5,535 research outputs found

    A Hybrid Fish – Bee Optimization Algorithm for Heart Disease Prediction using Multiple Kernel SVM Classifier

    Get PDF
    International audienceThe patient's heart disease status is obtained by using a heart disease detection model. That is used for the medical experts. In order to predict the heart disease, the existing technique use optimal classifier. Even though the existing technique achieved the better result, it has some disadvantages. In order to improve those drawbacks, the suggested technique utilizes the effective method for heart disease prediction. At first the input information is preprocessed and then the preprocessed result is forwarded to the feature selection process. For the feature selection process a proficient feature selection is used over the high dimensional medical data. Hybrid Fish Bee optimization algorithm (HFSBEE) is utilized. Thus, the proposed algorithm parallelizes the two algorithms such that the local behavior of artificial bee colony algorithm and global search of fish swarm optimization are effectively used to find the optimal solution. Classification process is performed by the transformation of medical dataset to the Multi kernel support vector machine (MKSVM). The process of our proposed technique is calculated based on the accuracy, sensitivity, specificity, precision, recall and F-measure. Here, for test analysis, the some datasets used i.e. Cleveland, Hungarian and Switzerland etc., that are given based on the UCI machine learning repository. The experimental outcome show that our presented technique is went better than the accuracy of 97.68%. This is for the Cleveland dataset when related with existing hybrid kernel support vector machine (HKSVM) method achieved 96.03% and optimal rough fuzzy classifier obtained 62.25%. The implementation of the proposed method is done by MATLAB platform. Rundown phrases-Artificial bee colony algorithm, Fish swarm optimization, Multi kernel support vector machine, Optimal rough fuzzy, Cleveland, Hungarian and Switzerland

    An Evolutionary Optimization Algorithm for Automated Classical Machine Learning

    Get PDF
    Machine learning is an evolving branch of computational algorithms that allow computers to learn from experiences, make predictions, and solve different problems without being explicitly programmed. However, building a useful machine learning model is a challenging process, requiring human expertise to perform various proper tasks and ensure that the machine learning\u27s primary objective --determining the best and most predictive model-- is achieved. These tasks include pre-processing, feature selection, and model selection. Many machine learning models developed by experts are designed manually and by trial and error. In other words, even experts need the time and resources to create good predictive machine learning models. The idea of automated machine learning (AutoML) is to automate a machine learning pipeline to release the burden of substantial development costs and manual processes. The algorithms leveraged in these systems have different hyper-parameters. On the other hand, different input datasets have various features. In both cases, the final performance of the model is closely related to the final selected configuration of features and hyper-parameters. That is why they are considered as crucial tasks in the AutoML. The challenges regarding the computationally expensive nature of tuning hyper-parameters and optimally selecting features create significant opportunities for filling the research gaps in the AutoML field. This dissertation explores how to select the features and tune the hyper-parameters of conventional machine learning algorithms efficiently and automatically. To address the challenges in the AutoML area, novel algorithms for hyper-parameter tuning and feature selection are proposed. The hyper-parameter tuning algorithm aims to provide the optimal set of hyper-parameters in three conventional machine learning models (Random Forest, XGBoost and Support Vector Machine) to obtain best scores regarding performance. On the other hand, the feature selection algorithm looks for the optimal subset of features to achieve the highest performance. Afterward, a hybrid framework is designed for both hyper-parameter tuning and feature selection. The proposed framework can discover close to the optimal configuration of features and hyper-parameters. The proposed framework includes the following components: (1) an automatic feature selection component based on artificial bee colony algorithms and machine learning training, and (2) an automatic hyper-parameter tuning component based on artificial bee colony algorithms and machine learning training for faster training and convergence of the learning models. The whole framework has been evaluated using four real-world datasets in different applications. This framework is an attempt to alleviate the challenges of hyper-parameter tuning and feature selection by using efficient algorithms. However, distributed processing, distributed learning, parallel computing, and other big data solutions are not taken into consideration in this framework

    A Comparison of Nature Inspired Algorithms for Multi-threshold Image Segmentation

