25 research outputs found

    COMPONENT BASED ROUTING PROTOCOL DESIGNING METHODOLOGY FOR MANET

    Get PDF
    Mobile Ad Hoc Network is designed and deployed to achieve self-configuring and self-healing. MANET utilizes distributed wireless stations for relaying data packets. Every single station in the MANET can decide routing path for an incoming data packet. MANET has the most unfavorable conditions for routing path discovery due to node mobility and constant topology changes. Large variation of performance due to various environment inputs is a major impediment of implementing existing routing protocols for MANET in the battlefield. Therefore, it is a major challenge to design a routing protocol that can adapt its behavior to environment alteration. In consideration of adaptability to the environment and flexibility in protocol construction, a novel component based routing protocol methodology is proposed in this paper. Distinguished from conventional investigation of routing protocols as individual entities, this paper will firstly generalize four fundamental components for MANET routing protocols. Then, a significant component diagnosis process is proposed to detect significant component and enhance the overall performance. Finally, preliminary simulation results demonstrate the power of the component based methodology for improving overall performance and reducing performance variation. In conclusion, the evaluation and improvement at the component level is more insightful and effective than that at the protocol level. The primary contribution of the work is proposing the Component Dependence Network the first time and innovative quantitative methods are proposed to learn the structure and significant component to analyze the impact of component on performance metrics. Based on conditional independence test, hierarchical structure of Component Dependence Network can be discovered. An Inclusion and Exclusion algorithm is introduced to guarantee the minimal cut set returned for a pair of source and destination nodes. To determine the significant component, a significance indicator will be calculated based on comparing each component's impact by using a backward deriving method. Once the significant component being determined, the parameter of the significant component can be tuned to achieve the best performance. At the end, two real implementations are presented to show the achievement in performance improvement of the component dependence network, structure learning method and significant component indicator

    Applying named data networking in mobile ad hoc networks

    Get PDF
    This thesis presents the Name-based Mobile Ad-hoc Network (nMANET) approach to content distribution that ensure and enables responsible research on applying named data networking protocol in mobile ad-hoc networks. The test framework of the nMANET approach allows reproducibility of experiments and validation of expected results based on analysis of experimental data. The area of application for nMANETs is the distribution of humanitarian information in emergency scenarios. Named-Data Networking (NDN) and ad-hoc mobile communication allow exchange of emergency information in situations where central services such as cellular towers and electric systems are disrupted. The implemented prototype enables researchers to reproduce experiments on content distribution that consider constraints on mobile resources, such as the remaining power of mobile devices and available network bandwidth. The nMANET framework validates a set of experiments by measuring network traffic and energy consumption from both real mobile devices and those in a simulated environment. Additionally, this thesis presents results from experiments in which the nMANET forwarding strategies and traditional wireless services, such as hotpost, are analysed and compared. This experimental data represents the evidence that supports and validates the methodology presented in this thesis. The design and implementation of an nMANET prototype, the Java NDN Forwarder Daemon (JNFD) is presented as a testing framework, which follows the principles of continuous integration, continuous testing and continuous deployment. This testing framework is used to validate JNFD and IP-based technologies, such as HTTP in a MANET using the OLSR routing protocol, as well as traditional wireless infrastructure mode wireless. The set of experiments executed, in a small network of Android smart-phones connected in ad-hoc mode and in a virtual ad-hoc network simulator show the advantages of reproducibility using nMANET features. JNFD is open source, all experiments are scripted, they are repeatable and scalable. Additionally, JNFD utilises real GPS traces to simulate mobility of nodes during experiments. This thesis provides experimental evidence to show that nMANET allows reproducibility and validation of a wide range of future experiments applying NDN on MANETs

