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In-Depth Analysis of Cement-Based Material Incorporating
Metakaolin Using Individual and Ensemble Machine
Learning Approaches
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Abstract: In recent decades, a variety of organizational sectors have demanded and researched green
structural materials. Concrete is the most extensively used manmade material. Given the adverse
environmental effect of cement manufacturing, research has focused on minimizing environmental
impact and cement-based product costs. Metakaolin (MK) as an additive or partial cement replace-
ment is a key subject of concrete research. Developing predictive machine learning (ML) models is
crucial as environmental challenges rise. Since cement-based materials have few ML approaches,
it is important to develop strategies to enhance their mechanical properties. This article analyses
ML techniques for forecasting MK concrete compressive strength (fc’). Three different individual
and ensemble ML predictive models are presented in detail, namely decision tree (DT), multilayer
perceptron neural network (MLPNN), and random forest (RF), along with the most effective factors,
allowing for efficient investigation and prediction of the fc’ of MK concrete. The authors used a
database of MK concrete mechanical features for model generalization, a key aspect of any prediction
or simulation effort. The database includes 551 data points with relevant model parameters for
computing MK concrete’s fc’. The database contains cement, metakaolin, coarse and fine aggregate,
water, silica fume, superplasticizer, and age, which affect concrete’s fc’ but were seldom considered
critical input characteristics in the past. Finally, the performance of the models is assessed to pick and
deploy the best predicted model for MK concrete mechanical characteristics. K-fold cross validation
was employed to avoid overfitting issues of the models. Additionally, ML approaches were utilized
to combine SHapley Additive exPlanations (SHAP) data to better understand the MK mix design
non-linear behaviour and how each input parameter’s weighting influences the total contribution.
Results depict that DT AdaBoost and modified bagging are the best ML algorithms for predicting
MK concrete fc’ with R2 = 0.92. Moreover, according to SHAP analysis, age impacts MK concrete
fc’ the most, followed by coarse aggregate and superplasticizer. Silica fume affects MK concrete’s fc’
least. ML algorithms estimate MK concrete’s mechanical characteristics to promote sustainability.

Keywords: metakaolin; SHAP analysis; bagging; boosting; decision tree; multilayer perceptron
neural network; random forest

1. Introduction

Throughout the previous decades, there has been a strong demand and concern for
investigation to develop green structural materials to meet the increasing need from public
and private sectors. Concrete continues to be the most widely utilized manmade substance
on the planet. Given the considerable environmental impact of cement production, research
has concentrated on both reducing the impact on the environment and cost reductions for
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cement-based products [1–3]. The utilization of metakaolin (MK) as an additive or partial
substitute for cement is a major area of research in the manufacture of concrete materials.

MK is an alternative to cement that is manufactured by calcining kaolin clays at ele-
vated temperatures ranging from 700 ◦C to 900 ◦C. As a cement replacement in concrete
structures, MK has been employed as a 10% to 50% replacement, depending on the specific
application [4–7]. It has been shown that MK enhances the mechanical and durability
properties when used in place of Portland cement [8–10]. The pozzolanic reaction, MK
aggregate’s fineness, and the accelerated cement hydration all contribute to an increase
in concrete’s compressive strength (fc’) during the early curing phases [11]. Additionally,
cement manufacture generates a substantial amount of carbon dioxide (CO2) emissions;
this new trend of replacing metakaolin for cement in concrete is part of a comprehensive ap-
proach to environmental sustainability. Addition of MK in concrete has various advantages
as depicted in Figure 1.

Metakaolin 
in Concrete

Enhances 
Compressive 

Strength 
and 

durability of 
concrete Reduces CO2

Emission 
(contribute 

towards 
sustainability

)

Provides 
Better 

Resistance 
to freeze & 
thaw action

Provides 
Better 

Resistance 
to chemical 

attack

Improves 
impermeabil

ity of 
concrete

Improves 
early age 
concrete 

behaviour

Figure 1. Advantages of metakaolin in concrete.

The cost, labour, and time consuming complexity of laboratory-based mixture opti-
misation might be replaced by computational modelling techniques [12]. To determine
the optimum concrete mixtures, these approaches generate objective functions from the
concrete components and their properties, and then use optimization techniques to de-
termine the best concrete mixtures. Previously, goal functions for linear and nonlinear
models were individually created. Due to the very nonlinear connections between concrete
qualities and input parameters, the relationships of such models cannot be precisely estab-
lished. Therefore, researchers are using machine learning (ML) techniques for predicting
concrete properties.

Creating a concrete mix with MK in it complicates the determination of the concrete’s
fc’ using an analytical formula, as opposed to a standard concrete, which has fewer mix
parameters than cement MK specimen. This is mostly because of the enormous number
of constituents and the fc’ very nonlinear behaviour in regard to the mix parameters. To
this purpose, when basic equations cannot directly connect the input and output values,
machine learning (ML) techniques frequently give important alternatives in the context

2



Materials 2022, 15, 7764

of engineering problem solving [13–22]. Owing to the intricate nonlinear interactions
amongst independent and dependent variables, such techniques can be accomplished with
a sufficient level of accuracy if a comprehensive library of sufficient experimental data
points is accessible in the area of computational engineering structures and materials. Thus,
a wide range of innovative approaches to a wide range of technological problems may be
put into practice.

Until now, the literature has primarily focused on the use of ML techniques such
as artificial neural network (ANN) in the field of materials science without ensemble
learners [23–26]. These algorithms were utilized to predict the fc’ and elasticity modulus of
materials composed of cement [26–29]. The literature has comprehensive and extensive
publications on the use of ANNs in the modelling of concrete materials [30–35]. Fuzzy
logic algorithms and genetic algorithms approaches have also been utilized in the recent
decade in place of ANN models to describe the mechanical properties of cement-based
materials [36–41].

Since cement-based materials have a limited number of ML methods, it is vital to
investigate if other ML techniques may be used to improve their mechanical characteristics.
Thus, the present work investigates ML approaches application for predicting the fc’ of MK
concrete. Three different individual and ensemble ML predictive models are presented in
detail, namely decision tree (DT), multilayer perceptron neural network (MLPNN), and
random forest (RF), together with the factors that are most effective, allowing for efficient
investigation and prediction of the fc’ of cement-based concrete. The authors employed a
comprehensive database of MK concrete mechanical characteristics for model generalisation
since it is an essential part of any prediction or simulation work. The reported database
contains 551 data points with highly effective input parameters for calculating the fc’ of MK
concrete. The database includes a value for cement, metakaolin, coarse and fine aggregate,
water, silica fume, superplasticizer, and age, which have a considerable effect on the fc’ of
concrete and have rarely been treated as vital input parameters in the past. The trained
and created model has produced a holistic map of concrete fc’. Finally, the performance
capabilities of the offered models are evaluated in order to select and implement the most
predictive model for addressing the mechanical properties of MK concrete.

There has been a surge in increased interest in large-scale production of sustainable,
low-priced, and high-performance construction materials that are also robust in adverse
ecological circumstances over the previous few decades. One of the world’s most common
construction materials—cement-based concrete—required the incorporation of more com-
ponents and additives than previously used concrete because of environmental concerns.
However, the high number of mixture factors and their substantially nonlinear relationship
to the mechanical characteristics of concrete, such as the fc’, challenge the analytical meth-
ods for numerically estimating the concrete fc’. To this purpose, unconventional methods
become a critical instrument for resolving the afore-mentioned complicated optimisation
problem. In this perspective, the most widely used ML techniques, such as, DT, MLPNN,
and RF, have been suggested for estimating the fc’ of concrete, a critical parameter for the
reliable design in structure. Among the proposed ML models, the optimal predictive model
has shown to be extremely successful, demonstrating trustworthy projections and, most
importantly, showing its highly non-linear mechanical properties.

Additionally, there seems to be a research gap in the study of MK fc’ and its influence
on raw materials. It was, thus, necessary to investigate the influence of MK containing
concrete’s input parameters/raw components on its anticipated compressive strength
using a post hoc model-agnostic approach known as SHapley Additive exPlanations
(SHAP) [42,43]. Machine learning (ML) techniques were used to integrate SHAP data
in order to get a better understanding of the multifarious non-linear behaviour of the
MK design mix for the strength parameter and how each input parameter’s weighting
affects the overall contribution. ML approaches may be used to accurately forecast concrete
kinds, as previously stated. The experimental setting requires a significant investment
in terms of labour, time, and resources to do this. Data modelling and the discovery of
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interconnected independent components, as well as a rapid reduction in input matrix size
are, thus, urgently required. Concrete construction materials may be accurately predicted
using machine learning approaches. The use of ML methods may be justified as an
alternate strategy to calculating MK fc’ in order to save on both time and money spent on
experiments. We used both a stand-alone ML model and an ensemble of ML models in our
investigation. Additionally, statistical tests were used to evaluate the models, and their
results were compared. Later, a model with precise MK prediction was suggested based
on the performance of several statistical factors. In order to get a thorough understanding
of mix design in order to achieve MK concrete strength, this research also explained how
input factors contributed and how ML models were integrated. Explainable ML techniques
and features significance for considerable characteristics of the structure were found to be
linked in the study’s overall findings.

2. Data Description

Currently accessible literature has been used to get the data needed to simulate
concrete’s fc’ utilising MK [44–55]. The predicted output compressive strength data consists
of eight input parameters, which include cement, MK, fine and coarse aggregate, water,
age of concrete, superplasticizer, and silica fume. Type of cement is not considered as
an input parameter, as only one type of cement (Type-I) is utilized for modelling the ML
algorithms. Cement and metakaolin are two constituents that are prevalent among those
selected for the database. Additionally, attempts were made to choose articles that share
common components (admixtures, superplasticizers, etc.). The authors tried to choose
publications based on criteria related to materials that are widely used in concrete and
make important contributions to concrete’s mechanical characteristics. Further, similar
material in varied arrangements is required for modelling ML algorithms. Except for age
in days, all characteristics are measured in kilograms/m3. Descriptive statistics are a set of
descriptive coefficients that provide a result that may be applied to the whole population
or to a sample of the population. In descriptive statistics, measures of central tendency
and measures of variability are used (spread). However, variance, standard deviation,
maximum and minimum variables, kurtosis, and skewness are all indices of variability.
Tables 1 and 2 and Figure 2 provide the variation in data used to run the models. Various
information is reflected in the descriptive analysis’s outcomes, which are derived from the
data of all the input variables. Additionally, the table displays the ranges, maximum, and
lowest values of each model variable. Nonetheless, the other parameters of the study, such
as mean, mode, standard deviation, and the total of all data points for each variable, also
reveal the important values. Figure 2 depicts the relative frequency distribution of each
parameter utilised in the mixes. A relative frequency distribution illustrates the percentage
of total observations that correspond to each value or class of values. It has tight ties to a
probability distribution, which is often used in statistics. Figure 2 depicts the link of input
parameters by displaying the relative frequency distribution of data items. Each chosen
parameter has a significant impact on the concrete’s strength characteristics. In addition,
Table 1 displays the lowest and highest variable values including 551 datasets, and Table 2
provides a data analysis check with the variance, range, standard deviation, and mean.
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Table 1. Metakaolin concrete compressive strength model input and output variable ranges.

Parameters
Acronym Min Max

Input Parameters

Cement C 30 512
Fine aggregate FA 300 1146

Coarse aggregate CA 0 1154
Water W 12 220.30

Silica fume SF 0 75
Metakaolin MK 0 256

Superplasticizer SP 0 43
Age Age 1 180

Output variable

Compressive strength fc’ 9.84 131.30

Table 2. Statistical description of Metakaolin concrete variables.

Parameters Cement
Fine

Aggregate
Coarse

Aggregate
Water Silica Fume Metakaolin Superplasticizer Age (Days)

Statistical description

Mean 396.64 737.24 853.09 161.71 4.05 45.48 2.90 37.29
Std error 3.72 7.79 15.47 1.53 0.55 2.16 0.33 1.93
Median 400 711 1037 163.40 0 40 0 28
Std. dev 87.28 182.93 363.13 36.00 13.02 50.59 7.73 45.34
Variance 7617.40 33,463.99 131,866.26 1295.65 169.49 2559.62 59.80 2056
Kurtosis 3.57 0.37 1.42 4.18 13.68 4.43 16.38 3.13
Skewness −1.34 0.52 −1.75 −1.58 3.68 1.85 3.92 1.90
Range 482.00 846 1154 208.30 75 256 43 179
Min 30 300 0 12 0 0 0 1
Max 512 1146 1154 220.30 75 256 43 180
Sum 218,548.70 406,217 470,050.80 89,099.50 2232.15 25,060.77 1597.30 20549
Count 551 551 551 551 551 551 551 551

Training dataset

Mean 395.18 738.49 841.41 161.06 4.09 45.50 2.66 37.85
Std error 4.19 8.86 17.83 1.74 0.63 2.39 0.35 2.20
Median 400 711 1037 163.40 0 40 0 28
Std. dev 87.97 185.84 374.05 36.54 13.24 50.03 7.38 46.20
Variance 7738.04 34,538.02 139,915.86 1334.83 175.26 2503 54.44 2134.15
Kurtosis 3.65 0.33 1.04 4.08 13.61 4.56 18.52 2.92
Skewness −1.38 0.52 −1.66 −1.57 3.69 1.86 4.13 1.86
Range 482 846 1154 208.30 75 256 43 179
Min 30 300 0 12 0 0 0 1
Max 512 1146 1154 220.30 75 256 43 180
Sum 173,881.30 324,936.00 370,219.70 70,868.40 1798.72 20019.51 1171.52 16656
Count 440 440 440 440 440 440 440 440

Testing Dataset

Mean 402.41 732.26 899.38 164.24 3.90 45.42 3.84 35.07
Std error 8.03 16.29 29.75 3.21 1.15 5.03 0.85 3.98
Median 400 708 1037 163.40 0 40 0 28
Std. dev 84.64 171.61 313.42 33.81 12.16 53 8.98 41.92
Variance 7163.11 29,450.55 98,231.83 1142.93 147.97 2808.83 80.63 1756.94
Kurtosis 3.30 0.59 3.85 4.79 14.25 4.19 11.32 4.29
Skewness −1.16 0.54 −2.25 −1.62 3.64 1.85 3.31 2.06
Range 434.50 846 1149 192.40 75 256 43 179
Min 77.50 300 0 27.90 0 0 0 1
Max 512 1146 1149 220.30 75 256 43 180
Sum 44,667.40 81,281.00 99,831.10 18,231.09 433.43 5041.26 425.78 3893
Count 111 111 111 111 111 111 111 111
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Figure 2. Cont.
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(g) (h) 

Figure 2. Compressive strength parameters’ relative frequency distribution; (a) cement, (b) fine aggregate,
(c) coarse aggregate, (d) water, (e) silica fume, (f) metakaolin, (g) superplasticizer, and (h) age.

3. Methodology

ML techniques are being used in a variety of fields to anticipate and understand
the behaviour of materials. In this work, ML-based techniques comprising of the DT,
MLPNN, and RF are employed for forecasting the fc’ of MK concrete. The selection of
these methods is based on their prevalence and reliability in the forecast of outcomes in
comparable studies, as well as their significance as the top data mining algorithms. In
addition, an ensemble algorithm was afterwards employed to simulate the concrete fc’.
Figure 3 displays the technique flow chat for ensemble learning.

Data Model

Ensemble 
Model

Bagging DT, MLPNN

Boosting DT, MLPNN

Modified 
Learner RF

Non-Ensemble 
Model DT, MLPNN

Figure 3. Flow chart of ML techniques.

3.1. Machine Learning Methods

It has been shown that artificial intelligence (AI) is a more effective modelling method-
ology than traditional methods. AI has a number of advantages for addressing ambiguous
difficulties and is an excellent method for handling such complicated situations. It is
possible to identify engineering design parameters using AI-based methods when testing is
not possible, resulting in significantly reducing the workload of human testers. In addition,
AI could expedite decision making, decrease error, and improve processing efficacy [56].
Recently, a rise of interest in the application of artificial intelligence to all scientific fields has
been observed, sparking a range of goals and aspirations. The field of civil engineering has
experienced a significant increase for utilizing different AI methods all over its numerous
fields. ML, reinforcement learning, and deep learning (DL) are three AI approaches that
are proving to be a new category of creative approaches to structural engineering problems.
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ML is a fast-expanding area of AI that is often used in the construction sector for predicting
behaviour of material. One project aims to investigate inclusion of social elements into multi
criteria infrastructure assessment strategies, with inclusion of social factors into the assess-
ment of infrastructure’s long-term viability using multi-criteria assessment techniques [57].
In the framework of structural design, exhaustive study on evolutionary computation,
an area of artificial intelligence, was conducted [58]. Yin et al. [59] explored AI uses in
geotechnical engineering. A study was done to determine the state of high-rise building
optimization. [60]. In order to synthesise concepts in the developing field of AI applications
in civil engineering, this study was done. This list contains a broad variety of methods:
Fuzzy systems (FS), neural networks, expert systems (ES), reasoning, categorization, and
learning are only a few examples of evolutionary computing [61].

In spite of the fact that the referenced review papers discussed the use of AI in civil
engineering, they mostly concentrated on the usage of old approaches and did not cover
latest methods using ensemble techniques. Figure 3 shows an estimation of the fc’ of MK
concrete using ML approaches including DT, MLPNN, and RF. These algorithms were
selected on the basis of their broad usage in relevant research and their reputation as the
finest data prediction algorithms available. In addition, ensemble techniques are employed
to predict the concrete modelling strength. In terms of computational speed and processing
time, ML models are fairly significant. Compared to conventional models, the rate of error
is almost non-existent. A comparison is made among individual and ensemble models in
this research. SHAP analysis is performed to find the optimum dosage and contribution of
each input parameter towards fc’. Moreover, positive and negative impacts of each input
parameter and their effect on other parameters are also studied.

3.1.1. Decision Tree-Based Machine Learning

In DT, any number of nodes can be connected to any number of branches, and each
node can have an infinite number of branches. Leaves are the nodes that do not have
any outgoing ends, whereas inner nodes are those that do. Using an interior node for
a specific event, the case utilized for classification or regression can be partitioned into
multiple classes. During the learning process, the input variables play an important role.
The algorithm that generates the DT from provided instances serves as the stimulant for the
DT. By reducing the fitness function, the implemented algorithm calculates the optimal DT.
A regression model is used because there are no classes in the dataset selected for this study,
so the independent variables are used instead of the target variable. For each variable, the
dataset is broken up into many subsets. The error among the anticipated and the actual
values of the pre-specified relation is determined at every split point by the algorithm. The
variable having least values of fitness function is selected as the split point after comparing
the inaccuracies in the split point across the variable quantity. Repeatedly, this technique is
carried out.

In the DT architecture, independent variables are partitioned into homogenous zones
by decision rules that recursively split them [62]. DT is primarily concerned with the
investigation of a system for making decisions that are suitable for predicting a result given
a collection of inputs. DT is referred to as a regression tree or a classification tree, depending
on whether the target variables are continuous or discrete [63]. Numerous studies have
demonstrated the effectiveness of DT in a variety of real-world situations for the aim of
prediction and/or categorization [64].

The primary advantage of DT is its ability to simulate complex interactions between
existent variables. Through consideration of how data are distributed, DT models are
capable of combining both continuous and categorical variables without making any
stringent assumptions [65]. Additionally, developing a DT is straightforward, and the
resulting models are easily interpretable. Additionally, when it comes to determining the
relative relevance of input characteristics, DT is an excellent choice [66].

DT modelling includes two phases: tree creation and tree pruning [67]. Stage one starts
with DT’s root node being identified as the independent variables with the highest perfor-
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mance gain. Following that, according to root values, the training dataset is partitioned
into subsets and sub-nodes are created. When the input variables are discrete, a sub-node
of the tree is constructed for each conceivable value, whereas in some circumstances, the
threshold-finding step results in the generation of two sub-nodes [68]. Following that,
each sub-gain node’s share is calculated, and the technique is recurring till all samples in a
certain node are classified as belonging to the same class. They are then referred to as “leaf
nodes,” and their values are designated as the values of the classes they belong to. A flow
chart of DT is shown in Figure 4.

Root node

Decision 
node

Leaf node Leaf node

Decision 
node

Leaf node Decision 
node

Leaf node Leaf node

Figure 4. Flow chart of DT.

3.1.2. Artificial Neural Network-Based Machine Learning

A multilayer perceptron neural network (MLPNN), a network-based DM computing
approach, is employed in this research with individual base learner and ensemble base
learner methods to model and forecast MK concrete. An ANN program mimics the structure
of a biological nervous system’s neurons [69]. Parallel linkages provide the basis of ANNs.
In order to transmit the weighted inputs from neurons, these cells use an activation function
to transmit the weighted outputs. It is possible to have one or more multi-layers in these
activities. Use of the multilayer perceptron network is widespread in brain activity. The
perceptual response is created among the number of input parameters and the number
of output parameters. There are three types of layers in a network: input, hidden, and
output. Between the input and output layers, there is a hidden layer that may have a huge
network of hidden layers. The perceptron can handle all of its issues with a single layer,
but it is more efficient and helpful to have several hidden layers [70]. Figure 5 depicts a
typical neural network design. With the exception of neurons in the input layer, all neurons
in a layer perform linear addition and bias computations. Non-linear functions are then
calculated in the hidden layers by neutrons A sigmoid function is a word used to describe
a non-linear function [71]. This research paper models ANNs using a feed-forward multi-
layer perceptron (MLPNN) network. To discover the highest-performing MLPNN, hidden
layers and neuron pairs of varied numbers are meticulously selected [72]. In the hidden
layer, the link between input and output variables may also be determined using a linear
activation function and a nonlinear transit function. In addition, the data extracted from
the published literature are separated into training and testing sets. This is conducted to
reduce the influence of data overfitting, since overfitting is an intractable issue in machine
learning. Randomly, 80 percent of the data is used for training the models and 20 percent
for testing the trained models, as recommended by the literature [73].
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Input Hidden Output 

Input Output 

Figure 5. Flow chart of MLPNN.

3.2. Bagging and Boosting for Ensemble Approaches

ML classification and prediction accuracy may be improved using ensemble ap-
proaches. By combining and accumulating several weaker predictive models, such tech-
niques frequently support decrease training data over-fitting problems (component sub-
models). Training data may be manipulated to create various sub-model/classifier com-
ponents (i.e., 1 to M) that help a learner. Furthermore, the best predictive model may
be generated by merging limiting sub-models using averaging combination processes.
Bootstrap resampling and benefit collection are two common methods for modelling en-
sembles that make use of bagging. The first training set substitute’s component replicates
the bagging procedure. In product models, specific data samples might appear numerous
times, while others do not. An average is computed from the output of each component
model. As with the bagging method, this strategy builds a cumulative model that yields
several components with more accuracy as compared to the individual model. A weighted
average of dependent sub-models is used to set sub-models in the final model, which
is referred to as “boosting”. AdaBoost [74] is a rapid ensemble learning algorithm that
picks multiple classifier examples repeatedly by distributing weights adaptively across
training cases. This approach linearly combines the chosen classifier instances to form an
ensemble. Even when a large number of base classifier instances are included in a model,
AdaBoost ensembles seldom display an overfitting issue [75]. It is possible to diminish loss
function by fitting to a staged additive model. This indicates that a cost function that is
not differentiable and is not smoothed has been optimized; it can best be described using
an exponential loss function [75]. It is, therefore, possible to employ AdaBoost to tackle a
number of classification problems with impressive results. DT, MLPNN, and RF are used in
conjunction with ensemble learners to envisage the strength of consistently used concrete
in this study.

3.3. Ensemble Learner’s Parameter Tuning

Models of the tuning parameters that are employed in the ensemble methods might
consist of (i) factors connected with the optimum model learners’ number and (ii) rate
of learning and other attributes that have a significant influence on ensemble algorithms.
In this research, twenty sub-models were generated for each ensemble base learner. The
component sub-models ranged in size from 10 to 200, and the optimum constructs were
selected on the basis of the large values of determination coefficient. Figure 6 illustrates
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the link between performance of ensemble model and the number of component sub-
models. As shown in Figure 6a,b, the assembling model with bagging and boosting yields a
significant determination coefficient in the estimation terms. As demonstrated in Figure 6a,
the 140th sub-model of DT with bagging as an ensemble of other sub-models provides a
stronger relationship than the other sub-models of DT with bagging. Similarly, the 30th
sub-model of MLPNN with bagging provides a significant higher correlation coefficient as
compared to MLPNN bagging other sub-models. Similarly, as depicted in Figure 6b, the
50th DT AdaBoost and the 180th MLPNN AdaBoost sub-model provide the best results
when compared to their other sub-models. Preliminary analysis indicates that the usage of
ensemble modelling improves the efficiency of both models.

  
(a) (b) 

Figure 6. ML with ensemble sub-models; (a) Bagging; (b) AdaBoost.

3.4. Random Forest Regression Based Machine Learning

The RF model is a regression and classification strategy that has piqued the curiosity
of a number of different researchers [76]. The main difference between DT and RF is that
one tree is created in DT, but several trees are built in RF, and unlike data are randomly
picked and distributed to all the trees in the forest. Each tree’s data are organised into
columns and rows, with a variety of column and row sizes to choose from [77]. Each stage
of a tree’s development is detailed below:

1. The equivalent of two-thirds of the entire dataset is chosen for each tree at random.
Bagging is the term used to describe this practise. Predictor variables are picked, and
node splitting is done based on the best possible node split on these variables.

2. The remaining data are used to estimate the out-of-bag error for each and every tree.
To get the most accurate estimation of the out-of-bag error rate, errors from each tree
are then added together.

3. Every tree in the RF algorithm provides a regression, but the model prioritizes the
forest that receives the most votes over all of the individual trees in the forest. The
votes might be either zeros or ones. As a prediction probability, the fraction of 1s
achieved is provided.

3.5. 10 K Fold Method for Cross Validation

For training and holdout data, the k fold approach for cross validation is often em-
ployed to decrease arbitrary sampling prejudice. A stratified 10-fold cross-validation
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strategy was used in this work to evaluate model performance by dividing the input data
into ten distinct subsets. Each of the 10 rounds of model construction and validation uses a
different sample of data to test and train the model. As indicated in Figure 7, in order to
validate the adequacy of the model, the test subset is utilised. The accuracy of algorithm is
calculated as the mean of the 10 models’ accuracy scores after 10 rounds of validation.

 

 

 

 

Figure 7. K-fold cross validation method [78].

3.6. Evaluation Criteria for Models

Statistical errors for example root mean squared logarithmic error (RMSLE), square
value (R2), mean absolute error root (MAE), and root mean square error (RMSE) are used
to assess model performance on a training or testing set. R2 is also called the determination
coefficient and is used to evaluate a model’s ability to predict. Concrete’s mechanical
characteristics may now be predicted with greater accuracy due to advances in artificial
intelligence modelling methods. The models are assessed statistically by calculating error
metrics in this research. There are a variety of measures that might help us better understand
the model’s inaccuracy. In addition, the model’s performance may be assessed using the
variance coefficient and standard deviation. According to the coefficient of determination,
the model’s correctness and validity may be confirmed. Models with R2 values ranging
from 0.65 to 0.75 indicate promising results, whereas models with R2 values lower than
0.50 reveal disappointing outcomes. Equation (1) can be used to determine R2. The units
used in MAE are the same as the ones used in the output. It is possible for a model with a
value of MAE that falls within a certain limit to have large errors at some points in time.
In order to calculate MAE, Equation (2) is used. RMSE is the under root of the average of
squared differences between estimates and measurements. Error squared is calculated by
summing the squared errors. This method gives a greater weight to outliers and significant
exceptions than other methods, which results in bigger squared differences in certain cases
and lower squared differences in others. Using RMSE, the model’s average estimation error
given an input can be calculated. Improved models have fewer root mean squared errors
of variation. The lower the value of RMSE, the less accurate the model is in predicting the
data. Equation (3) is used to determine RMSE. Relative imprecision amongst forecasted
and actual values is taken into account by RMSLE. It is the difference between the expected
value and the actual value, expressed as a logarithmic scale. RMSLE is calculated using
Equation (4).
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√
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n
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2
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2
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4. Model Result

4.1. Decision Tree Model Outcomes

As seen in Figure 8, the DT is modelled using various ensemble techniques including
bagging and boosting. The actual prediction from individual base learner DT produces a
high relationship with predicted values having a R2 = 0.868, as seen in Figure 8a. Figure 8b
depicts the error distribution of an individual DT model. Figure 8b indicates that the testing
set has an average inaccuracy value of 5.79 MPa. In addition, 82.88 percent of the data
exhibit error below 10 MPa, and 11.7% of the data exhibit error between 10–15 MPa. In
contrast, each domain of 15–20 MPa, 20–25 MPa, and 35–40 MPa contains 1.8 percent data
error, with a maximum and minimum error of 35.3 MPa and 0.085 MPa, respectively, as
illustrated in Figure 8b. Individually, DT provide accurate predictions; but, if the DT is an
ensemble of several methodologies, it yields a more precise outcome, as seen in Figure 8c–f.
Bagging ensemble yields a conclusive and favourable result with R2 = 0.879 and minimal
testing data error. The data indicate an inaccuracy of 84.685% below 10 MPa, 9% between
10 and 15 MPa, and 3.6% between 15 and20 MPa. As shown in Figure 8d, only 1.8% of
the data fall between 20 and 25 MPa and 0.9% between 30 and 35 MPa, with a maximum
and minimum error of about 33.06 MPa 0.029 MPa, respectively. Similar to individual DT
and bagging DT algorithms, boosting with AdaBoost produces models with a significant
correlation. As seen in Figure 8e–f, this is because of the influence that a strong learner has
on the aspect of prediction. A DT AdaBoost ensemble model has a R2 equal to 0.924. The
error distribution is minimised by applying AdaBoost with a DT, with an average error
of 4.12 MPa, a maximum and minimum error of 34.578 MPa, and 0.065 MPa, respectively.
Approximately 92.79%of the data is below 10 MPa, with 6.3% between 10 and 15 MPa and
0.9% between 30 and 35 MPa. Table 3 presents the statistical information pertaining to DT
with bagging and boosting ensemble learners.

Table 3. DT model statistical evaluation of errors.

Statistical Analysis DT DT-Bagging DT-AdaBoost

Average 5.79 7.29 7.05
Minimum 0.08 0.11 0.07
Maximum 35.3 34.74 31.31

No. of data points below 10 MPa 92 94 103
No. of data points between 10 and 20 MPa 15 14 07
No. of data points between 20 and 30 MPa 02 02 00
No. of data points between 30 and 40 MPa 02 01 01

No. of data points testing points 111 111 111
Average below 10 MPa 82.88 84.68 92.79

Average in range of 10 to 20 MPa 13.51 12.61 6.31
Average in range of 20 to 30 MPa 1.80 3.60 00
Average in range of 30 to 40 MPa 1.80 2.70 0.90

4.2. MLPNN Model Outcomes

In the field of ML and AI, neural networks fall under the rubric of supervised learning,
and its implementation yields a rigid correlation between prediction and target response.
As illustrated in Figure 9, MLPNN is also modelled utilising ensemble learner’s methods,
similar to the DT. Figure 9a depicts the actual projection of MK concrete with R2 = 0.724
with its error distribution as seen in Figure 9b. MLPNN error distribution indicates that
a test set has an average error of 8.70 MPa, with lowest and highest errors of 0.044 MPa
and 35.15 MPa, respectively. However, MLPNN ensemble model reduces the distribution
of average error with a rise in the R2 of around 0.767 for bagging and 0.825 for boosting,
respectively. The average error for MLPNN-bagging and AdaBoost boosting is 7.29 MPa
and 7.05 MPa, respectively, as seen in Figure 9c–f. In addition, a major portion of testing
set error is below 10 MPa, with 72.97%, 77.48%, and 74.77% of the data, respectively, for
the individual, bagging, and AdaBoost MLPNN models. These ensemble-model outputs
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also demonstrate a rise in R2 by exhibiting less inaccuracy than the real output. Table 4
illustrates the statistical evaluation of testing data via MLPNN ensemble modelling.

 

 

(a) (b(b) 

(c) (d) 

Figure 8. Cont.
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(e) (f) 

Figure 8. (a) DT individual base learner regression model; (b) DT individual base learner regression
model error distribution; (c) DT-bagging model; (d) DT-bagging model error distribution; (e) DT-
AdaBoost regression model; and (f) DT-AdaBoost model error distribution.

 

 

(a) (b) 

(c) (d) 

Figure 9. Cont.
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(e) (f) 

Figure 9. (a) MLPNN individual base learner regression model; (b) MLPNN individual base learner
regression model error distribution; (c) MLPNN-bagging regression; (d) MLPNN-bagging regression
model error distribution; (e) MLPNN-AdaBoost regression model; (f) MLPNN-AdaBoost regression
model error distribution.

Table 4. MLPNN model statistical evaluation of errors.

Statistical Analysis MLPNN MLPNN-Bagging MLPNN-AdaBoost

Average 8.70 7.29 7.05
Minimum 0.04 0.11 0.07
Maximum 35.15 34.74 31.31

No. of data points below 10 MPa 81 86 83
No. of data points between 10 and 20 MPa 20 18 23
No. of data points between 20 and 30 MPa 07 04 04
No. of data points between 30 and 40 MPa 03 03 01
No. of data points between 10 and 20 MPa 111 111 111

Average below 10 MPa 72.97 77.48 74.77
Average in range of 10 to 20 MPa 18.02 16.22 20.72
Average in range of 20 to 30 MPa 6.31 3.60 3.60
Average in range of 30 to 40 MPa 2.70 2.70 0.90

4.3. Random Forest Model Outcomes

Within the framework of the ensemble ML approach, RF represents a hybrid type of
bagging and random feature selection, which is a technique for the production of prediction
models that is both efficient and easy to use. Figure 10 depicts the prediction accuracy of the
RF method for MK concrete. As it is an ensemble model, it exhibits a stubborn R2 = 0.929
correlation with the target values. In addition, the RF model’s prediction may also be tested
using an error distribution with an average error of 3.52 MPa. In addition, 90.99 percent of
the results indicate that the error falls under 10 MPa, demonstrating the precision of the
non-linear estimation of the normal concrete’s strength as shown in Figure 10b.
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(a) (b) 

Figure 10. (a) RF modified learner regression model; (b) RF modified learner regression model
error distribution.

4.4. K-Fold Results

The model’s required accuracy is essential to its assessment. To verify the accuracy
of prediction models, this validation is necessary. The K fold validation test is employed
to validate the correctness of data using data shuffles. Randomly sampling the training
data set introduces bias, hence this strategy is used to reduce it. This technique divides
the samples evenly into 10 subgroups of the experimental data. One of the 10 subsets is
utilised for validation, while the other nine are employed to shape up the strong learner.
The procedure is done 10 times and then averaged. In general, it is commonly accepted
that the 10-fold cross validation approach accurately reflects the model’s generalisation
and dependability [79]. The validation test of all the ensemble models is presented in
Figures 11 and 12. All models exhibit a moderate to high correlational link. In addition, the
outcomes of cross-validation may be evaluated based on various errors, such as R2, MAE,
RMSE, and RMSLE, as shown in Figure 11 for DT and MLPNN and Figure 12 for RF. It
displays the validation representation in each 10-fold. Although variations were noticed, it
retained a high degree of precision, as seen in Figures 11 and 12. For example, the lowest and
highest R2 values for all models are between 0.46 and 0.65 and 0.81 and 0.91, respectively.
As demonstrated in Figure 11c–h for DT and MLPNN, MAE, RMSE, and RMSLE are also
used to evaluate the accuracy of models with respect to cross-validation. Figure 11c depicts
the average MAE value for DT with ensemble bagging and ensemble boosting using 10-fold
validation as 11.97 MPa and 9.0 MPa, respectively. Figure 11e reveals that the RMSE offers
an average error of about 14.6 MPa and 11.84 MPa for ensemble bagging and ensemble
boosting using AdaBoost, respectively. Figure 11g displays RMSLE average errors of
0.106 MPa and 0.07 MPa for DT bagging and boosting, respectively. Figure 11d–f shows
that the average MAE, RMSE, and RMSLE for the MLPNN bagging model are 11.06 MPa,
14.92 MPa, and 0.1 MPa, respectively. For the k fold validation of the MLPNN AdaBoost
model, values of 12.03 MPa, 15.07 MPa, and 0.08 MPa were found. This demonstrates
the precision of models using K-fold cross validation. Figure 12 demonstrates strong
association for modified learner model with decreased error for MAE, RMSE, and RMSLE,
with average errors of 8.94 MPa, 11.02 MPa, and 0.07 MPa, respectively.
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Figure 11. Cont.
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(g) (h) 

Figure 11. fc’ models (a,b) indicate R2 models’ result validated with K fold; (c,d) indicate MAE
models’ result validated with K fold; (e,f) indicate RMSE models’ result validated with K fold;
(g,h) indicate RMSE models’ result validated with K fold.

 

(g) (h) 

Figure 12. RF models cross validation with different statistical parameters.

4.5. Model Evaluation and Discussion Based on Statistical Metrics

Comparing the ensemble approaches to the individual ML methods helped show
the ensemble algorithm’s potential in comparison to them as depicted in Figure 13. This
process is similar to that used for ensemble models, such as starting with a set of values and
then using a grid search to find the optimal values. Table 5 shows the target and validated
values for each metric. The ensemble ML models outcome have a linear trend, and their
projections are more like the ones that were tested, according to this study. Using DT, and
MLPNN, is a kind of individual learning, but using ML techniques such as bagging and
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boosting is a form of ensemble learning. High performance weak learners would gain
weight, though weak learners with poor performance will lose weight, since ensemble
learning is usually known to include several weak learners produced by individual ML
algorithms. Because of this, it is able to provide accurate projections. MAE, RMSE, RMSLE,
and R2 are used to evaluate individual and ensemble learners. An ensemble of learners
using bagging and boosting has a lower rate of error than an individual learner. A smaller
error margin exists between forecasts and outcomes when using ensemble models rather
than individual models alone.

Figure 13. Statistical analysis of fc’ models.

Table 5. Model’s statistical errors.

Approach Employed ML Methods MAE RMSE RMSLE R2

Individual Learner
DT 5.79072 8.34472 0.07261 0.868

MLPNN 8.70159 11.59452 0.10325 0.724

Ensemble Learner
Bagging

DT 5.57845 7.72089 0.06911 0.879
MLPNN 7.29168 10.21239 0.08721 0.767

Ensemble Learner
Boosting

DT 4.12636 5.93813 0.05303 0.924
MLPNN 7.04574 9.20414 0.08233 0.825

Modified Ensemble Random Forest 3.52232 5.89161 0.05179 0.929

4.6. SHAP Analysis

The values of all of the features that were taken into consideration for the MK concrete
fc’ prediction are outlined in the shape of a violin, as illustrated in Figure 14. The Shapley
value measures the mean marginal influence that can be attributed to each parameter
value over all viable permutations of the parameters. The attributes that have substantial
absolute Shapley values are regarded to have a considerable influence. In order to get the
global feature effects, the absolute Shapley values for each feature throughout the data
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were averaged and ranked in decreasing significance as shown in Figure 14. Every single
datapoint on the plot indicates a Shapley value for distinct characteristics and occurrences.
The location on the x axis and the y axis is defined by the Shapley value and the feature
significance, respectively. Elevated places on the y axis represent higher effect of the
characteristics on the MK concrete fc’ prediction and the colour scale reflects the feature
relevance from low to high. Each dot in Figure 14 signifies an individual point from the
dataset. The location of points along the x axis represents the effect of each parameter value
on the fc’ prediction. When numerous dots fall in the same location along the x-axis, the
dots are stacked to illustrate the density. Age is the most influential parameter followed by
coarse aggregate, superplasticizer, water, and other input parameters. Silica fume has the
least impact on fc’ prediction of MK concrete as illustrated in Figure 14. Higher SHAP value
imply that the model forecasts higher fc’ value, and vice versa. For example, high value of
age (red) correlate with increased SHAP value, which suggest high fc’ value. Moreover,
each input parameter has positive or negative impact up to a certain limit. In Figure 14, red
colour shows high impact (negative or positive) while the blue colour depicts low impact
of the input feature on the predicted outcome. SHAP value at the right (greater than 0)
on the x-axis shows positive impact of respective input on the fc’. For instance, in the
case of input parameters like age and content of coarse aggregate, the positive effect of
these factors on MK fc’ can be noted from the right axis of the graph. Coarse aggregate
content depicts a constructive impact till optimum content, whereas above this content,
the adverse effect is shown on the left side (less than 0) on the x-axis. Super-plasticizer
is also key variable for predicting the fc’ of MK concrete. The effect of water on the
output fc’ of MK concrete is negative and increasing the water content will reduce the
fc’. MK and cement show the same trend. However, SF and fine aggregate tend to have
a high positive impact and a low negative impact on the fc’ prediction of MK concrete.
SHAP feature dependency graphs were deployed that are coloured by another interacting
feature to highlight how the features interact and effect the fc’ of MK concrete. This gives
greater information than standard partial dependency charts. The SHAP interaction plot
each considered feature is shown in Figure 15. As can be observed from Figure 15a, the
dependence and interaction show that high fc’ values for MK concrete can be achieved
when for 50 ≤ age ≤ 100 days when CA ≥ 700 kg/m3. Higher fc’ values for age ≤ 50 days
can be achieved for 50 ≤ CA ≤ 700 kg/m3. Figure 15b,d,e show that 120–200 kg/m3 of
water is required for CA in for different content of CA and FA to achieve higher values of
fc’. Moreover, Figure 15f,g illustrate the relation between two important constituents of
MK concrete: cement and metakaolin. Higher fc’ for MK concrete can be achieved for MK
in the range of 20–100 kg/m3 for concrete having density of 250–450 kg/m3. Additionally,
Figure 15h reveals that large quantity of silica fume can be used if early fc’ of MK concrete
is desired.
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Figure 14. SHAP plot.
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Figure 15. Cont.
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(e) (f) 

 

(g) (h) 

 

 

Figure 15. SHAP interaction plot of parameters: (a) age; (b) coarse aggregate; (c) superplasticizer;
(d) water; (e) fine aggregate; (f) metakaolin; (g) cement; (h) silica fume.

