1,764 research outputs found

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Automated visual inspection for the quality control of pad printing

    Get PDF
    Pad printing is used to decorate consumer goods largely because of its unique ability to apply graphics to doubly curved surfaces. The Intelpadrint project was conceived to develop a better understanding of the process and new printing pads, inks and printers. The thesis deals primarily with the research of a printer control system including machine vision. At present printing is manually controlled. Operator knowledge was gathered for use by an expert system to control the process. A novel local corner- matching algorithm was conceived to effect image segmentation, and neuro-fuzzy techniques were used to recognise patterns in printing errors. Non-linear Finite Element Analysis of the rubber printing-pad led to a method for pre-distorting artwork so that it would print undistorted on a curved product. A flexible, more automated printer was developed that achieves a higher printing rate. Ultraviolet-cured inks with improved printability were developed. The image normalisation/ error-signalling stage in inspection was proven in isolation, as was the pattern recognition system

    Optimal design and freeform extrusion fabrication of functionally gradient smart parts

    Get PDF
    An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density was developed. In this process, an aqueous paste of ceramic particles with a very low binder content (\u3c1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Sample parts made of alumina and fully stabilized zirconia were produced using this process and their mechanical properties including density, strength, Young\u27s modulus, Weibull modulus, toughness, and hardness were examined. Microstructural evaluation was also performed to measure the grain size, and critical flaw sizes were obtained. The results indicate that the proposed method enables fabrication of geometrically complex parts with superior mechanical properties. Furthermore, several methods were developed to increase the productivity of the CODE process and enable manufacturing of functionally graded materials with an optimum distribution of material composition. As an application of the CODE process, advanced ceramic components with embedded sapphire optical fiber sensors were fabricated and properties of parts and sensors were evaluated using standard test methods --Abstract, page iv

    Advanced photonic and electronic systems WILGA 2018

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers around 400 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2018 was the XLII edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2018 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445. WILGA 2018 works were published in Proc. SPIE vol.10808

    Book of abstracts - Metallurgy and related topics - Section D

    Get PDF

    Verification of mechanical properties and surface topography of PH1 stainless steel samples obtained by selective laser melting

    Get PDF
    Nowadays, additive technologies are used to create physical models, prototypes, samples, tooling, and the production of plastic, metal, ceramic, glass, composite components, and components made of biomaterials. The greatest technological interest is the production of final parts from metal alloys. This paper presents the results of studies of the topography of differently oriented surfaces of PH1 stainless steel samples made using the method of selective laser melting. The surfaces were studied in the plane of construction, perpendicular to the platform, at angles of 45o and 135o. For each surface under consideration, the roughnesses Ra, Rz were determined and a profile was constructed. The findings showed high stability of the topography of the surface layer of the grown material. To confirm the quality of the obtained samples, they were synthesised and tensile tests were carried out. The established characteristics of the elastic modulus, the tensile strength and the corresponding deformations are consistent with the previously determined properties of samples grown using selective laser melting technology and datasheet specifications. According to the results of mechanical tests, the microstructure of the fracture surfaces of the samples was investigated. It is established that the destruction of samples under tension occurs by a viscous mechanism with the implementation of a combination of shear and pit-porous types of destruction. The study of the topography of differently oriented surfaces is carried out – in the plane of construction, perpendicular to it and at angles to the platform 45 and 135o. It is shown that the best surface quality corresponds to two planes – parallel and perpendicular to the plane of the construction platform. The average values of their roughness were Ra ~ 0.6 µm and Rz ~ 4 µm. The quality of the surfaces located at an angle is significantly inferior to the first two. A change in the surface quality depending on the angle of inclination was also observed

    Advances in Binders for Construction Materials

    Get PDF
    The global binder production for construction materials is approximately 7.5 billion tons per year, contributing ~6% to the global anthropogenic atmospheric CO2 emissions. Reducing this carbon footprint is a key aim of the construction industry, and current research focuses on developing new innovative ways to attain more sustainable binders and concrete/mortars as a real alternative to the current global demand for Portland cement.With this aim, several potential alternative binders are currently being investigated by scientists worldwide, based on calcium aluminate cement, calcium sulfoaluminate cement, alkali-activated binders, calcined clay limestone cements, nanomaterials, or supersulfated cements. This Special Issue presents contributions that address research and practical advances in i) alternative binder manufacturing processes; ii) chemical, microstructural, and structural characterization of unhydrated binders and of hydrated systems; iii) the properties and modelling of concrete and mortars; iv) applications and durability of concrete and mortars; and v) the conservation and repair of historic concrete/mortar structures using alternative binders.We believe this Special Issue will be of high interest in the binder industry and construction community, based upon the novelty and quality of the results and the real potential application of the findings to the practice and industry