    Content Replication and Placement Schemes for Wireless Mesh Networks

    No full text
    Recently, Wireless Mesh Networks (WMNs) have attracted much of interest from both academia and industry, due to their potential to provide an alternative broadband wireless Internet connectivity. However, due to different reasons such as multi-hop forwarding and the dynamic wireless link characteristics, the performance of current WMNs is rather low when clients are soliciting Web contents. Due to the evolution of advanced mobile computing devices; it is anticipated that the demand for bandwidth-onerous popular content (especially multimedia content) in WMNs will dramatically increase in the coming future. Content replication is a popular approach for outsourcing content on behalf of the origin content provider. This area has been well explored in the context of the wired Internet, but has received comparatively less attention from the research community when it comes to WMNs. There are a number of replica placement algorithms that are specifically designed for the Internet. But they do not consider the special features of wireless networks such as insufficient bandwidth, low server capacity, contention to access the wireless medium, etc. This thesis studies the technical challenges encountered when transforming the traditional model of multi-hop WMNs from an access network into a content network. We advance the thesis that support from packet relaying mesh routers to act as replica servers for popular content such as media streaming, results in significant performance improvement. Such support from infrastructure mesh routers benefits from knowledge of the underlying network topology (i.e., information about the physical connections between network nodes is available at mesh routers). The utilization of cross-layer information from lower layers opens the door to developing efficient replication schemes that account for the specific features of WMNs (e.g., contention between the nodes to access the wireless medium and traffic interference). Moreover, this can benefit from the underutilized resources (e.g., storage and bandwidth) at mesh routers. This utilization enables those infrastructure nodes to participate in content distribution and play the role of replica servers. In this thesis, our main contribution is the design of two lightweight, distributed, and scalable object replication schemes for WMNs. The first scheme follows a hierarchical approach, while the second scheme follows a flat one. The challenge is to replicate content as close as possible to the requesting clients and thus, reduce the access latency per object, while minimizing the number of replicas. The two schemes aim to address the questions of where and how many replicas should be placed in the WMN. In our schemes, we consider the underlying topology joint with link-quality metrics to improve the quality of experience. We show using simulation tests that the schemes significantly enhance the performance of a WMN in terms of reducing the access cost, bandwidth consumption and computation/communication cost

    A scheme for efficient peer-to-peer live video streaming over wireless mesh networks

    Get PDF
    Peers in a Peer-to-Peer (P2P) live video streaming system over hybrid wireless mesh networks (WMNs) enjoy high video quality when both random network coding (RNC) and an efficient hybrid routing protocol are employed. Although RNC is the most recently used method of efficient video streaming, it imposes high transmission overhead and decoding computational complexity on the network which reduces the perceived video quality. Besides that, RNC cannot guaranty a non-existence of linear dependency in the generated coefficients matrix. In WMNs, node mobility has not been efficiently addressed by current hybrid routing protocols that increase video distortion which would lead to low video quality. In addition, these protocols cannot efficiently support nodes which operate in infrastructure mode. Therefore, the purpose of this research is to propose a P2P live video streaming scheme which consists of two phases followed by the integration of these two phases known as the third phase to provide high video quality in hybrid WMNs. In the first phase, a novel coefficients matrix generation and inversion method has been proposed to address the mentioned limitations of RNC. In the second phase, the proposed enhanced hybrid routing protocol was used to efficiently route video streams among nodes using the most stable path with low routing overhead. Moreover, this protocol effectively supports mobility and nodes which operate in infrastructure mode by exploiting the advantages of the designed locator service. Results of simulations from the first phase showed that video distortion as the most important performance metric in live video streaming, had improved by 36 percent in comparison with current RNC method which employs the Gauss-Jordan Elimination (RNC-GJE) method in decoding. Other metrics including frame dependency distortion, initial start-up delay and end-to-end delay have also improved using the proposed method. Based on previous studies, although Reactive (DYMO) routing protocol provides better performance than other existing routing protocols in a hybrid WMN, the proposed protocol in the second phase had average improvements in video distortion of l86% for hybrid wireless mesh protocol (HWMP), 49% for Reactive (Dynamic MANET On-Demand-DYMO), 75% for Proactive (Optimized Link State Routing-OLSR), and 60% for Ad-hoc on-demand Distance Vector Spanning-Tree (AODV-ST). Other metrics including end-to-end delay, packet delay variation, routing overhead and number of delivered video frames have also improved using the proposed protocol. Finally, the third phase, an integration of the first two phases has proven to be an efficient scheme for high quality P2P live video streaming over hybrid WMNs. This video streaming scheme had averagely improved video distortion by 41%, frame dependency distortion by 50%, initial start-up delay by 15% and end-to-end delay by 33% in comparison with the average introduced values by three other considered integration cases which are Reactive and RNC-GJE, Reactive and the first phase, the second phase and RNC-GJE