5. Conclusions

The primary aim of this study was to assess the accuracy level achieved by various
ML approaches to predict MK concrete fc’. Datasets from the literature containing 551 data
points were used to train and test the models. The eight most influential constituents
of MK concrete including cement, metakaolin, coarse and aggregate, water, silica fume,
superplasticizer, and age were considered as input parameters. Individual and ensemble
learning models for predicting the fc’ of MK concrete were investigated in this study using
DT, MLPNN, and RF. Interaction of input parameters and effect of input parameters of fc’
were studied using SHAP dependency feature graphs. The results of the investigation led
the authors to the following conclusions:

1. Bagging and AdaBoost models outperform the individual models. As compared to
the standalone DT model, the ensemble DT model with boosting and RF demon-
strates a 7% improvement. Both techniques have a significant correlation with R2

equal to 0.92. Similarly, an improvement of 14 %, 6%, and 29% was observed in
MLPNN AdaBoost, MLPNN bagging, and RF model, respectively, when compared
with individual DT model;

2. Statistical measures using MAE, RMSE, RMSLE, and R2 were also performed. Ensem-
ble learner DT bagging and boosting depicts a smaller error of about 4%, and 29% for
MAE, 8% and 29% for RMSE, 5% and 27% for RMSLE, respectively, when compared
to the individual DT model. Similarly, enhancements of 16% and 19% in MAE, 12%
and 21% in RMSE, and 16% and 20% in RMSLE were observed for MLPNN bagging
and AdaBoost models, respectively, when compared to the individual base learner
DT model;
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3. RF shows improvements of 60%, 49%, and 50% in MAE, RMSE, and RMSLE when
compared to the MLPNN individual model. Similarly, improvements of 39%, 29%,
and 29% for the RF model, in MAE, RMSE and RMSLE, were observed in comparison
to DT individual model;

4. The validity of models using R2, MAE, RMSE, and RMSLE were tested using k-fold
cross-validation. Fewer inaccuracies with strong correlations were examined;

5. The DT AdaBoost model and the modified bagging model are the best techniques for
forecasting MK concrete fc’ among all of the ML approaches;

6. Age has the greatest impact on calculating MK concrete fc’, followed by coarse
aggregate and superplasticizer, according to the SHAP assessment. However, silica
fume has the least impact on the fc’ of MK concrete. SHAP dependency feature graphs
can illustrate the relationship between input parameters for various ranges;

7. Sensitivity analyses depicted that FA contributed moderately to the development of
the fc’ models and fsts models. Moreover, cement, SF, CA, and age played vital roles
in the development of fc’ models. Tensile strength models showed to be affected least
by water and CA;

These ML algorithms can accurately predict the mechanical characteristics of concrete.
These models can be utilized to predict the mechanical characteristics of similar databases
containing metakaolin with high accuracy. Moreover, SHAP analysis provides an insight
to readers regarding the input parameters contribution towards the outcome, and inter-
dependency of the input parameters. This will enable the readers to carefully select the
input variables for modelling the behaviour of metakaolin concrete. Additionally, ML
algorithms employed in this study may provide a sustainable way for the mix design of MK
concrete. Traditionally, this process demands lengthy trials in laboratories and a significant
number of raw materials in addition to a great deal of manpower.

6. Limitations and Directions for Future Work

Despite the fact that the efforts made in this research has significant limitations, it may
still be regarded a data mining-based research. Completeness of dataset is essential for
the efficacy of models’ prediction. The range of datasets used for this study was restricted
to 551 data points. In addition, the corrosive and flexural concrete behaviour at extreme
temperatures was not considered in this work. Indeed, good database management and
testing are essential from a technical standpoint. To simulate high-strength concrete, this
research included an extensive variety of data with eight variables. Further, it is suggested
that a new dataset of concrete at increased temperatures that encompasses numerous
environmental factors such as temperature, durability, and corrosion be investigated.
Experimental testing data for testing of models are recommended for more accuracy. Given
that concrete plays such an important role in the ecosystem, its effects under various
situations should be investigated utilising various deep machine learning methods.
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Abstract: Three-dimensional printed concrete (3DPC) is a relatively recent technology that may be
very important in changing the traditional construction industry. The principal advantages of its use
are more rapid construction, lower production costs, and less residues, among others. The choice
of raw materials to obtain adequate behavior is more critical than for traditional concrete. In the
present paper a mixture of cement, silica fume, superplasticizer, setting accelerator, filler materials,
and aggregates was studied to obtain a 3DPC with high resistance at short curing times. When the
optimal mixture was found, metallic fibers were introduced to enhance the mechanical properties.
The fresh and hard properties of the concrete were analyzed, measuring the setting time, workability,
and flexural and compressive strength. The results obtained demonstrated that the incorporation
of fibers (2% in volume) enhanced the flexural and compressive strength by around 163 and 142%,
respectively, compared with the mixture without fibers, at 9 h of curing. At 28 days of curing, the
improvement was 79.2 and 34.7% for flexural and compressive strength, respectively.

Keywords: 3D printed concrete; silica fume; setting time; workability; metallic fibers; mechanical properties

1. Introduction

The expanded selection of additives in concrete technology has led to the development
of new materials and the possibility of achieving ultra-high-performance fiber-reinforced
concrete (UHPFRC). This material is the product of three technologies, self-compacting
concrete, fiber-reinforced concrete, and high-strength concrete [1], and was developed
with the aim of improving three important aspects, mechanical properties, durability,
and workability.

UHPFRC was first developed in France in the 1990s, and, according to the Association
Française de Génie Civil (AFGC) [2], this cementitious matrix material has a characteristic
28-day compressive strength of more than 150 MPa, with high flexural strength and ductile
behavior. In recent years, there have been small variations in the placement of concrete,
with the development of self-compacting concrete and improvements in the techniques for
the use of shotcrete, which at the time represented a great advance [3]. Shotcrete can be
considered as the ancestor of additive manufacturing. These techniques are the only ones
that do not use formwork for the placement of concrete.

In the present work, UHPRC mixtures were developed that could be used in shotcrete
as a first step until their dosages could be used to develop additive manufacturing tech-
niques. One of these techniques was three-dimensional concrete printing (3DPC). The
challenge presented by the dosages used was that ultra-high-strength concrete is manufac-
tured with large amounts of superplasticizer additive, whose action increases the setting
time. However, to use this well-projected material for 3D printing, it was necessary to
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reduce the setting time, which forced the need to introduce accelerating setting additives
into the mixture. This could compromise the mechanical resistance achieved with the
mixture [4], which will have to be studied.

3DCP is a material with numerous advantages, but it requires careful dosing. The
principal advantages of its use are more rapid construction, lower production costs, and
less production of residues, among others [4,5].

Additive manufacturing can be defined as a process that uses technology for automa-
tion. With this process, three-dimensional objects can be produced from digital models
in a precise way and within a predetermined space. The first research on 3D printing
in the construction and architecture industry dates back to 1995, when Pegna suggested
incorporating cement-based materials when using these new technologies [6].

Concrete printing can be used to build complex geometric shapes. The components are
designed using 3D modelling software [7]. The mixture is printed by controlled extrusion.
The concrete needs to have a good degree of extrudability in order to form small concrete
filaments. These filaments must bind together to form each layer. One requirement is to be
able to build layers without deformation of the successive layers [8].

Lyu et al. [9] noted that the printability of 3DPC includes fluidity, extrudability, build-
ability, and setting time. The main important factor affecting fluidity in 3DPC is the water
content. This concrete used a lower water content, and it required the use of a high-
performance water reducing agent. Other factors that can modify the fluidity are the use of
mineral admixtures and the effects of aggregate fineness [10].

Extrudability measures the difficulty in the extrusion process. Fresh concrete should
be delivered continuously through the nozzle. According to Ma et al. [11], this property is
affected by the amount and distribution of the dry mixture.

Buildability measures the degree of deformation and the stability of the printed
layers. The material needs to be strong enough to retain its shape and prevent layers from
collapsing under its own weight and the gravitational load [12]. Increasing the quantity of
aggregates and adding mineral admixtures can improve this property [9].

The setting time for 3DCP requires a compromise between allowing sufficient time to
obtain good fluidity and extrudability and sufficient time to obtain early strength.

Zhang et al. [4] noted that the characteristics required for 3DCP often conflict with
one another. To obtain a material that is easily pumpable and extrudable, it needs to have
low plastic viscosity and optimum yield stress. However, to obtain good buildability, the
material needs to have high static yield stress. For all of these reasons, the mixtures should
be carefully selected to ensure that they are thixotropic, set suitably, and are densely packed.

Supplementary cementing materials (SCMs) are used to enhance mechanical strength
and durability performance, and they also have an influence in the fresh state [13–15].
Arunothayan et al. [16] studied the use of fly ash (FA) and ground blast furnace slag (BFS)
as substitutes in cement for 3DCP. All of the mixtures contained 30% silica fume (SF) as
a constant percentage. The authors demonstrated that the FA facilitated the flow of the
mixture, in contrast with the BFS, which reduced the workability. Compressive strength
was reduced when SCMs were added; however, the difference with respect to the control
was reduced after 90 days of curing.

The present investigation was a preliminary study that explored the use of a mixture
of cement, silica fume, superplasticizer, setting accelerator, filler quartz material, and
aggregates to obtain 3DPC with high resistance at short curing times. In the first part,
different setting accelerators were studied to obtain an adequate setting time, in the second
part we worked with the selected accelerator and studied the influence of the setting
accelerator percentage on the workability of the fresh mixture and the evolution of flexural
and compressive strength. Finally, in the last part of the study, metallic fibers were added
to study their influence on resistance. The incorporation of fibers can also improve the
bonding and connection between the different layers of placed concrete.
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2. Materials and Methods

Portland cement type CEM I 52.5R (Lafarge Holcim, Paris, France), which met the
specification of the European standards [17], was used in the preparation of mortars. Elkem
Microsilica 940 U (Elkem Materials, Pittsburgh, PA, USA) was used as SCM. This material
is an undensified silica fume with a density between 200 and 350 kg/m3.

To reduce the cement content and complement the granulometric curve for small sizes,
quartz flour (Silbeco, Antwerp, Belgium) was also added; the main characteristics are an
SiO2 content higher than 98% and density between 200 and 300 kg/m3.

X-ray fluorescence analysis was conducted to determine the chemical composition of
silica fume and cement, and the results are shown in Table 1.

Table 1. Chemical composition of CEM I 52.5R and silica fume (% in weight).

Compound CEM I 52.5R Microsilica 940 U

SiO2 19.29 95.80
Al2O3 5.22 0.31
Fe2O3 3.51 0.14
CaO 61.75 0.38
MgO 2.07 0.10
SO3 3.55 0.02

Na2O + K2O 1.23 0.32
Others 1.42 _

Loss on ignition (950 ◦C) 1.96 2.93

Figure 1 shows the granulometric curves of cement (CEM), silica fume (SF), and quartz
flour (QF).

Figure 1. Granulometric curves of cement, silica fume, and quartz flour.

Two types of siliceous sand were employed, 0.8 fraction with sizes between 0.6 and
1.2 mm and 0.4 fraction with sizes between 0.2 and 0.6 mm. The distribution company
was Silicam.

Sika ViscoCrete 225 P (Sika, Baar, Switzerland) was used as the superplasticizing
additive. It is a superplasticizer powder water reducer and has a shorter absorption time.
The typical dosage varies between 0.05 and 0.5% by weight of binder.

Four types of liquid setting accelerators were used in the first phase of testing to study
the behavior of the mixture, in order to finally determine the one that would be used in the
second and third phases of the study. Centrament Rapid 500 (MC Company, Scottsdale, AZ,
USA) is a chloride-free additive that provides rapid hardening without affecting workability.
Sikaset-3 additive (Sika, Baar, Switzerland), according to the manufacturer, is capable of
doubling mechanical resistance between 5 and 10 h of curing. Master X-Seed 130 (Master
Builders Solution, Mannheim, Germany) is a cement hydration activator agent composed
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of a suspension of C-S-H nanoparticles. Finally, AKF-63 (IQE, Cardiff, UK) is an aqueous
solution of aluminum salts.

The dosage was selected following guidelines from previous studies carried out by
our research group [18]. The mortar mixtures are summarized in Table 2.

Table 2. Mortar dosages.

Material Dosage (kg/m3)

CEM I 52.5R 800
Water 170

Sika ViscoCrete 4
Sand 0.8 562
Sand 0.4 302

Filler addition (quartz flour) 225
Active addition (microsilica) 175

All materials were poured into the mixer machine, except for additives (superplas-
ticizer, setting accelerator, and water). The sequence and mixing time of the mixtures
are shown in Table 3. The mixing machine employed was an Ibertest model that met the
specifications of the European standard [19]. When fibers were incorporated, they were
poured into the machine and mixed before the setting accelerator additive.

Table 3. Sequence of material incorporation.

Incorporation in
Mixer Machine

Solid Materials
(Without Additives)

Water

Additives
Finish

ProcessSuperplasticizer
Setting

Accelerator

Mixing time 30 s 30 s 150 s 600 s Variable

To determine the setting time, specifically the start of setting of the different mixtures,
which occurred in the first phase of the experimental program, two European regulations
were taken as reference, UNE-EN 196-3 [20] and UNE-EN 480-2 [21]. Both regulations
describe the test procedure, materials, and apparatus to be used to determine setting
time. The difference between the two references is the value of the penetration of the Vicat
apparatus. In the present study, the start of setting was considered to occur when the needle
did not drag the material after extraction and generated a gap in the mortar (Figure 2).

Figure 2. Gap generated in paste indicating the start of setting time.

32



Materials 2022, 15, 2750

Various investigations have reported that the workability varied depending on the
time when the test was carried out [22,23]. In this investigation, the workability was tested
at different times after the mixing process was finished, and the European standard was
taken for reference [24]. In addition, a smaller cone was used, because it is considered that
a smaller sample volume is closer to the amount of concrete that would come out of the
nozzle of a 3D printer. The dimensions of the standardized truncated cone-shaped mold,
in accordance with European standards [24], were 7 cm inside diameter, 8.5 cm outside
diameter, and 4 cm height, with a non-standardized PVC tube 3 cm in diameter and 2.5 cm
in height, as shown in Figure 3.

Figure 3. Dimensions of molds used to test workability.

The mechanical strength of 40 mm × 40 mm × 160 mm prismatic mortar specimens
was determined according to the normalized standard [19]. Samples were stored in molds
in a humid atmosphere until the testing age in the case of short curing times and for 24 h
for the rest. At the required age, the specimens were taken from storage and broken by
flexure, and each half was tested for compression strength (using an Ibertest machine).

3. Results

This section is divided into three subsections; the first part describes the selection of
setting accelerator, and the other two parts focus on the chosen additive.

3.1. Selection of Setting Accelerator

The selected percentages of setting accelerator were 1 and 2%, with respect to the
weight of cement. Table 4 shows the mortar setting times; the control mortar without
setting accelerator had a setting time of more than 90 min.

Table 4. Initial setting time of mortar with 1.5 and 2% setting accelerator.

Setting Accelerator Initial Setting Time (Min)

AKF-63
1.5% 2%

10:38 8:00

Sikaset-3
1.5% 2%

40:02 49:03

Centrament Rapid
1.5% 2%

60:10 70:30

Master X-Seed 130
1.5% 2%

65:13 71:00
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The setting accelerator with the shortest initial setting time was AKF-63; this type of
additive with aluminum salts was very effective, so it was selected as the setting accelerator
for use in successive sections. Kim et al. suggested that aluminate-based activators reacting
with cement minerals exhibit fast setting times; they obtained an initial setting time of
around 10 min [25]. Other authors, such as Qiu et al. [26], used nano-alumina and modified
alcohol amine as raw materials to prepare shotcrete with an initial setting time of only
3 min. The references consulted with regard to the use of C-S-H nanoparticles obtained
results very similar to those obtained with Master X-Seed 130. Das et al. [27] reported that
the reduction in setting time was a consequence of early strength development of mortar; a
reduction of about 43% of the initial setting time was obtained.

3.2. Selection of Percentage of Setting Accelerator

3.2.1. Influence of Percentage of Setting Accelerator on Workability

Before measuring the workability values, we evaluated the initial setting time of the
mixture using smaller quantities of setting accelerator; the values obtained were 16 and
13 min for 0.5% and 1.0% and 1.5%, respectively.

The values of the diameter obtained in the flow table were measured at different times.
This time value was a previously defined variable representing the period from the end of
the mixing process to the exact moment of raising the cone. After this time, the diameter of
the stabilized biscuit was measured in millimeters, as shown in Figure 4.

Figure 4. Measurement of the stabilized biscuit.

The evolution of the diameter values with time for the three percentages of setting
accelerator and the mixture without setting accelerator is represented in Figure 5.

Figure 5. Evolution of workability with time and percentage of setting accelerator.
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As can be seen in Figure 3, the diameter of the biscuit obtained depended on the
percentage of setting accelerator used. In the mixtures with 1.5% setting accelerator, the
diameter was smaller than 10 cm for all times measured, and with 1% setting accelerator,
the values were always the same. The setting accelerator promoted a greater degree of
hydration, therefore rigidity developed gradually, with a loss of workability [11].

The values obtained in this study were lower than those obtained by other authors as
ideal values to obtain good buildability. Tay et al. [28] reported that a slump flow value
between 15 and 19 cm in mixtures was optimal for a smooth surface and high buildability.

For future research, the use of other supplementary materials such as fly ash (FA)
should be explored, which has demonstrated its ability to increase workability. Liu et al. [29]
reported that FA has the property of lubrication and produces a reduction in cement
flocculation and, therefore, greater workability.

The study of the mixture in the fresh state, through studies in rheometers, could also
be performed to find better dosages for use in 3DCP mixtures. Panda et al. [30] conducted
studies on 3DCP using large volumes of AF. They showed that the addition of small
amounts of nanoclays improved the behavior of mixtures. The improved performance was
associated with the thixotropic property of clay particles, which were responsible for better
early age mechanical properties such as yield stress and stiffness.

3.2.2. Influence of Percentage of Setting Accelerator on Flexural and Compressive Strength

The influence of the setting accelerator in the first hours of curing is fundamental to
obtaining stability in 3D concrete. In this subsection, the resistance of mortar was measured
using 1.5 and 3% setting accelerator. The values of flexural and compressive strength at
curing ages of 6, 9, 12, and 24 h and 28 days are listed in Table 5.

Table 5. Flexural strength (Rf) and compressive strength (Rc) of mortar.

% Setting Accelerator Age of Assay Rf (MPa) Rc (MPa)

0.0%

6 h 1.05 ± 0.31 1.92 ± 0.23

9 h 2.51 ± 0.27 2.20 ± 0.24

12 h 2.76 ± 0.28 4.70 ± 0.32

24 h 8.08 ± 0.31 51.52 ± 1.93

7 d 13.86 ± 0.35 103.31 ± 3.2

28 d 22.09 ± 0.35 125.77 ± 3.5

1.5%

6 h 2.45 ± 0.29 2.76 ± 0.50

9 h 3.06 ± 0.27 7.37 ± 0.29

12 h 4.98 ± 0.51 18.58 ± 0.96

24 h 9.34 ± 0.78 63.04 ± 0.52

7 d 14.80 ± 0.67 109.89 ± 1.66

28 d 24.80 ± 1.02 137.30 ± 1.96

3.0%

6 h 3.37 ± 0.51 7.49 ± 0.97

9 h 3.98 ± 0.26 14.20 ± 1.2

12 h 6.58 ± 0.50 28.33 ± 0.79

24 h 9.34 ± 0.82 60.84 ± 0.94

7 d 14.25 ± 1.02 105.22 ± 1.21

28 d 22.28 ± 0.68 129.14 ± 2.10

The mechanical strength of 40 mm × 40 mm × 160 mm prismatic mortar specimens
was determined according to the normalized standard. The loading speed for the flexural
test was 50 ± 10 N/s and the compression rate was 2400 ± 10 N/s.
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As can be seen in the resistance results, the setting accelerator had positive effects
during the first 24 h of curing. At 28 curing days, both types of resistance were very close
to the results of mortar without setting accelerator.

Figure 6 shows the division between the results obtained by mortar with setting
accelerator and mortar without additive, i.e., the division between the results of mixtures
with 1.5% and 3.0% setting accelerator (Rfi or Rci) and the mixture containing no additive
(Rf0% or Rc0%) for each curing age tested.

Figure 6. Ratio between mortar with and without setting accelerator: (a) flexural strength, (b) com-
pressive strength.

The beneficial effects of adding setting accelerator were higher for compressive
strength than flexural strength. For both types of resistance, the 3% setting accelerator
demonstrated better results. The flexural strength values of mortar with 3% additive at 6 h
and 28 days of curing were 3.20 and 1.03, respectively. At 28 curing days, the effect of the
additive disappeared.

For compressive strength, the values for mortar with 3% additive at 9 h and 28 days of
curing were 6.45 and 1.02, respectively. As with flexural strength, the contribution by the
additive to improvements at long curing ages was nil.
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The actuation of the setting accelerator in the enhancement of resistance at short curing
ages was in agreement with the references consulted [31,32].

In some cases, the use of setting accelerator could reduce the strength at long curing
times [33], something that did not happen in the present investigation.

Authors such as Min et al. [34] suggested that the presence of setting accelerator
promoted the simultaneous hydration of C3A and C3S at an early age. This process was
quicker as the amount of setting accelerator increased. They considered that the reaction
effect was effective at an early age, until 12 h.

3.3. Incorporation of Metallic Fibers

The bibliography consulted said that the application of 1–3% vol% fibers into 3DCP
is applied to obtain sufficient robustness and ductility for structural applications. This
reinforcement has been studied with carbon, basalt, glass, or propylene fibers, among
others [35–37].

In the last part of the present investigation, 2% of metallic fibers by volume was incor-
porated into the mixture containing 3% setting accelerator. The flexural and compressive
strengths of the mixtures with fibers were measured at the same curing ages. Table 6 shows
the ratio of mortars with and without metallic fibers (Ri/R0).

Table 6. Ratio of resistance between mortar with and without metallic fibers.

Age of Assay Rfi/Rf0 Rci/Rc0

6 h 2.31 2.71
9 h 2.57 2.20
12 h 2.07 1.22
24 h 2.46 1.25
7 d 2.20 1.26
28 d 1.54 1.35

The incorporation of metallic fibers enhanced both flexural and compressive strength,
and flexural strength improved by a greater extent. The incorporation of fibers in 3D
concrete printing is a good solution, because in this system the use of classical steel rein-
forcement is difficult.

Hambach and Volkmer studied the use of three types of fiber in 3D fiber-reinforced
Portland cement paste [38]. They determined that the most effective fiber was carbon fiber
at 1 vol%, which achieved flexural strength of 30 MPa. Other fibers (glass and basalt) did
not significantly increase flexural strength. Zhu et al. [35] used polyethylene fibers and
obtained flexural strength of around 19 MPa.

4. Discussion

The results obtained in this study were promising, but this was a preliminary study in
which tests were carried out in molds and not in samples obtained by 3D printing. The next
step would be to test this dosage using 3D printing equipment and measure the properties
of a structure made in this way. Some authors, such as Rehman and Kim [39], pointed out
that the compression strength of printed samples could be up to 22% lower than that of
samples placed in molds. If the dosage was not suitable for 3D printing, it could be used
for the manufacture of shotcrete.

We also believe that rheology studies are essential in future investigations to know
how the mixture will behave when used in 3D printing equipment. The behaviour of the
fibers in the use of the equipment could also be a critical point; their use could lead to
obstruction, segregation, and lack of uniformity in the distribution of them. We consider it
essential to expand the study of how to improve the workability of the use of FA without
excessively compromising the mechanical resistances. Since FA has a slower pozzolanic
reaction than SF and this could mean a decrease in resistances in the early ages of curing.
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5. Conclusions

The main conclusions of the presented investigation are as follows:

- Mortars with fast setting start were achieved, specifically in a time of 10 min.
- The loss of workability over time was pronounced due to the high reactivity of the

setting accelerator used.
- The percentage of setting accelerator had an influence on the flexural and compressive

strength, mainly at short curing ages, but no negative effects at longer curing ages.
- With the inclusion of metal fibers, flexural strength of more than 23 MPa and compres-

sive strength of around 76 MPa at 24 h of curing were obtained.
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Abstract: The scientometric analysis is statistical scrutiny of books, papers, and other publications to
assess the “output” of individuals/research teams, organizations, and nations, to identify national and
worldwide networks, and to map the creation of new (multi-disciplinary) scientific and technological
fields that would be beneficial for the new researchers in the particular field. A scientometric
review of 3D printing concrete is carried out in this study to explore the different literature aspects.
There are limitations in conventional and typical review studies regarding the capacity of such
studies to link various elements of the literature accurately and comprehensively. Some major
problematic phases in advanced level research are: co-occurrence, science mapping, and co-citation.
The sources with maximum articles, the highly creative researchers/authors known for citations
and publications, keywords co-occurrences, and actively involved domains in 3D printing concrete
research are explored during the analysis. VOS viewer application analyses bibliometric datasets
with 953 research publications were extracted from the Scopus database. The current study would
benefit academics for joint venture development and sharing new strategies and ideas due to the
graphical and statistical depiction of contributing regions/countries and researchers.

Keywords: 3D printing; concrete; scientometric analysis; cementitious composites

1. Introduction

Charles Hull, in 1986, initially introduced the 3D printing or additive manufactur-
ing (AM) technology in stereolithography (SLA). Afterwards, it gained the attention of
everyone, either from industry or an individual hobbyist [1]. The enhanced popularity
of 3D printing is primarily because of its potentially freeform design, minimizing waste
materials, mass customization, complex geometries manufacturing, and accelerating the
fabrication procedure [2]. In the current era, the application of 3D printing technology
in construction is becoming very prevalent [3,4]. Kim et al. [5] used the 3D printing tech-
nology to determine reinforced concrete beams’ shear strength having multiple interfaces
before initial setting. Three-dimensional printing technology can offer new prospects in the
construction sector, such as geometrical flexibility, labor cost reduction, safety and efficiency
improvement, and hard/harsh area/environment construction [6,7]. The primary distin-
guishing component of 3D printing technology is the flexibility in geometry that enables
the improved architectural appearance. Three-dimensional printing technology also offers
the independency of shape on cost, ultimately providing design freedom [3]. Further, the
additive/3D printing technology enables the creation of multi-functional components of a
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building and links the digital building and designing process [4,8]. The cost reduction, cou-
pled with human resources, is also an essential component of said technology. It is linked
with enhancement in safety and efficiency. Three-dimensional technology offers higher
cost-effectiveness and accuracy with respect to traditional technology [4,9]. The need for
formwork, a significant component in conventional construction, is also eliminated using
3D printing [4,10]. The enhancement in safety levels by reducing the injury rates can also
be achieved by eliminating the formwork stage [10,11]. Furthermore, it also helps to reduce
the on-site construction time [10]. The last and most important advantage of 3D printing
is sustainability. The construction waste, specifically generated from formwork, is also
significantly reduced by using this technology [3,10]. Initially, the lesser material would be
consumed for casting and molding, followed by the possible optimization of construction
provided by this technology and the reduction in materials consumed by this process itself.
A further benefit of this technology also includes the reduction in transportation costs. In
addition to that, this technology also comes up with reduced CO2 emissions by declining
the inadequacies throughout the process of building. Multiple studies are going on for
achieving sustainable development by using recycled/waste materials such as natural
fibers, supplementary cementitious materials, construction and demolition waste, marble
and ceramic waste powders, functionally graded materials etc., to conserve the natural
resources [12–22].

Hence, it can be concluded that the rising agreement of using the 3D printing technol-
ogy over conventional methods is due to multiple benefits such as highly accurate complex
geometry fabrication, design flexibility, personal customization, and maximum material
conservation. A wide variety of materials are applied in 3D printing such as, concrete,
polymers, metals, and ceramics. Acrylonitrile butadiene styrene (ABS) and polylactic acid
(PLA) are among the significant polymers that are utilized for composites 3D printing.
Advanced alloys and metals are usually used in aerospace to reduce the time and cost
consumption involved in conventional methods. Three-dimensional printing of scaffolds
mainly consumes ceramics, whereas concrete is the primary material for building additive
manufacturing. However, large-scale printing is still quite limited due to poorer anisotropic
behavior and mechanical characteristics of the 3D printed parts. Accordingly, there is a
need to have an optimized 3D priming pattern to restrict anisotropic behavior and error
sensitivity [23].

The finished products quality is also dependent on the printing environment [24]. The
multiple sizes, i.e., micro to macro scale, of parts fabrication can be performed by using
additive manufacturing (AM). Whereas the printed parts accuracy is mainly dependent
on the precision of the applied printing scale and method. For example, 3D printing at
the micro level offers challenges with the layer bonding, surface finish and resolution
that usually need sintering like post-processing treatments [25]. The limited 3D printing
materials provide challenges in employing 3D printing technology in different industrial
sectors. Therefore, appropriate materials are needed to be utilized in 3D printing. In
addition, the improvement techniques for 3D printed parts’ mechanical characteristics are
also to be developed [26].

The enhancement in additive manufacturing leads to the development of research
on 3D printing concrete. The obstacles in scholarly collaboration and creative investiga-
tion are created due to researchers’ information restraints. Accordingly, the creation and
application of a process for the researchers/scientists to obtain important information
from dependable sources are vital. Applying a scientometric method via the software may
support overcoming this loophole and research gap. The main aim of the current study
is to provide a detailed review of 3D printing methods with a focus on utilized materials,
primary techniques applied, their applications, and the current state in different industry
sectors. The research challenges and gaps in accepting 3D technology are also provided in
this paper. The scientometric analysis of research published in 3D printing concrete up to
2022 is intended in this study. The quantitative evaluation of the bulk research dataset may
be undertaken with the help of scientometric analysis using appropriate software [27,28].
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The traditional review natured studies are somehow weak in their respective capability
of connecting the various literature segments thoroughly and accurately. Co-occurrence,
science mapping, and co-citation are key factors of exploration in the current era [29–31].
Identifying sources with co-occurrence of keywords, most research articles, the main credi-
ble researchers in terms of citations and papers, and actively engaged research areas in 3D
printing concrete can also be performed with scientometric analysis. The bibliometric data
of 953 related research articles is extracted using the Scopus dataset, which is determined
afterwards using VOSviewer. The current study would assist academics in the engineering
field belonging to various geographical locations in exchanging ground-breaking novel
methods/ideas, creating joint ventures, and forming research alliances due to the graphical
and statistical depiction of countries and authors.

2. Methodology

In this study, the scientometric analysis is carried out for the research dataset to
evaluate the different aspects of bibliographic data [32–36]. Multiple studies have been
conducted and reported on this matter depicting the questionable application of a reputable
search engine. The two highly precise search engines, i.e., Web of Science and Scopus, are
specifically explored for said aim [37,38]. The research data to conduct the current study
on 3D printing concrete were collected using the academically highly recommended search
engine, i.e., Scopus [39,40]. As of May 2022, the Scopus search for “3D printing concrete”
found 1837 articles from 1998 to 2022. Multiple filters, depending upon preferences,
are applied to avoid unnecessary data. The “journal research article”, “journal review”,
“conference review”, and “conference paper” are opted as the document type. The “source
type” selected is “conference proceeding” and “Journal”. The chosen period restriction for
“publication year” is set to “2022”, and “English” is set as “language” constraint. For more
scrutiny, the “engineering”, “environmental science”, and “material science”, are selected
as “subject areas”. Following the employment of said desirables, a total of 953 records are
kept. Similarly, multiple studies have been conducted by using same method [41–45].

In academics, scientific mapping is developed to analyze bibliometric data, which is
usually employed to analyze scientometric inquiries [46–48]. Comma separated values
(CSV) files are used to save Scopus records for further determination with the help of a
suitable software tool. The quantitative evaluation of the recovered records’ literature and
scientific visualization are generated using VOSviewer (version: 1.6.17). In academics, the
VOSviewer is a majorly suggested and mainly used tool over a broader range of areas, and
this mapping tool (open-source) has easy availability [49–52]. Therefore, the application
of VOSviewer in the current study satisfies its goals. Loading of attained CSV files in
VOSviewer is performed, and further evaluation is conducted to retain the consistency and
integrity of data. At the same time, assessment of bibliographic data, countries’ participa-
tion, the publication sources, the researchers having more citations and publications, the
frequently appearing keywords, and the country’s involvement are assessed. The various
aspects and their co-occurrence and relationships are graphically represented, whereas
the figures’ statistics are listed in tables. Figure 1 presents the strategical flowchart for
scientometric analysis.

43



Materials 2022, 15, 4796
Materials 2022, 15, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Sequential research methodology. 

3. Analysis of Results 
3.1. Annual Publications and Related Subject Areas  

The analysis for discovering the most appropriate research areas is carried out by 
applying the Scopus analyzer. The three leading articles producing sections are engineer-
ing, materials science, and computer science, having almost 41%, 27%, and 8% articles, 
respectively, bearing the overall contribution of 76% depending on document count, as 
presented in Figure 2. Furthermore, Figure 3 shows the evaluation of paper type in the 
Scopus database for searched terms. According to the current study, conference review 
papers, journal review articles, and journal articles bear around 3%, 9%, 27%, and 61% of 
documents. The annual publication trend in the current research field from 1998 to 2022 
is shown in Figure 4, as the occurrence of the first respective article was revealed in 1998. 
A mild rise in publication trend for the said research area, i.e., 3D printing concrete, is 
observed, with an approximate average of three annual articles until 2014. Afterwards, a 
gradual rise in annual publications is observed, with an approximate average of twenty 
articles per annum from 2015 to 2019. However, a significant enhancement in annual pub-
lications has been observed during the last three years, (i.e., 2020–2021). Recently, a drastic 
increase in 3D printing concrete for building and concrete research has been observed, 
depicting the initiative for all-rounded and comprehensive research work in the said field 
[53]. Scientific research globalization might be the reason behind increasing trend devel-
opment in 3D printing concrete. 

Figure 1. Sequential research methodology.

3. Analysis of Results

3.1. Annual Publications and Related Subject Areas

The analysis for discovering the most appropriate research areas is carried out by
applying the Scopus analyzer. The three leading articles producing sections are engineer-
ing, materials science, and computer science, having almost 41%, 27%, and 8% articles,
respectively, bearing the overall contribution of 76% depending on document count, as
presented in Figure 2. Furthermore, Figure 3 shows the evaluation of paper type in the
Scopus database for searched terms. According to the current study, conference review
papers, journal review articles, and journal articles bear around 3%, 9%, 27%, and 61% of
documents. The annual publication trend in the current research field from 1998 to 2022
is shown in Figure 4, as the occurrence of the first respective article was revealed in 1998.
A mild rise in publication trend for the said research area, i.e., 3D printing concrete, is
observed, with an approximate average of three annual articles until 2014. Afterwards, a
gradual rise in annual publications is observed, with an approximate average of twenty
articles per annum from 2015 to 2019. However, a significant enhancement in annual
publications has been observed during the last three years, (i.e., 2020–2021). Recently, a
drastic increase in 3D printing concrete for building and concrete research has been ob-
served, depicting the initiative for all-rounded and comprehensive research work in the
said field [53]. Scientific research globalization might be the reason behind increasing trend
development in 3D printing concrete.
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3.2. Publication Sources

The VOSviewer was utilized on the gathered bibliographic database to evaluate the
published sources. While performing analysis, the sources are taken as “unit of analysis”,
whereas the “bibliographic coupling” is opted as a “kind of analysis”. The minimum
quantum of articles per source is set to ten. The sources of publication that met the
said requirement are 14 out of 265. The publication sources are listed in Table 1, with
at least ten published articles presenting data on 3D printing concrete until 2022 and the
citation’s quantum acquired in the said period. The three main journals/sources, depending
upon the paper count, are i. “Construction and Building Materials” having 60 papers, ii.
“Additive Manufacturing” has 39 documents, and iii. “Automation in Construction” with
35 articles. Furthermore, the primary three sources having overall maximum citations are
“Automation in Construction”, “Additive Manufacturing”, and “Buildings”, born 1580,
871, and 798 citations, respectively. Automation in construction also covers the aspect
of multiple software applications such as building information modelling (BIM) for 3D
printing concrete [54]. The coupling of 3D printing concrete with BIM to monitor and track
novel variables was also performed by Azhar [55] and Bryde, et al. [56]. Combining 3D
printing and BIM may make the creation of customized building components easier and
facilitate sophisticated and complex design [53]. Davtalab, Kazemian and Khoshnevis [54]
also declared that robotic construction is a construction industry revolution by using 3D
printing concrete. This significant research exploration in the area of 3D printing concrete
is come out to be the reason for intended scientometric analysis in the said research area.
Further, conventional review studies are not enough to develop scientific visualization
maps. The mapping journals with a minimum of ten articles in understudied research
areas is presented in Figure 5. The quantum of research in 3D printing concrete in the
form of articles is directly proportional to the size of the box showing the impact of the
journal. The bigger the dimension of the box, the effect is more superior. For example,
the biggest box in terms of sizes is for “Construction and Building Materials” showing
the significant importance of this source in the considered field. Based on the type, five
groups are developed, and all of them are offered in different colors, i.e., purple, red,
green, blue, and yellow. The formation of groups is based on the similar article co-citations
frequency [57]. The patterns of published articles’ co-citation are the basis of group creation
in VOSviewer. For example, the red group comprises three sources having frequent co-
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citations in similar works. In addition, the space among frames/journals in a group shows
significant relationships compared to the other far-spaced frames. For example, “Additive
Manufacturing” is more firmly correlated with “Rapid Prototyping Journal” than with
“Materials Today: Proceedings”.

Table 1. Sources of publication having minimum 10 publications in the considered research area
till 2022.

S/N Publication Source Number of Publications Total Number of Citations

1 Automation in Construction 35 1580
2 Additive Manufacturing 39 871
3 Buildings 13 798
4 Lecture Notes in Civil Engineering 22 727
5 Materials and Design 12 716
6 Advanced Functional Materials 12 381
7 Construction and Building Materials 60 309
8 Cement and Concrete Research 20 307
9 Cement and Concrete Composites 18 165

10 Journal of Building Engineering 12 131
11 Rapid Prototyping Journal 22 115
12 Polymers 10 74
13 3D Printing and Additive Manufacturing 11 71
14 Materials 45 56
15 Applied Sciences (Switzerland) 12 56
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3.3. Keywords

The fundamental subject of a study domain is highlighted and defined with the help
of keywords in the research [58]. For the evaluation, the “analysis type” is selected as
“co-occurrence”, whereas the “analysis unit” is opted to “all keywords”. The minimum
repetition restriction is set at 20 for a keyword. Accordingly, 96 keywords out of 4185
are taken. The leading and most frequently used 20 keywords in published papers on
relevant research areas are provided in Table 2. The terms 3D printers, concretes, 3-D
printing, 3D printing, and concrete printings are among the most frequent five keywords
in the considered area of research. As per the analysis of keywords, 3D printing concrete
has been mainly studied for concrete mixtures, its rheology, and mechanical properties.
Furthermore, it has also been explored for multiple types of building systems. Duballet
et al. [59] classified the 3D printing concrete building systems based on five parameters:
extrusion scale, object scale, printing environment, assembly parameter, and printing
support. This classification was mainly featured for reinstating techniques apart from a
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single extrusion phase for concrete 3D printing at a larger scale. The keywords visualization
map in terms of linkages, co-occurrences, and the occurrence frequency-related density
is shown in Figure 6. The frequency of keywords is depicted by the size of the circle
for the respective keyword, while the co-occurrence in papers is shown by its position
(Figure 6a). It is evident from the graph that the comparatively bigger circles are for
leading keywords depicting their significance for research on 3D printing. The formation
of groups is also made for keywords to reflect the keywords’ co-occurrence over several
research publications. The multiple keywords’ co-occurrence in published articles is the
basis of color-coded grouping. Four different colors, i.e., green, red, yellow and blue,
indicate the group’s existence (Figure 6a). The concentrations for density of keywords are
indicated by different colors (Figure 6b). The colors are aligned with respect to respective
density concentrations. The red color shows the highest, whereas the blue color shows the
lowest density concentration. Three-dimensional printers and concretes show red symbols
depicting significant density concentration. This finding may aid ambitious researchers in
selecting keywords that would enable the published data identification in a specific area.

Table 2. Fifty leading frequently used keywords in 3D printing concrete research.

S/N Keyword Occurrences

1 3DPrinters 558
2 Concretes 272
3 3-D Printing 209
4 3D Printing 188
5 Concrete Printings 184
6 3D Concrete Printing 154
7 Additive Manufacturing 139
8 Compressive Strength 104
9 Construction Industry 89
10 Additives 85
11 Rheology 81
12 Concrete 75
13 3D-Printing 70
14 Concrete Mixtures 70
15 Extrusion 66
16 Yield Stress 66
17 Reinforcement 61
18 Cementitious Materials 60
19 Cements 58
20 Reinforced Concrete 57
21 Mechanical Properties 55
22 Printing 51
23 Mixtures 50
24 Mortar 50
25 Tensile Strength 50
26 Concrete Products 48
27 Concrete Industry 47
28 Construction 45
29 Concrete Construction 39
30 Fly Ash 37
31 Rheological Property 37
32 Portland Cement 36
33 Geopolymers 35
34 Inorganic Polymers 35
35 Digital Fabrication 34
36 Structural Design 34
37 Buildability 32
38 Digital Construction 30
39 Sustainable Development 30
40 Mechanical Performance 28
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Table 2. Cont.

S/N Keyword Occurrences

41 Geopolymer 27
42 Hardening 27
43 Shrinkage 26
44 Fabrication 25
45 Cement Based Material 24
46 Concrete Buildings 24
47 Fibers 24
48 Anisotropy 23
49 Binders 23
50 Concrete Additives 22

3.4. Authors

A researcher’s influence in a specific study area is depicted from the citations [60].
Accordingly, the “co-authorship” is selected as a “kind of analysis”, whereas; “authors” is
chosen as the “unit of analysis” for the authors’ assessment. The efficacy of a researcher
is hard to determine while considering all parameters, such as total citations, the number
of publications, and average citations. Contrary to this, a researcher’s evaluation is per-
formed by considering each factor independently, i.e., total citations, total publications, and
average citations. The leading researcher is Tan, M.J., having 34 publications, followed by
29 publications each by Panda, B. and Mechtcherine, V. Afterward, Sanjayan, J. and Ma,
G. are prominent, with 28 publications each. However, in terms of total citations, Tan, M.J
leads the field with 2453 citations, followed by Panda, B. having 2362 citations in the 3D
printing concrete research area. In addition, upon comparing the citations average, Paul,
S.C. stands out with an average of 113, followed by Panda, B. having an average of 81 and
Tan, M.J with a 72 average. The correlation between most eminent researchers and authors
with a minimum of 10 publications is illustrated in Figure 7. The noticed largest network of
interconnected researchers is seven. It is revealed from this analysis that a few researchers
are inter-connected in terms of citations in the 3D printing concrete research area.
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the “bibliographic coupling” is set for “kind of analysis”, and “documents” is designated
as “unit of analysis”. The set limitation of most minor citations for an article is 50. In the
3D printing concrete research area, the top 10 articles, as per citations, are presented in
Table 3 with respective citations and authors’ detailing. Ngo, Kashani, Imbalzano, Nguyen
and Hui [26] have 2520 citations for the research article titled; “Additive manufacturing
(3D printing): A review of materials, methods, applications and challenges”. For their
relevant publications, Stansbury and Idacavage [61] and Buswell et al. [62] have 793 and
466 citations, respectively, and are placed in the first three positions. Furthermore, the
linked articles mapping, based on citations and their density in the considered area, is
shown in Figure 8. The inter-connected articles citation mapping is presented in Figure 8a,
whereas, in Figure 8b, the enhancement of density concentration by top articles is revealed
from the density mapping.

Table 3. Top 10 highly cited published articles up to 2021 in the research of RHA concrete.