    Full text link
    In the field of image analysis, segmentation is one of the most important preprocessing steps. One way to achieve segmentation is by mean of threshold selection, where each pixel that belongs to a determined class islabeled according to the selected threshold, giving as a result pixel groups that share visual characteristics in the image. Several methods have been proposed in order to solve threshold selectionproblems; in this work, it is used the method based on the mixture of Gaussian functions to approximate the 1D histogram of a gray level image and whose parameters are calculated using three nature inspired algorithms (Particle Swarm Optimization, Artificial Bee Colony Optimization and Differential Evolution). Each Gaussian function approximates thehistogram, representing a pixel class and therefore a threshold point. Experimental results are shown, comparing in quantitative and qualitative fashion as well as the main advantages and drawbacks of each algorithm, applied to multi-threshold problem.Comment: 16 pages, this is a draft of the final version of the article sent to the Journa

    Chemical and biological reactions of solidification of peat using ordinary portland cement (OPC) and coal ashes

    Get PDF
    Construction over peat area have often posed a challenge to geotechnical engineers. After decades of study on peat stabilisation techniques, there are still no absolute formulation or guideline that have been established to handle this issue. Some researchers have proposed solidification of peat but a few researchers have also discovered that solidified peat seemed to decrease its strength after a certain period of time. Therefore, understanding the chemical and biological reaction behind the peat solidification is vital to understand the limitation of this treatment technique. In this study, all three types of peat; fabric, hemic and sapric were mixed using Mixing 1 and Mixing 2 formulation which consisted of ordinary Portland cement, fly ash and bottom ash at various ratio. The mixtures of peat-binder-filler were subjected to the unconfined compressive strength (UCS) test, bacterial count test and chemical elemental analysis by using XRF, XRD, FTIR and EDS. Two pattern of strength over curing period were observed. Mixing 1 samples showed a steadily increase in strength over curing period until Day 56 while Mixing 2 showed a decrease in strength pattern at Day 28 and Day 56. Samples which increase in strength steadily have less bacterial count and enzymatic activity with increase quantity of crystallites. Samples with lower strength recorded increase in bacterial count and enzymatic activity with less crystallites. Analysis using XRD showed that pargasite (NaCa2[Mg4Al](Si6Al2)O22(OH)2) was formed in the higher strength samples while in the lower strength samples, pargasite was predicted to be converted into monosodium phosphate and Mg(OH)2 as bacterial consortium was re-activated. The Michaelis�Menten coefficient, Km of the bio-chemical reaction in solidified peat was calculated as 303.60. This showed that reaction which happened during solidification work was inefficient. The kinetics for crystallite formation with enzymatic effect is modelled as 135.42 (1/[S] + 0.44605) which means, when pargasite formed is lower, the amount of enzyme secretes is higher

    Various Feature Selection Techniques in Type 2 Diabetic Patients for the Prediction of Cardiovascular Disease

    Get PDF
    Cardiovascular disease (CVD) is a serious but preventable complication of type 2 diabetes mellitus (T2DM) that results in substantial disease burden, increased health services use, and higher risk of premature mortality [10]. People with diabetes are also at a greatly increased risk of cardiovascular which results in sudden death, which increases year by year. Data mining is the search for relationships and global patterns that exist in large databases but are `hidden' among the vast amount of data, such as a relationship between patient data and their medical diagnosis. Usually medical databases of type 2 diabetic patients are high dimensional in nature. If a training dataset contains irrelevant and redundant features (i.e., attributes), classification analysis may produce less accurate results. In order for data mining algorithms to perform efficiently and effectively on high-dimensional data, it is imperative to remove irrelevant and redundant features. Feature selection is one of the important and frequently used data preprocessing techniques for data mining applications in medicine. Many of the research area in data mining has improved the predictive accuracy of the classifiers by applying the various techniques of feature selection This paper illustrates, the application of feature selection technique in medical databases, will enable to find small number of informative features leading to potential improvement in medical diagnosis. It is proposed to find an optimal feature subset of the PIMA Indian Diabetes Dataset using Artificial Bee Colony technique with Differential Evolution, Symmetrical Uncertainty Attribute set Evaluator and Fast Correlation-Based Filter (FCBF). Then Mutual information based feature selection is done by introducing normalized mutual information feature selection (NMIFS). And valid classes of input features are selected by applying Hybrid Fuzzy C Means algorithm (HFCM)
    • …
    corecore