    Estudio del rendimiento de arquitecturas basadas en grupos para WAHSN

    Full text link
    [ES] Existen muchos trabajos relacionados con las redes ad hoc y las redes de sensores donde se presentan nuevos protocolos que encaminamiento que aportan mejores características, otros trabajos donde se comparan para ver cual posee un mejor rendimiento ó incluso presentan nuevas aplicaciones basadas en este tipo de redes, pero este trabajo aporta otro punto de vista. ¿Por que no ver la red como un conjunto que se divide en grupos para aportar un mejor rendimiento a la red independientemente del protocolo de encaminamiento utilizado?. Para ello, en este trabajo, vamos a demostrar a través de simulaciones, que la agrupación de nodos en redes WAHSN (Wireless Ad Hoc & Sensor Networks) aporta mejoras a la red en general, disminuyendo el tráfico de encaminamiento, el retardo, el throughput, etc. Este estudio se ha realizado evaluando los protocolos estándar más utilizados (DSR [1], AODV [2] y OLSR [3]), así podemos observar cual de ellos aporta un mejor rendimiento. Finalmente, se propone una arquitectura de red basada en grupos optimizada para las redes WAHSN[EN] There are many works related with ad hoc networks and sensor networks where the authors present new routing protocols with better or enhanced features, others just compare the performance of them or present an application environment, but this work tries to give another point of view. Why don¿t we see the network as a whole and split it intro groups to give better performance to the network regardless of the used routing protocol?. First, we will demonstrate, through simulations, that grouping nodes in WAHSN (Wireless Ad Hoc & Sensor Networks) improves the whole network by diminishing the routing traffic, the delay, the throughput, etc. This study was conducted to assess the most used standard protocols (DSR [1], AODV [2] and OLSR [3]) that gives better performance to the whole network when there are groups of nodes. Finally, a group-based network architecture optimized for WAHSN is proposedGarcía Pineda, M. (2008). Estudio del rendimiento de arquitecturas basadas en grupos para WAHSN. http://hdl.handle.net/10251/13472Archivo delegad

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio

    Green Vehicular Content Distribution Network

    Get PDF
    With environmental awareness becoming a global concern, content distribution has become popular in the context of modern city scenario with obvious concerns for ICT power consumption. The business world demands huge amounts of information exchange for advertisement and connectivity, which is an integral part of a smart city. In this thesis, a number of energy saving and performance improvement techniques are proposed for the content delivery scenario. These are: content cache location optimisation techniques for energy saving and transceiver load adaptive techniques that save energy while maintaining acceptable piece delay. With the recent advancement in Fog computing, nano-servers are introduced in the later part of the thesis for content delivery and process of user demands. Two techniques random sleep cycles and rate adaptation are proposed to save transmission energy. The quality of service in terms of piece delay and dropping probability are optimised by deploying renewable and non-renewable energy powered nano-servers (NS). Finally, mixed integer linear programming models (MILP) were developed alongside other optimisations methods like bisection, greedy and genetic algorithms which judiciously distribute renewable energy to the fog servers in order to minimise the piece delay and dropping probability in heavily loaded regions of the city area

    MDP-based Vehicular Network Connectivity Model for VCC Management

    Get PDF
    Vehicular Cloud computing is a new paradigm in which vehicles collaboratively exchange data and resources to support services and problem-solving in urban environments. Characteristically, such Clouds undergo severe challenging conditions from the high mobility of vehicles, and by essence, they are rather dynamic and complex. Many works have explored the assembling and management of Vehicular Clouds with designs that heavily focus on mobility. However, a mobility-based strategy relies on vehicles' geographical position, and its feasibility has been questioned in some recent works. Therefore, we present a more relaxed Vehicular Cloud management scheme that relies on connectivity. This work models uncertainty and considers every possible chance a vehicle may be available through accessible communication means, such as vehicle-to-everything (V2X) communications and the vehicle being in the range of road-side units (RSUs) for data transmissions. We propose an markov-decisision process (MDP) model to track vehicles' connection status and estimate their reliability for data transmissions. Also, from analyses, we observed that higher vehicle connectivity presents a trace of repeated connection patterns. We reinforce the connectivity status by validating it through an availability model to distinguish the vehicles which support high availability regardless of their positioning. The availability model thus determines the suitability of the MDP model in a given environment

    Hierarchical network topographical routing

    Get PDF
    Within the last 10 years the content consumption model that underlies many of the assumptions about traffic aggregation within the Internet has changed; the previous short burst transfer followed by longer periods of inactivity that allowed for statistical aggregation of traffic has been increasingly replaced by continuous data transfer models. Approaching this issue from a clean slate perspective; this work looks at the design of a network routing structure and supporting protocols for assisting in the delivery of large scale content services. Rather than approaching a content support model through existing IP models the work takes a fresh look at Internet routing through a hierarchical model in order to highlight the benefits that can be gained with a new structural Internet or through similar modifications to the existing IP model. The work is divided into three major sections: investigating the existing UK based Internet structure as compared to the traditional Autonomous System (AS) Internet structural model; a localised hierarchical network topographical routing model; and intelligent distributed localised service models. The work begins by looking at the United Kingdom (UK) Internet structure as an example of a current generation technical and economic model with shared access to the last mile connectivity and a large scale wholesale network between Internet Service Providers (ISPs) and the end user. This model combined with the Internet Protocol (IP) address allocation and transparency of the wholesale network results in an enforced inefficiency within the overall network restricting the ability of ISPs to collaborate. From this model a core / edge separation hierarchical virtual tree based routing protocol based on the physical network topography (layers 2 and 3) is developed to remove this enforced inefficiency by allowing direct management and control at the lowest levels of the network. This model acts as the base layer for further distributed intelligent services such as management and content delivery to enable both ISPs and third parties to actively collaborate and provide content from the most efficient source
    corecore