S/N Article Title
Total Number of

Citations Received

1
Ngo, Kashani, Imbalzano,

Nguyen and Hui [26]

Additive manufacturing (3D printing): A review
of materials, methods, applications and

challenges
2520

2 Stansbury and Idacavage [61]
3D printing with polymers: Challenges among

expanding options and opportunities
793

3
Buswell, De Silva, Jones and

Dirrenberger [62]
3D printing using concrete extrusion: A

roadmap for research
466

4 Bos, et al. [63]
Additive manufacturing of concrete in

construction: potentials and challenges of 3D
concrete printing

453

5 Gosselin, et al. [64]
Large-scale 3D printing of ultra-high

performance concrete—a new processing route
for architects and builders

424

6 Perrot, et al. [65]
Structural built-up of cement-based materials

used for 3D-printing extrusion techniques
384

7
Tay, Panda, Paul, Noor

Mohamed, Tan and Leong [53]
3D printing trends in building and construction

industry: a review
310

8 De Schutter, et al. [66]
Vision of 3D printing with concrete—Technical,

economic and environmental potentials
305

9 Kazemian, et al. [67]
Cementitious materials for construction-scale 3D

printing: Laboratory testing of fresh printing
mixture

285

10 Wolfs, et al. [68]
Early age mechanical behaviour of 3D printed

concrete: Numerical modelling and
experimental testing

284
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3.6. Countries

The contribution of multiple countries is comparatively more towards 3D printing
concrete research than others, and different expectations are there for enhancement in
contribution. A network map is developed to help researchers access the areas related to 3D
printing concrete research. Again, “Bibliographic coupling” is taken as a “kind of analysis”,
whereas, “countries” are opted for as a “unit of analysis”. The limitation of the minor article
for a nation is set at 10, and the countries met the desired limitation are 38 (Table 4). China,

52



Materials 2022, 15, 4796

the United States, and Germany have the most articles with 377, 348, and 148 documents.
Furthermore, the top three countries with the most considered research area citations of
10,514, 6179, and 3435 are the United States, China and Australia. The science mapping
visualization and nation density inter-connected with citations is illustrated in Figure 9.
The box size is directly proportional to a country’s effect on the considered area of research
(Figure 9a). The most engaging countries have more density, as illustrated in the map of
density visualization (Figure 9b). It may be noted that the publication trend in developed
countries such as the USA, China, Australia, Germany and UK is significantly more than
that in developing countries such as India, Pakistan, etc. [69]. As in developed countries,
there are diverse applications of 3D printing; however, in recent years, this technology is
also gaining attention in countries. There is a huge potential for 3D printing in developing
countries [70,71]. The graphical and statistical analysis of the contributing countries may
help concerned scientists form joint ventures, develop scientific alliances, and exchange
novel ideas and methods. Scientists from different countries contributing for enhancing
research on 3D printing concrete may collaborate with specialists in the said research area
and yield from their expertise.

Table 4. Leading countries in published articles 3D printing concrete research area until 2022.

S/N Country
Number of

Publications
Total Number of

Citations

1 China 377 6179
2 United States 348 10,514
3 Germany 148 2813
4 United Kingdom 114 2540
5 Australia 113 3435
6 Singapore 72 2725
7 India 70 433
8 Russian Federation 69 132
9 South Korea 67 1268
10 France 58 1807
11 Italy 57 1022
12 Netherlands 56 1958
13 Poland 56 466
14 Spain 41 362
15 Canada 37 978
16 Belgium 30 698
17 Brazil 28 338
18 Japan 28 502
19 Switzerland 28 1557
20 Hong Kong 26 220
21 Czech Republic 25 113
22 Portugal 23 251
23 South Africa 21 382
24 Norway 20 540
25 United Arab Emirates 20 279
26 Romania 18 48
27 Taiwan 17 111
28 Greece 16 400
29 Iran 16 228
30 Turkey 15 50
31 Austria 14 70
32 Malaysia 13 110
33 Denmark 12 518
34 Sweden 12 60
35 Finland 11 56
36 Chile 10 35
37 Lebanon 10 119
38 Saudi Arabia 10 229
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Figure 9. Scientific visualization regions having minimum ten publications in relevant research area
until 2022 (a) network visualization and (b) density visualization.
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4. Discussions and Future Perspectives

The mapping and statistical overview of different aspects of the 3D printing concrete
literature are presented in the current study. The conventional and manually conducted
review studies have limited capability in terms of comprehensiveness and precise inter-
connectivity among the various literature segments. The identification of most articles
publishing journals, the frequently applied/used keywords in articles, countries having
significant contributions, and authors and articles with most citations in the research field
of 3D printing concrete is made in the current study. It is revealed from the keyword
analysis that 3D printing concrete has been mainly explored in terms of its mechanical and
rheological properties [72–76]. Furthermore, 3D printing is also researched for manufactur-
ing geopolymer concrete [76–78]. Three-dimensional printing has various benefits upon
utilization as concrete. The new prospects that can be utilized by 3D printing construction
such as labor cost reduction, geometrical flexibility, efficiency improvement, safety and
hard area construction [6,7]. In addition, physical construction consumes a bulk quantity
of energy that comes out with higher CO2 emissions [79]. As a result, there are rising con-
cerns regarding natural resource depletion. Thus, 3D printing concrete reduces the cement
requirement, resulting in sustainable construction with reduced CO2 emissions [80–82].
The application of 3D printing concrete may also have resolved difficulties in waste man-
agement, specifically in the formwork [3,10]. The above-mentioned 3D printing concrete
applications are yet in the phase of development. Detailed analyses are still required before
their application broadens. Presently, the available research on 3D printing concrete is
mainly based on their insight for extracting the optimal dosage of mix ingredients for
desirable properties. Additionally, due to inferior properties and anisotropic behavior, the
applicability of 3D printing at a larger scale is restricted. Therefore, it can be said that the
information in said field is developing yet and needs to pass specific transition stages to
accomplish optimum commercial applications and replace conventional manufacturing
techniques. Therefore, the following research horizons in the field of 3D printing concrete
may further be explored:

• Three-dimensional printed components’ structural integrity, especially in regions
vulnerable to natural disasters, seismic activity, military attacks and extreme climatic
conditions, needs to be ensured by performing structural testing and developing
specified standards and codes.

• Due to the provision of controlled environmental conditions for performing the experi-
ment on 3D printed components, its behavior may not depict the true performance. As
in real site conditions, the components are exposed to variable climatic factors such as
humidity, temperature and precipitation, debris and dust, and varied lighting, etc. [83].
Therefore, the performance of 3D printing concrete components may be evaluated
under real environmental conditions to ensure the global efficiency of this method.

• The effective implementation of the 3D printing approach is dependent on reliable,
strong and printer-compatible materials [84,85]. Hence, the in situ materials that are
available locally should be used for printing to have compatible and effective printing.

• Further research should also be conducted for large-scale building construction and
experimentation to ensure the real capacity of 3D printing technology and to depict
the application of this technology in the industry.

• Furthermore, nowadays, calcium carbonate (CaCO3) whisker is used as micro-fiber in
cementitious composites to improve the micromechanical properties of concrete [86–94].
Hence, the exploration of CaCO3 whisker for 3D printing concrete would be an
interesting horizon to explore.

• Three-dimensional printing is still a new technology; therefore, the information on its
life cycle cost, including the maintenance and upfront costs, is limited yet. Further,
there may be variations in the costs of design, planning, machinery, labor, and materials
from country to country [95]. Therefore, a thorough life cycle cost analysis should be
conducted for 3D printing technology to have detailed insight into its cost–benefit
ratio with respect to conventional construction [96].
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• Furthermore, the information regarding the life cycle assessment (LCA) of 3D printing
concrete is also limited and demands thorough exploration in terms of its sustainability
impact, preparation of material, construction, utilization, and ultimately the structures’
demolition. This information is necessary to explore to have a clear picture of 3D
printing concrete environmental impacts [97,98].

5. Conclusions

The abundance of scientific information produced in recent years, along with new
communication channels, prompted the research community to propose the metric that
gave origin to the new field of bibliometrics. This utilizes mathematical and statistical
analysis techniques that permit getting dependable quality indicators. Thus, it is feasible to
determine the number of documents published by an institution, nation, research group, or
individual with the highest scientific output. A bibliometric study is an appropriate tool for
identifying the volume and growth trend of literature focusing on concrete for the further
3D printing-related investigation that would be helpful for early-stage researchers.

The main aim of the current study is to perform a scientometric analysis of the literature
available on 3D printing concrete to assess different measures. The Scopus database is en-
quired for 953 related articles, and the outcomes are evaluated by applying the VOSviewer
program. It is revealed from the conducted analysis that the top three journals are “Con-
struction and Building Materials”, “Additive Manufacturing”, and “Automation in Con-
struction”, having 60, 39, and 35 articles, respectively. Further, the top three journals having
the most citations of 1580, 871, and 798 are “Automation in Construction”, “Additive
Manufacturing”, and “Buildings”, respectively. The analysis of keywords regarding the
considered research area depicts that 3D printers, concretes, 3D printing, 3-D printing and
concrete printing are the five most frequently appearing keywords. The keyword analysis
revealed that 3D printing is mainly explored as concrete in the construction industry.

The top researchers are also classified based on the number of citations, publications,
and average citations. Tan, M.J, with 34, Panda B., and Mechtcherine, V., with 29 each, and
Sanjayan, J., and Ma, G., with 28 articles each, are among the leading three researchers
with the most publications. With 2453 citations, Tan, M.J. leads the field, followed by 2362
citations of Panda, B. and 1441 citations o Bos, F.P. untill 2022. Furthermore, comparing
average citations, the stand-out authors are Paul, S.C., who has almost 113, Tay, Y.W.D.,
who has around 95, and Panda, B., who has 85 average citations. In the analysis of articles
related to 3D printing concrete, Ngo, Kashani, Imbalzano, Nguyen and Hui [26] have 2520
citations for the article “Additive manufacturing (3D printing): A review of materials,
methods, applications and challenges”. Stansbury and Idacavage [61] and Buswell, De
Silva, Jones and Dirrenberger [62] have 793 and 466 citations for the respective publications
and are among the best three.

The leading countries are also determined by their contribution to the 3D printing
concrete research area. China, the United States, and Germany have contributed 377,
348, and 148 articles. Further, the countries, i.e., the United States, China, and Australia,
have received citations of 10,514, 6179, and 3435, respectively. The 3D printing concrete
application in the construction industry would develop sustainable construction by having
reduced demand for cement, waste, and formwork requirements, ultimately saving natural
sources and declining CO2 emissions. The applicability of 3D printing concrete at a larger
scale is still quite limited, and most of its applications are under exploration. Further
analysis is also vital for broadening the effective applications of 3D printing concrete.
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45. Pal, K.; Sarkar, P.; Anis, A.; Wiszumirska, K.; Jarzębski, M. Polysaccharide-Based Nanocomposites for Food Packaging Applica-
tions. Materials 2021, 14, 5549. [CrossRef] [PubMed]

46. Markoulli, M.P.; Lee, C.I.; Byington, E.; Felps, W.A. Mapping Human Resource Management: Reviewing the field and charting
future directions. Hum. Resour. Manag. Rev. 2017, 27, 367–396. [CrossRef]

47. Amin, M.N.; Ahmad, W.; Khan, K.; Ahmad, A. A Comprehensive Review of Types, Properties, Treatment Methods and
Application of Plant Fibers in Construction and Building Materials. Materials 2022, 15, 4362. [CrossRef] [PubMed]

48. Maier, D. Building Materials Made of Wood Waste a Solution to Achieve the Sustainable Development Goals. Materials 2021, 14,
7638. [CrossRef]

58



Materials 2022, 15, 4796

49. Jin, R.; Gao, S.; Cheshmehzangi, A.; Aboagye-Nimo, E. A holistic review of off-site construction literature published between
2008 and 2018. J. Clean. Prod. 2018, 202, 1202–1219. [CrossRef]

50. Park, J.Y.; Nagy, Z. Comprehensive analysis of the relationship between thermal comfort and building control research—A
data-driven literature review. Renew. Sustain. Energy Rev. 2017, 82, 2664–2679. [CrossRef]

51. Oraee, M.; Hosseini, M.R.; Papadonikolaki, E.; Palliyaguru, R.; Arashpour, M. Collaboration in BIM-based construction networks:
A bibliometric-qualitative literature review. Int. J. Proj. Manag. 2017, 35, 1288–1301. [CrossRef]

52. Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84,
523–538. [CrossRef]

53. Tay, Y.W.D.; Panda, B.; Paul, S.C.; Mohamed, N.A.N.; Tan, M.J.; Leong, K.F. 3D printing trends in building and construction
industry: A review. Virtual Phys. Prototyp. 2017, 12, 261–276. [CrossRef]

54. Davtalab, O.; Kazemian, A.; Khoshnevis, B. Perspectives on a BIM-integrated software platform for robotic construction through
Contour Crafting. Autom. Constr. 2018, 89, 13–23. [CrossRef]

55. Azhar, S. Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadersh. Manag.

Eng. 2011, 11. [CrossRef]
56. Bryde, D.; Broquetas, M.; Volm, J.M. The project benefits of Building Information Modelling (BIM). Int. J. Proj. Manag. 2013, 31,

971–980. [CrossRef]
57. Wuni, I.Y.; Shen, G.Q.; Osei-Kyei, R. Scientometric review of global research trends on green buildings in construction journals

from 1992 to 2018. Energy Build. 2019, 190, 69–85. [CrossRef]
58. Su, H.-N.; Lee, P.-C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology

Foresight. Scientometrics 2010, 85, 65–79. [CrossRef]
59. Duballet, R.; Baverel, O.; Dirrenberger, J. Classification of building systems for concrete 3D printing. Autom. Constr. 2017, 83,

247–258. [CrossRef]
60. Yu, F.; Hayes, B.E. Applying data analytics and visualization to assessing the research impact of the Cancer Cell Biology (CCB)

Program at the University of North Carolina at Chapel Hill. J. E Sci. Librariansh. 2018, 7, 4. [CrossRef]
61. Stansbury, J.W.; Idacavage, M.J. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities. Dent.

Mater. 2016, 32, 54–64. [CrossRef]
62. Buswell, R.A.; De Silva, W.R.L.; Jones, S.Z.; Dirrenberger, J. 3D printing using concrete extrusion: A roadmap for research. Cem.

Concr. Res. 2018, 112, 37–49. [CrossRef]
63. Bos, F.; Wolfs, R.; Ahmed, Z.; Salet, T. Additive manufacturing of concrete in construction: Potentials and challenges of 3D

concrete printing. Virtual Phys. Prototyp. 2016, 11, 209–225. [CrossRef]
64. Gosselin, C.; Duballet, R.; Roux, P.; Gaudillière, N.; Dirrenberger, J.; Morel, P. Large-scale 3D printing of ultra-high performance

concrete—A new processing route for architects and builders. Mater. Des. 2016, 100, 102–109. [CrossRef]
65. Perrot, A.; Rangeard, D.; Pierre, A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques.

Mater. Struct. 2015, 49, 1213–1220. [CrossRef]
66. De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V.N.; Habert, G.; Agusti-Juan, I. Vision of 3D printing with concrete—

Technical, economic and environmental potentials. Cem. Concr. Res. 2018, 112, 25–36. [CrossRef]
67. Kazemian, A.; Yuan, X.; Cochran, E.; Khoshnevis, B. Cementitious materials for construction-scale 3D printing: Laboratory testing

of fresh printing mixture. Constr. Build. Mater. 2017, 145, 639–647. [CrossRef]
68. Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and

experimental testing. Cem. Concr. Res. 2018, 106, 103–116. [CrossRef]
69. Schuldt, S.J.; Jagoda, J.A.; Hoisington, A.J.; Delorit, J.D. A systematic review and analysis of the viability of 3D-printed construction

in remote environments. Autom. Constr. 2021, 125, 103642. [CrossRef]
70. Geneidy, O.; Ismaeel, W.S.; Abbas, A. A critical review for applying three-dimensional concrete wall printing technology in Egypt.

Arch. Sci. Rev. 2019, 62, 438–452. [CrossRef]
71. Ahmed, A.; Azam, A.; Bhutta, M.M.A.; Khan, F.A.; Aslam, R.; Tahir, Z. Discovering the technology evolution pathways for 3D

printing (3DP) using bibliometric investigation and emerging applications of 3DP during COVID-19. Clean. Environ. Syst. 2021, 3,
100042. [CrossRef]

72. Zahabizadeh, B.; Pereira, J.; Gonçalves, C.; Pereira, E.N.B.; Cunha, V.M.C.F. Influence of the printing direction and age on the
mechanical properties of 3D printed concrete. Mater. Struct. 2021, 54, 73. [CrossRef]

73. Alchaar, A.S.; Al-Tamimi, A.K. Mechanical properties of 3D printed concrete in hot temperatures. Constr. Build. Mater. 2020, 266,
120991. [CrossRef]

74. Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and hardened properties of 3D printable cementitious materials for building
and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [CrossRef]

75. Bohuchval, M.; Sonebi, M.; Amziane, S.; Perrot, A. Rheological properties of 3D printing concrete containing sisal fibres. Acad. J.

Civ. Eng. 2019, 37, 249–255.
76. Li, L.; Wei, Y.-J.; Li, Z.; Farooqi, M.U. Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer.

J. Clean. Prod. 2022, 354, 131629. [CrossRef]
77. Ziejewska, C.; Marczyk, J.; Korniejenko, K.; Bednarz, S.; Sroczyk, P.; Łach, M.; Mikuła, J.; Figiela, B.; Szechyńska-Hebda, M.;
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Abstract: Researchers and engineers are presently focusing on efficient waste material utilization in
the construction sector to reduce waste. Waste marble dust has been added to concrete to minimize
pollution and landfills problems. Therefore, marble dust was utilized in concrete, and its prediction
was made via an artificial intelligence approach to give an easier way to scholars for sustainable
construction. Various blends of concrete having 40 mixes were made as partial substitutes for
waste marble dust. The ultrasonic pulse velocity of waste marble dust concrete (WMDC) was
compared to a control mix without marble dust. Additionally, this research used standalone (multiple-
layer perceptron neural network) and supervised machine learning methods (Bagging, AdaBoost,
and Random Forest) to predict the ultrasonic pulse velocity of waste marble dust concrete. The
models’ performances were assessed using R2, RMSE, and MAE. Then, the models’ performances
were validated using k-fold cross-validation. Furthermore, the effect of raw ingredients and their
interactions using SHAP analysis was evaluated. The Random Forest model, with an R2 of 0.98,
outperforms the MLPNN, Bagging, and AdaBoost models. Compared to all the other models
(individual and ensemble), the Random Forest model with greater R2 and lower error (RMSE, MAE)
has a superior performance. SHAP analysis revealed that marble dust content has a positive and direct
influence on and relationship to the ultrasonic pulse velocity of concrete. Using machine learning to
forecast concrete properties saves time, resources, and effort for scholars in the engineering sector.

Keywords: waste; marble dust; building materials; mortar; concrete

1. Introduction

Keeping in mind sustainable development, the need is to curtail excessive industrial
processes, along with the enhancement of cost efficiency in parallel with a reduction in en-
vironmental pollution [1]. Industrial waste, when incorporated in concrete, can contribute
towards sustainable development in terms of environmentally friendly and economical
construction materials [2,3]. The partial replacement of cement and other constituents
of concrete has already been made extensively by industrial byproducts in various stud-
ies [4–8]. Several types of waste materials have been studied for their potential use in
building materials, such as marble [9–12], super-absorbent polymer [13,14], glass [15–17],
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slag [18], bagasse ash [19], rubber [20,21], plastic [22], ceramic [23,24], natural fiber [25–28],
and recycled aggregate [29–32]. Among these, marble dust, which is produced during
cutting processes in mines, has also been used in the production of concrete. The use of
marble dust, either as a natural aggregate [33–35] or as a replacement for Portland cement
(PC) [36–38], has been studied in various research. The major focus of existing studies has
been replacing cement with alternative sustainable materials to reduce emissions caused
by PC. Marble waste has been used as a cement replacement in concrete by various re-
searchers [33,35,39–42]. However, Li, et al. [43] reported the reduced emissions with 10%
marble dust replacement in concrete. Li, et al. [44] and Li, et al. [43] also proposed a paste
replacement method for reducing significant (i.e., 33%) cement content and enhancing the
utilization of marble dust waste with enhanced durability and strength. Marvila, et al. [10]
conducted research on cement and lime mortars using marble waste as a complemen-
tary binder. The authors observed that the results were satisfactory, with an increase in
mechanical strength with the use of marble waste. However, as a result of technology
advancements, laboratory testing is increasingly inadequate and uneconomical due to the
time and expense involved.

The mechanical characteristics of concrete can now be predicted using machine learn-
ing (ML) methods, owing to advances in artificial intelligence (AI) [45]. Classification,
clustering, and regression are examples of machine learning approaches that can be used
to estimate a variety of parameters with varying degrees of effectiveness and predict the
precise ultrasonic pulse velocity of concrete. As a result of recently evolved artificial intelli-
gence, the mechanical properties of different material types can be forecasted with the help
of supervised machine learning (ML) algorithms [46]. ML approaches, e.g., classification,
regression, and clustering, are deployed for statistical processes and for the prediction
of compressive strength with high accuracy [47]. The accuracy of the prediction can be
enhanced by the integration of standalone models, which yields an ensemble machine
learning (EML) model, as depicted by other fields of study [48,49]. The employment of
ensemble learning for the prediction of concrete parameters has been studied with a limited
scope. Random Forest and adaptive boosting (AdaBoost) are EML techniques that can
enhance prediction accuracy through the combination of voting and various regression tree
forecasting on the ultimate result [50]. Song, et al. [51] determined the compressive strength
of ceramic-waste-modified concrete both experimentally and with standalone techniques.
The marginal variation in the experimental results and the prediction model outcomes
were reported. Accordingly, the current study aims at investigating the usage of advanced
techniques for forecasting concrete properties. Ahmad, et al. [50] performed both EML and
standalone techniques for the prediction of concrete’s compressive strength and accuracy
comparison. It was reported that the outcome predicted by the EML techniques had more
accuracy than that of the standalone technique. However, the range of the standalone
technique results was also acceptable.

Taking into account the above-mentioned issues, NDT techniques are becoming an
emerging alternative solution nowadays. Rebound hammer and ultrasonic pulse velocity
(UPV) are the most commonly employed techniques [52,53], both in situ and in the labora-
tory, as per European standards [54,55]. The quality and homogeneity of different materials
such as rocks, wood, and concrete can be evaluated using a nondestructive test named
ultrasonic pulse velocity (UPV). In the said test, computation of the velocity using an
ultrasonic wave pulse that travels through the considered concrete structure is considered
to determine the quality and strength of concrete. The time required for the said pulse to
dissipate through the test specimen is measured. The ratio of the test specimen’s width to
the time consumed by the wave pulse for dissipation is called pulse velocity. The ultrasonic
wave speed relies on Young’s modulus and the density of the testing element. Great care
must be given while performing the test, although it is easy to conduct a UPV test. The
applicability of a UPV test is in the field, as well as in the laboratory. Both deterioration
analysis and quality control can be conducted using UPV. However, higher accuracy can
be achieved by considering both values to predict the strength of concrete. Even so, it has
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been revealed from experimental outcomes that the developed individual machine learning
models can achieve predictions with more accuracy. However, ensemble machine learning
models are gaining popularity these days; therefore, a performance comparison between
these models is necessary. In addition, in the designing phase of projects, it may be an
effective alternative for assisting civil engineers.

Only data regarding concrete composite mix proportions are usually accounted for in
various studies as input variables, instead of performing other additional measurements.
However, knowledge about the combined application of prediction models with NDT
techniques is still missing, pointing towards a research gap. Accordingly, the main aim
of the current study is to explore a reliable yet simple method for predictions of UPV for
waste marble concrete composites. Waste marble dust in concrete is explored in terms of
ultrasonic pulse velocity prediction through the application of artificial intelligence, as
presented in the current study. Nondestructive testing data are used for this prediction,
and its performance with existing artificial intelligence models, considering the effect of
raw ingredients and their interactions using SHAP analysis, is claimed to be the novelty
of the current research. To tackle challenges such as the excessive consumption of time
and money, novel machine learning algorithms are presented for anticipating the behavior
of waste concrete in terms of NDT. The focus of this research is to examine the UPV of
marble waste concrete and its estimation using an artificial intelligence approach. The
current work is unique in that it conducts experiments on waste marble concrete and uses
computational models for the prediction of UPV. This study is important for understanding
the significance of input parameters and their correctness in ML algorithm results. The
findings of the experimental work are also compared to the results of individual ML and
ensemble techniques in this study. Each model’s performance is additionally assessed
using k-fold cross-validation and statistical tests. Furthermore, a technique [56] is also
employed for the attainment of the implemented ML models’ enhanced explanation with
the help of global feature influence classification and the respective feature dependencies
and interactions. This technique discovers a novel area of knowledge in the form of
marble dust concrete ingredients’ influences on UPV, which is beneficial to researchers for
classifying suitable design mixes for marble dust concrete and for rapidly forecasting the
UPV of marble dust concrete without performing trial and error experimentation. The
above-mentioned knowledge area is also helpful for conducting studies in the future for the
strategic establishment of marble dust concrete with advanced functional and mechanical
features depending upon numerous limitations, such as time, cost, materials, and UPV
requirements, for various projects in the construction industry.

2. Materials and Methods

The raw materials included cement and marble dust, as well as fine and coarse
aggregates. For Type I OPC, the Blaine fineness value was 2196 m2/kg, and the relative
density was 2.43 g/cm3. The marble powder had a large specific surface area, which
suggests that adding it to concrete would improve its cohesiveness. An XRF technique
was performed in order to check the chemical composition. The physical properties were
determined using ASTM standards, i.e., ASTM C136, ASTM C29, ASTM C566, and ASTM
C128/C127. Table 1 lists the chemical content of the used marble dust, and Figure 1 shows
the physical appearance of the marble dust. Silicon dioxide in an amount of 73% was found
in the sand sample using an XRF technique. Locally accessible coarse aggregates up to
25.4 mm in nominal size were employed. The Type I cement’s surface area was 385 m2/kg.
The specific gravities of the sand and aggregate were 2670 and 2650 kg/m3, respectively.
Detailed information about the properties of the raw materials is available in a previous
study [51]. Figure 2 depicts the frequency distribution of each component used in the mixes.
It is related to distribution probability, which represents the number of observations linked
with a set of values or a single value. Table 2 also shows the physical parameters of the fine
and coarse aggregates. This research compares two mix designs, i.e., 20 different mixes for
controlled concrete and 20 different mixes for marble-replaced concrete. A marble content
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of 10% has been suggested in the literature for optimized properties. Therefore, 10% marble
waste was used in all the mixes for prediction using the artificial intelligence approach. The
study was designed to estimate the UPV using machine learning techniques, and this was
the main reason for selecting different types of mixes. Three cube specimens of 150 mm3

were prepared for each mix. After demolding, the specimens were water-cured for 28 days.
The ASTM C192/C192M was followed for the making and curing of the test specimens of
the concrete. Then, ASTM C597 was followed to determine the ultrasonic pulse velocity of
the concrete, as shown in Figure 3.

The test results showed that an increase in UPV was observed with the addition of
marble dust in the concrete. The UPV results of the controlled and waste marble dust mixes
are presented in Figure 4a,b, respectively. The UPV of the waste marble dust concrete was
higher than that of the controlled concrete. Calcium carbo-aluminate, which is formed in
concrete due to a reaction with the CaCO3 in marble dust, accelerates both the hydration
rate and strength development [37]. A greater pulse velocity indicated homogeneity
and excellent quality, whereas a lower pulse velocity indicated nonhomogeneity. The
methodology of the current research with the application of machine learning is shown in
Figure 5.

The dataset comprised 6 inputs: cement, marble dust, w/c ratio, coarse aggregates,
sand, and days. Table 3 describes the statistical analysis of the input parameters. Except
for age, which was evaluated in days, all the characteristics were weighted in kg/m3.
The findings of the descriptive analysis were dependent on many input factors. The table
provides the lowest and maximum values and ranges for each variable utilized in the model.
Other analytic parameters used to show the relevant values include standard deviation,
mean, mode, and a total of all the data points for each variable.

Figure 1. Marble dust.

Table 1. Chemical composition.

Components Marble Dust Cement

SiO2 14.08 18.93

Al2O3 2.69 9.89

MgO 2.77 1.67

CaO 42.14 59.6

K2O 0.63 1.13

Na2O 0.61 0.90

Fe2O3 1.94 3.59

64



Materials 2022, 15, 4311

Table 2. Physical properties of raw materials.

Parameters
Maximum Size Fineness Modulus Moisture Content Density

mm - % kg/m3

Cement - - - 1432

Marble dust - 1.86 - 1118

Sand - 2.72 1.57 1790

Coarse aggregate 25.4 - 1.49 1591

Table 3. Details of input data.

Input Data

Cement
(kg/m3)

Marble Dust
(kg/m3)

Sand
(kg/m3)

Aggregate
(kg/m3)

Water
(kg/m3)

Days UPV (m/s)

Standard Error 9.73 2.95 19.55 33.62 4.55 1.18 42.34

Median 472.84 17.24 615.26 1116.36 220.83 17.50 3334

Minimum 310.15 0.00 129.47 659.33 130.97 7.00 3110

Maximum 708.80 70.89 1020.65 1750.97 303.96 28.00 4502

Mode 486.95 0.00 620.06 1201.29 185.03 7.00 3357

Mean 484.40 25.49 618.70 1202.28 217.13 17.50 3518

Standard Deviation 86.98 26.39 174.90 300.70 40.67 10.57 378.68

Range 398.65 70.89 891.17 1091.64 172.99 21.00 1392

Figure 2. Relative frequency distribution of input parameters: (a) cement; (b) marble dust; (c) sand;
and (d) coarse aggregate.
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Figure 3. UPV testing procedure.

Figure 4. Experimental ultrasonic pulse velocity of mixes: (a) control; and (b) waste marble dust.
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Figure 5. Research methodology with application of machine learning for this study.

3. Results and Discussion

This section addresses the ultrasonic pulse velocity prediction algorithms. A single-
layer perceptron neural network (MLPNN) was used as an individual algorithm, while
Bagging, AdaBoost, and Random Forest models were implemented as ensemble ML ap-
proaches using Python code with Anaconda software. These algorithms are generally used
to anticipate outcomes based on input factors. All the techniques used six input parameters
and one output parameter (ultrasonic pulse velocity) during the modeling phase. All the
ensemble models were shown to be accurate and valid, as discussed below.

3.1. Multiple-Layer Perceptron Neural Network (MLPNN) Algorithm

Figure 6 depicts the statistical analysis of the predicted and actual results regarding
the UPV of WMDC for MLPNN modeling. A reasonably précised output and very low
variation between the anticipated and actual values was obtained with the MLPNN tech-
nique. The accuracy of predicting results was assessed as having a 0.88 R2 value. The
dispersions for the predicted and experimental values (targets) with the MLPNN model
errors are shown in Figure 7. The average, highest, and lowest values of the training set
were 6.20, 20.7, and 0.07 MPa, respectively. A total of 45% of the error values were less than
500 m/s, 45% were from 500 to 1000 m/s, and 10% were higher than 1000 m/s.
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Figure 6. MLPNN model experimental and predicted results.

Figure 7. MLPNN model experimental and predicted values with the errors.

3.2. Bagging Algorithm

The correlation between the projected and actual results of the Bagging model is shown
in Figure 8. The R2 value for the Bagging model was 0.94, which represents the highly
precise and more accurate Bagging model with respect to the MLPNN model. Furthermore,
the dispersion of the projected values, the actual targeted values, and the errors for the
Bagging model are shown in Figure 9. It was noted that 45% of the error data was below
500 m/s, 47.5% was from 500 to 1000 m/s, and only 7.5% was higher than 1000 m/s. The
higher accuracy of the Bagging model with respect to the MLPNN model was revealed
from this analysis. It was also depicted by lower error and greater R2 values. In addition,
twenty submodels were employed using EML methods (MLPNN, AdaBoost, and Random
Forest) to obtain an optimized value that produced a firm output.
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Figure 8. Bagging model experimental and predicted results.

Figure 9. Bagging model experimental and predicted values with the errors.

3.3. AdaBoost Algorithm

A comparison of the projected and actual outputs for the AdaBoost model is shown
in Figure 10. The R2 value was 0.91, which showed a better outcome when compared to
the MLPNN model. The dispersions of the actual and predicted values with the errors
for the AdaBoost model are illustrated in Figure 11. However, 47.5% of the error values
were below 500 m/s, 45% ranged from 500 to 1000 m/s, and only 7.5% were higher than
1000 m/s. The higher accuracy of the AdaBoost model in comparison with the MLPNN
model was also depicted by lower error values.
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Figure 10. AdaBoost model experimental and predicted results.

Figure 11. AdaBoost model experimental and predicted values with the errors.

3.4. Random Forest Algorithm

The correlation between the predicted and actual output values for the Random Forest
model is provided in Figure 12. The R2 value for this model came out to be 0.98, showing
considerable accuracy compared to the MLPNN, Bagging, and AdaBoost models. The
dispersions of the actual and predicted values with the errors for the Random Forest model
are shown in Figure 13. Only 57.5% of the error values were below 500 m/s, 42.5% of
the values ranged from 500 to 900 m/s, and no values were found above 900 m/s. The
error distribution and R2 values were more accurate than the MLPNN, Bagging, and
AdaBoost models for the UPV prediction of WMDC. The R2 values, along with the error
values, obtained from all the considered ensemble ML models were in an acceptable range,
depicting better prediction outcomes. Hence, it was observed in this study that EML
techniques (Random Forest, followed by Bagging and Adaboost) predicted high-accuracy
outcomes when compared to a standalone MLPNN technique.
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Figure 12. Random Forest model experimental and predicted results.

Figure 13. Random Forest model experimental and predicted values with the errors.

4. Model Performance Assessment

4.1. K-Fold Cross-Validation Checks

Statistical analyses with Equations (1) and (2) were utilized to predict the responses
of the models. The legitimacy of the models was evaluated by utilizing a k-fold cross-
validation approach during execution. Usually, the validity of a model is performed with a
k-fold cross-validation process [57] in which random dispersion is perfomed by splitting
the model into 10 groups. The greater the R2 value and the fewer the errors (RMSE and
MAE), the higher the accuracy of the model. Furthermore, this process should be repeated
multiple (i.e., 10) times for a satisfactory result. The exceptional precision of a model can
be achieved by using this comprehensive approach. In addition, statistical analyses (i.e.,
RMSE and MSE) were also performed for all the models (Table 4). The Random Forest
model accuracy (inversely related to error values) compared to the AdaBoost, Bagging,
and MLPNN models was also supported by these checks. Statistical analysis as reported
in the literature [47,58] is used to assess the response of a model to prediction. The k-fold
cross-validation is assessed by utilizing R2, RMSE, and MAE. Respective dispersions for
the DT, Random Forest, AdaBoost, and Bagging models are presented in Figure 14. The
average and maximum values of R2 for the MLPNN were 0.55 and 0.88, respectively (refer
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to Figure 14a). The maximum and average values of R2 for the Bagging model were 0.94
and 0.66, respectively, as shown in Figure 14b. Contrary to this, the maximum and average
R2 values of the AdaBoost model were 0.91 and 0.62, respectively, as portrayed in Figure 14c.
In comparison, the maximum and average values of R2 for Random Forest were 0.98 and
0.76, respectively (see Figure 14d). To compare the error values (RMSE and MAE), the
RMSE and MAE values for all the models are shown in Table 4. The Random Forest model,
with the lowest error and a higher R2 value, performed better in results prediction.

MAE =
1
n

n

∑
i=1

|xi − x| (1)

RMSE =

√

√

√

√

∑

(

ypred − yre f

)2

N
(2)

where n is the number of total data samples, x and yre f are the data sample reference values,
and xi and ypred are the model prediction values.

Table 4. Statistical descriptions of MLPNN, Bagging, AdaBoost, and Random Forest models.

Models MAE (m/s) RMSE (m/s) R2

MLPNN 564.4 676.7 0.88

Bagging 500.8 594.7 0.94

AdaBoost 531.4 637.6 0.91

Random Forest 429.3 475.7 0.98

Figure 14. K-fold cross-validation: (a) MLPNN model; (b) Bagging model; (c) AdaBoost model; and
(d) Random Forest model.
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4.2. Comparison of Machine Learning Models

Both ensemble ML and individual approaches were explored in this study for the
estimation of WMDC with the aim of sustainable development in terms of environment-
friendly construction materials. Random Forest, Bagging, AdaBoost, and MLPNN machine
learning techniques were used in this study to predict the compressive strength of WMDC.
The goal of the MLPNN algorithm was the development of a model that could predict
the target variable accurately. On the other hand, for the Bagging technique, a random
sample was selected from the data of the training set, i.e., the selection of individual data
points could be made multiple times. The individual training of the said weak models
was conducted in the pursuance of numerous data sample generation and based on task
type, such as classification or regression or average or majority of these predictions to
give an estimate with high accuracy. For the establishment of an algorithm’s prediction
superiority, the employed algorithms were compared for targeted performance. MLPNN
and Random Forest are two alternative learning techniques that can be utilized in similar
applications. The main rationale for using a Random Forest rather than an individual
decision tree or MLPNN was that it allowed the aggregation of predictions of multiple
decision trees in a single model. The theory was that a single model comprised of numerous
poor models is still preferable to a single good model. Given the widespread performance
of Random Forests, this s true. As a result, Random Forests are less prone to overfitting.
Random Forest’s major benefit is that it relies on a collection of different decision trees to
arrive at any solution. It is an ensemble method that takes into account the findings of
multiple classifying algorithms of the same or different types. It is capable of both regres-
sion and classification. A Random Forest generates accurate predictions that are simple
to comprehend. It is capable of effectively handling huge datasets. In comparison to the
individual MLPNN method, the Random Forest algorithm is more accurate at predicting
outcomes. The sklearn (Scikit-learn) library was used, and 50% of the data were taken
for training purposes and 50% for testing. The output of the Random Forest model was
more accurate, having a 0.98 R2 value, in comparison to Bagging with 0.94 R2, AdaBoost
with 0.91 R2, and MLPNN with 0.88 R2. Furthermore, the performances of the MLPNN,
Bagging, AdaBoost, and Random Forest models were also evaluated by utilizing a k-fold
cross-validation technique and statistical analysis. The performance of the model was
higher with low error levels. However, it was difficult to assess optimized machine learn-
ing regressors to forecast results from a wide range of topics because the performance of
the model was very much dependable on the datapoints and the model’s input parameters.
On the other hand, for ensemble ML techniques, submodels were generated to leverage the
weak learner that could be optimized and trained with data for achieving a higher value of
R2. Other researchers have also observed that AdaBoost, Bagging, and RF models are more
accurate in predicting outcomes than individual machine learning techniques [45,50,59–61].
Feng, et al. [45] observed that an AdaBoost model outperformed individual models, includ-
ing an artificial neural network (ANN) and a support vector machine (SVM), in terms of R2

and error values. In addition, Ahmad, et al. [50] compared the performances of Bagging,
AdaBoost, gene expression programming (GEP), and DT and concluded the best predictor
was the Bagging algorithm, with an R2 of 0.92. Similarly, Farooq, et al. [60] compared the
performance of Random Forest with those of ANN, GEP, and DT approaches and found
that the Random Forest model had greater precision than the others, with an R2 of 0.96.
A higher accuracy for Random Forest was also reported in the literature, having an R2 of
0.98 to calibrate a low-cost particle monitor. The dispersion of values for the determinant
coefficient of the Bagging, AdaBoost, and Random Forest submodels is shown in Figure 15.
The values of R2 for all the submodels of Random Forest were greater than 0.76, as shown in
Figure 15, while most values of R2 in the cases of the submodels for AdaBoost and Bagging
were less than 0.63 and 0.51 (Figure 15), respectively. It depicts the higher accuracy of the
Random Forest technique for results prediction, showing a maximum value of R2, i.e., 0.98.
Therefore, the Random Forest model was suggested to predict the ultrasonic pulse velocity
of waste marble dust concrete.
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Figure 15. R2 values of submodels.

4.3. Effect of Raw Ingredients and Their Interactions Using SHAP Analysis

An in-depth ML model explanation was made in the current research. In addition to
this, the respective feature dependencies and interactions were also discovered. Initially,
the implementation of a SHAP tree explainer for the entire dataset was performed for
the provision of an enhanced global feature impact description by the mergence of SHAP
descriptions. A tree explainer, i.e., a tree-like SHAP approximation technique, was em-
ployed [62]. In this technique, the tree-based model’s internal structure, i.e., the sum of the
calculation set linked with a leaf node of the tree model that leads to low-order complexity,
is assessed [62]. The highest-precision prediction model was obtained by the Random For-
est algorithm for the UPV of marble dust concrete. Accordingly, the model interpretation
was made for the UPV of marble dust concrete with the help of SHAP analysis.

Figure 16 depicts the violin SHAP-plot values of the considered features for the pre-
diction of UPV for marble dust concrete. A unique color is used to show the feature values
in this plot, and the x-axis-corresponding SHAP value represents the output contribution.
For example, for marble dust, the content input feature had a higher impact and positive
influence, showing the direct relation of this feature with the UPV of marble dust concrete.
This means that an increasing content of marble would result in a higher UPV value. A
SHAP value of more than 100 in the form of red points (high-value color) at the rightmost
side depicts that higher marble dust content enhanced the marble dust concrete UPV. In
the case of the curing age feature, a positive influence was seen here as well. At 7 days
of age, it is depicted in blue, showing a lower value. Whereas, at 28 days, it increased, as
depicted from the higher, i.e., red, values on the right side of the axis. However, in the
case of the water content feature, both positive and negative influences are depicted. The
water content up to the optimum content was influenced positively; beyond that, there
was a negative influence on the UPV of marble dust concrete. In the case of considerably
decreased water content, it was also negatively influenced due to affected compaction,
resulting in enhanced porosity and, ultimately, a decreased UPV of marble dust concrete.
Similarly, sand, aggregate, and cement had more or less the same influence and were on
the border of having both positive and negative influences. This evaluation relied on the
dataset employed in this study, and high-precision outcomes may also be achieved with
more datapoints.
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Figure 16. SHAP plot.

The feature interactions with the UPV of marble dust concrete are presented in
Figure 17. The marble dust feature interaction is shown in Figure 17a. It can be observed
from the plot that marble dust positively interacted with the UPV of marble dust concrete
and was in a positive–direct relationship. It may also be noted that, among all the features,
marble dust majorly interacted with cement, as it was used as a cement replacement. In
Figure 17b, the positive influence of curing days on the UPV of marble dust concrete is
observed because more interaction of days with the cement hydration process ultimately
increased the strength and UPV of the concrete. The w/c feature interaction is plotted in
Figure 17c. The w/c indicated both negative and positive impacts, depending upon its
content. The major interaction of w/c was with the cement content, as both water and
cement have a link to the hydration process, which is mainly dependent on curing age
(days). Then, the cement content feature interaction with sand did not show any particular
trend (Figure 17d) and showed almost the same pattern.

Although SHAP was used for the interpretations in this study, there are numerous other
post hoc explanatory models that can be used for the same purpose. As a result, we recom-
mend comparing the interpretations obtained using various explanation methodologies. The
SHAP-plot values estimated using SHAP, for example, may differ from those obtained using
other explanation approaches. Furthermore, the research focused on concrete’s UPV. The
study, however, can be applied to other strength parameters as well, such as compressive
strength, etc. Other strength features need to be predicted using ML in conjunction with post
hoc explainable approaches, and the underlying rationales are required to be explained. As
a result, the influencing parameters that are required for the design stage can be discovered
using this approach, but they still need to be investigated in the future.

Figure 17. Cont.
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Figure 17. Interaction plots of various parameters: (a) marble dust; (b) days; (c) w/c ratio; and
(d) cement.

5. Conclusions

The incorporation of marble waste dust into concrete can be an efficient way to
improve the environment and reduce landfill pollution. To achieve this, waste marble dust
was used in concrete. Additionally, soft computing techniques were compared to predict
waste marble dust concrete (WMDC) characteristics. Based on the conducted research, the
following conclusions were drawn:

• An amount of 10% marble dust in concrete influenced the ultrasonic pulse velocity. The
ultrasonic pulse velocity increased due to the reduced porosity of concrete with marble
dust. In this case, waste marble dust concrete with 10% marble dust (as a replacement)
showed improved UPV compared to the control mix with 0% marble dust.

• Due to its greater R2 and lower error levels, the Random Forest model outperformed
AdaBoost, Bagging, and MLPNN techniques in terms of prediction. The MLPNN,
Bagging, AdaBoost, and Random Forest models had R2 values of 0.88, 0.94, 0.91, and
0.97, respectively. However, the ensemble model results for Random Forest, followed
by Bagging and AdaBoost, were acceptable.

• A k-fold cross-validation technique and statistical analyses revealed adequate Random
Forest, AdaBoost, and Bagging outcomes. These tests also showed that the Random
Forest model outperformed the MLPNN, AdaBoost, and Bagging models.