    Craniofacial Growth Series Volume 56

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/153991/1/56th volume CF growth series FINAL 02262020.pdfDescription of 56th volume CF growth series FINAL 02262020.pdf : Proceedings of the 46th Annual Moyers Symposium and 44th Moyers Presymposiu

    Study on Parametric Optimization of Fused Deposition Modelling (FDM) Process

    Get PDF
    Rapid prototyping (RP) is a generic term for a number of technologies that enable fabrication of physical objects directly from CAD data sources. In contrast to classical methods of manufacturing such as milling and forging which are based on subtractive and formative principles espectively, these processes are based on additive principle for part fabrication. The biggest advantage of RP processes is that an entire 3-D (three-dimensional) consolidated assembly can be fabricated in a single setup without any tooling or human intervention; further, the part fabrication methodology is independent of the mplexity of the part geometry. Due to several advantages, RP has attracted the considerable attention of manufacturing industries to meet the customer demands for incorporating continuous and rapid changes in manufacturing in shortest possible time and gain edge over competitors. Out of all commercially available RP processes, fused deposition modelling (FDM) uses heated thermoplastic filament which are extruded from the tip of nozzle in a prescribed manner in a temperature controlled environment for building the part through a layer by layer deposition method. Simplicity of operation together with the ability to fabricate parts with locally controlled properties resulted in its wide spread application not only for prototyping but also for making functional parts. However, FDM process has its own demerits related with accuracy, surface finish, strength etc. Hence, it is absolutely necessary to understand the shortcomings of the process and identify the controllable factors for improvement of part quality. In this direction, present study focuses on the improvement of part build methodology by properly controlling the process parameters. The thesis deals with various part quality measures such as improvement in dimensional accuracy, minimization of surface roughness, and improvement in mechanical properties measured in terms of tensile, compressive, flexural, impact strength and sliding wear. The understanding generated in this work not only explain the complex build mechanism but also present in detail the influence of processing parameters such as layer thickness, orientation, raster angle, raster width and air gap on studied responses with the help of statistically validated models, microphotographs and non-traditional optimization methods. For improving dimensional accuracy of the part, Taguchi‟s experimental design is adopted and it is found that measured dimension is oversized along the thickness direction and undersized along the length, width and diameter of the hole. It is observed that different factors and interactions control the part dimensions along different directions. Shrinkage of semi molten material extruding out from deposition nozzle is the major cause of part dimension reduction. The oversized dimension is attributed to uneven layer surfaces generation and slicing constraints. For recommending optimal factor setting for improving overall dimension of the part, grey Taguchi method is used. Prediction models based on artificial neural network and fuzzy inference principle are also proposed and compared with Taguchi predictive model. The model based on fuzzy inference system shows better prediction capability in comparison to artificial neural network model. In order to minimize the surface roughness, a process improvement strategy through effective control of process parameters based on central composite design (CCD) is employed. Empirical models relating response and process parameters are developed. The validity of the models is established using analysis of variance (ANOVA) and residual analysis. Experimental results indicate that process parameters and their interactions are different for minimization of roughness in different surfaces. The surface roughness responses along three surfaces are combined into a single response known as multi-response performance index (MPI) using principal component analysis. Bacterial foraging optimisation algorithm (BFOA), a latest evolutionary approach, has been adopted to find out best process parameter setting which maximizes MPI. Assessment of process parameters on mechanical properties viz. tensile, flexural, impact and compressive strength of part fabricated using FDM technology is done using CCD. The effect of each process parameter on mechanical property is analyzed. The major reason for weak strength is attributed to distortion within or between the layers. In actual practice, the parts are subjected to various types of loadings and it is necessary that the fabricated part must withhold more than one type of loading simultaneously.To address this issue, all the studied strengths are combined into a single response known as composite desirability and then optimum parameter setting which will maximize composite desirability is determined using quantum behaved particle swarm optimization (QPSO). Resistance to wear is an important consideration for enhancing service life of functional parts. Hence, present work also focuses on extensive study to understand the effect of process parameters on the sliding wear of test specimen. The study not only provides insight into complex dependency of wear on process parameters but also develop a statistically validated predictive equation. The equation can be used by the process planner for accurate wear prediction in practice. Finally, comparative evaluation of two swarm based optimization methods such as QPSO and BFOA are also presented. It is shown that BFOA, because of its biologically motivated structure, has better exploration and exploitation ability but require more time for convergence as compared to QPSO. The methodology adopted in this study is quite general and can be used for other related or allied processes, especially in multi input, multi output systems. The proposed study can be used by industries like aerospace, automobile and medical for identifying the process capability and further improvement in FDM process or developing new processes based on similar principle
    corecore