV. QUEUE-BASED MODELING AND ANALYSIS

A. Modeling as an M/G/c Queue

Observing the fact that usually the travel speed of the MEs is
much lower than that of the data relayed in the network [13],
we consider the service time of a request as the time from
the completion of serving the current request, to the time the
ME moves to the sensor node that sends the next to-be-served
request. From the existing results on the distance distribution
fD(d) of two random points in a unit grid [14], we know that

fD(d) =


2d(π − 4d+ d2) 0 ≤ d ≤ 1

2d[2 sin−1( 1d )− 2 sin−1
√
1− 1

d2

+4
√
d2 − 1− d2 − 2] 1 ≤ d ≤

√
2

0 otherwise.

(1)

Based on (1), and with a constant travel speed v of the MEs,
the service time distribution can be derived as S(t) = P{D ≤
vt}, and s(t) = ∂S(t)/∂t. Its expectation and variance can be
calculated as 1/µ = E[D]/v and σ2 = V [D]/v2.

With the Poisson arrival process of data collection requests
and the service time distribution obtained above, we can
model the network as an M/G/c queuing system with G
characterized by S(t), and c is the number of MEs.

Evaluating the performance of an M/G/c queue is analyt-
ically intractable, and even when formulas can be obtained,
often they are complicated and dependent on particular proba-
bility distributions [15], [16]. Thus, instead of pursuing the
exact analytical results on the system measures, we adopt
the approximation approach. The basic idea is to combine
the analytical results on simple queuing systems such as
M/M/c, M/D/c, etc, to approximate the measures of the
M/G/c queue, i.e., the so-called system interpolations [9].
These approximations require heuristics depending very much
on intuition and creativity.

B. Expected Response Time

We first explore the expected latency of data collection
requests in the network, or equivalently, the expected response
time in the M/G/c queue. A simple two-moment approxima-
tion formula for the mean queuing time in an M/G/c queue
can be derived from [17], and its approximation quality is
verified by comparing with the known solutions in particular
cases,

E[Wq,M/G/c] ≈
1 + γ

2γ
E[Wq,M/M/c]

+ 1−γ
E[Wq,M/D/c]

(2)

where γ = µ2σ2 is the squared coefficient of variance.
The above approximation is actually a weighted combina-

tion of E[Wq,M/M/c] and E[Wq,M/D/c]. The former is well

studied and can be easily calculated by [18]

E[Wq,M/M/c] =
(cρ)c

c!cµ(1− ρ)2

·[
c−1∑
i=0

(cρ)i

i!
+

(cρ)c

c!(1− ρ)
]−1 (3)

where λ is the arrival rate of data collection requests, and ρ =
λ/µ. The latter can be obtained by Crommelin’s formula [19]

E[Wq,M/D/c] =
1

µ

∞∑
i=1

∞∑
j=ic+1

[
(icρ)j−1

(j − 1)!
− (icρ)j

ρj!
]e−icρ (4)

However, the series in (4) converges very slowly, especially
when the traffic intensity ρ is high [20]. Again, approximation
approaches are adopted to address this convergence issue.
An approximation on E[Wq,M/D/c] with simple computation
complexity and good accuracy is presented in [9]

E[Wq,M/D/c] ≈ [1 + F(θ)g(ρ)(1− e−
θ

F(θ)g(ρ) )]

·E[Wq,M/M/c] (5)

where θ = (c−1)/(c+1), F(θ) = (θ[( 9+θ
1−θ )

1
2 −2])/(8(1+θ)),

and g(ρ) = (1− ρ)/ρ.
Substituting (3) and (5) into (2), we can easily calculate

E[Wq,M/G/c], with which the expected response time of the
requests in the M/G/c queue can be calculated by

E[Wr,M/G/c] = E[Wq,M/G/c] + 1/µ (6)

C. Queue Length Distribution

The above results on the expected response time is important
since it not only offers us insights on the average data
collection latency, but also helps to obtain the measures on
the length of the M/G/c queue. Denote X as the number of
requests either waiting or being served at arbitrary time in the
M/G/c queue. Let Pi = P{X = i} (i ≥ 0), and define

R = E[Wq,M/G/c]/E[Wq,M/M/c]. (7)

A geometric-form approximation for the queue length prob-
ability is proposed in [21]

Pi,M/G/c =

{
[(cρ)i/i!]P0,M/M/c i = 0, ..., c− 1
(1− ζ)ζi−cDM/M/c i ≥ c

(8)
where ζ = ρR/(1− ρ+ ρR), P0,M/M/c = [

∑c−1
i=0 (cρ)

c/i! +
(cρ)c/(c!(1−ρ))]−1, and DM/M/c = (cρc)

cP0,M/M/c/(c!(1−
ρc)) is the probability that a newly arrived request has to wait
before being served in an M/M/c queue.

We can easily calculate the expected queue length based on
its approximated distribution, E[L] =

∑∞
i=0 i · Pi,M/G/c, and

the probability that a newly arrived request has to wait before
being served, i.e., the equivalent of DM/M/c in M/G/c queue,
can be calculated by DM/G/c = 1−

∑c−1
i=0 Pi,M/G/c.