• The study validated the application of ultrasonic pulse velocity for forecasting the
ultrasonic pulse velocity of sustainable cementitious composite. Therefore, the pre-
sented techniques using artificial intelligence seemed reliable for predicting waste
marble dust concrete properties.

• A higher SHAP-plot value depicted the positive relation of marble dust content with
the UPV of marble dust concrete.

• The feature interaction plot represented that marble dust and curing days positively
interacted with cement content and improved the UPV of concrete.

This study was limited to the prediction of the UPV of waste marble dust concrete with
limited input parameters and machine learning algorithms (an MLPNN-based approach
and decision-tree-based approaches). It is suggested that more comprehensive research
on waste marble dust needs to be conducted with more criteria included. Adding addi-
tional input factors and expanding the database can produce more trustworthy findings
and provide a more comprehensive expression. These parameters should include, in the
future, compressive strength, temperature effect, acid attack resistance, chlorine resistance,
sulphate resistance, and corrosion. Advanced technologies such as particle swarm opti-
mization (PSO) and M5P trees can be used to make more accurate predictions. However,
for better results, machine learning approaches can be coupled with heuristic methods,
such as the whale optimization algorithm and ant colony optimization, and then compared
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with the current study. Further studies should be carried out to investigate the chemical
properties of waste marble dust, as well as all other mechanical properties that are key to
any application in concrete.
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Abstract: Recently, the high demand for marble stones has progressed in the construction industry,
ultimately resulting in waste marble production. Thus, environmental degradation is unavoidable
because of waste generated from quarry drilling, cutting, and blasting methods. Marble waste is
produced in an enormous amount in the form of odd blocks and unwanted rock fragments. Absence
of a systematic way to dispose of these marble waste massive mounds results in environmental
pollution and landfills. To reduce this risk, an effort has been made for the incorporation of waste
marble powder into concrete for sustainable construction. Different proportions of marble powder
are considered as a partial substitute in concrete. A total of 40 mixes are prepared. The effectiveness of
marble in concrete is assessed by comparing the compressive strength with the plain mix. Supervised
machine learning algorithms, bagging (Bg), random forest (RF), AdaBoost (AdB), and decision tree
(DT) are used in this study to forecast the compressive strength of waste marble powder concrete.
The models’ performance is evaluated using correlation coefficient (R2), root mean square error, and
mean absolute error and mean square error. The achieved performance is then validated by using
the k-fold cross-validation technique. The RF model, having an R2 value of 0.97, has more accurate
prediction results than Bg, AdB, and DT models. The higher R2 values and lesser error (RMSE, MAE,
and MSE) values are the indicators for better performance of RF model among all individual and
ensemble models. The implementation of machine learning techniques for predicting the mechanical
properties of concrete would be a practical addition to the civil engineering domain by saving effort,
resources, and time.

Keywords: waste; concrete; marble powder; compressive strength; machine learning algorithms

1. Introduction

Iran, Italy, China, Turkey, India, Egypt, Spain, Brazil, Algeria, Sweden, and France
are the main marble-producing countries [1–4]. India is the third most marble-producing
country around the globe, and almost 10% of the worldwide marble powder is quarried
here [5]. In addition, the import and processing of stone are majorly done in countries such
as Pakistan, the United States, Egypt, Saudi Arabia, Portugal, Germany, France, Norway,
and Greece [6]. During different stages of stone mining and processing procedures, a bulk
quantity of marble waste is generated. Out of which, up to 60% is generated as a result
of marble quarrying only [7]. Marble dust in finer form that is produced as a result of
its sawing and cutting can cause harmful health issues. Furthermore, the dumping of
this marble dust can result in poor soil properties and the fertility reduction of respective
land [8]. Almost 30% of marble waste is produced during the working of marble stone [9].
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The global annual production of marble and granite was nearly 140 million tonnes in 2014,
as per USGS [10]. There were approximately 2 billion tonnes of marble resources in India
only, as of April 2015, as per the UNFC system. Only 0.23% were reserved resources,
and 99.77% were under the remaining resources category [11]. In 2015, China produced
around 350 million sq. meters of marble planks, depicting China as World’s largest marble
producer [12]. Chauhdary [13] reported the availability of almost 160 million tonnes of
marble reserves and around 2 billion M.T granite reserves in Pakistan as of 2006. In the
mining industry of Iran, there were approximately 4.8 million tonnes of raw and/or semi-
processed stone in the year 2012–2013 from a total of 473 quarries of marble stone [14].
Egypt used to export nearly 13 lac tonnes of stones annually as unprocessed and processed
stones. From Shaq Al–Thoban industrial/site areas of Egypt, nearly 7 lac tonnes waste
is generated annually [15]. As far as the marble reserves of Turkey are concerned, these
are around 3.8 billion cubic meters [16]. In Turkey, Binici, et al. [17] reported an emerging
threat to agriculture and health in the form of marble wastes usually left in situ or settled
by sedimentation. Approximately 47 thousand tonnes of solid waste powder is collected
annually from quarries in Jordan every year [18]. The same is the case with Spain and some
other countries [19]. In past years, the marble powder is usually used in mortar, concrete,
tiles, cement, embankments, and pavements [20], in addition to the desulfurization process,
soil stabilization, ceramics, and asphalt and polymer-based composites [21]. In Italy,
a group of researchers also developed a consortium to rehabilitate and restore the Oresei
marble chain in Sardinia. This chain was being exploited for quarrying and landfilling [22].
As per the definition of sustainable development by Brundtland [23], keeping in mind
the environmental perspective, the addition of mineral admixtures and different waste
materials has gained much importance with the aim to reduce the consumption of natural
resources. However, the natural resources consumption for the production of concrete
is still inevitable. In addition, the extraction of local natural resources within limited
surrounding region is unable to meet the said needs; thus becoming un-sustainable in
near future. Accordingly, the usage of waste materials in concrete production should
be promoted in construction sector. In addition, the alternative sustainable approaches
should also be introduced for reducing the consumption of natural materials at national
as well as international level [24–27]. Whereas, at local level, recycled aggregates are
usually used for road materials stabilization. This is a rare approach due to the less feasible
crushing process with respect to traditional approach. The extraction of natural resources
is required in traditional approach. Bottom ash and marble dust (MD) are some locally
and abundantly available by-products that are usually treated as waste materials and thus
ultimately causing environmental pollution.

On a rough estimate, the global annual concrete production is approximately 25 bil-
lion tons. Concrete has a very low embodied energy and carbon footprint compared to
other building materials. However, due to its wide use in many applications, concrete
production has a considerable carbon footprint, contributing to 8% of global carbon diox-
ide emissions [28,29]. Globally, concrete production accounts for 7.8% of nitrogen oxide
emissions, 4.8% of sulfur oxide emissions, 5.2% of particulate matter emissions smaller
than 10 mm, and 6.4% of particulate matter emissions smaller than 2.5 microns [30]. It is
worth noting that only half of the cement is used in concrete [31], and the remaining is used
in blocks, mortar, and plaster [32]. Nonetheless, due to the widespread use of concrete in
modern civilization, concrete production accounts for a significant portion of global CO2
emissions through construction [32]. Aiming toward sustainable development, the usage of
environment-friendly by-products is considered an effective strategy toward reducing CO2
emissions [31,33–35]. Marble dust (MD), having abundant availability in Turkey, China,
Iran, Italy, and India, is also an alternative which can be used as a replacement for cement
in the production of concrete. Marble, due to its durable properties, is usually used in
multiple non-structural applications such as cladding, floors, architectural decoration for
indoors and sculpture etc. Considerable waste is generated during the shaping and cutting
processes of various marble applications in the form of dust particles. These materials are
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contaminating the natural resources in terms of environmental damage. Partial replace-
ment of cement and other constituents of concrete has already been made extensively by
industrial by-products in various studies [36–44]. The reuse of MD, due to its chemical
nature, in the production of concrete came out to be an alternative sustainable approach.
The use of MD, either as a natural aggregate [9,45,46] or as a replacement for Portland
cement (PC) [16,47–49], has been studied in various research. Generally, MD has been
used as up to 60% replacement in different forms. Gesoğlu, et al. [50] reported a 20%
decreased slump due to MD as a PC replacement. Concrete having MD showed similar
consistency with respect to reference mix as reported by Seghir, Mellas, Sadowski, and
Żak [4]. Contrary to this, Alyamac, Ghafari, and Ince [19] stated that the incorporation of
MD in concrete improved its fresh properties. In addition, the strength of concrete having
MD is still questionable. Topcu, et al. [51] reported the decreased compressive strength
with an increase in MD content. The same behavior was also reported by Gencel, et al. [52].
The 5% of MD replacement in concrete production came out to be an optimum content
for compressive strength, as reported in several studies [50,53,54]. However, Li, et al. [55]
reported the same with 10% MD replacement in concrete. Li, Huang, Tan, Kwan and
Liu [12] and Li, Huang, Tan, Kwan and Chen [55] also proposed a paste replacement
method for reducing significant (i.e., 33%) cement content and enhancing the utilization of
MD waste, having enhanced durability and strength. Seghir, Mellas, Sadowski and Żak [4]
reported an enhancement of marble powder porosity by 15% in result of reduced hydration
products. The major focus of existing studies is on replacement of cement with alternative
sustainable materials for reduction in emissions, caused by PC. Marble waste is used as
cement replacement in concrete by various researchers [9,46,50,52,54,56]. Rodrigues, De
Brito and Sardinha [46] investigated the incorporation of marble dust having 5, 10, and
20% content as cement replacement in concrete. The study reported positive effect on
compressive strength of concrete with cement replaced up to 10% marble dust; however,
reduced compressive strength is observed in concrete having 25% of marble dust. The
compressive strength is reduced by 13.46% with 20% marble dust content, as reported
by Gesoğlu, Güneyisi, Kocabağ, Bayram and Mermerdaş [50]. Another study reported
decrement in compressive strengths by 91%, 86%, and 76% having cement replaced by 20%,
30%, and 40% marble dust contents, respectively [52]. Şanal [57] reported enhancement
of pore structure due to an increase in the capillary structure of concrete by adding 10%
marble dust as cement replacement, ultimately resulting in reduced mechanical properties
of concrete.

Concrete is the second most widely used commodity around the globe [58]. Due to
its multiple properties such as strength, stiffness, density, fire/thermal resistance, porosity,
and durability, concrete is being most commonly used as a building material all around
the world. Compressive strength is the most dominating factor among all these, as it
directly affects the durability of concrete [59,60]. Concrete is a heterogeneous material
constituted by cement, sand, aggregates, and water, as it has different compressive strength
values [61]. All the ingredients mentioned above and respective mixtures affect the com-
pressive strength of concrete in terms of water/binder ratio, aggregate size, binder type,
or waste composition [62]. The compressive strength of concrete is hard to predict precisely
due to its complicated mixture. The determination of concrete compressive strength can be
made in the laboratory by crushing standardized cylinders/cubes after specified curing
post to the casting of samples [63]. This is globally a standardized method. However, as a
result of advancements in technological development, laboratory tests are now insufficient
and uneconomical due to the involved time and cost. Nowadays, due to the artificial
intelligence (AI) evolution, mechanical properties of concrete can also be predicted by using
machine learning (ML) algorithms [64–66]. ML techniques such as classification, clustering,
and regression, can be used to estimate various parameters along with varied efficiency and
can also help in predetermining the accurately précised compressive strength of concrete.
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The performance prediction of various parameters using machine learning algorithms
is known for many years. As far as the field of civil engineering is concerned, this trend is
increased significantly in the past few years. It is because of the highly accurate prediction
of mechanical properties (Table 1). The working principle of machine learning is the same
as that of conventional algorithms high accuracy of nonlinear behavior with respect to the
linear one. Artificial neural networks (ANN), support vector machines (SVM), decision
trees (DT), gene expression programming (GEP), random forest (RF), and deep learning
(DL) are widely used prediction techniques in case of mechanical properties of concrete [67].
The shear strength of steel fibers reinforced concrete beams was predicted with the help
of eleven algorithms by Rahman, et al. [68]. ANN with optimizer as multi-objective grey
wolves (MOGW) was used by Behnood and Golafshani [69] for predicting the static prop-
erties of silica fume modified concrete. Güçlüer, et al. [70] used ANN, DT, LR, and SVR
to predict the compressive strength of concrete. The tensile strength and compressive
strength of waste concrete were predicted with ANN algorithm by Getahun, et al. [71].
Ling, et al. [72] used SVM to predict concrete compressive strength in marine and the
results were compared with that of DT and ANN models. Yaseen, et al. [73] also used
different ML approaches for the prediction of load carrying capacity, under compression,
of light-weight foamed concrete. A machine learning algorithm was also used by Taffese
and Sistonen [74] for assessing reinforced concrete structures’ durability. Yokoyama and
Matsumoto [75] developed an automatic crack detector for concrete structures using ma-
chine learning. Concrete samples photographs were used for learning data, whereas deep
learning was applied for crack detection. The accuracy level of ML models was determined
by Chaabene, et al. [76]. Ahmad, et al. [77] performed ensembled machine learning (EML)
and standalone techniques for the prediction of concrete’s compressive strength and accu-
racy comparison. It is reported that the outcome predicted from EML techniques has more
accuracy than that by standalone technique. However, the range of standalone technique
results was also acceptable. Song, et al. [78] determined the compressive strength of ceramic
waste modified concrete both experimentally and with standalone techniques. Marginal
variation in experimental results and prediction model’s outcomes was reported. Neural
networks and decision trees, which are also called classification trees, are two popular
ways to model data. These two models have different ways of modeling data and finding
relationships between variables. The nodes in the neural network make it look like the
human brain and very complex structure is formed. While the decision tree is an easy
way to look at data from the top down. Decision trees have a natural flow that is easy to
understand and are also easy for computer systems to program. The data point in decision
tree models at the top of the tree has the most effect on the response variable in the model.
On the other hand, the visual representation of neural network models does not make it
easy to understand the working. For neural network model, it is hard to make computer
systems, and it is almost impossible to make an explanation because of complex structure.
Therefore, decision tree-based algorithms (AdaBoost and bagging) are considered in the
study because these trees are so easy to understand, they are very useful for modeling and
showing the data visually without any complex structure. Accordingly, the current study
aims the usage of advanced techniques for forecasting the concrete properties.
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Table 1. Machine learning algorithms in the literature.

Algorithm Name Notation Prediction Properties Year Waste Material Used Ref.

Individual (decision tree)
and ensemble algorithm

(bagging)
DT and Bg Compressive Strength 2021 FA [79]

Ensemble modelling
(bagging and boosting)

Bg and AdB Compressive strength 2021 FA [22]

Individual Algorithms
(decision tree)

DT Chloride Concentration 2021 FA [18]

Data Envelopment
Analysis

DEA

Compressive strength
Slump test
L-box test

V-funnel test

2021 FA [80]

Multivariate MV Compressive strength 2020 Crumb rubber with SF [81]

Support vector machine SVM

Slump test
L-box test

V-funnel test
Compressive strength

2020 FA [82]

Adaptive neuro fuzzy
inference system

ANFIS with ANN Compressive strength 2020 POFA [83]

Random forest RF Compressive strength 2020 - [84]

Intelligent rule-based
enhanced multiclass

support vector machine and
fuzzy rules

IREMSVM-FR
with RSM

Compressive strength 2019 FA [85]

Random forest RF Compressive strength 2019
FA

GGBFS
FA

[86]

Decision tree DT Compressive strength 2021 Ceramic waste [62]

2. Research Significance

The incorporation of waste materials in concrete to improve its mechanical charac-
teristics has been done in various studies. However, the stepwise laboratory procedure,
i.e., casting of specimens, curing for a specified time, and testing is still a concern in terms
of cost and time. Novel machine learning techniques are being introduced for forecasting
the behavior of waste concrete in terms of mechanical properties to overcome the issues
mentioned above, i.e., the excessive consumption of time and cost. However, the results of
different machine learning models are still inconsistent depending on the type of material,
data set, and other contributing input/output parameters. Therefore, this paper aims to
investigate marble dust concrete with the intention of marble dust waste management
and identify the optimal machine learning technique. The novelty and significance of the
current study are to conduct experimentation on waste marble (powder-based) concrete
(WMC) and development of WMC prediction model by computational methods. Addition-
ally, this study is focused on predicting and comparing the compressive strength of WMC
through supervised ML approaches. The AdB, RF, Bg, and DT approaches are employed to
predict and compare outcomes against actual results. Twenty sub-models are developed in
EML modelling to have more accuracy in R2 value for the optimization. Prediction perfor-
mance of each technique is done by using these applications. This research is significant for
understanding the input parameter’s role and accuracy for the outcomes obtained through
ML algorithms. Individual ML and ensemble approaches are also compared against the
results obtained from experimental work. The k-fold cross-validation and statistical checks
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are also used to evaluate the performance of each model. A discussion on the use of marble
for sustainable construction is made.

3. Experimentation and Data Description

Cement, marble powder, and fine and coarse aggregates are used to prepare 40 mixes.
Type-I Ordinary Portland Cement (OPC) is used. ASTM C150 is used to conduct the entire
investigation in this research. The chemical composition of used marble and cement is
listed in Table 2. The properties of fine aggregate are also determined as per the ASTM
standard. Locally available coarse aggregates having a maximum nominal size of 25.4 mm
are being used. Furthermore, the physical properties of fine and coarse aggregate can also
be seen in Table 3. Marble powder, collected from a local company, is used in this study,
as shown in Figure 1. The Blaine fineness value was 2196 m2/kg, and the relative density
was 2.43 g/cm3. The marble powder has a large specific surface area, suggesting that
adding it to concretes would improve their cohesiveness.

Table 2. Chemical composition of cement and marble powder.

Components Details Cement Marble Powder

Calcium Oxide (CaO) 61.81 42.14

Magnesium Oxide (MgO) 1.96 2.77

Silica (SiO2) 22.07 0.79

Potassium Oxide (K2O) 0.46 0.63

Alumina (Al2O3) 6.96 2.69

Sodium Oxide (Na2O) 0.11 0.61

Iron Oxide (Fe2O3) 3.62 1.94

Sulfur Trioxide (SO3) 2.14 0.042

LOI 1.2 42.28

Table 3. Physical properties of sand and aggregates.

Property

Dry Rodded
Bulk Density

Bulk Specific
Gravity

Moisture
Content

Water
Absorption

Fineness
Modulus

Nominal
Maximum Size

kg/m3 - % % - mm

Sand 1800 2.61 1.57 2 2.72 -

Aggregate 1601 2.51 1.49 1.65 - 25.4

Followed
Standards

ASTM C29 ASTM C128/C127 ASTM C566 ASTM C136 -

’

 

61.81

22.07

2.14

Figure 1. Waste marble powder.

86



Materials 2022, 15, 4108

In this study, two different mix designs are considered. Twenty mixes for controlled
concrete and twenty for marble replaced concrete are prepared at every 7 days and 28 days.
A total of 40 combinations with 240 specimens are prepared (120 in number for each
respective day) with a size of 150 mm3. De-molding of specimens is done after 24 h,
followed by 28 days of water curing. The compression test is performed afterwards,
as per ASTM C39, to determine compressive strength. The dataset includes six inputs, i.e.,
i. cement, ii. marble powder, iii. w/c ratio, iv. coarse aggregates, v. sand and vi. Days
for single output, i.e., compressive strength of concrete (refer Table S1 in supplementary
materials). The description of statistical analysis regarding input parameters is given in
Tables 4 and 5. Table 4 shows the mean value, the average of the numbers by adding
up, and then dividing by total number of values in a dataset. All the parameters are
considered in weight units, i.e., kg/m3, except for age, which is being considered in days.
Brief descriptive coefficients are collected to summarize descriptive statistics to produce
a result. Descriptive analysis results are based on input variables data reflecting various
information. The minimum and maximum values and ranges for each variable that is used
to run the model are also given in tables. However, other analysis parameters, such as
standard deviation, mean, mode, and summation of all data points against each variable,
are also used for depicting relevant values. Frequency dispersion for every factor that is
being utilized in mixes is shown in Figure 2. It has a close connection with distribution
probability, a widely used statistics. A relative frequency distribution shows the total
observations associated with a class of values or every single value.

Table 4. Input parameters description analysis.

Input Variables

Parameters
Cement
(kg/m3)

Marble Powder
(kg/m3)

Sand (kg/m3)
Aggregate

(kg/m3)
W/C Ratio Days

Mean 484.396 25.4941 618.7 1202.28 0.45045 17.5

Standard Error 9.72503 2.95033 19.5542 33.6188 0.00637 1.18

Median 472.838 17.238 615.264 1116.36 0.43994 17.5

Mode 486.948 0 620.058 1201.29 0.37997 7

Standard
Deviation

86.9833 26.3886 174.898 300.695 0.05696 10.56

Range 398.65 70.89 891.174 1091.64 0.28578 21

Table 5. Input and output variables range.

Parameters Abbreviation Unit Minimum Value Maximum Value

Input

Cement C kg/m3 310.148 708.798

Marble powder MP kg/m3 0 70.89

Sand S kg/m3 129.472 1020.65

Aggregate A kg/m3 659.328 1750.97

Water to cement ratio W/C kg/m3 0.36273 0.64851

Days D Days 7 28

Output Compressive Strength C.S MPa 9.49 72.11

87



Materials 2022, 15, 4108

 

(a) (b) 

300 400 500 600 700
0

2

4

6

8

10

12

14

16

18

20

 

 

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 d

is
tr

ib
u
ti
o
n

Cement (kg/m3)

0 20 40 60 80
0

5

10

15

20

25

30

35

40

45

 

 

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 d

is
tr

ib
u
ti
o
n

Marble powder (kg/m3)

 

(c) (d) 

   17.5 

   7 

 98 

 0.97 

200 400 600 800 1000
0

5

10

15

20

25

 
 

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 d

is
tr

ib
u
ti
o
n

Sand (kg/m3)

600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

 

 

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 d

is
tr

ib
u
ti
o
n

Aggregate (kg/m3)

Figure 2. Input parameters relative frequency distribution: (a) cement; (b) marble powder; (c) sand;
(d) aggregate.

4. Modelling Techniques Description

Concrete compressive strength prediction algorithms are described in this section.
Individual ML (DT) and ensembled ML techniques (i.e., bagging models, random forest
and AdaBoost) are employed over Anaconda software by using Python code. Spyder
(version 4.3.5) of Anaconda navigator is opted for running the random forest, bagging
models and AdaBoost. Such algorithms are usually used to predict required outcomes as
per input variables. Six input parameters against one output parameter (i.e., compressive
strength) are used for all techniques during the modelling phase. R2 values demonstrate the
accuracy/validity of all the models. The R2 statistic (also named determination coefficients)
evaluates the variance response variable as demonstrated by the model fitted against the
mean response. It can also be stated as the measurement of how well a model fits this
data. 0 value implies the comparison of fitting the mean and model, whereas 1 depicts a
perfect fit among data and model. C.S prediction is made with individual, i.e., decision
tree, and ensemble algorithm, i.e., bagging models, random forest, and AdaBoost. Figure 3
shows a detailed flowchart of the used algorithm. It may be noted that 50% of data is used
for training, and rest of the 50% is used for testing and validation. The error between the
experimental and predicted values is also reported for each algorithm, and a discussion is
made in Section 6.
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’

DT
(Decision Tree)

Bagging 

Models

Random

Forest

AdaBoost

Machine

Learning

Algorithms

Figure 3. Algorithm flowchart.

4.1. Decision Tree Algorithm

DT is widely utilized to categorize regression problems and classify difficulties [87].
There are classes within a tree. However, the regression technique is used to predict
outcome-independent variables in case of the non-existence of any class [88]. In DT,
database attributes are represented by inner nodes. Conclusion rules are denoted by
branches, whereas the leaf nodes represent the result. Two nodes, i.e., the decision node
and leaf node, are the composition of a DT. Several branches of decision nodes can make a
decision, and leaf nodes depicts. Leaf nodes depict the decision’s output, lacking branches.
It is named a decision tree as it resembles a tree-like structure that begins with grows as per
the number of branches based on a root node [76]. Data samples are bifurcated in multiple
segments by DT. An executed algorithm determines the difference between forecasted
values and goal at each division point. Errors are also calculated at each division point, and
the lowest value variable is selected as a split point for the fitness function, and the same
procedure/method is repeated. Figure 4 depicts the decision tree schematic diagram.

 

1′ 0′
1′

Figure 4. Decision tree schematic diagram.
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4.2. Random Forest Algorithm

The random forest model is a regression and classification-based approach that has
been studied by various researchers till now [86,89]. The compressive strength of concrete is
predicted by using the RF model, as done by Shaqadan [90]. The prime difference between
RF and DT is the number of trees as shown in Figure 5. A single tree is developed in
DT; however, in RF, multiple trees are built that are known as forest. Dissimilar data are
selected arbitrarily and accordingly, allocated to respective trees. Each tree has data in rows
and columns, and different dimensions of rows and columns are selected. Following steps
are carried out for the growth of each tree; the data frame comprises 2/3rd of the whole
data that is randomly selected for each tree. This method is known as bagging. Random
selection is made for prediction variables, and the node splitting is done by finely splitting
these variables. For all trees, the remaining data are utilized to estimate out-of-bag error.
Accordingly, the final out-of-bag error rate is assessed by combining errors from each tree.
Each tree provides regression, and among all forest trees, the forest with greater votes is
selected for the model. The value of votes can either be 1′s or 0′s. Prediction probability is
specified by the obtained proportion of 1′s. Among all ensemble algorithms, random forest
(RF) is the most sophisticated one. It includes desirable features for variable importance
measures (VIMs) with robust overfitting resistance and fewer model parameters. DT is
used as a base predictor for RF. Acceptable results can be produced by RF models with
default parameter settings [91]. As allowed by RF combinations of parameter settings, and
base predictors can be reduced to one.

Majority Voting

Input Data

1st Tree 2nd Tree nth Tree

1st

Prediction

2nd

Prediction

nth

Prediction

Final Random Forest Prediction

Figure 5. Random forest schematic diagram.
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4.3. AdaBoost Algorithm

Figure 6 shows the entire process of forecasting the AR algorithm outcome. The
Ensemble technique is a concept of ML that is utilized for training various models by using
a learning algorithm of the same kind [92]. Multiple algorithms are collected, as multi-
classifiers, for making an ensemble. A group comprises almost a thousand learners working
with the same objective of resolving the issue. Ensemble learning is employed by an
AdaBoost algorithm, which is a supervised ML technique. It can also be referred to as
adaptive boosting, as weights are re-linked to every instance, with higher weights linked
to wrongly classified instances. Boosting techniques are widely utilized to minimize
variance and bias in supervised ML. Weak learners can be strengthened by using the said
ensemble techniques. Infinite no. of DTs are employed by it for the input data during a
training phase. During constructing the initial DT, the erroneously categorized recorded
data are prioritized throughout the initial model. Same data records are used only as
an input for different other models. The technique mentioned above is repeated till the
creation of specified base learners. AdaBoost optimizes enhancement of DTs performance
on binary classification issues. In addition, it is also used for enhancing ML algorithms
performance. It is specifically effective when it is used with slow learners. These ensemble
algorithms are very prevalent in the civil engineering field, especially for predicting concrete
mechanical properties.

 

Figure 6. Complete process of prediction via AdaBoost algorithm [93].

4.4. Bagging Algorithm

The detailed procedural flow chart of the bagging algorithm is shown in Figure 7. It is
basically an equivalent ensemble method that describes the prediction model variance by
supplementation with additional data throughout the training stage. The technique of
irregular sampling includes the data replacement from a primary set. Employing replaced
sampling, every new training dataset can duplicate specific observations. In the procedure
of bagging, for every component, there is an equal possibility of appearing in a new dataset.
The training set size is not dependent on predictive force. Furthermore, variance may be
remarkably declined by precisely tuning the prediction of the desired outcome. Additional
models are trained by using these data sets. The mean of predictions by all models is
used for this ensemble. In regression, the average of various models’ predictions can be
a forecast [94]. A total of twenty sub-models are being utilized for tweaking the bagging
algorithm with DT to find the optimized value which produces firm output.
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evaluating the model’s performance. Finally, the comparison of different machine learn-

Figure 7. Bagging algorithm flow chart indicating the step-by-step procedure of prediction.

The flowchart depicting the research approach is shown in Figure 8. Given the three
algorithms mentioned above anomaly, further to DT, a combination of ensembles (i.e.,
AdaBoost, bagging models, and random forest) algorithms is employed in this study
for maximizing the respective benefits. Twenty sub-models are employed by ensembled
strategies for the determination of ideal value, which develops a firm output. In addition,
error evaluations such as mean square error (MSE), mean absolute error (MAE), k-fold
cross-validation and root mean square error (RMSE), and statistical checks are made
for evaluating the model’s performance. Finally, the comparison of different machine
learning models is made, as well as the suitability of waste marble powder in concrete for
sustainable construction.

evaluating the model’s performance. Finally, the comparison of different machine learn-

 

Figure 8. Research methodology.

5. Experimental Compressive Strength Test Results

From the compressive strength test results, it is identified that a decrement in com-
pressive strength is observed with an increase in the content of marble powder in bricks
(Figure 9). The highest C.S at 7-days and 28-days of 34.13 MPa and 41.03 MPa is obtained
by M18, which contained 0% marble powder content. Specimens of waste marble powder
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group achieved a maximum compressive strength of 31.06 and 37.83 MPa at 7 and 28-days,
respectively. The maximum decrease in waste marble concrete range is 9.97–48.14%, as
compared to 7 days of plain mix. The maximum decrease in waste marble concrete range
is 2.9–46.9%, compared to 28 days of plain mix. The increased porosity level with the
increase in marble powder content in concrete, and hence the compressive strength is
decreased. Şanal [57] reported enhancement of pore structure due to an increase in the cap-
illary structure of concrete by adding 10% marble dust as cement replacement, ultimately
resulting in reduced mechanical properties of concrete. This can be caused by the dissimilar
C3A—tricalcium aluminate content in cement due to its replacement by marble dust [50].
However, in the current study, the worst mechanical property was observed that might
result from the increase in the capillary structure of the pores with the addition of marble
dust, as reported in the previous study [57].

–

–

Şanal [57] reported enhancement of pore structure due to an increase in the 
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Figure 9. Experimental compressive strength; (a) plain concrete; (b) marble powder concrete.

6. Analysis and Modelling Results

6.1. Prediction of Compressive Strength by Different Models

i. Decision tree modelling

Figure 10 depicts a statistical analysis of projected and actual results regarding C.S of
WMC for DT modelling. A reasonably précised output and a very low variation between
anticipated and actual values can be obtained by DT technique. The accuracy of predicting
results can be assessed by having a 0.86 R2 value. The blue line represents the correlation
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between the experimental and predicted values, as evident by the R2 value. The higher R2

denotes the higher accuracy of the model. The dispersion for predicted and experimental
values (targets) and DT model errors is shown in Figure 11. The average, highest, and
lowest values of the training set are 6.20, 20.7, and 0.07 MPa, respectively. Whereas 12.5%
error values are less than 1 MPa, 37.5% are from 2 to 5 MPa, 32.5% are from 6 to 10 MPa,
and 17.5% are higher than 5 MPa.
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Figure 10. Predicted and actual results of DT model.
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Figure 11. Dispersion of predicted and actual values along with errors for DT model.

94



Materials 2022, 15, 4108

ii. Random forest modelling

The correlation between projected and actual results of RF model is shown in Figure 12.
The R2 value for the RF model comes out to be 0.97, which represents the highly precise
and more accurate of RF w.r.t Bg, DT, and AdB models. Furthermore, the dispersion of
projected values, actual targeted values and errors for RF model is shown in Figure 13. The
minimum, maximum, and average error values are 0.07, 10.9 and 3.93 MPa. It is noted that
15% of error data are below 1 MPa, 57.5% from 2 to 5 MPa, 22.5% from 6 to10 MPa, and
only 5% higher than 10 MPa. This analysis reveals the higher accuracy of RF model w.r.t
AdB, DT, and Bg models. It can also be depicted from lower error and greater R2 values. In
addition, twenty sub-models are employed by EML (Bg, DT, and AdB) to get the optimized
value that produces a firm output.
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Figure 12. Predicted and actual results for RF model.
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Figure 13. Dispersion of predicted and actual values along with errors for RF model.
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iii. AdaBoost modelling

A comparison of projected and actual outputs of AdB model is shown in
Figures 14 and 15. The correlation between them is illustrated in Figure 14. The R2 value
is 0.91, which shows better outcomes when compared to the DT model. The dispersion
of actual and predicted values along with errors for AdB model is illustrated in Figure 15.
19.7, 0.15, and 6.34 MPa are the maximum, minimum, and average values for the training
set. Whereas 27.5% of error values are below 1 MPa, 20% range from 2 to 5 MPa, 30% range
from 6 to 10 MPa, and only 22.5% are higher than 10 MPa. The higher accuracy of AdB
model in comparison with the DT model is also depicted by lower error values.
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Figure 14. Predicted and actual results for AdaBoost model.
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Figure 15. Dispersion of predicted and actual values along with errors for AdaBoost model.
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iv. Bagging modelling

The correlation between predicted and actual output values for Bg model is provided
in Figure 16. The R2 value for this model comes out to be 0.95, showing considerable
accuracy as compared to that of DT and AdB models. The dispersion of actual and
predicted values and errors for the Bg model is shown in Figure 17. The maximum, average,
and minimum in the training set are 11.07, 3.96, and 0.01 MPa, respectively. Whereas only
25% of error values are below 1 MPa, 45% of values range from 2 to 5 MPa, and 27.5% values
range from 6 to 10 MPa. The error distribution and R2 are more accurate than that of DT
and AdB models for the C.S prediction of WMC. Whereas the R2 and error values obtained
from all considered ensembled ML models are in an acceptable range, thus depicting better
prediction outcomes. Hence, it is observed in this study that EML techniques (RF, AdB and
Bg) can predict high accuracy outcomes when compared to standalone DT techniques.
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Figure 16. Predicted and actual results for bagging model.
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Figure 17. Dispersion of predicted and actual values along with errors for bagging model.
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6.2. K-Fold Cross Validation Checks

Statistical analysis with Equations (1)–(3) is utilized to predict the model’s response.
The model’s legitimacy is evaluated by utilizing the k-fold cross-validation approach
during execution [95–97]. Usually, the validity of the model is done with a k-fold cross
validation process [92], in which random dispersion is done by splitting it into ten groups.
The greater the R2 value and less the errors (RMSE and MAE), the more a model’s accuracy
is. Furthermore, this process should be repeated multiple (i.e., 10) times for a satisfactory
result. The exceptional precision of the model can be achieved by using this comprehensive
approach. In addition, statistical analysis (i.e., RMSE and MSE) is also performed for all the
models (Table 6). The RF model accuracy (inversely related to error values) compared to
AdB, Bg, and DT models is also supported by these checks. Statistical analysis, as reported
in the literature [98–100], is used to assess the model’s response to the prediction. The k fold
cross validation is assessed by utilizing R2, MSE, and MAE. Respective dispersions for the
decision tree, random forest, AdaBoost, and bagging models are presented in Figures 18–21.
Minimum, average, and maximum values of R2 for the decision tree are 0.52, 0.68, and 0.86,
respectively (refer to Figure 18). Whereas the maximum, average and minimum values of
R2 for random forest are 0.97, 0.78, and 0.66, respectively (see Figure 19). Contrary to it, the
maximum, minimum, and average R2 values of the AdaBoost model are 0.91, 0.53, and 0.71,
respectively, as portrayed in Figure 20. The maximum, average, and minimum values of R2

for Bg model are 0.95, 0.78, and 0.64, respectively are shown in Figure 21. Upon comparing
error values (MSE and MAE), the average MSE and MAE values for DT model are 11.58
and 9.45, respectively. Whereas, average MSE and MAE values for AdaBoost model are
10.08 and 8.45, respectively, and average MSE and MAE values for the Bg model are 7.65
and 7.03, respectively. The RF model with the lowest error and higher R2 value performs
better for results prediction.

MAE =
1
n

n

∑
i=1

|xi − x| (1)

MSE =
1
n

n

∑
i=1

(

ypred − yre f

)2
(2)

RMSE =

√

√

√

√

∑

(

ypred − yre f

)2

N
(3)

where:
n = Total data samples,
x, yre f = data sample reference values,
xi, ypred = model prediction values.

Table 6. Statistical checks of decision tree, random forest, AdaBoost, and bagging models.

Models
Mean Absolute Error

(MPa)
Mean Square Error

(MPa)
Root Mean Square

Error (MPa)

Decision tree 6.204 26.173 5.116

Random forest 3.937 24.197 4.919

AdaBoost 4.665 30.947 5.563

Bagging 3.969 62.679 7.917
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Figure 18. Statistical analysis of DT model for K-fold cross-validation.
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Figure 19. Statistical analysis of RF model for K-fold cross-validation.
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Figure 20. Statistical analysis of AdaBoost model for K-fold cross-validation.
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Figure 21. Statistical analysis of bagging model for K-fold cross-validation.

7. Discussion

7.1. Comparison of Machine Learning Models

Ensembled ML and individual approaches are explored in this study to estimate WMC
with the aim of sustainable development in environment-friendly construction materials.
RF, Bg, AdB, and DT machine learning techniques are used in this study to predict the
compressive strength of WMC. The DT algorithm’s goal is to develop a model that can
predict the target variable accurately, for which a tree like structure, i.e., a decision tree, is
developed for problem-solving. In DT, the class label is represented by a leaf node and
attributes are represented by interior node. Both variance and bias are reduced by boosting
supervised learning. Learners develop this idea sequentially on which it is based. The
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growth of all subsequent learners is based on prior learners, except for the initial one. In
this way, strong learners are formed from weak ones. Whereas, in bagging technique,
a random sample is selected for data from the training set; i.e., the selection of individual
data points can be made multiple times. Individual training of said weak models is done in
pursuance of numerous data samples generation and based on task type like; classification
or regression, the average and/or majority of these predictions give an estimate with high
accuracy. To establish the algorithm’s prediction superiority, employed algorithms are
compared for targeted performance. The output of the random forest model comes out to
be more accurate, having a 0.97 R2 value, compared to bagging with 0.95 R2, AdB with
0.91 R2, and DT with 0.86 R2. Furthermore, the performance of AdB, RF, DT, and Bg
models is also evaluated by utilizing the k-fold cross-validation technique and statistical
analysis. The performance of the model is higher with low error levels. But it is tough
to assess optimized machine learning regressors to forecast results from a wide range of
topics because the model’s performance is very much dependable on data points and the
model’s input parameters. On the other hand, in ensemble ML techniques, sub-models
are generated to leverage the weak learner that can be optimized and trained on data for
achieving the higher value of R2. Dispersion of values for the determinant coefficient of
AdB, bg, and RF sub-models is shown in Figure 22. The values of R2 for all sub-models
of RF are greater than 0.76, as shown in Figure 22a, while most values of R2 in the case of
sub-models for AdB and Bg are less than 0.51 (Figure 22b) and 0.66 (Figure 22c), respectively.
It depicts higher accuracy of RF technique for results prediction having a maximum value
of R2, i.e., 0.97. Therefore, the RF model is suggested to predict the compressive strength of
waste materials such as marble powder.
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Figure 22. Determination coefficient (R2) values for sub-models. (a) Random forest; (b) AdaBoost;
(c) Bagging.

7.2. Waste Marble Concrete for Sustainable Construction

Planet earth is facing destruction of the ecosystem in terms of ground contamination,
water pollution, and air quality. These are the leading causes of severe diseases leading to
mortality. In addition to health issues, pollution is also the main hindrance to achieving
sustainability. A substantial expense for society and the economy is imposed by high
levels of environmental pollution, i.e., air, water, and land treatment. Construction wastes
are a major contributor to environmental pollution. Singh, et al. [101] reported that 30%
of marble is wasted during processing because of its uneven shape or smaller size. In
the case of semi-processed slabs, the quantity of waste is 2–5%. In a vertical/horizontal
cutter, one ton of processed marble stone produces nearly one ton of slurry with 35–45%
water content. Construction industries are expanding too quickly, resulting in a massive
amount of waste, wreaking havoc on the environment in terms of air pollution, water
pollution, and soil deterioration, such as waste generated by marble industries. To address
this major challenge, strong strategy action is required. Researchers/engineers are more
focused on the effective usage of waste materials in the construction industry to minimize
the challenge mentioned above. The incorporation of waste materials, such as marble
powder, is among the effective steps toward sustainability as it would not only reduce the
impact on the environment, but would also save natural resources and lower the project’s
overall cost, ultimately bringing economic value for waste materials. According to this
viewpoint, the building sector is the primary focus for the reuse of waste products such as
waste marble and granite, natural waste fibers, aggregate, and mortar wastes, etc. These
wastes may be used in large-scale concrete production, whereas renewable resources such
as natural sand may last longer and minimize cement usage, resulting in more productive
fields, lower project costs, and reduced environmental contamination risk. In the current
research, waste marble powder usage is pointed out for concrete manufacturing to reduce
waste disposal problems as shown in Figure 23. The concrete blocks are mostly used in
the interior and the exterior of buildings. Blocks are used for partition as non-load bearing
walls when used in frame structures that are constructed with reinforced cement concrete
(RCC). The waste marble powder concrete blocks can deliver several flexible choices that
can be used to customize one’s home aesthetics with minimum effort. Because of this
functionality, concrete blocks allow design ideas for innovation in the street and building
floors. Sustainable concrete blocks are readily recyclable, thus reducing the overall cost
of building construction, ultimately eliminating potential pollution. Marble powder is
added to concrete to make these blocks which can be used in the construction of roadside
walkways. C.S of concrete is reduced by adding waste marble powder to it, as reported
in the current study, allowing its application in emergency light-weight structures such
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as shelter homes, hospitals after earthquakes and flooding, and restrooms for passengers
on highways and in railway/bus stations. In this scenario, waste marble powder concrete
blocks are proposed to be used as sustainable construction material.

 

•

•

•

Figure 23. Marble powder disposal problems.

8. Conclusions

Marble stone waste materials are a major concern for the construction industry. Ac-
cordingly, the incorporation of marble waste powder in concrete composite during its
manufacturing could be an effective addition to the category of sustainable construction
materials and an effective effort to improve the surrounding environment. For this purpose,
an approach has been made to use marble powder with different proportions in concrete.
Additionally, this study aims to explore the usage of ensembles machine learning (ML) and
individual approaches for the prediction of compressive strength (C.S) of waste marble
concrete (WMC). Forecasting the compressive strength of waste marble concrete is achieved
by utilizing random forest (RF), AdaBoost (AdB), bagging (Bg), and decision tree (DT)
techniques. The conclusions are as follows:

• Bricks manufactured of 10% marble powder as a substitute had the highest compres-
sive strengths of 37.8 MPa at 28 days. Such type of waste marble concrete may be used
in the form of blocks for emergency light-weight structures such as hospitals and refuge
homes during earthquakes and flooding. In this scenario, WMC having a 10% marble
powder content (as a substitute) is proposed to be used as construction material.

• The random forest model has come out to be most effective in terms of prediction
with respect to AdaBoost, bagging, and decision tree approaches due to higher values
of R2 with lower error values. Decision tree, random forest, AdaBoost, and bagging
models have R2 values of 0.86, 0.97, 0.91, and 0.95, respectively. However, the findings
of ensembled models (RF, AdaBoost, and bagging) are within an acceptable range.

• Satisfactory outputs of random forest, AdaBoost, and bagging are also demonstrated
by the k-fold cross-validation approach and statistical analysis. In addition, the higher
performance of the random forest model with respect to the decision tree, AdaBoost,
and bagging models is also established through these checks.

