15,132 research outputs found

    An Effective Mobile Sensor Control Method for Sparse Sensor Networks

    Get PDF
    In this paper, we propose an effective mobile sensor control method, named DATFM (Data Acquisition and Transmission with Fixed and Mobile node) for sparse sensor networks. DATFM uses two types of sensor nodes, fixed node and mobile node. The data acquired by nodes are accumulated on a fixed node before being transferred to the sink node. In addition, DATFM transfers the accumulated data efficiently by constructing a communication route of multiple mobile nodes between fixed nodes. We also conduct simulation experiments to evaluate the performance of DATFM

    THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks

    Full text link
    Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for patient health monitoring. New research is being done to take the technology to the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is the main cause of player's performance degradation. This type of fatigue can be measured by sensing the accumulation of lactic acid in muscles. Excess of lactic acid makes muscles feel lethargic. Keeping this in mind we propose a protocol \underline{TH}reshold based \underline{E}nergy-efficient \underline{FA}tigue \underline{ME}asurement (THE-FAME) for soccer players using WBASN. In THE-FAME protocol, a composite parameter has been used that consists of a threshold parameter for lactic acid accumulation and a parameter for measuring distance covered by a particular player. When any parameters's value in this composite parameter shows an increase beyond threshold, the players is declared to be in a fatigue state. The size of battery and sensor should be very small for the sake of players' best performance. These sensor nodes, implanted inside player's body, are made energy efficient by using multiple sinks instead of a single sink. Matlab simulation results show the effectiveness of THE-FAME.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Energy-efficient data acquisition for accurate signal estimation in wireless sensor networks

    No full text
    Long-term monitoring of an environment is a fundamental requirement for most wireless sensor networks. Owing to the fact that the sensor nodes have limited energy budget, prolonging their lifetime is essential in order to permit long-term monitoring. Furthermore, many applications require sensor nodes to obtain an accurate estimation of a point-source signal (for example, an animal call or seismic activity). Commonly, multiple sensor nodes simultaneously sample and then cooperate to estimate the event signal. The selection of cooperation nodes is important to reduce the estimation error while conserving the network’s energy. In this paper, we present a novel method for sensor data acquisition and signal estimation, which considers estimation accuracy, energy conservation, and energy balance. The method, using a concept of ‘virtual clusters,’ forms groups of sensor nodes with the same spatial and temporal properties. Two algorithms are used to provide functionality. The ‘distributed formation’ algorithm automatically forms and classifies the virtual clusters. The ‘round robin sample scheme’ schedules the virtual clusters to sample the event signals in turn. The estimation error and the energy consumption of the method, when used with a generalized sensing model, are evaluated through analysis and simulation. The results show that this method can achieve an improved signal estimation while reducing and balancing energy consumption

    Support of multiple sinks via a virtual root for the RPL routing protocol

    Get PDF
    Data acquisition in large wireless sensor networks consisting of only a single sink can typically lead to scalability and energy efficiency issues. A solution to this problem is the deployment of multiple sinks in the network. This approach is however not supported by the popular sensor network routing protocol, IPv6 routing protocol for low-power and lossy networks (RPL). This paper describes a method to support the usage of multiple sinks for RPL in accordance to the limited guidelines of RPL:IPv6 Routing Protocol for Low-Power and Lossy Networks (RFC 6550). Hereby this paper shows that the concept of a virtual root can work and can be implemented with a minimal complexity. The correct behaviour of this extension was verified, by performance tests, in both a simulation environment and a real-life environment (iMinds wiLab.t office testbed). The chosen approach has the advantage that for an existing deployment of a RPL network, only the sink nodes need to be adapted. The results confirm that the use of multiple sinks in RPL can deliver the desired advantages. For an increase in the number of sinks from 1 to 4, a decrease of about 45% in the maximal and more than 30% in the average energy consumption was obtained in simulations for the used topology. For the real-life tests, the average energy consumption decreased with more than 30% and with more than 50% for the maximal energy consumption when the number of sinks was increased from 1 to 2 on the iMinds wiLab. t office testbed. By using a positioning algorithm to determine the optimal position, for the sinks, possibly even better performances can be obtained

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    No-Sense: Sense with Dormant Sensors

    Full text link
    Wireless sensor networks (WSNs) have enabled continuous monitoring of an area of interest (body, room, region, etc.) while eliminating expensive wired infrastructure. Typically in such applications, wireless sensor nodes report the sensed values to a sink node, where the information is required for the end-user. WSNs also provide the flexibility to the end-user for choosing several parameters for the monitoring application. For example, placement of sensors, frequency of sensing and transmission of those sensed data. Over the years, the advancement in embedded technology has led to increased processing power and memory capacity of these battery powered devices. However, batteries can only supply limited energy, thus limiting the lifetime of the network. In order to prolong the lifetime of the deployment, various efforts have been made to improve the battery technologies and also reduce the energy consumption of the sensor node at various layers in the networking stack. Of all the operations in the network stack, wireless data transmission and reception have found to consume most of the energy. Hence many proposals found in the literature target reducing them through intelligent schemes like power control, reducing retransmissions, etc. In this article we propose a new framework called Virtual Sensing Framework (VSF), which aims to sufficiently satisfy application requirements while conserving energy at the sensor nodes.Comment: Accepted for publication in IEEE Twentieth National Conference on Communications (NCC-2014
    corecore