D. Response Time Distribution

By distributional Little’s law [22], the number of customers
in the queue has the same distribution as the number of
arrivals during the waiting time. Based on this and the above
approximation results on the queue length distribution, [23]
proposes an approximation for the queuing time distribution
in the M/G/c queuing system

Wq,M/G/c(t) ≈ 1−DM/M/ce
−cµ(1−ρ)t/R (9)

and wq,M/G/c(t) = ∂Wq,M/G/c(t)/∂t.
Furthermore, since the response time of a request is the sum

of its queuing time and service time, which are independent
to each other, by convolution theorem [24], we have

wr,M/G/c(t) = wq,M/G/c(t) ∗ s(t) (10)

V. PERFORMANCE EVALUATION
We evaluate our modeling and analysis results on the system

measures in this section. Based on the parameters from the real
system [26], we consider a square sensing field with size 100×
100 m2, where a total number of 100 nodes are uniformly
deployed at random, and the constant travel speed of MEs is
1 m/s. A total number of 10, 000 requests are served during
each run of the simulation, which is repeated for 50 times. We
explore the cases with c = 2 and c = 3, respectively, and also
present the results with c = 1 for comparison, in which case
the queuing model regresses to M/G/1, and its measures can
be obtained by [18].

To verify the M/G/c modeling, we examine the arrival
process of the data collection requests by an event-driven
simulator, where stochastic events occur randomly in the
sensing field. Sensor nodes within a certain distance (i.e., the
sensing range) of the event can detect the event, and data are
generated to record it. The data size for recording each event
varies from 10–100 B. Events happen independently in both
spatial and temporal domain, and sensor nodes initiate the data
collection requests when their buffers become full. We explore
the cases where the sensor node buffer size is 4 and 8 KB,
respectively, and record the inter-arrival time of the requests to
compare with an exponential distribution with the same mean
value. The results shown in Fig. 1(a) indicate that they agree
with each other very well, and thus verify the assumption of
the Poisson arrival process. Also, a larger node buffer results
in a smaller arrival rate, since the sensor nodes can hold the
data on-board longer.

To deal with the inconvenience of the piecewise distance
probability density function in (1), we use least squares fitting
to approximate it by a high order polynomial, and adopt the
approximation polynomial function to derive the service time
distribution in our performance evaluation.

The approximation results on the expected queuing time are
verified in Fig. 1(b). Note that no results for c = 1, or c = 2,
are shown when λ is larger than 0.018, or 0.036, since the
further increase of λ will result a ρ larger than 1, and no
steady-state measures can be obtained.

Figure 1(c) shows the evaluation results of the approxima-
tion on the queue length distribution with a λ of 0.018. Besides

the accuracy of the approximation, we can see that increasing
c from 1 to 2 can greatly shorten the queue length, which in
turn reduces the data collection latency. However, the benefit
of increasing c further from 2 to 3 is quite limited, which
shows the necessity of an efficient approach to determining the
optimal number of MEs. The results on the expected queue
length and the probability for requests to wait before being
served are shown in Fig. 1(d) and Fig. 1(e), respectively.

Keeping λ as 0.018, the results of the queuing time and
response time distributions of data collection requests are
shown in Fig. 1(f) and Fig. 1(g), respectively. Again, we
observe that the gain in reducing the data collection latency
when increasing c from 2 to 3 is not so obvious.

VI. THE OPTIMAL NUMBER OF MES
As observed above, certain optimal values for the number

of MEs exist, and further increasing it cannot gain much for
the performance of data collection. In this section, we present
a simple heuristic formula to determine this optimal value ĉ
based on the service demand in the network and the service
ability of MEs. Denote B as the steady-state average number
of busy MEs, by definition

E[L] = E[Lq] + B (11)

and by Little’s law

E[L] = E[Lq] + λ/µ (12)

From (11) and (12), we know

B = λ/µ (13)

It is obvious that dBe is a lower bound for ĉ, and we propose
the following simple heuristic formula to find ĉ based on it

ĉ = dB − η + 1e (14)

where η ∈ (0, 1) is defined as a boundary parameter that
reflects whether the traffic in the M/G/c queue is heavy
or not: the traffic is considered heavy if ρ ≥ η, or light
otherwise. The heuristic is also of great practical value since
the parameters involved, λ and µ, can be easily estimated
by the data generation rate of specific applications and the
features of the adopted MEs.

(14) is motivated by the idea that the gain of further
increasing the number of MEs, in terms of the data collection
latency, is quite limited. In the case where other constraints,
e.g., the expected delay of requests, exist, we have to take
them into account when calculating ĉ as well.

The efficiency of the proposed heuristic is verified in
Fig.1(h), where η is 0.6. By exploring the resultant average
response time with different λ for the cases where c is ĉ− 1,
ĉ, and ĉ+ 1, respectively, we observe a large reduction when
increasing c from ĉ− 1 to ĉ, while that for increasing from ĉ
to ĉ+ 1 is much smaller, which verifies the efficiency of the
proposed approach. Another observation is that the difference
between the gain of increasing c from ĉ − 1 to ĉ and from
ĉ to ĉ + 1 is getting smaller when λ increases, since ĉ is
relatively large in this case, and the difference of increasing
or decreasing it by 1 is not so obvious as before.
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Fig. 1: Evaluation of the queue-based model and analysis.
VII. CONCLUSIONS

In this paper, we have modeled the problem of exploiting
multiple homogeneous MEs to carry out the data collection
task in wireless sensor networks as an M/G/c queuing
system. System measures of the queue, e.g., the expected
values and distributions of queue length, queuing time and
response time have been explored. The M/G/c queuing model
helps us to understand the impact of different parameters on
the network performance, and the corresponding analytical
results can serve as important guidelines to evaluate whether
the number of MEs is enough for a given performance
requirement. We have also proposed a simple heuristic formula
to determine the optimal number of MEs. Our future work will
focus on exploring non-FCFS disciplines to further investigate
the resultant performance of data collection.
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