• ML can achieve more accurate prediction of material strength properties approaches
without putting additional effort and time for sampling, casting, curing, and testing.
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This study evaluated the compressive strength of waste marble concrete considering
limited mix proportions with limited input parameters. However, in the future, increasing
the number of datasheets and importing a substantially higher number of mixtures and
considering higher input parameters could result in a better applicable model. As a
result, experimental work, field tests, and numerical analysis employing a variety of
methodologies should be used to increase the quantity of data points and outcomes in
future investigations (e.g., the Monte Carlo simulation).
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45. Keleştemur, O.; Arıcı, E.; Yıldız, S.; Gökçer, B. Performance evaluation of cement mortars containing marble dust and glass fiber
exposed to high temperature by using Taguchi method. Constr. Build. Mater. 2014, 60, 17–24. [CrossRef]

46. Rodrigues, R.d.; De Brito, J.; Sardinha, M. Mechanical properties of structural concrete containing very fine aggregates from
marble cutting sludge. Constr. Build. Mater. 2015, 77, 349–356. [CrossRef]
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Abstract: In this study, the durability of cement-based repairs was observed, especially at the interface
of debonding initiation and propagation between the substrate–overlay of thin-bonded cement-based
material, using monotonic tests experimentally and numerically. Overlay or repair material (OM) is
a cement-based mortar with the addition of metallic fibres (30 kg/m3) and rubber particles (30% as
a replacement for sand), while the substrate is a plain mortar without any addition, known as control.
Direct tension tests were conducted on OM in order to obtain the relationship between residual stress-
crack openings (σ-w law). Similarly, tensile tests were conducted on the substrate–overlay interface
to draw the relationship between residual stress and opening of the substrate–overlay interface.
Three-point monotonic bending tests were performed on the composite beam of the substrate–overlay
in order to observe the structural response of the repaired beam. The digital image correlation
(DIC) method was utilized to examine the debonding propagation along the interface. Based on
the different parameters obtained through the above-mentioned experiments, a three-point bending
monotonic test was modelled through finite elements using a software package developed in France
called CAST3M. Structural behaviour of repaired beams observed by experimental results and that
analysed by numerical simulation are in coherence. It is concluded from the results that the hybrid
use of fibres and rubber particles in repaired material provides a synergetic effect by improving its
strain capacity, restricting crack openings by the transfer of stress from the crack. This enhances the
durability of repair by controlling propagation of the interface debonding.

Keywords: fibres; rubber particles; thin bonded overlay; debonding; DIC; CAST3M

1. Introduction

Concrete has been utilised abundantly in the construction sector over recent decades,
and with the passage of time, a reduction in the load-retaining capacity of existing infras-
tructures has been observed. In order to rehabilitate damaged concrete structures, different
techniques have been used. Among different rehabilitation techniques, a unique approach
to reinstate the performance of a degraded structure is thin bonded cement-based overlay.
This overlay technique is used to replace the decaying concrete, to provide smoothness to
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the damaged part of structure and to enhance the load carrying capacity through increased
thickness, which also provides an extra margin for protecting it against corrosion [1]. Such
a technique proves to be very efficient, specifically for larger surfaces of concrete such
as pavements [2,3].

However, the durability of these overlays can be limited due to cracking of the repaired
part, followed by the interface’s delamination from the substrate [3,4]. This issue has already
been well-reported in previous studies [1,5,6]. According to some previous research [1,3,4],
mechanical loadings and differential shrinkage are the major causes for the delamination
between overlay and substrate. The delamination normally begins from edges, cracks and
joints in all mechanisms.

On the basis of previous literature, one can say that the long-term sustainability of
the materials used for repair, and bonding between two layers, are merely influenced
by the durability characteristics of thin bonded overlays. As for sustainable materials,
reliable option to improve the durability properties of the repair system is to use rubber
aggregates and steel fibres collectively [7–10]. The inclusion of rubber particles obtained
by grinding scrape tyres in repair composites enhances their strain capacities [9,11–13],
and fibres limit the crack opening, which assists in delaying debonding initiation and
restricting the interfacial delamination to greater extent. Moreover, positive synergetic
effects (enhancement in the strain capacity of material and in post-cracking residual tensile
strength) were found by the collective use of rubber particles and fibres in mortar [7,8,10,12].
Due to these positive synergetic effects, use of rubber particles and fibre in cement-based
overlay is most often adopted.

Several studies have been performed to analyse the crack and propagation of delami-
nation in cement-based overlays under different kinds of mechanical or thermal loadings.
Gillani et al. [14] studied the generation and movement of crack and delamination of
the overlays under fatigue loading. They found that the addition of metallic fibres and
rubberised particles help to control the debonding by restraining the crack (with addition
of fibres), as well as by improving the strain capacity (with addition of rubber aggregates).
Mateos et al. [15] reported the mechanical behaviour of the asphalt–concrete interface in
a bonded concrete overlay of asphalt pavements (BCOA). Cylindrical specimens were
used under various conditions such as wet and dry, and temperature ranges between
5 and 40 ◦C. The results indicate that the strength of the concrete–asphalt interface is
strongly linked with the asphalt. Moreover, interface significantly softened under wet
conditions, indicating that water is the decisive factor responsible for the failure of BCOA.
However, one can conclude that concrete has not developed a good bond with asphalt. A.
Toumi et al. [12] conducted experimental and analytical study on delamination of a thin
rubberised and fibre-reinforced mortar repair. In this study, substrates of cement-based
material (100 mm-thick) and an overlay with cement-based composites containing fibres
and/or rubber particles (40 mm thick) were used. The study was conducted under a three-
point bending test using a monotonic sequence of loading. They found that the addition
of fibres in repair material helps to delay the debonding phenomena, and the inclusion of
the rubber particles improves the strain capacity of the material, resulting in controlling of
the debonding compared to the repair material without rubber aggregates. Studies were
conducted to analyse the debonding of substrate and fibre-reinforced mortar (FRM) overlay
by Q.T. Tran et al. [4]. A substrate in the form of a hollow metal beam was used in this
study. The test was conducted under static three-point bending conditions. Experimental
results were compared with the results obtained through the model. The finite element
model (FEM) was based on the discrete crack model, which helps to model the crack and
debonding propagation efficiently. The numerical results show that the developed model
is an effective system to forecast the crack opening and debonding propagation.

A study on the behaviour of fibre-reinforced concrete (overlay) over the asphalt
(substrate) was conducted by Isla et al. [16]. Bending tests were carried out on specimens
of size 100 × 100 × 400 mm with centre-to-centre distance of supports of 350 mm, and
a thickness of 50 mm per layer for concrete overlay and substrate of asphalt. Isla et al. [16]
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reported that inclusion of fibres significantly improved the residual capacity of flexural
member and composite beams as well. Hasani et al. [17] has also reported that the overlay
of fibre-reinforced concrete also improves the mechanical and durability-related properties.
Moreover, it was found that the compressive strengths, flexural strength, residual strength,
and ductility of the FRC overlay material was improved. However, the modulus of elasticity
was reduced.

On the basis of previous studies, it can be concluded that the bond between the
overlay and substrate and characteristics of the repair material significantly affect the
durability-related properties of thin overlay systems. Moreover, the debonding mechanism
between the overlay and substrate initiates when the crack reaches at interface. In this
regard, the hybrid use of fibre and rubber aggregates appears to be a viable option to
improve the durability characteristics of repair system. The current research was planned
to investigate the flexural behaviour of composite beams under monotonic load. The
evolution of crack opening, deflection and debonding length was evaluated to study
the potential of rubberized fibre-reinforced composite material for possible utilization as
a repair material in cementitious overlays. To ensure a good bond between the repair
material and substrate, the sandblasted substrate surfaces were used as per previous
research findings [18]. To analyse the crack’s evolution and delamination at the interface,
the DIC method was used. The flexural tests were modelled using the finite element
approach based on a discrete crack model to forecast the crack propagation and debonding
mechanism under monotonic loading.

2. Materials

Cementitious mortar including rubber particles with the addition of fibres was used
as a repair material in this study. Portland cement (CEM I 52.5R) in conformity with
EN197-1:2011 [19] and natural sand (0–4 mm) were used. The chemical composition and
physical properties of the Portland cement are shown in Table 1. Similar findings have also
been reported in other research study [20]. Master Glenium 27, a modified polycarboxylic
ether polymer-based superplasticizer, and Rheomac were used as superplasticizer and
viscosity-modifying agent (VMA), respectively. The rubber particles were used as a partial
replacement of sand in the same volumetric unit. The rubber aggregates were produced
through grinding of scrap tyres. Rubber particles’ specific gravity was 1.2, which is much
less than sand, i.e., 2.7. Gradation curves of rubber aggregates and sand show slightly
different particle size distribution for both materials, but in both cases, the maximum
particle size is limited to 4 mm, as can be visualized in Figure 1. Fibraflex Saint-Gobain [21]
provided the fibres, shown in Figure 2. The length of these fibres is 30 mm, which also
meets the criteria for productive bridging properties, i.e., the maximum aggregate particle
size should be equal or less than half of the length of fibre [22]. These fibres develop
an excellent bond with cementitious composites because of the rough and large surface
area. Properties of these amorphous metallic fibres are provided in Table 2 [3]. Similar
mixture proportions from another study were adopted for the current work [4], [11], and
are presented in Table 3. In view of previously conducted research [11], the maximum
dosage of fibre of 30 kg/m3 was investigated and the partial replacement of sand aggregate
with rubber particles was 30%.

The mixtures were designated with R and F for rubber aggregates and fibres, respec-
tively, for referencing of different mixtures. For instance, M0R30F is designated mixture
refer as follows:

M represents mortar, 0R shows 0% rubber particle, and 30F denotes mixture with
30 kg/m3 of fibres.

By keeping the same water-to-cement ratio (w/c), the quantity of super-plasticizer
was changed to keep the same workability with a slump of 10 ± 2 mm. In fibre-reinforced
and/or rubberized mortars, the quantity of super-plasticizer is required to be increased
because of the decrease in the workability of mortar with the addition of fibres [17]. Ad-
ditionally, it was observed that air content increases to 65% by the inclusion of rubber
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aggregates in mortar, as projected in the literature [23]. Rubber aggregates are lightweight
and water-repellent which makes them very susceptible to segregation. The role of the
viscosity agent is to avoid this detrimental phenomenon.

Table 1. Physical characteristics and chemical properties of Portland cement (CEM I 52.5R).

Physical Characteristics

Properties Unit Value

Specific gravity g/cm3 3.13

Water demand % 28.1

Fineness cm2/g 4067

28-day compressive strength MPa >50

Chemical properties (%)

C3S + C2S CaO/SiO2 MgO C3S C2S C3A C4AF Gypsum

78.1 2.9 0.6 68 12 7 9 4.2

Figure 1. Gradation curve for rubber particles and sand.

Figure 2. 30 mm-long metallic fibres.
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Table 2. Properties of metallic fibres (Fibraexsaint-Gobain [21]).

Properties of Metallic Fibres

Length, L 30 mm

Thickness 29 µm

Density 7200 kg/m3

Tensile strength More than 1400 MPa

Elastic modulus 140 GPa

Raw material
Amorphous metal

(Fe, Cr)80, (P, C, Si)20

Table 3. Mixture design (kg/m3).

Sr. No. Mix Designation Cement
Rubber

Aggregates
Sand Water Fibres Super-Plasticizer

Viscosity
Modifying

Agent

1 M0R0F

500

0 1600

250

0 1.2
0

2 M0R30F 30 5

3 M30R0F
215 1120

0 4.5
2.5

4 M30R30F 30 10

3. Mechanical Characterization

3.1. Compressive Tests

Tests for compressive strength were carried out in accordance with European standard,
NF EN 12390-3 [24]. Specimens used for compressive tests were in accordance with
EN 12390-1 [25]. Cylindrical specimens with a 110 mm diameter and height of 220 mm
were prepared.

3.2. Modulus of Elasticity Tests

Elastic modulus tests were carried out on studied mixture composites, using the same
specimen size as in Section 3.1 for each material. These tests were conducted by following
the standard NF EN 12390-13 [26]. A cage with three attached extensometers at an equal
angle from each other was used, as shown in Figure 3. The stress–strain relationship was
plotted using average deformation in a longitudinal direction with mounted extensometers.

Figure 3. Testing arrangement for modulus of elasticity with cage.

3.3. Direct Tensile Tests

Prismatic notched specimens with a size of 100 × 100 × 200 mm and reduced cross
sections of 50 × 50 mm, as shown in Figure 4, were prepared for direct tensile testing.
These tests were conducted to assess the tensile properties and stress–crack relationships
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for various composites. These will be the input factors for the finite element model. These
tests were conducted as per the RILEM recommendation [27]. An MTS press was used for
conducting the test and CMOD was recorded by using a COD clip, as shown in Figure 5.
One can analyse the capacity of the deformation linked with peak load and residual tensile
strength beyond the peak through these tensile tests. A loading speed of 5 µm/min was
adopted in the start of the test till the CMOD reaches 0.1 mm, and then the loading rate
was increased to 100 µm/min until failure of the specimen.

Figure 4. Prismatic notched specimens for direct tensile test (mm).

Figure 5. Experimental setup for direct tensile test.

4. Bending Monotonic Test

4.1. Specimen for the Monotonic Test

The composite samples were made of a thin repair layer applied on top of the substrate,
which mimics the repaired beam. Cementitious substrates without rubber aggregates
and fibre-reinforcement (M0R0F) were prepared to have a real application. The size of
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prismatic substrate was 100 mm × 100 mm × 500 mm. These substrate bases were placed
in a control environment of 20 ◦C and relative humidity (RH) of 98% for curing purposes.
Based on the results from previous studies [18,28–34], it is observed that the surface
preparation of the substrate has an influential role on the performance of the repair as far
as durability is concerned. So, substrates prepared by the sandblasting techniques were
used in experiments. In reference to previous studies [34,35], a 40 mm-thick layer was
used as the repair. So, a repair layer was cast on top of the 100 mm sandblasted substrates.
A schematic diagram of the beam with a repair layer under three-point bending monotonic
testing is shown in Figure 6. To predetermine the location of the crack, the repair layer was
notched during the specimen’s casting at the mid-span. These beams were placed under
ambient conditions (20 ◦C and RH of 98%) for 28 days.

Figure 6. Schematic representation of tested specimen for use in bending test.

4.2. Testing Procedure

A three-point bending monotonic test was performed on the specimen to analyse the
behaviour of the overlay–substrate under flexure. The schematic testing setup can be seen
in Figure 6. CMOD was measured by using a COD sensor. A loading speed of 0.05 mm/min
was adopted at the start of the test until the CMOD reached 0.1 mm, and then the loading
speed was increased to 0.2 mm/min until failure of the specimen (when resisting load is
equal to around zero). The LVDT sensor was used to monitor the vertical deflection of the
composite specimens at the middle. For monitoring the interface delamination and crack
propagation, a digital DIC technique was used. Under mechanical loading, crack initiated
from the tip of the notch in the overlay, which eventually caused the delamination when
it approached the interface. The main objective of the monotonic tests is to monitor the
following parameters:

• The opening of the notch (CMOD) with the application of force.
• The deflection with force.
• The load at which the crack approaches the interface location with DIC.

4.3. Digital Image Correlation Technique

The DIC method was developed by researchers from University of California in the
late 19th century [36–39]. DIC is a visual and non-contact measurement technique that is
used for monitoring of surface displacements of an object under investigation by image
registration techniques for accurate measurement of changes in images taken in series with
test proceeding. Strain on the surface of the object is calculated using the displacements.
Random speckles are made on the white painted surface of the object prior to the initiation
of the test to obtain the most effective results [40].
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Two images were taken from two cameras within the same period of time using the
3D DIC technique. The system must be calibrated prior to the test. After calibration, these
results can be used correlate the images for the determination of the deflection and strain of
the object under investigation [41]. For 3D image correlation, preparation of the specimen is
necessary, as shown in Figure 7. The complete testing layout for DIC can be seen in Figure 8.

Figure 7. Surface preparation of specimen for the bending test along with DIC technique.

Figure 8. Complete testing layout for three-point bending monotonic test using DIC technique.

Three-point monotonic bending tests with DIC technique were conducted for all
repairs to examine the pattern of the crack and to evaluate the load where the crack
approaches the interface and debonding starts. The software Vic-3D, [42] was used for
image processing. The generated displacement and strain on the surface of the object can
be analysed through post-treatment of images taken during the bending test. The complete
cracking pattern is shown by the post-treatment. An artificial extensometer is used to find
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the value of the load at which the crack propagates to the interface. The placement of an
artificial extensometer on the surface is shown in Figure 9. The DIC method has the ability
to carry out reverse analysis of obtained strains through post-processing. So, an artificial
extensometer can be placed at an actual crack location after locating the crack path to detect
the load where the crack approaches the interface. When the crack passes this extensometer,
an abrupt variation in D1 value is observed (Figure 10). The D1 is an extension in the
artificial extensometer that develops due to crack opening. At the location where there is
an abrupt change in D1, the corresponding load value represents the propagation of the
crack to the interface and initiation of the interface debonding.

Figure 9. Placement of an artificial extensometer at the interface.

Figure 10. Force versus elongation in artificial extensometer (D1).

The loads required to start the delamination of various specimens with unique repair
mixtures are provided in Table 4. For M0R0F and M30R0F repair mortars, the average
force for debonding initiation is comparatively less for M0R30F and M30R30F. These fibres
provide bridging properties throughout the crack path and reinstate the crack opening. For
M30R0F repairs, the load needed to start the delamination is also improved in comparison
to M0R0F mortar repair. The inclusion of rubber particles increases the capacity of strain
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in the material and helps in delaying crack initiation. Additionally, the delamination
initiation load is notably enhanced for M30R30F. The increase in the load value is due to
the synergetic effect induced by the collective use of rubber particles and fibres.

Table 4. Average interface debonding-initiation force.

Mix Composition M0R0F M0R30F M30R0F M30R30F

Average interface debonding-initiation force (kN) 6.5 8.0 7.0 9.0

5. Numerical Modelling

Various discrete crack models were developed for modelling and analysing the be-
haviour of normal concrete and fibre-reinforced concrete under monotonic loading. Peters-
son [43] used fictitious crack models based on fracture mechanics, enabling the prediction
of the growth of crack and fracture zones in normal concrete or composite concrete. In
the developed model, cracks in the overlay and interface debonding were propagated
according to Mode I of fracture mechanics. The initiation as well as the propagation of
the crack in the overlay followed the pre-damaged path, or along the zone of minimum
strength (at the location of notch).

5.1. Mesh Size of Composite Beam

As per the symmetrical system, only one half of the beam was modelled for the
optimization of the simulation by the FEM package. Figure 11 shows the model of half of
the composite beam in the software. Triangular and rectangular elements were made with
three and four nodes, respectively, to have an optimised mesh size. To obtain accurate and
optimised results from model, Tran [34] analysed the behaviour of a composite beam by
altering the size of the mesh to obtain stabilised results. He observed that while using inter-
node distances less than 1mm, the effect of mesh size on the results became insignificant.
In this study, a node-to-node distance of 1 mm was selected.

Figure 11. Substrate–overlay composite beam model in FEM software.

5.2. Cracking/Delamination Modelling Theory

Three-point bending tests under monotonic loading on the repaired beams as described
in Section 3 were modelled using the discrete crack model mentioned earlier. To model
mechanical response of fibre-rubberised mortar, material characteristics were described for
the overlay and interface in Section 6. The stress–crack-opening relationships for overlay
materials are given in Equations (1)–(4) as well as for interface in Equation (5).
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CAST3M, developed in France by the Atomic Energy Commission, was used for
calculation purposes in the finite element method (FEM). To control the propagation of
delamination (debonding) or cracks, the stress premier node after the tip of crack of
debonding, as proposed in previous studies [4,44], was considered. This type of technique
prevents controlling the propagation by the condition or state of stress calculated at the
interface or at the crack tip, where the stress singularity was predicted based on the strength
theory analysis. So, the tip of the crack or delamination initiation node is advanced to the
next node when the state of the stress at the commanding node does not satisfy a stability
criterion (depending on the material tensile strength or on the one of the interfaces). The
interlocking is considered by closing forces applied between the nodes in front of each
other along the crack or along the de-bonded area. Debonding is started through tension
perpendicular to the interface with the use of cementitious materials [45]. So, in the studied
model, the loads were found through the residual stress–debonding opening/crack (σ-w)
laws. By using a hypothesis of plain stress, trilateral and quadrilateral elements were
modelled in 2D. At the time of calculation, the interlocking closure load of each particular
pair of nodes facing each other were recalculated based on the crack or debonding openings
each time a node was freed, to advance the crack or debonding. Residual closing forces
were precisely fitted by an iterative approach until fracture widths or debonding widths
were stable, according to the stated criterion. Then, for comparison with the propagation
criterion, the same method is used on the next controlling node.

• Debonding or cracks moved to the next node, if σt > Rt or σti > Rti, respectively, where
σt is the tensile stress, Rt is the tensile strength of the repair materials and σti and Rti
are the tensile stress and tensile strength of the substrate–repair interface, respectively.

• At the reach of stable state, and next step of increased loading was imposed to restart
the propagation if the above-mentioned criterion is not met.

6. Results and Discussions

6.1. Modulus of Elasticity and Compressive Strength

Compressive strength and modulus of elasticity for all compositions are provided in
Table 4. For mortars with rubber aggregates, notable depreciation in compressive strength
is found. These results are in line with past studies on the effect of rubber particles partly
replacing sand in cement-based materials [11,46]. The compressive strength of composites is
not remarkably modified by the addition of fibre-reinforcement. Not only the low stiffness
of rubberised aggregates, but also the high porosity and weak ITZ between cementitious
and rubber particles had deleterious effects on the mechanical properties of mortar [47].

Similarly, a remarkable reduction in E values of the material was seen due to the
inclusion of rubber particles, which is one of the same results found in past studies in
this area [11,46]. Low stiffness and an increase in the porosity due to the addition of
rubber particles are the main factors for the reduction in the E values. Like the results for
compressive strength, the addition of metallic fibres has no effect or a very minute influence
on E-values, as provided in the information in Table 5.

Table 5. Compressive strength and modulus of elasticity of various materials used for repair.

Repair Material Compressive Strength (MPa) Modulus of Elasticity (Mpa)

M0R0F 52.7 28,580

M0R30F 51.6 28,332

M30R0F 13.0 10,840

M30R30F 9.1 10,775

6.2. Tension Test for Material Used as Repair

Results of the direct tensile experiment for various repair materials are presented in
Table 5. The reduction in tensile strength for M30R0F as well as the enhancement in the
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strain capacity is also observed (around 1.5 times increase in strain capacity vs. that of
control mortar), as shown in Figures 12 and 13. Poor formation of ITZ and an increase in
the porosity of the composite due to the addition of rubber particles are the main factors for
the reduction in tensile strength. Even with the low strength in tension, the deformation
at maximum load is higher for material containing rubber particles than the control one,
because rubber particles have the capability to withstand failure deformation after peak [48].
From Figure 12, it can be analysed that for M0R30F, residual strength in tension is notably
improved. A 3.5 times increase in the strain capacity is observed in M30R30F as well as
enhancement in the residual strength in the post-cracking zone compared to the control.
Figure 14 shows the experimental results obtained for various materials used for repair. By
using best-fit curves of the results obtained through experiments, the following equations
were finalised.

Figure 12. Impact of rubber aggregates and fibres on strain capacity and on residual post-
peak strength.

Figure 13. Impact of rubber aggregates and fibres on strain capacity and on residual post-peak
strength (enlarged view).
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Figure 14. σ-w law for various composites (a) plain mortar, M0R0F (b) M0R30F (c) M30R0F
(d) M30R30F.

For M0R0F

σt = Rt × EXP

(

−3
w

wl

)

(1)

For M0R30F

σt = Rt × EXP

(

−2.5
w

wl

)

(2)

For M30R0F

σt = Rt × EXP

(

−1.5
w

wl

)

(3)

For M30R30F

σt = Rt × EXP

(

−1.3
w

wl

)

(4)

where “σt” is the residual strength in tension, “Rt” is the strength in tension, “w” is evolution
of the crack opening during loading and “wl” is the controlling value of the crack opening,
after which residual strength in tension becomes negligible or zero. “Rt” and “wl” for the
various materials are summarised in Table 6.

Table 6. Experimental data for calibrated model.

Repair Material M0R0F M0R30F M30R0F M30R30F

wl (mm) 0.125 0.72 0.36 0.99

Rt (MPa) 3.17 3.2 1.02 1.98

6.3. Tension Test for Overlay/Repair–Substrate Interface

The principle of this test was as same as explained in Section 3.3. The objective was to
have the analysis of the residual stress-delamination opening and tensile strength analytical
relation for the substrate–overlay interface. The tested samples consist of old substrate and
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new overlay and were notched before testing at the interface on the ends facing each other.
The model curve is also shown in Figure 15 based on the exponential model Equation (5).

σti = Rti × EXP

(

−4
w

wli

)

(5)

where, “σti” is residual strength in tension, “Rti” is the interface tensile strength (1.00 MPa),
“w” is the opening of debonding and “wli” is the controlling value of debonding opening
beyond which strength in tension becomes negligible (0.1250 mm).

Figure 15. σ-w law for calibrated model and experimental results.

6.4. Relationship between Force and Opening of Notch

Figure 16 illustrates the relationship between notch opening and the force in the
overlay. A comparison between numerically obtained results and experimental ones has
been carried out and a good agreement have been observed.

Figure 16. Force vs. opening of notch (CMOD) for (a) M0R0F-M0R0F, (b) M0R0F-M0R30F, (c) M0R0F-
M30R0F, and (d) M0R0F-M30R30F.
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The results obtained from model and the experimental campaign indicate that at
any opening of the notch in the overlay, the corresponding load is higher in case of fibre-
reinforced mortar compared to the control one. Repair material with fibre-reinforcement
limits the notch opening during testing by controlling the opening of the crack.

The addition of rubber particles has no notable effect on the notch opening, as ob-
served from the results. The M0R0F and M30R0F repair materials show an approximately
similar response.

6.5. Relationship between Force and Deflection

Figure 17 show the relationship between force and deflection. A comparison between
simulated and experimental results have been carried, out and an excellent coherence has
been observed.

Figure 17. Force vs. deflection in composite beam for; (a) M0R0F-M0R0F, (b) M0R0F-M0R30F,
(c) M0R0F-M30R0F, and (d) M0R0F-M30R30F.

From the results, it is observed that in beams repaired with fibre-reinforced composite,
load carrying capacity of the repair material is increased at the corresponding deflection.
This is because of the capacity of the fibres to transfer the stress across the crack, which
restricts the deflection to a greater extent than in the other repair materials.

6.6. Relationship between Force and Debonding

Figure 18 show the relationship between force and debonding propagation at the
interface of the composite beams repaired with different materials. In these figures, a com-
parison between simulated and experimental results has been carried out and an excellent
coherence has been noticed.
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Figure 18. Force vs. debonding at interface in composite beam for; (a) M0R0F-M0R0F, (b) M0R0F-
M0R30F, (c) M0R0F-M30R0F, and (d) M0R0F-M30R30F.

Figure 19 shows the results obtained from all repair materials in order to provide
a good comparison. The test results show that propagation of debonding is more dominant
in the repaired material without the fibres (M0R0F and M30R0F). With the addition of
fibres in the repaired material (M0R30F and M30R30F), resistance in the debonding along
the interface was noticed. This is closely linked with the crack opening in the repair layer.
Therefore, the fibre-reinforced repair composites limit crack opening and thus delay the
initiation interface debonding and limit propagation.

Figure 19. Force versus debonded length for various repair layers.
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For M30R30F repair, it is also depicted that for the debonded length, the representing
load is higher more than the other ones. For example, to obtain a 20 mm delamination at
the interface, 6.5 kN of force is needed by M0R0F repair, 10 kN by M0R30F and 10.7 kN
by M30R30F. Similarly, the force needed to initiate the delamination is also higher with
M30R30F repair.

Notch opening plays a significant role in the transmission of debonding along the
interface, as shown in Figure 20. The M0R0F as a repair material depicts the highest notch
opening, and the corresponding debonded length is also the longest of the materials. On the
contrary to the previous repair material, the M30R30F repair material restricts the opening
of the notch and debonding propagation.

Figure 20. Debonded length vs. notch opening for different repair layers.

The notch openings of 15, 16, 21 and 22 µm were recorded, at which debonding
is initiated in beams repaired with mixed compositions M0R0F, M0R30F, M30R0F and
M30R30F, respectively. This indicates that the benefit of the inclusion of rubber aggregates
in repair material is not only restricted to crack controlling, but it is also useful to retard the
initiation of delamination.

Fibre-reinforcement has no notable effect on the start of delamination. The lengths
of delamination are restricted with use of M0R30F and M30R30F as repair materials.
Therefore, it is concluded that the repair material reinforced with fibres is not only limited
to controlling the crack opening, but also to the debonding.

7. Conclusions

In this paper, a detailed experimental and numerical study has been conducted on
the structural performance of beams with base and repair under three-point bending
monotonic loading. The following conclusions are drawn from the experimental and
numerical investigation:

• The maximum crack restraining was shown by repair material including fibres with
or without the inclusion of rubber particles.

• To initiate the debonding, repair materials that are fibre-reinforced (either with or
without rubber particles) required a greater value of load than the repair materials
without the inclusion of fibres.

• M0R0F shows the minimum resistance to initiating interface debonding. However, for
M30R0F repaired material, the transmission of delamination is restricted and retarded
compared to the control one. The micro-cracking was controlled by rubber particles,
which as a result increases and the load for debonding. Moreover, improved strain
capacity of the repaired material with the addition of rubber particles also increases
the notch opening at which the delamination starts.
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• Debonding transmission at the interface is more significant in the materials without
fibres (M0R0F or M30R0F) and is largely controlled in M30R30F repair. It shows the
positive synergetic effect by the collective utilisation of rubber particles and fibres
under static bending test.

• The FEM model results show that it accurately predicts the mechanical response of
the material under monotonic flexure testing. In particular, it allows the kinetics of
crack advancement and of delamination at the interface to be predicted.

• The developed FEM is an effective technique to predict and analyse the response of
the repaired system under mechanical conditions of loading. In particular, it helps to
highlight the benefit of incorporating rubber aggregates and fibre-reinforcement and
the positive synergetic effect of both.

• The DIC technique is a suitable tool for the monitoring of debonding propagation
along the interface.

• Finally, as added value to the contribution towards achieving more sustainable repair,
the addition of rubber aggregates obtained through grinding of scrap tyres in cementi-
tious materials can also be considered to maintain a clean environment by recycling
used tyres and minimizing the use of landfill for residual waste.
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Abstract: In this article, the effect of cement type on selected properties of plastering mortars
containing a cellulose ether admixture was studied. In the research, commercial CEM I Portland
cement, CEM II and CEM III, differing in the type and amount of mineral additives, and cement class,
were used as binders. Tests of consistency, bulk density, water retention value (WRV), mechanical
properties and calorimetric tests were performed. It was proved that the type of cement had no effect
on water retention, which is regulated by the cellulose ether. All mortars modified with the admixture
were characterized by WRV of about 99%. High water retention is closely related to the action of the
cellulose ether admixture. As a result of the research, the possibility of using cement with additives
as components of plasters was confirmed. However, attention should be paid to the consistency,
mechanical properties of the tested mortars and changes in the pastes during the hydration process.
Different effects of additives resulted from increasing or decreasing the consistency of mortars; the
flow was in the range from 155 mm to 169 mm. Considering the compressive strength, all plasters can
be classified as category III or IV, because the mortars attained the strength required by the standard,
of at least 3.5 MPa. The processes of hydration of pastes were carried out with different intensity.
In conclusion, the obtained results indicate the possibility of using CEM II and CEM III cements to
produce plastering mortars, without changing the effect of water retention.

Keywords: cellulose ether; cement plastering mortar; mineral additives; consistency; bulk density;
water retention; cement paste hydration; flexural and compressive strength

1. Introduction

Human activities have an increasing impact on the surrounding natural environment.
Reduction of CO2 production has long been the main problem of the global economy,
presenting challenges in areas such as engineering, environmental protection and the
construction industry [1–12]. CO2 emissions from fossil fuels and industry account for
approximately 90% of all CO2 emissions into the atmosphere from human activity. Cement
production alone accounts for about 5% of global CO2 emissions [1]. CO2 emissions com-
puted for the finished cement depend mainly on the clinker content, especially for CEM I
cement [5]. The reduction of carbon dioxide emissions from cement production is, therefore,
an important and urgent task for the cement industry. One of the possible ways to limit
the use of clinker is the use of cement with a high content of mineral additives [4,6,10–13].
Siliceous fly ash, calcareous fly ash and granulated blast-furnace slag are traditionally used
in the production of cement. These additives have pozzolanic and hydraulic properties,
respectively, which advantageously influence cement properties. The use of these raw
materials in the production of cement thus reduces carbon dioxide emissions [7–10,12].

Cement is one of the most popular binders used in dry-mix mortars, such as plastering
mortars, masonry mortars and adhesive mortars [14–17]. Cement in these materials acts as
a binder ensuring obtaining the appropriate strength class and the durability of the finished
product. It is also largely responsible for the adhesion of the mortar to the substrate [15,17].
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Portland cement CEM I is the basic binder in mortars, but more often this cement is replaced
by CEM II multi-component and CEM III [17].

Modern plastering mortars are complex multi-component systems. Among the mortar
components (besides binder, fine aggregate and water), cellulose ether admixture plays
an important role in dry-mix mortars [18–27]. Cellulose ethers as polymer admixtures are
being applied to a growing extent in the production of dry-mix mortars. This leads on the
one hand to a great variety of areas of application and on the other hand to an increasing
diversity of mortars. First of all, these polymers improve water retention [18,19,21–23,25].
Their function is to prevent water loss into porous, absorbent substrates [23]. High wa-
ter retention provides proper conditions for the binding and hardening processes of a
binder [26], and this ability has a positive effect on reducing mortar shrinkage [27–29].
Cellulose ethers have a significant impact on the rheology of fresh mortars [19,21,30,31].

In article [14], Chłądzyński assessed the suitability of cements with additives as a
binder used in the production of adhesive mortars. The subject of the research was mortars
prepared from CEM I Portland cements of various specific surface area and mortars with
multi-component Portland cements CEM II (containing varying amounts of fly ash and
granulated blast-furnace slag). Cements made in the laboratory were used for the tests,
through joint grinding clinker, gypsum, silica fly ash or granulated blast-furnace slag.
All samples contained a constant amount of cellulose ether and redispersible powder.
Standard tests of physical and mechanical properties of cements were performed, as were
calorimetric tests of the heat of hydration and standards tests of adhesive mortars. The
results of tests of adhesive mortars with fly ash differed from the results obtained in the
case of Portland cement mortars. The effect of fly ash addition was different for individual
methods. On the one hand, the research showed slightly better results in terms of adhesion
after thermal ageing, but on the other hand, the addition lowered the adhesion values
under sample conditions (adhesion tests after immersion of samples in water, adhesion
tests due to freeze-thaw cycles). Adhesive mortars made of cement with fly ash show
smaller slip versus CEM I Portland cement mortars. The effect of granulated blast-furnace
slag addition in adhesive mortars was similar to the effect of fly ash. The addition of
granulated blast-furnace slag also improves the open time for tested mortars. As a result
of the research, it was found that the tested cements with additives can be used as a
binder in the composition of adhesive mortars. The influence of cement replacement by fly
ash in brick masonry strength was experimentally verified by Seshu and Murthy in their
article [32]. The research consisted of the casting and testing of brick masonry prisms, with
two bricklayers. Cement and cement-fly ash mortars were prepared. In each mix the fly
ash percentage replacing cement binder in the mortars was increased from 0% to 40%, in
intervals of 10%. The results showed that replacement of cement with fly ash in cement
mortars is possible up to 40%, without unfavorable effects on the properties of the masonry
mortars. The tested additive replacement in leaner cement mortar mixes resulted in the
loss of mechanical properties by more than 15%, so cement replacement with fly ash, in
this case, may be not useful or profitable. Mortars containing cement and fly ash modified
with chemical admixtures have been researched by Zhou and et.al. [33]. All samples
contained a constant amount of cement and additive, but the amount of cellulose ether,
starch ether, bentonite and redispersion emulsoid powder were variable. The research was
an evaluation of the consistency, water retention, setting time, compressive strength, but
the effect of the fly ash on the properties tested was not analyzed. The authors focused on
the evaluation of the working and mechanical properties of ordinary dry-mixed mortars.
It was found that cellulose ether admixtures had the biggest influence on the consistency,
water retention and compressive strength of mortars, among all the analyzed chemical
admixtures.

This paper describes how the type of cement affects the plastering mortars’ selected
properties, i.e., consistency, water retention, flexural and compressive strength and hydra-
tion process. The described experimental results constitute the first part of our research,
concerning the assessment of the suitability of cements CEM II and CEM III as a binder in
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plastering mortar modified with cellulose ether admixture. The scope of further planned
research is presented in the conclusions of this article. The research conducted so far has
focused mainly on the use of cement CEM I, hydraulic lime or hydrated lime for the prop-
erties of the plasters. This article may be a supplement to the knowledge on the interaction
of cellulose ether with cements containing additives. Nowadays, the use of additives in
the production of cements is an important issue from the point of view of sustainable
development, ecology and economic considerations. The goal of the investigation was
the assessment of the suitability of the chosen cements CEM II and CEM III as binders in
cement-based plastering mortars modified with cellulose ether—to determine the influence
of these binders on the selected functional and mechanical properties of plastering mortars.
Additionally, in order to complete the tests of flexural and compressive strength of mortars,
calorimetric measurements of pastes were performed.

2. Materials and Methods

2.1. Materials and Sample Preparation

Commercial bag cement CEM I, CEM II and CEM III (from various cement plants),
quartz sand 0.5–1.4 mm (Kreisel, Dąbrowa, Poland), cellulose ether admixture (WALOCEL,
The Dow Chemical Company, Midland, MI, USA) and tap water were used. Cellulose ether
used in tests is a hydroxyethyl methyl cellulose (HEMC) with the viscosity of 25,000 mPa·s.
This admixture is in the form of white powder and it has a low level of chemical modifi-
cation. Five main types of mortars were prepared for the tests. The first type of mortar
(C1) was the reference one, which was prepared using an ordinary Portland cement, CEM
I 42.5R, with cellulose ether admixture. The remaining mortars were prepared based on
CEM III/A 32.5 N-LH, CEM II/B-V 42.5 R, CEM II/B-M (V-LL) 32.5 R, CEM II/B-V 32.5
R cements, marked sequentially as C2, C3, C4 and C5. All cements met the requirements
of EN 197-1 standard. In addition, in the case of selected properties, the C0 mortar was
prepared using CEM I 42.5 R cement and did not contain a cellulose ether admixture. The
chemical composition and selected physical and mechanical properties of cements obtained
from the cement plants are presented, respectively in Tables 1 and 2.

Table 1. Chemical composition of cements.

Components
CEM I
42.5 R

CEM III/A
32.5 N-LH

CEM II/B-V
42.5 R

CEM II/B-M
(V-LL) 32.5 R

CEM II/B-V
32.5 R

SiO2 20.14 23.96 27.3 20.0 28.75
Al2O3 4.88 6.74 10.9 6.9 11.32
Fe2O3 3.44 1.99 3.8 2.9 4.23
CaO 64.05 50.38 46.2 53.1 44.42

Na2O 0.16 0.33 0.4 0.3 0.48
MgO 1.61 4.28 1.7 1.5 2.14
SO3 2.71 1.48 2.6 2.8 2.38
Cl 0.025 0.037 0.1 0.1 0.065

K2O 0.61 0.54 1.4 1.0 1.59

All samples were prepared and tested in an air-conditioned laboratory at the tempera-
ture of 20 ± 2 ◦C and at a relative humidity of 65 ± 5%.

The mortar mix proportion is detailed in Table 3. The samples were made with a
binder to fine aggregate weight ratio 1:3. The water to binder ratio was 0.7 for all mortars.
The amount of water was selected in such a way that the C1 mortar had a flow of 165 mm
(consistency within borders 175 ± 10 mm). All samples from C1 to C5 contained a constant
amount of cellulose ether admixture, in quantity 4 g. The amount of the admixture was
selected experimentally and based on the analysis of the literature [18–21,26,31].
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Table 2. Physical and mechanical properties of cements.

Properties
CEM I
42.5 R

CEM III/A
32.5 N-LH

CEM II/B-V
42.5 R

CEM II/B-M
(V-LL) 32.5 R

CEM II/B-V
32.5 R

Water requirement of normal
consistency (%)

27.1 29.3 30.3 26.7 28.0

Initial setting time (min) 215 277 254 215 315
Specific surface area (cm2/g) 3942 4146 4433 4532 3424

28 days compressive strength (MPa) 58.8 51.3 55.2 41.6 40.8

Table 3. Mortar mix proportion of all samples.

Component (g)

C0 C1 C2 C3 C4 C5

CEM I
42.5 R

CEM I
42.5 R

CEM III/A
32.5 N-LH

CEM II/B-V
42.5 R

CEM II/B-M
(V-LL) 32.5 R

CEM II/B-V
32.5 R

Cement 450 450 450 450 450 450
Fine aggregate 1350 1350 1350 1350 1350 1350

Admixture - 4 4 4 4 4
Water 315 315 315 315 315 315

w/c Ratio 0.7 0.7 0.7 0.7 0.7 0.7

2.2. Methods

The measurements of standard consistency were done according to PN-EN 1015-3:2000
+ A2:2007 [34] and PN-B-04500:1985 standards [35].

The bulk density of fresh mortars was determined in accordance with PN-EN 1015-
6:2000 + A1:2007 standard [36], but the bulk density of hardened mortars was determined
in accordance with PN-EN 1015-10:2001 + A1:2007 standard [37].

Water retention value was determined in the accordance with the defined guide-
lines [38]. These tests were performed after 10, 30 and 60 min and were defined as WRV10,
WRV30 and WRV60. This parameter was determined by weighing absorbent materials
(filter paper) placed on the fresh sample before and after the predetermined measurement
time. Water retention was calculated according to the formula [38]:

WRV = 100 − W3 [%] (1)

W3 =
W2
W1

·100 [%] (2)

In Formula (1), W3 means the relative water loss in the mortar, expressed as a percent-
age. In Formula (2), W2 means water mass absorbed by the filter paper, but W1 means
water content in the tested mortar in the plastic ring (expressed in grams) [38].

The flexural strength and compressive strength of cement mortars were determined
in accordance with PN-EN 1015-11:2001 + A1:2007 standard [39]. For each mortar, three
cuboid samples of mortar of 40 mm × 40 × mm × 160 mm dimensions were prepared.
Mechanical properties measurements were performed after 2, 7 and 28 days.

Samples intended for testing properties of hardened mortars (bulk density and me-
chanical properties), after their disassembly (2 days after preparation), were stored for
5 days in polyethylene bags, and then for another 21 days in dry air conditions.

The hydration heat evolution of cement pastes was investigated using a differential
conducting microcalorimeter at 20 ◦C for 72 h. The pastes were prepared as mixtures of
4.5 g of cement, 3.15 g of water and 0.04 g of admixture. The w/c ratio of all samples was 0.7.
The research used the BT2.15CS low-temperature differential scanning microcalorimeter
(Setaram, Plan-Ies-Ouates, Geneva, Switzerland) operating under non-isothermal and
non-adiabatic conditions.
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3. Results

3.1. Consistency Measurements

In Table 4, the results of the consistency for all samples are presented (measurements
made with the flow table method in mm and measurements made with the drop cone
in cm).

Table 4. Consistency results for all mortars.

Symbol of Mortar Flow 1 (mm) Cone Penetration 2 (cm)

C0 205 12.9
C1 165 8.5
C2 169 8.0
C3 165 7.7
C4 155 6.6
C5 164 7.9

1 Consistency was determined in accordance with standard [34]. 2 Consistency was determined in accordance
with standard [35].

The flow of C1 mortar was 165 mm. This value was established as the baseline. All mor-
tars from C1 to C5 are characterized by plastic consistency, according to the standard PN-EN
1015-3:2000+A2:2007 [34] (flow diameter in the range from 140 mm to 200 mm) [36,40].
The lowest flow among mortars modified with admixture was observed with C4 mortar
(155 mm), but the largest was observed with C2 mortar (169 mm). In both cases the type of
additive influenced the consistency. Ground granulated blast-furnace slag increases the
flow of the mortars, while the use of limestone increases the water demand of mortars, thus
reducing their flow. A similar trend can be observed in the case of the cone penetration
test (consistency test according to the standard PN-B-04500:1985). Taking into account the
results of consistency of C1–C5 mortars in accordance with [35], it can be concluded that
all tested materials achieve the consistency value characteristic of typical plasters used in
practice [38,40]. In the case of plastering mortars intended for manually applied plasters,
their consistency (according by PN-B-04500:1985 standard) should be 6–9 cm, while for
mechanical (by machine) application it should be 8–11 cm [38]. All mortars modified with
cellulose ether admixture can be applied manually. Only C1 and C2 mortars can be applied
by a machine.

Table 4 shows the results of mortar consistency tests without admixture (sample
marked with the symbol C0). It is clearly visible that the mortar without admixture has
the greatest consistency in comparison to mortars modified with cellulose ether (these
differences vary from 18% to even 35%). Cellulose ether significantly reduces the con-
sistency. Mortars containing this admixture in their composition are characterized by
good workability, no segregation of ingredients, which can be seen when comparing the
appearance of the tested materials—flow test (Figure 1a,b).

Figure 1a,b shows the appearance of the C0 sample during the flow test. Even before
the final measurements are taken, water is separating immediately after removing the mold.
After measuring the flow diameter, one can also see water separating from the sample. This
phenomenon is not observed in the case of other materials. Figure 2 shows the appearance
of a mortar sample with CEM I cement and an admixture. The mortar is consistent, there
are no visible signs of segregation of ingredients. The consistency measurements thus
confirm the advantages of using cellulose ether admixtures, which improves the rheological
and application properties of plastering mortars.
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(a) (b) 

Figure 1. (a) View of the C0 sample after removing the form for flow research; (b) View of the C0 sample after flow test.

 

Figure 2. View of the C1 sample after flow test.

3.2. Water Retention

Table 5 and Figure 3 present the results of the water retention values WRV10, WRV30
and WRV60 (the tests were made after 10, 30 and 60 min measurements).

Table 5. Water retention results.

Symbol of Mortar WRV10 (%) WRV30 (%) WRV60 (%)

C0 86.5 79.7 73.5
C1 99.6 99.3 98.9
C2 99.6 99.3 99.0
C3 99.6 99.3 98.9
C4 99.5 99.3 98.9
C5 99.5 99.4 99.0
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Figure 3. Change in water retention value of mortars C0–C5 over time.

Based on the research, it can be concluded that all mortars modified with cellulose
ether admixture are characterized by a high water retention value throughout the whole
test. Changes in water retention during the 60 min of the measurement are practically
imperceptible (within 1%). Mortars from C1 to C5 can be classified according to the classifi-
cation given by Brumaud et al. [22] as materials with high water retention (WRV > 94%),
but mortar C0 has low water retention (WRV < 86%). A high water retention level is
marked with a solid line in the Figure 3. A high water retention for plasters C1–C5 is
related to the action of the admixture. Cellulose ether impacts the viscosity of mortar and
causes greater water retention [18,19,21,41]. A part of the water is bonded in the first stage
of cement hydration. At the same time, the remaining amount of water forms a gel with the
admixture. In this gel, the water molecules are attracted by the functional groups from the
polymer and agglomeration process takes place. As the hydration process occurs, this gel
can release water into the system [26]. These conclusions also confirm the results obtained
for mortar C0. The water retention value for this sample differed significantly from the
others; moreover, it underwent changes over time. After 10 min, retention was 86.5% and
after 60 min it was 73.5%. Water loss for mortar C0 was thu 26.5%, while it was a maximum
of 1.1% for all the modified mortars. In conclusion, there is no apparent influence of type
of cement on the water retention value and the change in water retention over time.

3.3. Bulk Density Measurements

Table 6 and Figure 4 present the results for the bulk density for mortars in the plastic
and hardened state.
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Table 6. Bulk density results.

Symbol of Mortar
Bulk Density in Plastic State

(kg/m3)
Bulk Density in Hardened

State (kg/m3)

C1 1434 1392
C2 1421 1375
C3 1513 1454
C4 1422 1377
C5 1455 1440

≥

Figure 4. Bulk density results of mortars in plastic and hardened states.

The bulk density of fresh mortars is different. The parameter ranges from 1421 kg/m3

(C2 mortar) to 1513 kg/m3 (C3 mortar). The results for the bulk density of four of the
tested samples are within the limits 1421–1455 kg/m3, while the bulk density of the C3
sample differs from the others and amounts to 1513 kg/m3. The plaster performance can
be indirectly assessed on the basis of the parameters affecting the application properties
of mortars (ease of application on the substrate, processing time) [19,21,26]. Taking into
account the obtained results, mortars C2 and C4, are characterized by the biggest effi-
ciency. Use of these plasters would be the most advantageous in terms of economy (bigger
efficiency—lower costs related to material consumption) [21]. Due to the obtained results
for bulk density (≥1300 kg/m3), the tested plasters are defined as ordinary mortars [40].
When it comes to the results for mortar bulk density in the hardened state, these range
from 1375 kg/m3 to 1454 kg/m3. The lowest bulk density in the plastic and hardened state
was achieved by C2 and C4 mortars. Mortar C3 with CEM II/B-V 42.5 R cement obtained
the highest bulk density.

3.4. Results of Mechanical Properties

The strength measurements were done after 2, 7 and 28 days of curing. The values
from three bars (flexural strength) or six bars (compressive strength) were calculated as an
average. The results for flexural strength are shown in Table 7 and in Figure 5.
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Table 7. Average strength of the mortars.

Sample Designation
Flexural Strength (MPa) Compressive Strength (MPa)

2d 7d 28d 2d 7d 28d

C1 1.10 1.73 3.38 2.30 3.69 8.38
(0.041) 1 (0.042) (0.155) (0.084) 2 (0.094) (0.146)

C2 0.44 0.61 2.76 0.96 1.39 7.27
(0.005) (0.005) (0.261) (0.047) (0.056) (0.264)

C3 0.93 1.37 3.96 1.99 2.80 9.28
(0.014) (0.097) (0.076) (0.056) (0.221) (0.301)

C4 0.37 0.62 2.42 0.72 1.39 6.03
(0.005) (0.005) (0.195) (0.043) (0.105) (0.247)

C5 0.49 0.97 3.06 1.05 2.16 7.85
(0.008) (0.029) (0.285) (0.023) (0.113) (0.672)

1 Standard deviation of flexural strength measurements. 2 Standard deviation of compressive strength measurements.

Figure 5. Change of flexural strength after different curing times.

Mortar C1 with cement CEM I 42.5 R (cement without addition) is characterized by
the highest strength after 2 and 7 days of maturation. The early strength of the mortars
C2–C5 was lower than that of the reference sample C1—the difference after 2 days of
maturing was in the range of 15% to 66%. This was a result of the type of binder (class of
cement and type of addition). The use of cement CEM II/B-V 42.5 R as cement CEM I 42.5
R replacement brings about strength increase at a later age. Mortar C3 (with cement CEM
II/B-V 42.5 R) has the highest strength after 28 days.

The results of compressive strength are shown in Table 7 and in Figure 6.
The results of the compressive strength tests are similar to the results of the flexural

strength tests. Mortar with cement CEM I 42.5 R is characterized by the highest strength
after 2 and 7 days of maturation. This is due to the lower content of Portland cement clinker
in CEM II and CEM III. Mortar with CEM II/B-V 42.5 R is characterized by the highest
compressive strength after 28 days. Mortar with this cement has a bigger strength than
the base mortar, made of cement without additives. Similar conclusions from the research
were obtained in [32]. The authors concluded that fly ash as partial replacement of cement
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is very useful in mortar with high cement content. 40% replacement is possible without
much affecting the strength of the mortars.

Figure 6. Change of the compressive strength after different curing times.

As one could expect, mortars with the cement of class 42.5 of high early strength (C1
and C3) are characterized by the highest flexural and compressive strength after 28 days,
regardless of the type of cement, due to the additives.

Comparing C4 and C5 mortars with CEM II cement, differing in the type of additives,
it can be concluded that the strength of mortars with fly ash is only greater than the results
for mortars with fly ash and limestone (during the study period).

According to the classification of plastering mortars included in the PN-EN 998-1:2012
standard [42], all mortars can be classified as categories III and IV due to the compressive
strength after 28 days.

Tables 8 and 9 show a comparison of the strength in relation to the reference mortar
(C1); the results are given as a percentage. Changes in the increment of flexural and
compressive strength in MPa were also determined, relating the strength results obtained
after 7 and 28 days to the test results after 2 days of specimen maturation. Figure 7a,b
shows the gain of flexural and compressive strength over time.

Table 8. Additional information obtained on the basis of flexural strength test.

Sample Designation
Flexural Strength (%) Strength Gain (MPa)

2d 7d 28d 2d to 7d 1 7d to 28d 2

C1 100 100 100 0.63 2.30
C2 40.00 35.26 81.66 0.17 2.32
C3 84.55 79.19 117.16 0.44 3.03
C4 33.64 35.84 71.60 0.25 2.05
C5 44.55 56.07 90.53 0.48 2.57

1 The difference in endurance between the 7th and the 2nd day of maturation. 2 The difference in endurance
between the 28th and the 7th day of maturation.
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Table 9. Additional information obtained on the basis of a compressive strength test.

Sample Designation
Compressive Strength (%) Strength Gain (MPa)

2d 7d 28d 2d to 7d 1 7d to 28d 2

C1 100 100 100 1.39 6.08
C2 41.74 37.67 86.75 0.43 6.31
C3 86.52 75.88 110.74 0.81 7.29
C4 31.30 37.67 71.96 0.67 5.31
C5 45.65 58.54 93.68 1.11 6.80

1 The difference in endurance between the 7th and the 2nd day of maturation. 2 The difference in endurance
between the 28th and the 7th day of maturation.

 

(a) (b) 

Figure 7. (a) Flexural strength gain over time. (b) Compressive strength gain over time.

The biggest increase in strength after 7 days was recorded for C1 mortar with CEM
I 42.5 R cement, and the lowest for C2 mortar with CEM III/A 32.5 N-LH cement, in
which the largest amount of Portland clinker is replaced by a mineral additive in the form
of ground granulated blast-furnace slag. Other results can be seen when comparing the
strength gains after 28 days. The biggest increase in strength after 28 days was recorded
for C3 mortar with CEM II/B-V 42.5 R cement, and the lowest for C4 mortar with CEM
II/B-M (V-LL) 32.5 R cement. Cements with chemically active mineral additives allow us
to obtain significantly higher strength. However, in the case of the C4 sample, this effect is
significantly reduced by the use of a chemically inactive additive—limestone.

3.5. Heat of Hydration for Pastes

The rate of heat evolution and the total heat released during the hydration of the tested
pastes C1–C5 are shown in Figures 8 and 9. Induction time and the total heat released by
cement pastes after 12, 24, 36, 41, 48, 72 h of hydration are given in Table 10. The results of
calorimetric measurements of cements modified with cellulose ether were supplemented
with the results for the hydration heat of C0 paste (cement paste with CEM I without
admixture). The microcalorimetric curves for cement paste containing CEM II/B-V 42.5 R
show that both the total amount of evolved heat and the rate of heat evolution over time
do not differ significantly, as compared to a base paste with cement CEM I 42.5 R.
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Figure 8. Rate of heat evolution as a function of time for all pastes used in the study.

Figure 9. Total heat evolved as a function of time for all pastes used in the study.

Table 10. Heat of hydration of pastes.

Symbol of Paste Induction Period (h)
Heat after Hours of Hydration (J/g)

12 24 36 41 48 72

C0 2 h 21 min 93.18 174.97 226.97 241.32 256.61 291.22
C1 2 h 51 min 60.95 134.97 195.06 213.67 233.07 274.41
C2 3 h 5 min 45.26 80.65 103.57 110.33 118.60 140.67
C3 5 h 3 min 85.58 144.88 210.24 233.25 253.48 295.02
C4 8 h 10 min 76.14 90.81 109.19 114.37 122.42 151.60
C5 6 h 15 min 41.55 72.13 115.95 133.27 155.17 199.95
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In the case of the C0 paste, the typical course of the heat release curve during the
hydration of Portland cement is visible. During this process, the highest indications for the
deepened heat effect related to the hydration of alite and tricalcium aluminate [13,43] were
achieved, and at the same time the shortest induction period. Cellulose ether admixture
caused an extension of the induction period and a delay and suppression of the main heat
release peak. As a result, the amount of heat release during hydration was reduced. The
use of mineral additions in the cement (fly ash and ground granulated blast-furnace slag)
caused longer shifts in time and reduced the occurrence of the main thermal effect as well
as extending the induction period. This is usually related to the reduction of the cumulative
amount of heat released. The amount of exhausted heat exceeded that determined for
the Portland cement samples (C0 and C1) only in the case of sample C3. It is related to
the occurrence of an additional, clear effect with a maximum recorded after about 37 h of
hydration. It can be explained by the formation of calcium silicates rich in silicon, resulting
from the initiation of the pozzolanic reaction [12,13,38,43–45].

There is a clear division between samples made of 32.5 and 42.5 class cements (about
30% to 50% compared to the cumulative amount of heat released after a certain period of
hydration time). In the case of sample C5, in which, as in sample C3, CEM II/B-V cement
was used, but of a lower class, no separate thermal effect was observed, which can be
identified with a pozzolan reaction. Instead, the main heat effect was significantly extended
over time and had a less pronounced maximum value than can be observed in other tests.
This can be explained by the overlapping of two thermal effects. In the case of the C4
sample, where apart from silica fly ash, it is present in the form of a filler, the limestone
had the longest induction period with a short-lived heat effect and the lowest intensity.
Such a course of the thermal curve can be explained by the cement dilution caused by a
non-reactive material that did not emit heat during the test.

It should be noted that the biggest heat emission from the hydration process was
obtained with the C3 paste, and in the case of the C3 mortar, the biggest strength parameters
were achieved after 28 days, as well as the biggest bulk density. In contrast, the smallest
heat emission from hydration was obtained with samples of C2 and C3 paste, while the
smallest mechanical properties and bulk density were noted in the case of the C2 and C4
mortars. However, C2 mortar from CEM III cement was characterized by a significant
(second after C3 mortar) increase in strength in the period between 7 and 28 days. This
proves that the processes essential for the strength of the sample took place in a later period,
not covered by calorimetric measurements.

4. Conclusions

In the presented research, tests of consistency, bulk density, water retention value,
mechanical properties of mortars and the heat of hydration pastes were performed using
commercial cement CEM I, CEM II and CEM III. The possibility of using these binders as
components of plaster mortars modified with a cellulose ether admixture was assessed.

Based on the experimental results presented in this paper, the following conclusions
can be drawn:

• All mortars containing cellulose ether had a lower consistency (flow and cone pene-
tration) than the cement mortar without admixture. The use of a polymer admixture
was advisable due to the need to obtain a homogeneous, coherent material, with no
visible signs of component segregation, characterized by high water retention. High
water retention value is indicated for plastering mortars.

• The flow of plasters modified with cellulose ether admixture (C1, C2, C3, C5 samples)
was in the range of 164 mm to 169 mm, and the cone penetration was in the range of
7.7 cm to 8.5 cm. The standard consistency of mortars modified with cellulose ether
did not show significant differences with respect to mortars with CEM II and CEM III,
except for mortar C4 with CEM II/B-M (V-LL) 32.5 R cement. Mortar with this binder
showed the lowest flow (155 mm) and the lowest cone penetration (6.6 cm). In order
to obtain the consistency as for the reference mortar, the water-cement ratio should be
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increased or use can be made of appropriate admixtures, the compatibility of which
with cellulose ether should be tested early.

• No effect of the type of cement on the water retention value was noted. The WRV
value for all plastering mortars modified with cellulose ether was about 99% (during
the study period). All plasters were characterized by high water retention during the
test period (the water retention values were greater than 94%).

• The smallest bulk density of mortars in a plastic state (1421 kg/m3, 1422 kg/m3) and,
at the same time, the highest efficiency were achieved by plasters made with the
use of cements CEM III/A 32.5 N-LH (mortar C2) and CEM II/B-M (V-LL) 32.5 R
(mortar C4).

• The type of cement, in particular the amount of clinker and additives, and the class
of cement, have a key influence on the mechanical properties of mortars. However,
regardless of the type of binder used, all plasters met the standard requirements
for compressive strength and can be classified in categories III and IV [42]. The
compressive strength (after 28 days) for mortars was in the range from 6.03 MPa to
9.28 MPa. Plasters qualify for category III if their compressive strength after 28 days
is in the range 3.5–7.5 MPa, and for category IV when their compressive strength is
above 6.0 MPa.

• The increase in flexural and compressive strength of the tested mortars was different,
depending on the type and amount of the additive/additives. Comparing the results
of compressive strength (after 28 days) of the mortar C1 with CEM I cement with the
results of tests of mortars with cement CEM II and CEM III, the compressive strengths
of mortars C2-C5 were from 72% to 111% of the compressive strength of mortar C1
(8.38 MPa). The smallest result was obtained for mortar with CEM II/B-M (V-LL) 32.5
N (6.03 MPa), but the largest result was obtained for mortar with CEM II B/V 42.5 R
(9.28 MPa). Similar conclusions can be drawn on the basis of calorimetric tests.

• All mortars modified with cellulose ether, regardless of the type of cement, according
to the applicable standard requirements, can be classified as ordinary mortars of plastic
consistency [34,36,40]. Their bulk density in plastic state is greater than 1300 kg/m3

and their flow is in the range 140–200 mm.
• These results indicate the possibility of using cement with mineral additives chosen

for this research as a binder in plastering mortars. The selection of the appropriate
cement gave similar and in some cases even better results than for plastering mortars
in which Portland cement CEM I (without additives) was applied. The use of tested
cements CEM II and CEM III did not lessen water retention, which is an important
parameter in the case of plastering mortars.

• Considering the consistency determined in accordance with the standard [35] and the
possible methods of application of the plasters, and taking into account the composi-
tion of mortars specified in the adopted composition, all materials were suitable for
manual application, and additionally the mortar with CEM III/A 32.5 N-LH (besides
cement CEM I 42.5 R) can be applied by a machine.

The next stage of this work will be the performance of other tests relating to the
standards for plastering mortars, assessment of mechanical properties after more than
28 days and assessment of the microstructure of these plasters.
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17. Chłądzyński, S.; Wójcik, A.; Bąk, Ł. The chosen aspects of influence of cement on dry construction mixes properties. In Proceedings

of the Conference “8th DNI BETONU”, Wisła, Poland, 13–15 October 2014. (In Polish).
18. Kotwa, A.; Spychał, E. The influence of cellulose ethers on the chosen properties of cement mortar in the plastic state. Struct.

Environ. 2016, 3, 153–160.
19. Spychał, E. The rheology of cement pastes with the addition of hydrated lime and cellulose ether in comparison with selected

properties of plastering mortars. Cement Wapno Beton 2020, 25, 21–30. [CrossRef]
20. Spychał, E.; Czapik, P. The influence of HEMC on cement and cement-lime composites setting processes. Materials 2020, 13, 5814.

[CrossRef]
21. Spychał, E.; Dachowski, R. The influence of hydrated lime and cellulose ether admixture on water retention, rheology and

application properties of cement plastering mortars. Materials 2021, 14, 5487. [CrossRef] [PubMed]
22. Brumaud, C.; Bessaies-Bey, H.; Mohler, C.; Baumann, R.; Schmitz, M.; Radlre, M.; Roussel, N. Cellulose ether and water retention.

Cem. Concr. Res. 2013, 53, 176–184. [CrossRef]
23. Bülichen, D.; Kainz, J.; Plank, J. Working mechanism of methyl hydroxyethyl cellulose (MHEC) as water retention agent. Cem.

Concr. Res. 2012, 42, 953–959. [CrossRef]
24. Skripkiunas, G.; Karpova, E.; Bendoraitiene, J.; Barauskas, I. Rheological properties and flow behaviour of cement-based materials

modified by carbon nanotubes and plasticizing admixtures. Fluids 2020, 5, 169. [CrossRef]
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263–266.

143



Materials 2021, 14, 7634

29. Messan, A.; Ienny, P.; Nectoux, D. Free and restrained early-age shrinkage of mortar: Influence of glass fiber, cellulose ether and
EVA (ethylene-vinyl acetate). Cem. Concr. Compos. 2011, 33, 402–410. [CrossRef]

30. Liu, C.; Gao, J.; Chen, X.; Zhao, Y. Effect of polysaccharides on setting and rheological behaviour of gypsum-based materials.
Const. Build. Mat. 2021, 267, 1–10. [CrossRef]
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ski, W.; et al. Podstawy Technologii Materiałów Budowlanych i Metody Badań Pod Redakcją Jana Małolepszego; Wydawnictwo AGH:
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Abstract: Rice husk ash (RHA) is a significant pollutant produced by agricultural sectors that cause
a malignant outcome to the environment. To encourage the re-use of RHA, this work used multi
expression programming (MEP) to construct an empirical model for forecasting the compressive
nature of concrete made with RHA (CRHA) as a cement substitute. Thus, the compressive strength of
CRHA was developed comprising of 192 findings from the broad and trustworthy database obtained
from literature review. The most significant characteristics, namely the specimen’s age, the percentage
of RHA, the amount of cement, superplasticizer, aggregates, and the amount of water, were used
as input for the modeling of CRHA. External validation, sensitivity analysis, statistical checks, and
Shapley Additive Explanations (SHAP) analysis were used to evaluate the models’ performance. It
was discovered that the most significant factors impacting the compressive strength of CRHA are
the age of the concrete sample (AS), the amount of cement (C) and the amount of aggregate (A). The
findings of this study have the potential to increase the re-use of RHA in the production of green
concrete, hence promoting environmental protection and financial gain.

Keywords: rice husk ash; machine learning; waste material; external validation; compressive strength

1. Introduction

Different researchers have suggested different methods to lessen the malignant impacts
of the construction industry on the atmosphere. Some researchers suggested replacing
the natural coarse aggregate in concrete with recycled concrete aggregate, oil palm shell
aggregate, lightweight aggregate, rubber, and so on, while others suggested replacing
natural sand with sugarcane bagasse ash, rice husk ash (RHA), eggshell ash, and other
different types of industrial and agricultural wastes [1–4]. However, it is observed to
be more beneficial if cement is replaced with concrete, as cement is the main culprit in
concrete which affects the environment. The partial replacement of cement with natural
pozzolanic materials, industrial wastes, and agricultural wastes has been a point of interest
for different researchers for the last couple of decades [5,6]. One of the common agricultural

145



Materials 2022, 15, 3808

wastes is RHA, which is highly pozzolanic and contains a high amount of silica content.
RHA is a byproduct of the cultivation of rice. RHA is formed as a result of heating husks
in processing industries in order to process rice paddy. Rice is one of the world’s most
important food crops and is consumed in vast amounts by the global population. As of
2020/2021, it is estimated that 497.7 million tons of rice are produced globally. Therefore,
RHA is prevalent in agricultural nations that produce millions of metric tons of rice annually.
As it includes roughly 85–90% amorphous silica, RHA may be effectively recycled as a
pozzolanic material as opposed to being discarded publicly. The use of RHA in concrete
has been researched by different scientists [7–9]. The research on RHA is mostly conducted
in Agricultural countries as shown in Figure 1. The gathered data is up to April 2022 as
illustrated in Figure 1. The number of publications from India is more than twice that
of any other country on RHA. Most of the research performed on RHA is published in
high-impact Journals as shown in Figure 2. RHA is mainly utilized as a partial replacement
of cement (as Supplementary Cementitious Material) and provides better properties than
normal concrete (concrete without RHA). RHA can be used for many other purposes as
shown in Figure 3, but they are out of the scope of this study. Concrete made with RHA
(CRHA) is reported to be more durable and posseses higher mechanical properties when
compared with normal concrete [9–11]. In addition, the use of RHA in concrete provides
sustainability to the construction industry in two ways. First, it reduces the amount of
cement (C) used, and second, it helps in the disposal of waste RHA. Furthermore, concrete
made with RHA is more economical as some percentage of cement (the most expensive
material in concrete) is being replaced with waste material. The behavior of RHA concrete
is anomalous due to numerous factors, i.e., concrete mix design, amount of RHA used, and
physical properties of concrete ingredients [12–15]. Therefore, the use of RHA requires
prior experimental testing to be used in mega projects. However, the presence of reliable,
trustworthy models and formulas to relate the compressive strength of RHA concrete with
its ingredients may provide ease to construction engineers to use RHA concrete in their
projects. The wide use of RHA concrete may help in reducing the carbon footprint of the
construction industry. The use of modern computing techniques like artificial intelligence
algorithms (AIA) can be used to achieve this objective.
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Figure 1. Number of publications on RHA.
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Figure 2. Publications of RHA in high-impact factor journals.

Journal Article
66%

Conference 
Paper…

Journal Review
7%

Conference 
Review…

Journal Article Conference Paper
Journal Review Conference Review

Figure 3. Importance of RHA in the construction industry.

The use of AIA is rising in every field [16–23]. AIA has distinctive features like pattern
recognition and object recognition, which can be used to solve various engineering prob-
lems [24–30]. However, AIA is generally termed as black-box algorithms (BBA), because it
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does not give an insight into the problem being solved [31,32]. AIA ignores any knowledge
or physical occurrences related to the subject at hand. The majority of ANN approaches
lag in the development of an advanced mathematical formulation for estimating output
based on input factors [33–35]. A correlation between input and output is referred to as
an ANN-based model, and the relationship seems to be either nonlinear or based on a
pre-defined structure [36–38]. To address these challenges, numerous evolutionary algo-
rithms (EA) are being used to simulate concrete features, including genetic programming,
convolutional neural networks (NN), and the model tree algorithm [19,39–41]. The ad-
vantage of EA is that they enable the production of realistic algebraic expressions, as well
as a high degree of generality and prediction capabilities [1,3–6]. A few recent research
have attempted to simulate the characteristics of waste foundry sand concrete using AIA.
Different EA was used to create decision tree structures for the purpose of estimating the
mechanical characteristics of waste foundry sand concrete [42]. Numerous influencing
factors, a robust correlation coefficient, and minor arithmetical errors were obtained for the
constructed models. Nevertheless, parametric research was not possible due to the linear
character of decision trees, which reduces their effectiveness when applied to unknown
data. Similarly, in a recent study, a genetic programming approach was used to estimate the
compressive strength of waste foundry sand concrete [43]. To assess the suggested models’
dependability, parametric, and error, sensitivity analyses were conducted. However, the
gene expression programming (GEP) approach has drawbacks in that it was powerless
to contain a few differing datasets into the model construction process, hence limiting its
application range [44]. To improve the performance of the models, the differing datapoints
required to be eliminated from the set processes. Additionally, genetic algorithms (GA)
program uses a solitary chromosome, and are useful when the relationship between the
targeted and predicted is reasonably basic.

To overcome the drawbacks of AIA, an enhanced modeling approach known as multi-
expression programming (MEP) was utilized to predict the mechanical characteristics, i.e.,
compressive strength of CRHA based on the most influential factors. MEP is unique in
that it can encode many expressions in one computer program [45,46]. To guarantee that
the models are effectively trained, a big database was compiled from the literature and
subdivided into three sets: training, validation, and testing. The effectiveness of the models
is assessed by using statistical error analysis, external validation, and various statistical
analyses to ensure that the models are generalizable and reliable. The article is arranged
as follows: a description of the MEP algorithm, a database of experimental findings, a
modeling approach, results and discussion, external validation, sensitivity analysis, and
lastly, a brief discussion of the conclusion and significant discoveries.

2. Multi-Expression Programming (MEP)

The goal of a machine learning model is to produce a mathematical expression for
output prediction that is accurate and practicable based on a collection of independent
parameters. Koza (1992) suggested the GEP as an evolution of the GA based on Darwin’s
selection concept [47]. It is important to note that the main difference between the two
techniques is that in GEP, fixed-length binary strings are replaced with non-linear parse
trees. Several other types of EAs have been proposed in recent years, with linearity being a
key one. Individuals (chromosomes) can be modeled as variable-length entities in the case
of MEP [48]. MEP simulation output may be characterized as a linear string of instructions
consisting of variables or mathematical operations (functions). Figure 4 illustrates the
procedures involved in implementing MEP [48]. The process of MEP starts with the
initialization of functions and expressions. After that, the chromosomes population is
increased randomly based on the binary selection of the connection functions as shown
in Figure 4b. When the chromosomes population reach a certain point, off-springs are
produced and evaluated with the help of the evaluation function. The process is terminated
when the required fitness value is achieved. The MEP method evolves by creating a
random chromosomal population, selecting two parents via a binary tournament, and
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recombination with a set cross-over frequency, the generation of two offspring through
recombination of the selected parents, mutation of the offspring, and replacement of the
population’s worst individuals with the best are some of the steps followed in MEP. The
process is cyclical and repeats itself until convergence is attained.

−
− −

−
− − − − −

− −

Figure 4. (a) Procedures involved in implementing MEP, (b) Flowchart for expressions encoded by
an MEP chromosome.

Most of the research over the last decade has been on the application of artificial
neural network (ANN) and GEP approaches to model the characteristics of green concrete.
However, MEP has several benefits over comparable algorithms. Typically, a large database
is used to represent concrete characteristics. In GEP, just a cross-over genetic operator is
used, resulting in the generation of a large population of parse trees, increasing simulation
time and requiring a considerable amount of memory [47,49,50]. Additionally, because
GEP’s non-linear structure functions like gene expression patterns, the algorithm has a
hard time proposing a simple mathematical representation for the required attribute. The
integration of linear variants enables MEP to discriminate between an individual’s genotype
and phenotype. Moreover, up to a certain point, the amount of genes on chromosomes
improves the likelihood of GEP success. The model’s usefulness in the construction industry
is limited by overfitting, which manifests itself in the predicted strength qualities in the
construction industry. In fact, MEP is particularly useful when the objective expression
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is uncertain, as in material engineering problems where a small change in a concrete
mix parameter might have a huge impact on the strength [48]. Due to the linearity of
chromosomes and the encoding of numerous solutions in one chromosome in MEP, the
software may search for a larger space for the output prediction. Due to the evident benefits
of MEP over other EAs, accurate models in the field of civil engineering may be developed.
It has been used in several research to forecast different soil properties using physical
properties of soil as input parameter [34], to predict the elasticity of concrete by using
mix design ratios, and to create predicting modeling for concrete columns confined with
thermoplastic fiber reinforced polymer [51]. The present work used the MEP approach to
develop models to predict the parameters of CRHA. Further validation of the model is
made by applying various statistical checks to the model. The availability of trustworthy
models will encourage the use of CRHA in the building sector since it circumvents the time-
consuming testing process necessary for such an unconventional construction material. This
would help to waste reduction, sustainable building, and natural resource conservation.
Additionally, the provided modeling technique will pave the way for correctly modeling
comparable complicated engineering processes.

3. Data Collection

To build a computational equation that properly predicted the compressive strength
of CRHA, a database of 192 data points from the published research was employed (Ta-
ble S1) [52–58]. The CRHA is composed of the same components: OPC, RHA, aggregates
(A), water (W), and superplasticizer (SP). All mixtures obtained from the literature utilized
the same type of cement with identical age of concrete (AS). The correlation matrix for the
inputs and compressive strength (CS) of CRHA is shown in Table 1.

Table 1. Coefficient of correlation (R) for explanatory variables.

AS *
(Day)

C *
(kg/m3)

RHA *
(kg/m3)

W *
(kg/m3)

SP *
(kg/m3)

A *
(kg/m3)

CS
(MPa)

AS (day) 1.00
C30 (kg/m3) −0.11 1.00

RHA (kg/m3) −0.03 −0.22 1.00
W (kg/m3) 0.01 0.08 0.14 1.00
SP (kg/m3) 0.00 0.25 −0.02 0.27 1.00
A (kg/m3) −0.06 −0.24 −0.14 −0.55 −0.21 1.00
CS (MPa) 0.49 0.37 −0.02 −0.24 0.30 0.15 1.00

* AS = age of concrete sample, C30 = cement with 30% replacement, W = water, SP = superplasticizer, A = aggregate.

The compressive strength of cubic specimens was converted to the compressive
strength of cylinders using a conversion ratio of 0.8 [59]. The purpose of this research
was to determine the compressive strength of various CRHA mixtures using MEP. As
input parameters, variables such as the amount of cement (C), the amount of water (W),
amount of RHA, age of concrete (AS), amount of aggregate (A), and dosage of SP were
collected from the literature. Figure 5 depicts histograms for all variables utilized in this
investigation. Additionally, Table 2 has a statistical description of the gathered data. The
mean and median for all AS values were obtained to be 34.57 and 28, respectively. While
the value of skewness is positive for all the variables except for water and fine aggregate.
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CS = f(AS, OPC, A, SP,W, RHA)

Figure 5. Histogram of variables used in making model.
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Table 2. Statistical description of variables.

Description of Variables AS (Day) C (kg/m3)
RHA

(kg/m3)
W (kg/m3) SP (kg/m3)

A
(kg/m3)

CS (MPa)

Mean 34.57 409.02 62.33 193.54 3.34 1621.51 48.14
Median 28.00 400.00 57.00 203.00 1.85 1725.00 45.95
Mode 28.00 400.00 0.00 203.00 0.00 1725.00 47.00

Standard Deviation 33.52 105.47 41.55 31.93 3.52 267.77 17.54
Sample Variance 1123.61 11,124.88 1726.77 1019.71 12.37 71,702.44 307.70

Skewness 0.75 1.55 0.44 −0.42 0.69 −0.74 0.83
Range 89.00 534.00 171.00 118.00 11.25 930.00 88.10

Minimum 1.00 249.00 0.00 120.00 0.00 1040.00 16.00
Maximum 90.00 783.00 171.00 238.00 11.25 1970.00 104.10

Sum 6638.00 78,531.00 11,967.10 37,158.91 640.35 311,330.00 9243.10
Count 192.00 192.00 192.00 192.00 192.00 192.00 192.00

4. Model Development

One of the objectives of this study is to develop a new formulation for the compressive
strength of CRHA using the MEP model. The essential parameters recommended in the
literature were used as input variables. Therefore, formulation of the compressive strength
(CS) of CRHA was assumed using Equation (1) as follows:

CS = f(AS, OPC, A, SP, W, RHA) (1)

In order to develop a strong and generic model, a large number of MEP fitting pa-
rameters must be defined before modeling begins. The relevant variables are chosen in
accordance with prior suggestions and a trial-and-error method. The number of programs
that will develop in a population is determined by the size of the population. It would be
more complex and precise to run a model with a huge population size, and it may take a
long time for the model to converge. The method was begun by assuming a total of ten
subpopulations. Table 3 summarizes the parameters used in the study. All these values
are calculated after running several trials on different combinations as shown in Table 4. It
should be noted that several parameters (like code length, connecting functions) can further
increase the accuracy of the developed model, but they increase the computation time
as well as the complexity of the model. Hence, they were kept at an optimum level. For
simplicity in the final formulations, the function set includes the fundamental mathematical
operations of multiplication, square root, natural log, subtraction, division, and addition.
The number of generations indicates the amount of accuracy that the algorithm should
reach before being terminated. Similarly, the rate of mutation and cross-over indicates the
likelihood that the progeny will experience similar genetic processes. The incidence of
cross-over varies between 50% and 95%. Numerous combinations of these parameters were
tested on the data, and the optimal combination was chosen as shown in Table 4. The final
parameters selected are shown in Table 3. One of the challenges with AI-based modeling is
data overfitting. A model works admirably on the original data, but drastically degrades on
the unseen data. To circumvent this issue, it has been proposed to test the trained model on
an unknown or testing dataset. As a result, the whole database was randomly partitioned
into training, validation, and testing sets. While modeling, the training and validation data
were processed. The validated model is next evaluated on a third dataset, i.e., one that
was not utilized to construct the model. It was assured that the distribution was uniform
across all datasets. The resulting models outperformed the baseline models on all three
datasets. MPX v1.0, a commercially available computer tool, was used to implement the
MEP algorithm [44–46].
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Table 3. MEP parameter used in making a model.

Parameters MEP

Num of subpopulation 20
Subpopulation size 1000

Code length 50
Crossover probability 0.9

Crossover type Uniform
Mutation probability 0.001

Tournament size 2
Operators 0.5
Variables 0.5

Number of generations 1000
Function set +, −, ×, /
Terminal set Problem input

Replication number 10
Error measure Mean squared error
Problem type Regression

Simplified Yes
Random seed 0

Number of runs 10
Number of threads 1

Table 4. MEP optimal combination.

Trial No.
No. of

Subpopulation
Subpopulation

Size
Code

Length
No. of

Generation
Functions

Used
R2 RMSE MAE RRSE

Time
(Min)

MP1 10 200 20 200 +, −, ×, / 0.9275 71.1 48.03 0.2693 0–2
MP2 20 20 +, −, ×, / 0.9448 62.17 41.82 0.2355
MP3 50 25 +, −, ×, / 0.9454 61.94 45.67 0.2346
MP4 70 25 +, −, ×, / 0.9233 74.09 47.03 0.2806
MP5 100 35 +, −, ×, / 0.9221 74.33 46.89 0.2815
MP6 20 400 35 +, −, ×, / 0.9156 88.17 60.35 0.334
MP7 600 35 +, −, ×, / 0.9496 59.68 41.9 0.226
MP10 40 400 +, −, ×, / 0.9614 53.41 38.12 0.2023 15
MP11 40 600 +, −, ×, / 0.9376 66.01 42.78 0.25 25
MP12 1000 50 +, −, ×, / 0.9298 70.13 43.56 0.2656
MP13 50 1000 +, −, ×, / 0.9362 66.97 45.06 0.2536 45

4.1. Shapley Additive Explanations (SHAP)

Even though numerous ML research on concrete structures have attained great accu-
racy in their predictions, the applicability of the ML models receives little consideration.
Numerous research assesses the feature relevance for tree-based models single decision pro-
cess, heuristic techniques, or model-agnostic methods [47,48]. However, these approaches
are frequently impractical and skewed for EML models, particularly those with a signifi-
cant bias. In this study, SHAP is utilized to demonstrate the interpretation of every input
parameter. SHAP is expressed as the mean marginal contribution to a feature value over all
conceivable coalitions, in accordance with the collaborative game theory. In particular, the
SHAP value of a data is the mean prediction rate of samples having the characteristic minus
the mean prediction value of samples lacking the feature. To enhance the interpretability
of a machine learning (ML) model, its output is stated as the linear sum of its input data
multiplied by their respective SHAP values.

To check the performance criteria, Root mean square error (RMSE), coefficient of
correlation (R), mean absolute error (MAE), coefficient of regression (R2), relative root mean
square error (RRMSE), relative squared error (RE), and performance index ρ (Equations
(2)–(8), respectively) have been used in this study.

RMSE =

√

∑
n
i=1(xi − yi)

2

n
(2)
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R =
∑

n
i=1(xi − xi)(yi − yi)

√

∑
n
i=1(xi − xi)

2
∑

n
i=1(yi − yi)

2
(3)

MAE =
∑

n
i=1|xi − yi|

n
(4)

R2 = 1 −
∑

n
i=1

(

xj − yj

)2

∑
n
i=1

(

xj − y
) (5)

RRMSE =
1
|e|

√

∑
n
i=1(xi − yi)

2

n
(6)

RE =
∑

n
i=1(xi − yi)

2

∑
n
i=1(x − xi)

2 (7)

ρ =
RRMSE

1 + R
(8)

OBJ =
(

nL − nT

n

)

ρL + 2
(nT

n

)

ρT (9)

where, xi and yi are the ith experimental and predicted output values, respectively; and
denote the experimental and expected output values, respectively; and n denotes the
complete number of observations. Lower values of RMSE, MAE, and higher values of
R, and R2, as well as the pre-selected significance value, i.e., alpha (usually 0.05) from F
and t-tests, indicate that the predictive model performs well and has a better accuracy.
Additionally, it implies that the experimental and anticipated values are highly connected.
Additionally, it is worth noting that a R value larger than 0.8, an R2 value nearer to 1, an
RMSE value nearer to or equal to zero, and ρ value (0 to infinity) approaching zero all
contribute to improved model calibration. Unlike the RMSE, MAE is a positive evolution
metric when the original data is relatively smooth [60]. On the other hand, the normalized
mean square error (NSE) runs between 0 and 1.0 (1 inclusive), with 1 regarded as the
best number. Additionally, a significant issue linked with AI systems is overfitting, which
occurs because of extensive training and results in higher mistakes in the testing set. As
demonstrated in Equation (9), the objective function (OBF) is assessed and decreased prior
to selecting the best predictive mode [61]. The OBF is used to evaluate the trained model’s
performance by including changes in the error function (RRMSE) and correlation coefficient
(R). A low OBF value aids in overcoming the issue of overfitting.

4.2. Cross-Validation Using 10 K-Fold Method

Generally, cross-validation procedure is applied using 10 k-fold to decrease the random
sampling-related distortion of training and residual set of inputs. According to the findings
of Kohavi, the ten-fold validation test yields a dependable variance and the ideal computing
time (Kohavi, 1995). This study employed a stratified 10 k-fold cross-validation method
to evaluate the performance of a model that categorizes a given number of data samples
into 10 subgroups. In each of 10 rounds of model development and validation, a separate
data subset is used for testing while the remaining data subsets are used to train the model.
As seen in Figure 6, the test subset is used to validate model precision. The algorithm’s
precision is then reported as the average precision gained by the 10 models during ten
rounds of validation.
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Figure 6. K-fold cross-validation algorithm [61].

5. Results and Discussion

5.1. MEP Analysis of CRHA

Appendix A contains the optimized MEP code for compressive strength prediction
of CRHA utilizing specified input variables. The compressive strength of CRHA for the
training dataset is displayed in Figure 7 along with the slope. The optimal location of the
regression line is 45◦, with a slope equal to 1, but it must be closer to 1 for good association.
As shown in Figure 7, the proposed model accurately predicts the compressive strength
of CRHA (R for the entire dataset is 0.97). Additionally, the RMSE, MAE, and the NSE for
estimating the training dataset of compressive strength of CRHA are 3.98, 0.6, and 0.77,
respectively. The near proximity of the points to the ideal fit and the inclusion of most
points within the acceptable confidence interval demonstrates the suggested MEP model’s
validity. As previously stated, R values greater than 0.8 [45] and NSE values near unity
indicate that the suggested models for the compaction parameters function effectively.
Figure 8 shows the compressive strength of CRHA for validation and testing set. For
simplicity, both sets are combined in the Figure 8.

Figure 7. Regression analysis of training set of MEP.
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Figure 8. Regression analysis of testing set of MEP.

The created MEP model’s adaptability was further measured by calculating the error
distribution between the experimental and predicted values in both datasets (training
and validation sets). The error pattern for the training and validation sets is depicted
in Figures 9 and 10 for both sets. The deeper red color indicates the greater error levels.
The model’s error value is small, indicating that it successfully simulates the compressive
strength of CRHA. The whole database is displayed with the absolute error in each data
point to see the model’s maximum error percentage, as shown in Figure 10. As can be
observed, the model and predicted outputs are quite near, with an average error of 2 MPa
and a peak error of less than 6 MPa for the compressive strength of CRHA. Additionally,
the frequency of occurrence of maximal error is rather low. It has been discovered that
around 80% of CRHA results estimated compressive strengths have an inaccuracy of less
than 4 MPa.

Figure 9. Error graphs of training set of MEP model.
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Figure 10. Error graphs of validation set of MEP model.

5.2. Performance Evaluation of MEP Model

According to Iqbal et al. [43], the database-to-input ratio should be at least three for
good models and preferably greater than five for perfect models. The ratio is substantially
greater in this research, at 32. Table 5 exhibit the statistical parameters for the validation
and training sets for the MEP model. These results demonstrate that the models have been
trained efficiently and that there is a strong correlation between expected and experimental
output with low error levels. The MAE, RMSE, and RE values for the training set of the
MEP model are 3.067, 3.843, and 0.047, respectively, while the values for the validation
phase are 2.317, 3.406, and 0.048. The statistical measurements are nearly the same for the
validation and training sets, demonstrating a greater capability for generalization and the
ability to predict trustworthy outcomes for previously unknown data. As seen in Table 5,
the ρ of the MEP projected model approaches zero (zero for ideal model). The OBF values
of 0.04 adequately solved the issue of data overfitting.

Table 5. Statistical indictors for training and validation set.

Indicators Training Validation

R2 0.976419 0.971378
R 0.988139 0.985585

RMSE 3.843116 3.406354
MAE 3.067433 2.317413

RRMSE 0.079188 0.072075
RE 0.047253 0.048581
ρ 0.03983 0.0363

OBF 0.04

5.3. External Validation

External validation of the MEP model was also examined, owing to its substantially
improved efficiency, which is shown in Table 6. As per literature, at least one regression
slope line (k or k′) going through the origin must approach one [62]. The performance
indices must have values less than 0.1. For the situation of optimal moisture content, the
requirement of additional external validation, namely, Rm > 0.5, is met [63–65]. Additionally,
the squared correlation coefficient (R′2

o) between the estimated and experimental datasets,
as well as the correlation coefficient (R2

o) between the experimental and estimated values,
must approach one [66–68]. As seen in Table 6, the suggested MEP model meets nearly
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all the stated requirements, which is consistent with the findings of existing literature and
recommendations [69–72].

Table 6. External validation of data.

S. No. Equation Condition MP
Suggested

by

1 R =
∑

n
i=1(xi−xi)(yi−yi)

√

∑
n
i=1(xi−xi)

2
∑

n
i=1(yi−yi)

2
R > 0.8 0.98 [63–65]

2 k =
∑

n
i=1(xi×yi)

x2
i

0.85 < k < 1.15 0.975
[62]

3 k′ =
∑

n
i=1(xi×yi)

y2
i

0.85 < k′ < 1.15 0.976

4
Rm = R2 × (1 −

√

∣

∣R2 − R2
0

∣

∣

where

R2
o = 1 − ∑

n
i=1(yi−xo

i )
2

∑
n
i=1(yi−yo

i )
2 , xo

i = k × yi

R′2
o = 1 − ∑

n
i=1(xi−yo

i )
2

∑
n
i=1(xi−xo

i )
2 , yo

i = k′ × xi

Rm > 0.5 0.856 [66–68]
R2

o
∼= 1 0.989 [69–72]

R′2
o
∼= 1 1.000

5.4. 10-K Fold Cross Validation

A desired level of accuracy is required for the validity of prediction models. The 10
K-fold cross-validation method is used to ensure the accuracy of the model by shuffling
the available data. By using this technique, the bias associated with a random sampling
of training data set is minimized. This technique divides the experimental data samples
into ten equal subsets and utilizes the nine subsets for developing and shaping the strong
learner. Meanwhile, the last subset is utilized to gauge the validity of the developed
model. The validation process repeats for ten times, and at the end, the average accuracy is
obtained from the ten times repetition. The generalization performance and the reliability
of the model are well represented by 10 K-fold cross-validations [65]. The cross-validation
tests for individual MEP model are represented in Figure 11. The results of 10 K-fold cross-
validations are assessed by using the coefficient of determinant, R2 (regression tool) along
with MAE and RMSE (statistical error tools) as shown in Table 7. In Figure 11, fluctuation
in the value R2 is observed for the 10 K-fold validation of different ML techniques, but still,
a high level of accuracy is maintained in each fold. The accuracy of the cross-validation
was also assessed in terms of MAE and RMSE and is given in Figure 11, respectively. The
average value of MAE for is 4.2 MPa, respectively, as shown in Figure 11.

𝑅 = 1 −  ∑ (𝑥 − 𝑦 )∑ 𝑥 − 𝑥   , 𝑦= 𝑘′ × 𝑥

0
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1 2 3 4 5 6 7 8 9 10

MAE RMSE R2

Figure 11. Results of K-fold validation.
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Table 7. Statistics for K-fold Validation.

MAE RMSE R2

4.47 5.4 0.919

4.209 7.68 0.91

4.71 5.82 0.86

2.97 4.14 0.91

1.60 2.71 0.95

11.1 15. 0.89

2.99 3.45 0.90

4.04 5.21 0.87

3.30 4.22 0.89

2.97 2.73 0.93

Figure 11 shows the RMSE values of 10 K-fold validation and gives an average value
of 5.7 MPa, respectively. The results of the 10 K-fold cross-validation method reflect the
accuracy and reliability of the concerned developed models.

5.5. Explanation Using MEP Model

A detailed explanation of the machine learning model, as well as the feature correla-
tions and interactions, is performed. To begin, better global depictions of feature impacts
are created by aggregating local descriptions from the SHAP tree integrator over the whole
dataset. Figure 12 illustrates a SHAP summary graphic in which each mark corresponds
to a single data point in the dataset. The dots along the x-axis represent the effect of each
feature values on the compressive strength of CRHA prediction. The marks are heaped
together to demonstrate the density of several dots landing at the same x-axis point. Ac-
cording to Figure 12, the top three characteristics that have the most effect on compressive
strength of CRHA prediction, in order of importance, are the age of concrete (AS), the
amount of cement (C), and the amount of aggregate (A).

 

Figure 12. Shapley values of MEP model.
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Figure 13 illustrates the feature reliance on the machine learning model in further
depth by evaluating every single value in the dataset independently. On the x- and y-axes,
the feature values and their related SHAP values are shown. The plots are additionally
enhanced by feature interactions (shown by color bars) that indicate the combined influence
of many features. One must keep in mind that SHAP values do not indicate causal linkages
but rather characterize the model’s behavior. A greater SHAP value implies that the
model is attempting to forecast higher compressive strengths from the associated feature
values. Similarly, a SHAP value less than zero indicates that the model is seeking to
reduce the predicted compressive strength. These microscopic representations demonstrate
interactions between various feature pairs impact the related SHAP values, which correlate
to the comparable compressive strength values.

 

  
Figure 13. Feature reliance of the model.

Historically, AIA were mostly viewed as black boxes that served as a significant
barrier between research and practice [73–75]. Because of AIA’s lack of explainability and
credibility, practitioners avoid it [75]. However, due to the improved predictability and
explainability of the MEP model described in this study, it may be used by a broader
range of experts to make some real-world judgments. This amount of data regarding the
composition versus strength connection of concrete enhances one’s comprehension of the
concrete’s nature and the optimization of the concrete mixture.

5.6. Sensitivity Analysis

Figure 14 demonstrates that each parameter is crucial for predicting the compressive
strength of CRHA. According to sensitivity analysis, cement and age have a significant part
in the total contribution to compressive strength, which is greater than fifty percent. Age
of concrete (AS) provides around 29.47 percent, whereas cement quantity (C) contributes
approximately 27.93 percent. The remaining four factors, namely RHA, water (W), SP, and
aggregate (A), contribute about 8.26%, 12.85%, 13.49%, and 7.99%, respectively.
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Figure 14. Sensitivity analysis of CRHA concrete.

6. Conclusions

Experts have been examining several AIA techniques for predicting the compressive
strength of CRHA as feasible alternatives to the highly time-consuming and costly experi-
mental compression testing. However, little effort has been made to improve the predictive
powers and explainability of these commercial AIAs, which function as a significant barrier
between research and practice, since practitioners avoid adopting AIA owing to their lack
of understandability and reliability. To address this, an MEP model is employed to increase
the predictability of the compressive strength of CRHA’s. Advanced AIA principles such
as model pipelining, model optimization, and feature selection via cross-validation are
employed to help in the generation of more accurate models to forecast the compressive
strength of CRHA. A comparison of the findings demonstrates that the created model
generates the most precise prediction when compared to previously published models over
the last two decades.

It is proved that the created MEP model generates verifying data (not available in the
current literature) regarding the feature impacts, dependencies, and interactions with the
compressive strength of CRHA. The core concept of this study was to explain a prediction
model by calculating the contribution of each feature to the prediction of CRHA’s compres-
sive strength. In addition, the relationship between different variables affecting the strength
of CRHA is calculated using SHAP analysis. It was discovered that the most significant
factors impacting the compressive strength of CRHA are the age of concrete (AS), amount
of cement (C), and the amount of aggregate (A). Furthermore, the dependency factors and
relationship between different variables may help in future research to make a novel CRHA
mix design as per the requirement of the site without compromising on cost, mechanical
properties, available time, and availability of the mix ingredients.

Future Recommendation

The CRHA can effectively replace OPC concrete. Recommendation: comprehensive
research of CRHA that includes more parameters. Including more input parameters and
expanding the database can yield more trustworthy results for more generic expressions.
These parameters should include resistance to acid attack and high temperature, sulphate
and chloride resistance, and corrosion. For additional predictions, sophisticated techniques
such as particle swarm programming and ensemble methods can be utilized.
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ML approaches can be used with heuristic methods, such as the whale optimization,
ant colony optimization, and PSO, for improved outcomes. These procedures may then
be compared to those utilized in this investigation. In addition, MEP is an expanded and
enhanced version of GEP. It is necessary to apply and analyze Honeybee algorithm to
overcome the limits of ensemble algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15113808/s1, Table S1: A database of 192 data points based
on the literature review and the published data to build computational equation for predicting the
compressive strength of CRHA [52–58].
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Abbreviations

RHA Rice husk ash
MEP Multi-expression programming
CRHA Concrete made with rice husk ash
SHAP SHapley Additive exPlanations
OPC Ordinary Portland cement
AIA Artificial intelligence algorithms
BBA Black-box algorithms
EA Evolutionary algorithms
GA Genetic algorithm
NN Neural network
GEP Gene expression programming
SP Superplasticizer
C Amount of cement
W Amount of water
A Amount of aggregate
AC Age of concrete
CS Compressive strength
RMSE Root mean square error
R Coefficient of correlation
MAE Mean absolute error
R2 Coefficient of regression
RRMSE Relative root mean square error
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RE Relative squared error
ρ Performance index
OBF Objective function
NSE Normalized mean square error

Appendix A

pg[0] = x[0];
pg[1] = sqrt(pg[0]);

pg[2] = x[1];
pg[3] = x[3];

pg[4] = exp(pg[1]);
pg[5] = pg[1] × pg[2];
pg[6] = pg[4] / pg[3];
pg[7] = pg[0] + pg[3];
pg[8] = pg[2] − pg[7];

pg[9] = x[4];
pg[10] = pg[8] × pg[9];
pg[11] = pg[10] + pg[5];
pg[12] = pg[1] × pg[0];
pg[13] = pg[8] + pg[11];

pg[14] = pow(pg[1], pg[9]);
pg[15] = pg[13] − pg[12];

pg[16] = sqrt(pg[15]);
pg[17] = x[2];

pg[18] = pg[6] + pg[8];
pg[19] = pg[9] × pg[17];
pg[20] = pg[12] / pg[18];
pg[21] = pg[19] + pg[18];

pg[22] = sqrt(pg[11]);
pg[23] = pg[5] / pg[21];

pg[24] = sqrt(pg[14]);
pg[25] = pg[24] × pg[4];
pg[26] = pg[6] − pg[20];
pg[27] = pg[22] / pg[25];
pg[28] = pg[26] / pg[23];
pg[29] = pg[16] − pg[27];
pg[30] = pg[29] + pg[28];
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Abstract: The application of supplementary cementitious materials (SCMs) in concrete has been
reported as the sustainable approach toward the appropriate development. This research aims to
compare the result of compressive strength (C-S) obtained from the experimental method and results
estimated by employing the various modeling techniques for the fly-ash-based concrete. Although
this study covers two aspects, an experimental approach and modeling techniques for predictions,
the emphasis of this research is on the application of modeling methods. The physical and chemical
properties of the cement and fly ash, water absorption and specific gravity of the aggregate used,
surface area of the cement, and gradation of the aggregate were analyzed in the laboratory. The four
predictive machine learning (PML) algorithms, such as decision tree (DT), multi-linear perceptron
(MLP), random forest (RF), and bagging regressor (BR), were investigated to anticipate the C-S
of concrete. Results reveal that the RF model was observed more exact in investigating the C-S
of concrete containing fly ash (FA), as opposed to other employed PML techniques. The high R2
value (0.96) for the RF model indicates the high precision level for forecasting the required output
as compared to DT, MLP, and BR model R2 results equal 0.88, 0.90, and 0.93, respectively. The
statistical results and cross-validation (C-V) method also confirm the high predictive accuracy of the
RF model. The highest contribution level of the cement towards the prediction was also reported in
the sensitivity analysis and showed a 31.24% contribution. These PML methods can be effectively
employed to anticipate the mechanical properties of concretes.

Keywords: concrete; fly ash; modeling; machine learning; compressive strength

1. Introduction

CO2 emissions from industry, transportation, and services, and nitrogen and methane
oxides from agriculture are significant greenhouse gases (GHGs) [1]. Worldwide worries
about the environmental, economic, and social consequences of GHG emissions such as
CO2 have prompted the growth and deployment of a variety of CO2 emission mitigation
technologies and initiatives [2–7]. At this time, environmental sustainability has developed
as a global objective for social interests [8–10]. Furthermore, ecological issues about CO2
ejection from the Ordinary Portland Cement (OPC) manufacturing process have prompted
past academics to look at the viability of other materials to substitute OPC during concrete
production [11–13]. According to a study [14], the use of waste materials is desirable for
the sustainability of the construction sector; however, another study [15] claims that the ap-
plication of byproducts obtained from industries as a supplementary cementitious material
(SCM) partly substitute OPC has substantially helped to achieve a more green environment.
The growing demand for the strength properties along with the durability of concrete has
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necessitated the incorporation of a variety of industrial wastes with pozzolanic attributes
into the OPC [16–21]. Additionally, these components used in OPC have a remarkable result
in the microstructure alteration of cement pastes and the physio-mechanical parameters
of concretes [19,22,23]. The application of waste products in concrete structures not only
decreases ecological pollution but also improves the fresh and hardened properties of the
selected concrete [22–27]. Due to these aspects, waste materials are frequently employed
to improve the characteristics of concrete [28,29]. Nowadays, industrial wastes of various
sorts and nanoparticles are employed in concrete [30,31]. A set of the waste materials
frequently incorporated in concrete from the industries are ground granulated blast furnace
slag, metakaolin, fly ash, and silica fume. However, nano industrial wastes which are
frequently using in concrete are graphene, nano silica, titania–silica nanosphere, nano
titanium, carbon nanotubes, and nano metakaolin.

FA is one of the most utilized SCM in concretes [32–36]. The FA obtained from coal
incineration activities is not risky from the radiological fact [37]. Regrettably, it comprises
trace levels of hazardous substances derived from coal-burning, including mercury, fluorine,
and [38]. After burning, approximately 10–40% of chlorine and fluorine and 30–80% of
mercury in coal are reported to retain in FA [39,40]. As a result, this industrial waste
can be classified as a possibly hazardous substance in some instances. FA is an effective,
very desirable waste for recycling purposes since concretes containing these supplements
in proportions of up to 20% as OPC substitutes exhibit enhanced stability and fracture
toughness [41–44], deterioration resistance [45], and tolerance to elevated temperatures [46].
Additionally, by utilizing FA, eco-friendly green material for civil engineering might be
produced [47–51] and promote the development of a specific microstructure in concrete
matrices, thereby facilitating the restriction of harmful elements [52]. Initially, the usage
of FA in concrete enables the reduction of problematic disposal sites associated with this
waste. It is worth noting that about 800 million tons of FA are generated annually on a
global scale [53,54]. Due to the huge volume of combustion byproducts and their lack
of usage, the necessity for dry or wet landfill sites to be constructed, maintained, and
secured arises. It is a considerable environmental and public issue since the resulting
contamination of the atmosphere has a detrimental effect on people’s health and well-being
and might contribute to the development of severe environmental infections. Dumping
huge amounts of FA in landfilling is also detrimental, as they are extremely light and fine
in dry conditions, making them easily dispersed by wind. Thus, the substitution of FA
cement is an unambiguously environmentally acceptable alternative.

Moreover, it is necessary to introduce soft computing methods to accurately forecast
the nature and performance/strength of materials. Artificial intelligence (AI) approaches
are gaining more popularity in this aspect which are usually introduced to estimate the
various characteristics of different materials [55–61]. Especially, the estimate of the mechan-
ical characteristics of concrete is very important as it requires a lot of time, effort, and cost
to have the experimental results. To minimize these parameters, numerous AI algorithms
such as random forest (RF), multi-linear perception regression (MLP), artificial neural
network (ANN), neuro-fuzzy regression, AdaBoost, bagging, and boosting are normally
used for the estimate of concrete properties. Shariati et al. [62] research was based on the
anticipation of concrete strength containing waste material (FA and furnace slag). The result
reveals that the ANN approach shows a satisfactory prediction level for the compressive
strength (C-S) of concrete. Han et al. [63] employed the RF algorithm for the anticipation
of high-performance concrete and described that RF could be successfully employed for
the forecast of C-S of concretes. Chaabene et al. [64] represent a comprehensive review
of the number of PML approaches used for the prediction of the strength properties of
concrete. They reported that ML models are more precise, adaptable, and can be retrained
by incorporating the updated dataset.

This study describes the combined effect of experimental and soft computing predic-
tive approaches for the concrete strength containing FA. A detailed investigation of the
material used and mix ratios for preparing the concrete were carried out for the desired
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strength. The novelty of this research is to investigate the precision level of predictive
algorithms (MLP, DT, BR, RF) employed in the experimental and data retrieved from lit-
erature for the strength property of FA-based concrete. The comparative study on the
precision of employed algorithms towards the prediction of C-S would be beneficial for the
scientists and researchers in the field of engineering to adopt the appropriate technique for
the estimate of concrete’s strength.

2. Materials and Methods

2.1. Materials

The materials utilized in this investigation were aggregates with a specific gravity
of 2.79 and water absorption of 0.96% purchased from a local quarry, Ordinary Portland
Cement Type I having a surface area of 380 m2/kg, and class-F fly ash obtained from
a nearby thermal power plant was introduced in the experimental work. The water
absorption for the selected fine aggregate was noted as 2.32%, with its specific gravity of
2.65 obtained from the local source. As per the ASTM standard C494 superplastizers type
A was used in the concrete during experimental work. Table 1 summarizes the physical
properties and chemical composition of cementitious materials. As can be observed, cement
has the highest specific gravity, as opposed to FA. Moreover, the amount of SiO2, Fe2O3,
and Al2O3 in FA is 77.9%, indicating that it is class-F FA. However, the fineness modulus
FM of fine aggregate was noted as 2.65, while the result of fineness modulus for coarse
aggregate and fine aggregate was calculated as 6.93, and 2.65, respectively.

Table 1. Physical properties and chemical composition of the cement and fly ash.

Property/Composition Cement Fly Ash

Physical properties

Initial setting time (minutes) 34 -
Final setting time (minutes) 161 -
Standard consistency (%) 31.9 -
Specific gravity 3.2 2.482
Soundness (mm) 1 -
Blaine fineness (m2/kg) 2950 4300

Chemical
composition

Silica as SiO2 (%) 21.77 48.5
Alumina as Al2O3 (%) 5.5 20.01
Magnesium as MgO (%) 1.24 2.4
Calcium as CaO (%) 63.3 16.45
Iron as Fe2O3 (%) 4.6 8.5
Sulphur as SO3 (%) 1.91 1.72
Loss of ignition (%) 1.68 2.42

2.2. Methods

In the laboratory, cylindrical specimens (100 mm diameter and 200 mm height) were
made. Compaction was accomplished in two layers, with each layer receiving twenty
blows, using a conventional 2.5 kg proctor hammer. This technique has been advocated
over vibration and rodding. The number of random mixes was made with different mix
ratios to obtain the maximum number of data points. Each batch was then subjected to
curing for 7, 28, 56, and 90 days

2.3. Compressive Strength

The C-S of the FA-based concrete specimens was found using the ASTM C39/C
39M-99 standard [65]. The compressive axial load is applied to the specimens at a rate
of 0.15 to 0.35 MPa/s until the failure. Concrete specimens were cured in water and
then tested after 7, 28, 56, and 90 days. The maximum, minimum, and average C-S
obtained from the experimental work in the laboratory were 60.90 MPa, 12.05 MPa, and
31.73 MPa, respectively.
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2.4. Data Description

The 62 data points (mixes) were prepared from the experimental work in the laboratory,
while 569 data points were retrieved from the literature [66,67] to have a maximum number
of data samples for modeling. To run the selected models, a total of 631 data points with
seven input parameters such as FA, water (W), cement (C), superplasticizers (SP), age,
coarse aggregate (C-A), and fine aggregate (FA), with one output C-S were arranged in the
tabulated form. The required dataset was then incorporated into the anaconda navigator
software, in which the selected models were run one by one with the help of python coding.
The result was obtained in the form of a coefficient of determination (R2) value, which
normally ranges from 0 to 1. The maximum R2 value signifies the superior precision
level of the employed method in forecasting desired outcome. In addition, the explanatory
statistical analysis of the input parameters obtained from experiments and literature used in
the study for the prediction (C-S) purpose can be seen in Table 2. The histograms indicating
the relative frequency distribution in the percentage of each variable of the total dataset
were developed using Jupyter Notebook (6.0.3) of the anaconda software, as depicted in
Figure 1 and the units for each variable in the figure is kg/m3, except age is days and
strength in MPa. Moreover, the detailed schematic representation of this research is shown
in Figure 2.

Table 2. Explanation of the statistical analysis for the input parameters.

Parameters
Cement
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

SP
(kg/m3)

C-A
(kg/m3)

FA
(kg/m3)

Age
(days)

Mean values 282.13 77.29 180.95 5.45 1003.76 794.19 44.50
Standard deviation 94.88 61.91 17.97 5.28 72.84 68.18 58.66
Median of input 252.00 100.40 185.70 5.70 1006.40 794.90 28.00
Mode of input 213.50 0.00 192.00 0.00 968.00 613.00 28.00
Standard error 3.78 2.46 0.72 0.21 2.90 2.71 2.34
Range 405.30 200.10 88.00 28.20 324.00 351.00 364.00
Minimum values 134.70 0.00 140.00 0.00 801.00 594.00 1.00
Maximum values 540.00 200.10 228.00 28.20 1125.00 945.00 365.00

Figure 1. Cont.
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Figure 1. Reflection of histograms for inputs indicating the relative frequency distribution.

Figure 2. Flow chart of the research program indicating the step-by-step procedure.
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3. Predictive Machine Learning (PML) Algorithms

3.1. Decision Tree

DT algorithms are well-recognized PML approaches that have been used for a variety
of tasks, most notably classification. DTs are used to partition datasets in a nonparametric
manner. Alternative data extracting methods include regression models, which depict
variables’ relations as cross-products. The DTs used in this research were chosen for
their capacity to transform enormous, complex datasets into simple-to-understand yet
knowledge-rich graphic presentations. More precisely, the resulting graphical tree image
was deemed beneficial for rapidly elucidating the essential parameter value combinations
that result in unacceptable product loss, which could then be turned into a set of rules. A
DT employs a tree-like graph to describe a flowchart-like structure, with the “root” as the
starting point. Each internal node of the tree corresponds to a test on a particular attribute
or subset of attributes. Each branch from the node reflects the result of the test, while the
final node represents a class label via a “leaf”. A simple DT can be constructed manually.
However, designing an algorithm that learns the tree from data is straightforward. As with
other types of PML, supervised learning uses labeled samples to construct a classifier by
computing the sequence of branch options. The flow chart of the DT model indicating the
execution process for predicting the required outcome is shown in the Figure 3.

Figure 3. Execution process of the DT model [66].

3.2. MLP Algorithm

An MLP is a form of feedforward ANN that generates outputs based on a collection
of inputs. Amongst the output and input layers, many layers of input nodes are linked
through a targeted graph. Backpropagation is used to train the network in MLP. A MLP is
a type of network (neural) that links many laps in a targeted graph, with signals traveling
one way across the nodes. Except for the input nodes, each node has a nonlinear activation
function, which is unique to it. MLPs are a type of supervised learning that makes use
of backpropagation. Due to the number of laps of neurons in MLP, it is usually called
a deep learning approach. MLP is commonly used in supervised learning applications
and imputation pure science and parallel dispersed processing studies. Applications have
machine translation, image perception, and speech realization. Initially, the algorithm
selects predictors to employ during the regression phase to identify the variance inflation
component (VIF). The VIF then evaluates the variance increase of an estimated regression
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coefficient due to collinearity. Finally, the algorithm eliminates variables with high VIFs in
order to get the optimal forecasting solution as shown in the Figure 4.

Figure 4. Flow chart of the MLP model showing the complete execution process.

3.3. Bagging Algorithm

BR, also known as bootstrap aggregation, is a technique for merging many editions of a
predicted model. Every model is individually skilled and then averaged. The fundamental
purpose of BR is to achieve a smaller deviation than any single model. Bootstrapping
is the process of generating bootstrapped samples from a given dataset. The samples
are generated by randomly picking and replacing data points. The resampled data have
qualities that are unique from the original data in their entirety. It illustrates the data
distribution and also tends to reserve divergence among bootstrapped samples, i.e., the
data dispersal must remain together while maintaining distinction across bootstrapped
samples. This helps to construct strong models. Furthermore, bootstrapping supports
preventing the overfitting problem. When several training datasets are used to build the
model, it becomes resistant to error creation and hence runs in a better manner with the test
data, minimizing variation by creating a strong footing in the test set. Testing the model
with numerous permutations guarantees that it is not partisan for an incorrect result. The
flow chart of the bagging model can be seen in the Figure 5.

Figure 5. Flow chart of the bagging algorithm indicating the execution process.
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3.4. Random Forest

An RF is a special kind of PML method that is utilized to deal with classification and
relapse issues. It constructs the use of ensemble learning, a practice for settling complex
problems through the application of various classifiers. An RF algorithm is made up of
a huge number of decision trees. The RF approach creates a ‘forest’ that is trained using
either backward regression or bootstrap aggregation. BR is an ensemble meta-algorithm
that is used to improve the accuracy of PML systems. The RF technique creates the result
based on the predictions of the DTs. Forecasting is accomplished by summing or scaling the
output of distinct trees. Expanding the number of trees enhances the accuracy of the result.
An RF algorithm solves the disadvantages of a deep learning system. It reduces overfitting
and increases the accuracy of datasets. It makes predictions without needing the user to
configure multiple packages (such as sci-kit-learn). A DT is composed of three components:
decision nodes, leaf nodes, and root nodes. A DT technique partitions a training set into
branches that subsequently split into additional branches. This method is continued till
reaching a leaf node. It is not feasible to further segregate the leaf node. The nodes of the
DT show the attributes that are used to anticipate the result. The decision nodes link the
leaves together. The execution process of the RF model is depicted in the Figure 6.

Figure 6. Predictive process of the RF model [63].
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3.5. K-Fold Cross-Validation (C-V) Method

C-V is a statistical approach that is used to assess the prediction power of PML models.
It is commonly applied in PML to match and select models for specific projecting modeling
issues since it is simpler to understand and use and gives skill estimates that are typically
less biased than those given by other approaches. C-V is a strategy for assessing PML
models on a short sample of data. The method accepts a single parameter, k, which indicates
how many groups a given data sample should be split into. As a result, the procedure is
usually abbreviated as k-fold C-V. When an exact value for k is supplied, it may be used in
place of k in the model’s reference; for example, k = 10 becomes 10-fold C-V.

C-V is mostly utilized in applied PML to determine the skill of a PML model on
formerly unknown data. That is, to assess the model’s overall operation when employed to
produce forecasts on data that were not used during the model’s training. It is a popular
method because it is simple to understand and offers a more accurate evaluation of model
competency than other strategies, such as a simple train/test split. The general procedure
is as follows: randomize the dataset, divide it into k distinct groups, treat one group as
a reserve or test data collection, use the remaining groups as a source of training data on
the training set, fit a model and evaluate it on the test set, keep the evaluation score and
discard the model, and summarize the model’s ability by examining a sample of model
evaluation scores. Notably, each observation in the data sample is assigned to a unique
group and remains assigned to that group throughout the process. This means that each
sample is used just once in the hold outset and then used k times to train the model.

4. Result and Discussions

4.1. Decision Tree Model Outcome

The correlation amongst the experimental results and the findings found from the DT
model (predicted) shows appreciable relation and gives the R2 value equal to 0.88, as shown
the Figure 7. However, Figure 8 depicts the spreading of errors from the predicted and
experimental C-S results. This distribution ranges from 0 and gives the maximum value
equal to 13.8 MPa, while the average result of this distribution was 3.09 MPa. In addition,
23.62% of the data were lying among 0 and 1 MPa, and 58.26% of the data were lying
among 1 MPa and 5 MPa. However, only 18.11% of the error values were lying above
5 MPa.

Figure 7. Correlation between the experimental C-S and projected C-S for the DT model.
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Figure 8. Difference between the experimental C-S and predicted C-S of the DT model.

4.2. MLP Model Outcome

The statistical result obtained from the MLP model between the experimental and
predicted can be seen in Figure 9. The R2 value equals 0.90 for the MLP model, showing a
better predictive precision for C-S of concrete as opposed to the DT model. The difference
(errors) between the experimental and forecasted C-S results for FA-based concrete are
shown in Figure 10. This difference gives the maximum value equal to 15.22 MPa, while
the minimum value was reported as 0.009 MPa, while this distribution shows the average
value equals 3.74 MPa. Moreover, it was reported that 14.17% of data were lying up to
1 MPa, and 56.69% of data were lying among 1 MPa and 5 MPa. However, 29.13% of the
data were lying above 5 MPa.

Figure 9. Correlation between the experimental C-S and the estimated C-S for the MLP model.
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Figure 10. Difference between the experimental C-S and predicted C-S of the MLP model.

4.3. BR Model Outcome

The relationship between the experimental results of the C-S and the anticipated
outputs of the concrete containing FA are shown in Figure 11. The results of the difference
(errors) among the forecasted and experimental can be seen in Figure 12. The results of
these differences give the highest, lowest, and average values of 9.01 MPa, 0.004 MPa, and
2.77 MPa, respectively. Moreover, 23.62% of the data were lying up to 1 MPa, 59.05% of
data were found among 1 MPa, and 5 MPa, while only 17.32% of the data were lying above
5 MPa.

Figure 11. Correlation between the experimental C-S and projected C-S for the BR model.
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Figure 12. Difference between the experimental C-S and predicted C-S of the BR model.

4.4. RF Model Output

The statistical output for the RF model between the experimental C-S and predictive
C-S of concrete containing FA is depicted in Figure 13. The RF model shows a much better
predictive result when compared to other employed ML algorithms, as illustrated by the
high R2 value that equals 0.96. The errors distribution between the experimental C-S and
forecasted C-S of concrete is shown in Figure 14. The RF model’s error distribution gives
the highest, lowest, and average values equal to 7.183 MPa, 0.056 MPa, and 2.170 MPa,
respectively. Moreover, it was observed that 24.40% of the data were lying up to 1 Mpa,
67.71% of the data were lies among 1 MPa, and 5 MPa, while only 7.87% of the data were
lying above 5 MPa.

Figure 13. Correlation between the experimental C-S and projected C-S for the RF model.
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Figure 14. Difference between the experimental C-S and predicted C-S of the RF model.

4.5. K-Fold Outcome

C-V is a statistical approach that is used to analyze or approximate the factual perfor-
mance of PML models in real-world situations. It is crucial to understand the effectiveness
of the models that have been chosen. In order to accomplish this, a validation technique
must be used to determine the level of correctness of the model’s data. The k-fold validation
test necessitates the randomization of the dataset as well as the division of the dataset into
k-groups. According to the research detailed here, the data from experimental samples
are separated into ten equal groups. It makes use of nine out of ten subsets, with the
exception of one subset that is used for model validation purposes. The same approach
used in this process is then replicated ten times in order to get the average precision of
the ten replications carried out. It has been extensively established that the k-fold C-V
approach accurately depicts the decision and correctness of the PML models, and this has
been thoroughly confirmed.

The use of k-fold C-V might be employed to determine whether or not there is a bias
or a variance reduction for the test set. As shown in Figure 15a–d, the outcomes of C-V
are assessed using the R2, the mean absolute error (MAE), the mean square error (MSE),
and the root mean square error (RMSE). The RF model indicates the lower result of the
proposed errors and high result of the R2 as opposed to the other three employed models
(BR, MLP, DT). RF shows the average value of R2 equals 0.46, while the maximum and
minimum values were equal to 0.88 and 0.07, respectively. The BR model’s average R2

value was noted as 0.63, and the highest and lowest value was reported as 0.87 and 0.25,
respectively. Likewise, the average, least, and high value of R2 for the MLP model was
noted as 0.47, 0.07, and 0.88, respectively. However, the same result of the R2 value for the
DT model was reported as 0.57, 0.01, and 0.88, respectively.
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Figure 15. Statistical indicators of k-fold CV for the employed models; (a) RF model, (b) BR model,
(c) MLP model, and (d) DT model.

5. Sensitivity Analysis (SA)

This analysis helps to find out the contribution level of each input factor employed for
modeling to predict the C-S of FA-based concrete. It is also important to test the effect of
each variable for the required outcome. SA reveals that the highest contribution towards
the prediction of C-S was reported by cement and shows the 31.24 percent contribution,
while the other variables contributed the least. The minimum contribution was reported by
the superplasticizers, which contributed only 4.69 percent towards the anticipation of C-S
of concrete, as shown in Figure 16.

Figure 16. Parameter’s effect on the strength property of FA-based concrete.
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6. Discussion

This research described the comparative investigation of experimental results obtained
in the laboratory and forecasted results acquired from the various modeling techniques for
the C-S of concrete containing FA. It is the worth known fact that obtaining the strength
of concrete must take a number of days (time), which is a time-consuming effort for
researchers. To minimize time, effort on experiments, and cost, the application of such soft
computing methods which can predict the desired strength initially are of great interest.
The ML algorithms employed in this study also showed satisfactory outcomes when the
experimental C-S result of the various mixes was compared with the forecasted C-S result.
The comparison of four different types of ML approaches gives the anticipated result with
a certain precision level based on the execution process of each approach. The RF ML
technique gives the effective, precise result for C-S of FA-based concrete when compared
to other employed ML algorithms (DT, MLP, and BR). The precision level of these models
is normally evaluated from the R2 value, which normally ranges from 0 to 1; the higher
R2 value of the model indicates a better precise result in terms of predictions. The high
accuracy of the RF and BR is due to the execution process for the data and splitting of the
model into the sub-models. The detailed information on the sub-models of RF and BR can
be seen in Figure 17a,b, respectively. An RF is composed of a huge number of independent
DTs that involve collaboration. Each tree in the RF produces a forecast for a class, and the
class with the most choices becomes the model’s prediction. The high accuracy of the RF
model over the others has also been reported in the literature [68]. The applied statistical
checks also give confirmation of high accuracy for the RF model. The lesser value of MAE,
MSE, and RMSE shows that the R2 value for the said model will be higher and vice versa.

Figure 17. Coefficient of determination result of the 20 sub-models for; (a) RF, (b) BR models.
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7. Conclusions

This research reported the comparative study of experimental C-S and the results
from the various modeling approaches for concrete containing fly ash (FA). The 61 mixes
were prepared in the laboratory with the random mix ratios to have the number of data
points for further investigation in the modeling techniques. A similar database was also
collected from the literature to make the database appreciable for modeling. The following
conclusion can be drawn from the study.

• The RF model was more effective in predicting the C-S of concrete having FA as
opposed to DT, MLP, and BR.

• RF gives the R2 value equal to 0.96, which is the highest of the DT (0.88), MLP (0.90),
and BR (0.93), indicating the highest precision level for forecasting the C-S of concrete.

• Statistical checks and the CV approach also validate the superior exactness level of the
RF model as opposed to other employed models.

• The RF also gives a lesser result for the evaluated errors MAE (2.17 MPa), MSE
(7.45 MPa), and RMSE (2.73 MPa) when compared with the error value of the DT, MLP,
and BR. This lesser value of the error also confirms the high precision of the RF model.

Further studies can also be conducted using other supervised ML algorithms such
as boosting regressor, Adaptive neuro-fuzzy inference system, and XGBoost technique to
investigate their predictive performance. Furthermore, the experimental approach can
also be enhanced to obtain the maximum number of data points to avoid overfitting the
data. It is also recommended that the strain model can also be included in the study along
with the use of supervised machine learning algorithms to strengthen the overall quality of
research work. To compare the results with a database with restricted input parameters,
the number of input variables might be expanded. The dimensions of the tested specimens,
temperature, and humidity effects can also be considered to investigate the difference in
the required outcome.
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Abstract: This study aimed to expand the knowledge on the application of the most common
industrial byproduct, i.e., fly ash, as a supplementary cementitious material. The characteristics of
cement-based composites containing fly ash as supplementary cementitious material were discussed.
This research evaluated the mechanical, durability, and microstructural properties of FA-based
concrete. Additionally, the various factors affecting the aforementioned properties are discussed,
as well as the limitations associated with the use of FA in concrete. The addition of fly ash as
supplementary cementitious material has a favorable impact on the material characteristics along
with the environmental benefits; however, there is an optimum level of its inclusion (up to 20%)
beyond which FA has a deleterious influence on the composite’s performance. The evaluation of
the literature identified potential solutions to the constraints and directed future research toward
the application of FA in higher amounts. The delayed early strength development is one of the
key downsides of FA use in cementitious composites. This can be overcome by chemical activation
(alkali/sulphate) and the addition of nanomaterials, allowing for high-volume use of FA. By utilizing
FA as an SCM, sustainable development may promote by lowering CO2 emissions, conserving natural
resources, managing waste effectively, reducing environmental pollution, and low hydration heat.

Keywords: cementitious composites; fly ash; supplementary cementitious material; mechanical
properties; durability; microstructure

1. Introduction

Industrial solid waste makes up a sizable portion of human-generated wastes, which
come in a vast range of forms and are highly complex in nature [1–3]. Heavy metals are
found in the majority of industrial wastes, such as red powder, metal cleaning, and ra-
dioactive waste [4–6]. Inappropriate handling of solid industrial waste can lead to leachate
penetrating soil and groundwater, causing environmental irreversibility and endangering
human health [7–9]; moreover, global warming and climate change are the two most seri-
ous environmental problems caused by CO2 emissions [10–12]. The construction industry
substantially impacts the environment, accounting for a significant portion of CO2 emis-
sions [13–15]. Each ton of cement produced emits about 0.8 tons of CO2 [16–18], and cement
production is increasing globally [19] due to the increasing demand for concrete [20–22].
Researchers worldwide are constantly on the lookout for new materials that can be utilized
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in place of, or in addition to, cement [23]. Since the last decade, the application of supple-
mentary cementitious materials (SCMs) such as silica fume, fly ash (FA), slags, etc., as a
cement replacement has been emphasized [24–26]. SCMs hydrate cement hydraulically or
pozzolanically in pore solution [27–29]. Thus, utilizing industrial solid waste in construc-
tion as SCMs is an effective approach for eco-friendly construction [30]; it could reduce
cement demand, reduce CO2 emission, and solve waste management problems. From the
various kinds of industrial byproducts that can be used as SCMs, the most common is FA.

FA is a byproduct of coal combustion that is accumulated at the top of boilers, particu-
larly in coal-fired power plants [31,32]. The omitted mineral particles or mineral materials
within the coal liquefy, evaporate, consolidate, or agglomerate during/after burning. By
rapidly cooling in the post-combustion portion, sphere-shaped, amorphous FA grains are
created due to surface tension force. When the entrapped volatile matter reaches a high tem-
perature, it expands inside, forming a hollow cenosphere. Some residues may crystallize,
while others may become glassy, reliant on the composition of residues and the heat-
ing/cooling circumstances [33]. FA is considered an SCM that is used in place of cement in
cementitious materials [34,35]. FA increases workability, decreases the hydration heat, and
thermal cracking in cementitious materials at initial ages, and improves the mechanical and
durability characteristics of cementitious composites, mostly at later ages [36,37]. The appli-
cation of FA is also being investigated in the manufacture of geopolymer concrete [38–40];
however, this study is limited to reviewing their utilization in cementitious composites.

The amorphous silica in FA reacts with the calcium hydroxide to form calcium-silicate-
hydrate (CSH) [41]. FA’s pozzolanic reaction boosts its utility not only in concrete but
also in a variety of other construction applications [42]. Due to the pozzolanic process,
the strength gain lasts significantly longer than with normal concrete [43]. Additionally,
FA increases the workability of concrete by reducing bleeding [44]. FA has been shown
to improve the long-term compressive strength (CS) of normal and recycled aggregate
concrete [45]. Microstructural examination of FA samples following early curing reveals an
abundance of un-hydrated spherical FA particles. Despite this, after a year of curing, the
microstructure of FA samples appeared to be very compact, with no evidence of dehydrated
FA particles [46]. FA requires a longer period of time to hydrate. As a result, during the
initial phases of curing, low CS has been found. The strength development of FA, on the
other hand, is dependent on its chemical and physical characteristics. It has been observed
that FA with a fine particle size distribution had a better CS than FA with a coarse particle
size distribution [47]. The binder causes the concrete to shrink during the hydration process,
and excessive shrinkage can result in severe cracks in the concrete structure. FA is beneficial
for shrinkage mitigation [48]. It has been noted that the use of large volume FA in concrete,
specifically 50% replacement of cement with FA, resulted in a 30% reduction in shrinkage
when compared to ordinary concrete [49].

The use of FA in low (<30%) and high (>30%) volume in concrete is a pioneering
move that has already altered the worldwide concrete industry’s approach. Mostly, FA
is disposed of in landfills, which has had severe implications, the majority of its portion
has been successfully utilized in the concrete industry for the last three to four decades.
Additionally, the frequent generation of FA has compelled government officials and experts
to develop a more dependable method of consuming it, while the application of FA to
the development of sustainable concretes will almost certainly alter the future building
industry [50–52]. Even though FA has been extensively investigated over the last few
decades, experts have discovered some inconsistent results regarding the mechanical and
durability characteristics of concrete. The chemical and physical features of FA have a
major effect on the mechanical and durability characteristics of concrete. Additionally, the
characteristics of FA vary depending on the source. This study focused on reviewing the
mechanical, durability, and microstructural characteristics of FA-based concrete; the various
factors influencing the aforesaid properties are highlighted, and limitations associated with
the use of FA in concrete are described. Based on the review of the literature, possible
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solutions to the limitations are provided, and future research is directed to the application
of FA in larger quantities.

2. Properties of Fly Ash

2.1. Physical and Chemical Properties

FA is a primary solid waste generated by coal-fired energy plants, and these plants
are looking for economically viable ways to dispose of it. FA particles are generally
spherical, solid/hollow in nature, mainly glassy (amorphous), with particle sizes varying
from <1 µm to 150 µm [53–55]. The scanning electron microscopy (SEM) micrographs of
the FA are shown in Figure 1. FA has a specific gravity of 2.1 to 3.0 [56] and a specific
surface area of 170 to 1000 m2/kg [57]. FA can range in color from tan to grey to black,
based on the quantity of unburned carbon present [35,58]. Besides the environmental
advantages of waste disposal and CO2 reduction [59,60], FA increases workability [61],
decreases the hydration heat and thermal cracking in concrete at the initial stage [62],
and improves the performance of cementitious materials, especially at later stages [36,63].
Regardless of the advantages of FA, 100% application of FA is not possible due to a variety
of reported limitations [64]. The ASTM categorizes FA into two categories: “C” and “F” [65].
FA classified as “Class F” is mostly generated by burning anthracite or bituminous coal
containing SiO2, Al2O3, and Fe2O3 concentrations greater than 70%. While “Class C” FA
is generated by burning lignite or sub-bituminous coal that consists of 50% to 70% of the
aforementioned chemicals [66]. Class F is a typical pozzolan and composed of silicate glass
that has been modified with aluminum and iron [67]. CaO amount is less than 10% in
“Class F” FA [68]; thus, to form CSH through pozzolanic reaction, Ca(OH)2 formed during
cement hydration is required; therefore, the chemical composition of FA performs a major
part in determining its performance in cementitious composites [69]. The range of element
oxide concentrations found in “Class F” and “Class C” FA has been listed in Table 1. As can
be seen, there is a considerable difference in the element oxides contained within a single
kind of FA, which might be ascribed to differences in source, processing conditions, and
so on. There is a crucial need to utilize more FA in the construction materials due to the
increase in FA production globally.

–

“ ” “ ”
“ ”

“ ”

“ ”

“ ” “ ”

  

(a) (b) 

Figure 1. Micrograph of fly ash: (a) [70]; (b) [71].
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Table 1. Element oxides range in fly ash types.

Element Oxides
Range of Element Oxides (%)

Class F Class C

SiO2 37.0–62.1 11.8–46.4
Al2O3 16.6–35.6 2.6–20.5
Fe2O3 2.6–21.2 1.4–15.6
CaO 0.5–14.0 15.1–54.8
MgO 0.3–5.2 0.1–6.7
SO3 0.02–4.7 1.4–12.9

Na2O 0.1–3.6 0.2–2.8
K2O 0.1–4.1 0.3–9.3
TiO2 0.5–2.6 0.6–1.0
P2O5 0.1–1.7 0.2–0.4
MnO 0.03–0.1 0.3–0.2
LOI 0.3–32.8 0.3–11.7

2.2. Cementing Efficiency and Pozzolanic Properties

Smith [72] proposed the notion of cementing factor (k) in order to develop a reason-
able approach for incorporating FA into cement/concrete. Cementing efficiency can be
employed to ascertain the overall quality, durability, and performance of composites. In
general, FA has a low cementing efficiency at initial stages and acts more such as filler, but
the pozzolanic feature turns out to be efficient at later ages, causing a significant increase in
strength [73–75]. This clearly indicates that the pozzolanic reaction improves the cementing
efficiency of FA with age. According to Smith [72], “the FA mass might be considered
similar to the cement mass in terms of CS development.” In other words, “k” is a factor
that accounts for the variation among the contribution of cement to the development of
a particular property and the contribution of mineral admixtures. CS tests are frequently
used to measure this cementing efficiency due to their simplicity and repeatability. The “k”
value of FA is determined by a variety of its intrinsic qualities, including physical prop-
erties such as particle size, distribution, and shape, as well as chemical composition [76].
Additionally, it was also reported that the “k” factor is dependent on other parameters
such as the curing time, the concrete strength, and the FA type [77]; therefore, it was also
discovered that the “k” value is dependent on external factors such as the water/cement
ratio (w/c). They stated that for conventional FA, “k” is a function of the w/c and that
the cementing efficiency of FA tends to decline as the w/c increases [78]. On the contrary,
Smith [72] asserted that it is unaffected by the w/c.

Apart from cementing efficiency, pozzolanicity is another critical term in the context
of FA concrete. Among the numerous favorable benefits of FA in cement/concrete, the
pozzolanic effect is believed to be the most important [66]. The pozzolanic reaction is
mostly dependent on the Al2O3 and SiO2 content of FA and is stimulated by the Portlandite
generated during cement hydration to generate a more hydrated gel. This gel plugs the
capillary pores in the matrix, increasing its strength [79]. As a result, FA’s reactivity is
greatly dependent on its chemical properties; however, all pozzolanic materials are made
of aluminosilicate glass that combines with Ca(OH)2 formed during hydration of cement
to yield hydration products [80].

3. Properties of Composites Containing Fly Ash

3.1. Workability

FA has plasticizing properties that improve the workability of the composites [81].
Lee et al. [82] reported the subsequent factors as possible reasons for FA’s plasticizing effect.
Firstly, increased composite volume due to FA’s lower density than cement. Secondly,
FA decreases the flocculation of cement grains because of the dilution effect. Thirdly, the
slower reaction rate of FA reduces hydration product growth at the initial time. Besides
these causes, the spherical shape of FA grains facilitates the movement of nearby particles
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by the ball bearing effect, particularly at high replacement levels. Thus, FA can be a more
cost-effective method with a low environmental effect to increase the workability than
chemical superplasticizer [83]. Bentz et al. [84] also validated the positive impact of FA
on the workability of the mix. The type of FA used also has a substantial impact on the
workability of composites. According to Ponikiewski and Golaszewski [85], high calcium
FA has a detrimental effect on workability, which adversely influences the mechanical
strength of composites. The fresh state characteristics of a mix mostly depend on the
flowability of cement paste, which is affected by a variety of aspects such as water-binder
ratio (w/b), type, and quantity of SCM [86]. Conversely, some researchers reported a drop
in the workability of mixes with FA addition at higher amounts [87]. The decrease in
workability might be the high-water demand due to the smaller size and larger surface
area of FA.

Lee et al. [82] highlighted the following aspects as possible explanations for FA’s
plasticizing action. To begin, increased paste volume due to FA’s lower density than cement.
Second, FA lowers the flocculation of cement particles due to the diluting effect. Thirdly,
because of the FA’s slower reaction rate as a result of the lowered development of hydration
products at an initial age. In addition, the spherical shape of FA grains facilitates the
movement of nearby fragments via the ball bearing effect, particularly at high replacement
levels; thus, FA can be a more cost-effective method of increasing flowability than chemical
superplasticizers [83]. Bentz et al. [84] also validated the favorable effect of FA on the
fluidity of the mix. As previously observed [82], replacing cement with FA reduces yield
stress due to the decreased density of FA and hence decreases the number of flocculated
cement grain to cement particle contacts. The FA type utilized has also a considerable effect
on the fresh properties. According to a study, high calcium FA has a detrimental effect on
workability, which in turn has a negative effect on strength and durability [85]. The fresh
state performance of a concrete is primarily dependent on the flowability of the cement
paste, which is influenced by a variety of elements such as w/b, type, and dose of SCM [88].

Apart from these parameters, prior research has also demonstrated that the packing
density of the cement-based composites also has a significant role in determining the
cement paste’s flowability, particularly at low w/b ratios [82,89]. Essentially, increased
packing density results in decreased water demand, which results in increased water being
released (after voids filling) to cover the solid fragments and lubricate the cement paste [90];
however, a higher specific surface area significantly increases the amount of solid surface
area that can be covered with water [91–93]. These simultaneous actions of tiny fillers
can enhance packing density while decreasing the quantity of surplus water per surface
area; thus, to achieve a balance between the desired increase in packing density and the
unwanted increase in surface area, a filler that is finer than cement but coarser than nano
silica/silica fume is required [94]. This indicates that the fineness of the FA impacts the
end material’s properties. As a result, it has been concluded that some studies show lower
water required for concrete workability due to the refined pores and spherical morphology
of FA; others report a higher water requirement due to its increased surface area. This
well-documented incompatibility between water demand and FA usage must be rectified.

3.2. Compressive Strength

Numerous tests are used to determine the concrete performance, but CS is often re-
garded as the most critical. CS tests provide a clear indication of the varied properties of
concrete. The literature established that CS is related to a variety of mechanical and dura-
bility attributes directly or indirectly [95]. In other words, CS and the quality of concrete
are inextricably related. FA’s physical properties, particularly its size and shape, have a
substantial effect on the performance of cement-based materials. Additionally, the chemical
composition has been considered a base to ascertain the appropriateness of FA for use as
SCM [96]. Thus, the hydration process of the FA-cement mix is strongly affected by the
intrinsic characteristics of FA, for instance, crystalline structure, chemical and physical
properties [97], as well as external factors such as w/b, replacement ratio, and curing
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temperature. FA fineness is a major factor [98] in controlling the appropriateness of FA in
cementitious composites, as the FA grain size has a substantial impact on the performance
of composites [99]. The packing and nucleation effects on the cement hydration are highly
reliant on the particle size of the FA used [100]. Chindaprasirt et al. [100–102] conducted
a thorough investigation to examine the effect of the fineness of FA on the composites’
properties; they reported that using finer FA resulted in an increase in CS. It was discovered
that coarse FA is less reactive and needs extra water, producing a more porous mortar.
The detrimental effects of coarser FA are described as a cause of decreased strength. Nu-
merous findings have indicated that the application of FA impairs the early-age strength
development of composites [82,103–105]; however, FA generally enhances the strength
and durability of composites over time, as it consumes the Ca(OH)2 produced during the
hydration of cement and makes secondary hydrates, for example, CSH [106].

The quantity of FA used as cement replacement in composites also affects their prop-
erties. The 28-days CS results of specimens at various replacement levels of FA have
been provided in Table 2. In addition, the influence of FA replacement ratio, based on
past studies, on 28-days CS of composites compared to the reference samples without
FA has been shown in Figure 2. Barbuta et al. [107] observed a decrease in CS with the
use of FA, and a higher quantity of FA as cement replacement resulted in greater loss of
CS. The samples without fibers showed a decrease in CS by 11.3%, 30.4%, 24.8%, 33.7%,
and 59.7%, with FA content of 10%, 15%, 20%, 30%, and 40%, respectively, related to the
controlled sample. A comparable pattern was also noticed with the samples containing
fibers. Gencel et al. [108] assessed the impact of FA on the properties of composites using
10%, 20%, and 30% FA in place of cement. A reduction in CS was observed with the use
of FA, compared to the reference mix, also shown in the figure. The reduction in CS was
more at higher FA contents. Huang et al. [109] studied the impact of two kinds of FA
depending on loss on ignition (LOI) amount, i.e., low LOI (4.6%) and high LOI (7.8%) FA.
The outcomes discovered that utilizing low LOI FA at lower proportions enhanced the CS.
The maximum increase in CS was examined at 40% content of FA having 16.8% higher CS
than that of the reference sample; however, at increased proportions of FA, the CS reduced,
which may be ascribed to the finer grain size in low LOI FA, which made the microstructure
denser and more compact. The CS reduced with the addition of high LOI FA was because
of greater particle size and lower pozzolanic activity; it was also reported that the CS of
composites containing higher contents of FA was improved at a later age (1 year) compared
to the controlled sample because of the slow pozzolanic reaction.

The effect of FA addition has been investigated in self-compacting concrete (SCC). For
example, substituting 35% FA for cement results in a 10% reduction, but substituting 55%
FA leads to a 24% reduction compared to the control SCC mix [110]. Similarly, a reduction
of approximately 46% and 35% have been seen in containing 50% FA mix, after 7 and 90
days of curing, respectively, when compared to a control SCC mix; moreover, at a 70% FA
incorporation level in SCC, a severe reduction of approximately 63% and 47% was seen
after 7 and 90 days of curing, respectively [111,112]. The presence of cement additives has a
considerable effect on the CS of FA-based SCC. The addition of cement additives improves
the performance of FA-based SCC mixtures at both low and high curing temperatures.
Silica fume, metakaolin, and limestone filler have all been used previously to increase the
CS of SCC mixes. At 90 days, a reduction of nearly 29%, 42%, and 15% was seen for a 50%
level of FA with limestone filler (15%), metakaolin (20%), and silica fume (10%) in SCC,
respectively [111,113,114].
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Table 2. Compressive strength (28-days) of composites containing fly ash.

Reference Replacement Ratio (%) Compressive Strength (MPa)

Barbuta et al. [107], without fibers

0 33.4
10 29.7
15 23.3
20 25.2
30 22.2
40 13.5

Barbuta et al. [107], with 0.25%
and 30 mm long fibers

0 33.4
10 31.8
15 27.4
20 25.4
30 19.6
40 14.4

Barbuta et al. [107], with 0.25%
and 50 mm long fibers

0 33.4
10 29.8
15 24.1
20 27.2
30 20.9
40 11.3

Gencel et al. [108], with 0% FSA

0 52.2
10 44.7
20 36.8
30 29.6

Gencel et al. [108], with 25% FSA

0 50.7
10 45.4
20 37.8
30 31.3

Gencel et al. [108], with 50% FSA

0 53.9
10 45.8
20 36.6
30 29.6

Gencel et al. [108], with 75% FSA

0 55.6
10 46.4
20 37.3
30 30.3

Paliwal and Maru [115]

0 26.4
5 27.8

10 29.4
15 28.2
20 27.5

Huang et al. [109], 24 MPa
concrete and low LOI fly ash

0 25.0
20 25.4
40 25.6
60 23.5
80 20.9

Huang et al. [109], 35 MPa
concrete and low LOI fly ash

0 34.5
20 36.5
40 40.3
60 34.5
80 30.0

Huang et al. [109], 35 MPa
concrete and high LOI fly ash

0 34.5
20 34.9
40 34.1
60 30.5
80 25.2

FSA: ferrochromium slag aggregate, LOI: loss on ignition.
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Figure 2. Influence of fly ash as cement replacement on 28-days compressive strength of composites.
FSA: ferrochromium slag aggregate [107–109,115].

3.3. Split-Tensile Strength

Another essential mechanical characteristic of concrete is its tensile strength, which
has a significant effect on the extent and size of cracking in concrete structures. Because
concrete is weak in tension, it is critical to do a pre-evaluation of their split-tensile strength
(STS) [116,117]. The use of FA in cementitious composites has a detrimental effect on STS.
The 28-days STS results of composites containing FA as SCM are displayed in Table 3.
Figure 3 is generated on the data acquired from the literature depicting the variation
in 28-days STS due to the replacement of cement by FA. Mostly, a reduction in STS is
observed, especially at higher replacement ratios. From the experimental data performed
by Barbuta et al. [107], the samples without fibers showed a decrease in STS by 8.1%, 8.1%,
48.3%, 29.6%, and 48.3% with FA content of 10%, 15%, 20%, 30%, and 40%, respectively, as
compared to the control sample. The sample containing fibers (0.25% and 50 mm long) and
10% FA showed 12.8% higher STS when compared to the control sample; however, with
the further addition of FA, STS was reduced. Gencel et al. [108] studied the combined effect
of FA as SCM and ferrochromium slag as an aggregate replacement on STS of composites.
They also reported decreasing trend with the addition of FA. The STS of specimens without
ferrochromium slag was reduced by 9.7%, 20.7%, and 30.2%, with FA content of 10%, 20%,
and 30%, respectively, compared to the sample without FA. A similar pattern of decreasing
STS with FA addition was also noted in specimens containing ferrochromium slag as
aggregate replacement.
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Table 3. Split-tensile strength (28-days) of composites containing fly ash.

Fly Ash

Reference Replacement Ratio (%) Split-Tensile Strength (MPa)

Barbuta et al. [107], without fibers

0 1.72
10 1.58
15 1.58
20 0.89
30 1.21
40 0.89

Barbuta et al. [107], with 0.25%
and 30 mm long fibers

0 1.72
10 1.51
15 1.37
20 1.05
30 1.71
40 1.02

Barbuta et al. [107], with 0.25%
and 50 mm long fibers

0 1.72
10 1.94
15 1.45
20 0.87
30 1.82
40 0.85

Gencel et al. [108], with 0% FSA

0 5.20
10 4.70
20 4.12
30 3.63

Gencel et al. [108], with 25% FSA

0 5.31
10 4.74
20 4.17
30 3.66

Gencel et al. [108], with 50% FSA

0 5.24
10 4.78
20 4.19
30 3.78

Gencel et al. [108], with 75% FSA

0 5.30
10 4.83
20 4.22
30 3.70

FSA: ferrochromium slag aggregate.
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Figure 3. Influence of fly ash as cement replacement on 28-days split-tensile strength of composites.
FSA: ferrochromium slag aggregate [107,108].
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STS was increased at higher curing ages in comparison to lower curing ages, as
examined in most previous findings. According to published reports, FA interacts with
calcium ions from Ca(OH)2 to CSH, the binder phase. Due to the lack of CSH and Ca(OH)2
in FA-containing concrete, it is unable to build early age strength [118,119]; moreover, the
addition of FA reduces the STS of SCC mixtures due to its intrinsic propensity to reduce
water [112,120]; however, in FA-based mixes, a considerable increase in STS has been seen
with an increase in curing time, despite the presence of minor decrements. Due to the
extensive research conducted to date on the effect of curing on FA-based mixes, similar
improvements have been noticed in various studies [121].

3.4. Flexural Strength

The review of the past studies revealed that using FA at lower replacement levels can
improve the flexural strength (FS) of composites, as shown in Table 4. Figure 4 is generated,
indicating the percentage variation in 28-days FS of specimens at various replacement
levels of FA. The improvement of 20.33% was observed in the FS when 10% FA was used
SCM, while further increase in FA content decreased the FS compared with the reference
specimen [107]. The results of Barbuta et al. [107] of specimens with 30 mm long fibers
exhibited improvement in FS of 10.4%, 0%, 18.7%, and 8.2% with FA content of 10%, 15%,
20%, and 30%, respectively. While FS reduced by 8.2% at 40% replacement of FA. The
specimens containing 50 mm long fibers showed 10.4%, 14.3%, 36.8%, 12.6%, and 7.7%
increase in FS when 10%, 15%, 20%, 30%, and 40% cement was replaced by FA, respectively.
Hence, it resulted that using a higher amount of FA has a negative influence on FS [107,108],
as shown in Figure 4. Paliwal and Maru [115] noted maximum FS at 10% FA content as
cement replacement. It can be concluded that the size, type, chemical composition, and
content of FA used in cementitious composites have distinct effects on their mechanical
properties. The finer particle size improves, while coarser particle size reduces the strength
of composites [109]. Additionally, lower content of FA improves while higher FA content
reduces the strength of composites [107–109]; hence, finer FA and a lower replacement ratio
are preferable.

Table 4. Flexural strength (28-days) of composites containing fly ash.

Fly Ash

Reference Replacement Ratio (%) Flexural Strength (MPa)

Barbuta et al. [107],
without fibers

0 1.82
10 2.19
15 1.62
20 1.53
30 1.62
40 1.04

Barbuta et al. [107], with
0.25% and 30 mm long fibers

0 1.82
10 2.01
15 1.82
20 2.16
30 1.97
40 1.67

Barbuta et al. [107], with
0.25% and 50 mm long fibers

0 1.82
10 2.01
15 2.08
20 2.49
30 2.05
40 1.96
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Table 4. Cont.

Fly Ash

Reference Replacement Ratio (%) Flexural Strength (MPa)

Paliwal and Maru [115]

0 3.48
5 3.88

10 4.44
15 4.14
20 3.62

Huang et al. [109], 35 MPa
concrete and low LOI fly ash

0 5.1
20 5.3
40 5.2
60 5
80 3.7

Huang et al. [109], 35 MPa
concrete and high LOI fly ash

0 5.1
20 5
40 5.1
60 4.5
80 3.2

LOI: loss on ignition.
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Figure 4. Influence of fly ash as cement replacement on 28-days flexural strength of
composites [107,109,115].

3.5. Durability

3.5.1. Chloride Penetration

The addition of FA also enhances the durability performance of cementitious com-
posites. Saha [122] investigated the durability properties of concrete containing FA at
various replacement levels and curing ages of 28 and 90 days. The results of the chlo-
ride ion penetration test revealed a decrease in penetration depth with FA addition (see
Figure 5). At 28-days of curing, the chloride ion penetration depth reduced by around
18%, 39%, 52%, and 61% at FA content of 10%, 20%, 30%, and 40%, respectively. After
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180 days, chloride penetration decreased marginally for all samples. The incorporation
of 10%, 20%, 30%, and 40% FA content resulted in chloride ion penetration reduction of
about 7%, 27%, 48%, and 53%, respectively, compared to the control mix. While the volume
of the paste remains constant for mixes, the penetration of chloride ions into the matrix
is determined by two fundamental factors, including the interlinking pores of the matrix
and the free hydroxyl ion in the pore solution. Due to the finer particle size of FA, it may
have minimized the interconnecting spaces and decreased the chloride ion penetration.
FA can help concrete perform better over time in terms of CS, STS, FS, porosity, chloride
penetration, creep, capillary absorption, drying shrinkage, surface scaling, and sulphate
attack. Mainly, FA enhanced CS marginally but greatly increased the long-term STS and
FS of concretes [123–125]. Class F FA in concrete provided more CS and chloride pene-
tration resistance than Class C FA, and the maximum long-term CS was achieved for a
FA concrete (67% Class F FA) at the age of seven years, along with exceptional surface
scaling resistance [126]. Even when exposed to a sea environment for five years, FA con-
crete demonstrated strength development. Additionally, utilizing FA in concrete can help
prevent chloride permeability and rusting of embedded steel bars [127]. All these long-term
advantages can be ascribed to the pozzolanic nature of FA, which improves the amount of
CSH, causing cross-linking hydrates at the molecular level and a compact and crack-free
microstructure, thereby enhancing durability [125].

 

Figure 5. Chloride penetration of fly ash based-concrete at 28 and 180 days of curing [122]. 

’

composites’ shrinkage

Figure 5. Chloride penetration of fly ash based-concrete at 28 and 180 days of curing [122].

3.5.2. Shrinkage

One of the main causes of concrete cracking is the strains caused by shrinkage. While
the stresses created by restricted shrinkage have no effect on the structure’s integrity, they
do raise the likelihood of durability issues [128,129]. While drying shrinkage occurs as a
result of the concrete losing water, autogenous shrinkage occurs as a result of a variation
in macroscopic volume when no moisture is transported to the adjacent environment. As
a result, composites’ shrinkage must be considered cumulative, taking into account both
drying and autogenous deformations. According to reports, volume variation because of
shrinkage can frequently be addressed utilizing fillers such as FA [130]. A previous study
found that SCM-based composites displayed more drying shrinkage than conventional
cement-based composites [131]. Particularly, mixes comprising FA shrink more during the
drying process than mixtures, including micro silica and slag cement. The pore structure
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of a concrete mixture containing SCMs such as FA, micro silica, and slag cement is more
refined than that of a concrete mixture comprising only cement. As a result, these mixtures
have a greater number of smaller capillary spaces, and thus, the water removal from these
pores might result in increased drying shrinkage [94]. Another study also noted that
composites with a greater proportion of SCMs have a finer pore structure, which may
enhance free shrinkage proportionately [132]. Specifically, the loss caused by autogenous
shrinkage can be considerably decreased by the inclusion of FA in composites [133]. Both
Class C and Class F FA are thought to be beneficial for minimizing drying shrinkage [134].
The inclusion of FA reduces shrinkage by densifying the mix and preventing internal
moisture evaporation [135]. Another reason for the limited shrinkage documented in
the literature is the existence of un-hydrated FA grains in the matrix, which act as fine
aggregates [136]; however, a few studies have found that FA with a smaller particle size
than cement increases autogenous shrinkage [137]. A small-sized FA reduces the space
between particles, which reduces the pore size in the paste and, as a result, capillary
pressure increases in the paste while consuming water in the hydration process. While
some research finds decreased shrinkage as a result of FA addition, a few others report
an increase in shrinkage properties as a result of FA incorporation; thus, the influence of
varying quantities of distinct FA types on the shrinkage of cement-based materials must be
investigated to identify how shrinkage is reduced in FA concrete.

3.5.3. Sulfate Resistance

The effect of FA on the resistance of mortar and concrete to sulphate attack has been
widely studied. The significant range in performance of FA cement blends is due to
the variety of FA kinds and compositions, as well as changes in mix proportions and
construction techniques. In general, low Ca FA is more resistant to sulphate than high Ca
FA because it can consume more Ca(OH)2 from the hydrated cement paste, generating
more sulfate-resistant CSH without incorporating additional reactive phases present in
high Ca FA that can accelerate sulfate-induced deterioration, while high Ca FA can hydrate
independently during the generation of additional Ca(OH)2, hence accelerating sulfate-
induced deterioration [138]. Apart from changes in calcium concentration, the amount
of oxides in FA, including silica, alumina, and iron, as well as their amorphous and
crystalline forms, has been demonstrated to have a substantial effect on their sulphate attack
efficacy. FA containing less than 5% CaO is anticipated to have no reactive alumina and
hence would not react with external sulphates to create expansive ettringite crystals [139].
Most of the studies reported an increase in sulphate resistance of the concrete with FA
addition [140–142].

3.5.4. Water Absorption

Water absorption (WA) is a feature of cementitious materials that are directly associated
with its durability or long-term behavior. The existence of pores, cracks, and fissures in
the matrix increases WA, which influences the mechanical and other durability aspects.
In general, an increase in WA associated with an increase in FA indicates an increase in
the volume of accessible pores [114,143]. Pitroda et al. [144] concluded that when 10% FA
is replaced with cement, the WA of concrete decreases. Additionally, they discovered an
increasing trend in WA as the level of cement replaced by FA increased by more than 10%.
The WA of FA-incorporated concrete, on the other hand, was found to be greater than
those of conventional concrete. In contrast, Hatungimana et al. [145] noticed a reduction
in the WA of concrete with FA addition, as depicted in Figure 6. They reported that WA
values increased as the amount of FA substitution increased, probably because the 28-day
curing period was insufficient to complete the pozzolanic reaction; however, at 10% and
20% FA content, the WA of the samples was reduced by 14.6% and 12.2%, respectively,
compared to the control mix. Whereas at 30% FA content, the FA concrete sample exhibited
a comparable WA capacity to that of the control mix. Finally, the results indicated that FA
could be employed as an SCM with some prudent engineering judgments [144].
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Figure 6. Water absorption of concrete at various contents of fly ash [145].

3.6. Microstructure

Gunasekara et al. [146] performed SEM evaluation to explore the microstructure
of composites without FA and composites with FA. The SEM analysis of samples was
carried out at the age of 28-days. A dense, compacted, and uniformly distributed matrix
was observed for the sample without FA, while cracked, porous, and partially reacted
FA grains were observed in the sample containing FA. These observations are consistent
with the reduced mechanical properties of FA-based composites, as discussed earlier.
Ahad et al. [147] also studied and compared the microstructure of a reference mix without
FA and a mix containing 30% FA, as depicted in Figure 7. Crack was observed in the matrix
of the reference mix (Figure 7a). This may be due to the high heat of cement hydration
resulting in the micro-cracks in the matrix. Though voids in the matrix are less and a denser
and compacted matrix can be observed. Micro-cracks are not observed in the matrix of
composite containing FA because FA addition reduced the heat of hydration; however,
more voids and partially reacted FA particles are observed resulting in less dense matrix
(Figure 7b). This also supports the detrimental effects of FA on cementitious composites.

  
(a) (b) 

Figure 7. Microstructure of samples: (a) Without fly ash; (b) With 30% fly ash [147].

Saha [122] performed a microstructural study of FA concrete, and their micrographs are
shown in Figure 8. Figure 8a illustrates the microstructural images of cracked cementitious

200



Materials 2022, 15, 2664

material containing 40% FA as an SCM at the age of 28 days. Ettringite needles initiate to
form in the voids of the binder matrix and on the surface of the FA. Smooth spherical FA
grains are also visible, indicating that the FA has been hydrated during its first phase. FA has
a somewhat spherical shape, and the existence of spherical grains in the microstructure of
the matrix at the age of 28 days suggests that the FA grains have not reacted with the cement
during the early hydration phase. Due to exposure to a harsh environment, the spherical
form of FA rapidly spoils in cement mix and is substituted with ettringite needles [148,149].
This corroborates the idea that FA retards concrete hydration. Figure 8b illustrates the
microstructure of FA concrete after 180 days of curing. The spherical grains were substituted
by ettringite as a result of the pozzolanic reaction of FA. The voids between the aggregates
are densely packed with ettringite needles. Additionally, the ettringite needles are longer,
fill up the gaps in the cement mix; therefore, the ettringite needles fill the spaces between
the aggregates by the pozzolanic reaction of FA. As a result, FA concrete produces a denser
binder matrix than normal concrete [122].

  
(a) (b) 

Figure 8. SEM micrographs of composites containing 40% fly ash as a biner at: (a) 28-days;
(b) 180-days [122].

4. Discussions

The challenges correlated with the manufacture and application of cement are well
known. The growing need for concrete, and therefore cement, poses a severe danger
to both the environment and human life. In this context, scholars are concentrating on
the use of SCMs that can substitute cement in the manufacture of concrete, encouraging
eco-friendly development. This study examined the usage of the most common industrial
byproducts, i.e., FA, in cementitious composites as SCMs. This study highlighted and
discussed the most critical sections, including the properties of FA, the characteristics
of composites containing FA as SCMs, i.e., workability, compressive, split-tensile, and
flexural strength, durability, and microstructural properties. Table 5 has been prepared to
summarize the various parameters examined in this study for FA use as SCM. As can be
noticed from the table, FA utilization contributes to construction sustainability. In addition
to the sustainable benefits, FA has the further advantage of low heat of hydration. FA
is a pozzolanic material and is utilized as SCM in cement-based composites. The use of
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FA as cement replacement in lower replacement ratios (up to 20%) has a positive effect
on the mechanical and durability properties of composites, while at higher replacement
ratios, it has a negative effect; moreover, the size of FA alters the properties of composites.
The smaller size FA is preferable, as it has a more positive impact on the performance
of composites.

Table 5. Comparison of various aspects of utilizing silica fume and fly ash in cementitious materials.

Aspect Detail

Sustainability

Reduction in CO2 emission
Effective waste management

Decreases environmental pollution
Preserve natural resources

Cost-effective
Low heat of hydration

Influence on material
properties

Inconsistent influence on workability
Enhances the performance of composites when used in lower

replacement ratios (up to 20%)
Negative influence on material’s performance at higher proportions

Limitations
Utilization at higher replacement levels is not preferable

Low early strength development

FA consumption has increased in the concrete industry because of its benefits, which
include reduced hydration heat and increased durability; however, due to the slow poz-
zolanic action, its contribution to strength begins only at a later age. Attempts have been
undertaken to address this well-documented FA deficit using a variety of approaches.
Chemical activation is one of these ways and can be accomplished using either alkali or
sulphate. In alkali activation, the glass phases of FA are broken down to expedite the
reaction at an early stage [150], whereas, in sulphate activation, sulphate combines with the
aluminum oxide in the glass phase of FA to form ettringite [151]. In each of these instances,
strength is developed at a young age [152]. Alkali activation of FA is a physicochemical
method that converts powdered ash to a material with excellent cementitious characteris-
tics [153,154], developing high mechanical strength and exceptional bonding to reinforcing
bars [155]. The use of nanoparticles in FA-based cementitious composites to accelerate its
early strength gain is becoming more common as a result of its benefits. The nanoparticles
serve as nuclei for the cement, accelerating hydration and densifying the microstructure
and interfacial transition zone, hence decreasing permeability [156]. Additionally, the
combination of FA and nanomaterials enables the hydration product to be tightly bound,
which is a critical element in accelerating the pozzolanic process since it compensates for
the poor initial strength growth [157–159]; hence, the strength of the FA-based cementitious
composites can be increased by various methods, including those covered above. For
successful strength enhancement via alkali activation or nanoparticle addition, knowledge
of the properties of FA is required. Ca/Si and Ca/Al ratios are regarded as critical factors in
the formation of CSH gel in the case of nano addition and alumino silicate gel in the case of
alkali activation, respectively. Using either of these approaches, it is possible to replace up
to 60% of cement with FA without sacrificing strength or durability [94]. For high-volume
FA concrete, a ternary blend of cement, FA, and nanomaterials can be advised.

5. Conclusions

The present study aimed to review the different aspects of the fly ash (FA) application
as supplementary cementitious material (SCM) in cement-based materials. The influence
of the FA characteristics of the mechanical, durability, and microstructural properties of the
material is discussed. The various limitations of the FA use in higher proportions, and their
potential solutions are described. This study reached the following conclusions:

• The influence of FA incorporation on the workability of fresh concrete was found
to be inconsistent. Some studies reported an increase in the workability because of
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FA spherical shape, increased volume of the mix due to lower density of FA, and
slower development of hydration products due to FA addition; however, some studies
found a reduction in the workability of the fresh mix due to the smaller size and larger
surface area of FA.

• Numerous studies have demonstrated that the application of FA inhibits composites’
early-age strength development; however, FA mostly improves the strength of con-
crete over time by consuming the Ca(OH)2 produced during cement hydration and
producing secondary hydrates such as CSH; moreover, the mechanical strength of the
composites improves when FA is incorporated in lower concentrations (up to 20%).
In addition, finer particle size FA enhances while coarser particle size FA reduces the
mechanical strength of composites.

• The resistance of composites to chloride penetration increases with the addition of FA,
especially at later ages. The finer particle size FA decreases the interconnecting voids
in the matrix, and pozzolanic action further improves the microstructure, resulting in
increased resistance to chloride penetration.

• There is a contradiction regarding the influence of FA on the shrinkage of cementitious
composites. FA incorporation may increase shrinkage due to the creation of a higher
amount of small capillary spaces, which facilitates the evaporation of water, causing
higher shrinkage. In contrast, due to finer particle size FA addition, the density and
compactness of the mix increases, which prevents the internal moisture evaporation,
causing reduced shrinkage.

• The influence of FA on sulphate resistance of composite is determined by the FA type.
Generally, low calcium FA (Class C) exhibits more resistance to sulphate resistance than
high calcium FA (Class F). This is because low calcium FA consumes more Ca(OH)2 to
form CSH, compared to the high calcium FA.

• The incorporation of FA as SCM up to 20% content is beneficial to composites in
terms of reducing water absorption; however, at higher replacement levels, the water
absorption capacity increases.

• The slow early strength development is one of the major drawbacks of FA use in
cementitious composites; however, this can be overcome by chemical activation (al-
kali/sulphate) and/or adding nanomaterials, and this can facilitate high volume usage
of FA.

• Using FA as SCM will promote sustainable development due to reduction in CO2
emissions, preservation of natural resources, effective waste management, reduction
in environmental pollution, and low heat of hydration.

6. Future Recommendations

After reviewing the different aspects of the FA application as SCM, this study suggests
the following future research directions:

• Despite the numerous stated procedures for using FA in large quantities, 100% uti-
lization of FA has not been accomplished due to the existence of some grey areas
highlighted in this study that must be addressed in the future to increase FA’s usage as
SCM. Future studies should be directed on resolving the stated disparities in shrinkage,
water demand, and faster curing.

• While some attributes of structural performance, such as flexural and shear resistance,
have been covered previously, additional research is necessary to support the case
for FA concrete usage in reinforced concrete structures. These may include the bond
strength of steel rebars, the examination of beam-column junctions, and seismic design.

• Since FA reactivity is based on multiple factors, trying to control one property may
deteriorate other properties. For example, while decreasing the w/b in high volume
FA concrete increases early/late age strength, the mix results in early-age cracking.
Thus, it is critical to consider the combined effect of multiple parameters in order to
maximize the benefits of FA and cement in an optimum planned mix.
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• Presently, there is a growing tendency toward the production of geopolymers that
include 100% FA [160]; however, to promote the applicability of geopolymer concrete,
certain shortcomings such as curing regime, availability of activators, efflorescence,
and alkali-silica reaction [39] must be addressed. In this respect, it is reported that
designed FA concrete, which can replace up to 60% of cement, is a superior alternative
in terms of strength and durability.

• Based on the comprehensive examination of FA as SCM, it is proposed that further fly
ash classifications be added to the existing ASTM classifications.

Author Contributions: G.L.: conceptualization, resources, methodology, investigation, validation,
project administration, writing-original draft; C.Z.: data curation, formal analysis, supervision, in-
vestigation, visualization, writing, reviewing, and editing; W.A.: conceptualization, data curation,
methodology, software, supervision, writing—original draft; K.I.U.: funding acquisition, validation,
formal analysis, writing, reviewing, and editing; M.K.: resources, visualization, writing, reviewing,
and editing; A.M.M.: data curation, formal analysis, writing, reviewing, and editing; R.K.: methodol-
ogy, investigation, writing, reviewing, and editing. All authors have read and agreed to the published
version of the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of the
Russian Federation under the strategic academic leadership program ‘Priority 2030’ (Agreement
075-15-2021-1333 dated 30.09.2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research is supported by COMSATS University Islamabad, Abbottabad Campus.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kishore, K.; Gupta, N. Application of domestic & industrial waste materials in concrete: A review. Mater. Today Proc. 2020, 26,
2926–2931.

2. Tang, P.; Brouwers, H.J.H. The durability and environmental properties of self-compacting concrete incorporating cold bonded
lightweight aggregates produced from combined industrial solid wastes. Constr. Build. Mater. 2018, 167, 271–285. [CrossRef]

3. Ren, C.; Wang, W.; Li, G. Preparation of high-performance cementitious materials from industrial solid waste. Constr. Build. Mater.

2017, 152, 39–47. [CrossRef]
4. Brooks, S.J.; Escudero-Oñate, C.; Lillicrap, A.D. An ecotoxicological assessment of mine tailings from three Norwegian mines.

Chemosphere 2019, 233, 818–827. [CrossRef]
5. Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage

prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [CrossRef]
6. Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals.

Adv. Colloid Interface Sci. 2011, 166, 36–59. [CrossRef]
7. Friedlander, L.R.; Weisbrod, N.; Garb, Y.J. Climatic and soil-mineralogical controls on the mobility of trace metal contamination

released by informal electronic waste (e-waste) processing. Chemosphere 2019, 232, 130–139. [CrossRef]
8. Walls, M.; Palmer, K. Upstream pollution, downstream waste disposal, and the design of comprehensive environmental policies.

J. Environ. Econ. Manag. 2001, 41, 94–108. [CrossRef]
9. Awomeso, J.A.; Taiwo, A.M.; Gbadebo, A.M.; Arimoro, A.O. Waste disposal and pollution management in urban areas: A

workable remedy for the environment in developing countries. Am. J. Environ. Sci. 2010, 6, 26–32. [CrossRef]
10. Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A.H.; Olabi, A.G. Outlook of carbon capture technology and challenges. Sci.

Total Environ. 2019, 657, 56–72. [CrossRef]
11. Mastali, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Carbon dioxide sequestration on fly ash/waste glassalkali-based mortars

with recycled aggregates: Compressive strength, hydration products, carbon footprint, and cost analysis. In Carbon Dioxide

Sequestration in Cementitious Construction Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 299–348.
12. Koneswaran, G.; Nierenberg, D. Global farm animal production and global warming: Impacting and mitigating climate change.

Environ. Health Perspect. 2008, 116, 578–582. [CrossRef]
13. Drissi, S.; Ling, T.-C.; Mo, K.H.; Eddhahak, A. A review of microencapsulated and composite phase change materials: Alteration

of strength and thermal properties of cement-based materials. Renew. Sustain. Energy Rev. 2019, 110, 467–484. [CrossRef]

204



Materials 2022, 15, 2664

14. Khan, M.; Ali, M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019, 203,
174–187. [CrossRef]

15. Khan, M.; Rehman, A.; Ali, M. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road.
Constr. Build. Mater. 2020, 244, 118382. [CrossRef]

16. Meng, Y.; Ling, T.-C.; Mo, K.H.; Tian, W. Enhancement of high temperature performance of cement blocks via CO2 curing. Sci.

Total Environ. 2019, 671, 827–837. [CrossRef]
17. Kumar, V.P.; Prasad, D.R. Influence of supplementary cementitious materials on strength and durability characteristics of concrete.

Adv. Concr. Constr. 2019, 7, 75.
18. Alyousef, R.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P.; Alabduljabbar, H. Potential use of recycled plastic and rubber

aggregate in cementitious materials for sustainable construction: A review. J. Clean. Prod. 2021, 329, 129736. [CrossRef]
19. Cao, M.; Mao, Y.; Khan, M.; Si, W.; Shen, S. Different testing methods for assessing the synthetic fiber distribution in cement-based

composites. Constr. Build. Mater. 2018, 184, 128–142. [CrossRef]
20. Xie, C.; Cao, M.; Khan, M.; Yin, H.; Guan, J. Review on different testing methods and factors affecting fracture properties of fiber

reinforced cementitious composites. Constr. Build. Mater. 2020, 273, 121766. [CrossRef]
21. Khan, M.; Cao, M.; Xie, C.; Ali, M. Efficiency of basalt fiber length and content on mechanical and microstructural properties of

hybrid fiber concrete. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 2135–2152. [CrossRef]
22. Li, L.; Khan, M.; Bai, C.; Shi, K. Uniaxial Tensile Behavior, Flexural Properties, Empirical Calculation and Microstructure of

Multi-Scale Fiber Reinforced Cement-Based Material at Elevated Temperature. Materials 2021, 14, 1827. [CrossRef] [PubMed]
23. Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41,

642–650. [CrossRef]
24. Ali, K.; Qureshi, M.I.; Saleem, S.; Khan, S.U. Effect of waste electronic plastic and silica fume on mechanical properties and

thermal performance of concrete. Constr. Build. Mater. 2021, 285, 122952. [CrossRef]
25. Adil, G.; Kevern, J.T.; Mann, D. Influence of silica fume on mechanical and durability of pervious concrete. Constr. Build. Mater.

2020, 247, 118453. [CrossRef]
26. Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Zajdel, P. Application of Advanced Machine Learning Approaches

to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials. Materials 2021, 14, 5762.
[CrossRef]

27. Federico, L. Waste Glass—A Supplementary Cementitious Material. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2013.
28. Shanmugasundaram, N.; Praveenkumar, S. Influence of supplementary cementitious materials, curing conditions and mixing

ratios on fresh and mechanical properties of engineered cementitious composites—A review. Constr. Build. Mater. 2021,
309, 125038. [CrossRef]

29. Gupta, S.; Chaudhary, S. State of the art review on Supplementary Cementitious Materials in India—I: An overview of legal
perspective, governing organizations, and development patterns. J. Clean. Prod. 2020, 261, 121203. [CrossRef]

30. Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Zajdel, P. Sustainable approach of using sugarcane bagasse ash in
cement-based composites: A systematic review. Case Stud. Constr. Mater. 2021, 15, e00698. [CrossRef]

31. Provis, J.L.; Palomo, A.; Shi, C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015, 78, 110–125.
[CrossRef]

32. Usanova, K.; Barabanshchikov, Y.G. Cold-Bonded fly ash aggregate concrete. Mag. Civ. Eng. 2020, 3, 95.
33. Kutchko, B.G.; Kim, A.G. Fly ash characterization by SEM–EDS. Fuel 2006, 85, 2537–2544. [CrossRef]
34. Sua-iam, G.; Makul, N. Rheological and mechanical properties of cement–fly ash self-consolidating concrete incorporating high

volumes of alumina-based material as fine aggregate. Constr. Build. Mater. 2015, 95, 736–747. [CrossRef]
35. Amran, M.; Fediuk, R.; Murali, G.; Avudaiappan, S.; Ozbakkaloglu, T.; Vatin, N.; Karelina, M.; Klyuev, S.; Gholampour, A. Fly

ash-based eco-efficient concretes: A comprehensive review of the short-term properties. Materials 2021, 14, 4264. [CrossRef]
[PubMed]
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