518,093 research outputs found

    Fundamental structures of dynamic social networks

    Get PDF
    Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.Comment: Main Manuscript: 16 pages, 4 figures. Supplementary Information: 39 pages, 34 figure

    The Value of Stock Options To Non-Executive Employees

    Get PDF
    This study empirically investigates the value employees place on stock options using information from the option exercise behavior of individuals. Employees hold options for another period if the value from holding them and reserving the right to exercise them later is higher than the value of exercising them immediately and collecting a profit equal to the stock price minus the exercise price. This simple model implies the hazard describing employee exercise behavior reveals information about the value to employees of holding options another time period. We show the parameters of this model are identified with data on multiple option grants per employee and we apply this model to the disposition of options received in the 1990s by a sample of over 2000 middle-level managers from a large, established firm outside of manufacturing. Exercise behavior is modeled using a random effects probit model of monthly exercise behavior that is estimated using simulated maximum likelihood estimation methods. Our estimates show there is substantial heterogeneity (observed and unobserved) among employees in the value they place on their options. Our estimates show most employees value their options at a value greater than the option’s Black-Scholes value

    Data on face-to-face contacts in an office building suggests a low-cost vaccination strategy based on community linkers

    Full text link
    Empirical data on contacts between individuals in social contexts play an important role in providing information for models describing human behavior and how epidemics spread in populations. Here, we analyze data on face-to-face contacts collected in an office building. The statistical properties of contacts are similar to other social situations, but important differences are observed in the contact network structure. In particular, the contact network is strongly shaped by the organization of the offices in departments, which has consequences in the design of accurate agent-based models of epidemic spread. We consider the contact network as a potential substrate for infectious disease spread and show that its sparsity tends to prevent outbreaks of rapidly spreading epidemics. Moreover, we define three typical behaviors according to the fraction ff of links each individual shares outside its own department: residents, wanderers and linkers. Linkers (f∼50%f\sim 50\%) act as bridges in the network and have large betweenness centralities. Thus, a vaccination strategy targeting linkers efficiently prevents large outbreaks. As such a behavior may be spotted a priori in the offices' organization or from surveys, without the full knowledge of the time-resolved contact network, this result may help the design of efficient, low-cost vaccination or social-distancing strategies

    Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior

    Get PDF
    It is a fundamental question how our brain performs a given motor task in a real-time fashion with the slow sensorimotor system. Computational theory proposed an influential idea of feed-forward control, but it has mainly treated the case that the movement is ballistic (such as reaching) because the motor commands should be calculated in advance of movement execution. As a possible mechanism for operating feed-forward control in continuous motor tasks (such as target tracking), we propose a control model called "adaptive intermittent control" or "segmented control," that brain adaptively divides the continuous time axis into discrete segments and executes feed-forward control in each segment. The idea of intermittent control has been proposed in the fields of control theory, biological modeling and nonlinear dynamical system. Compared with these previous models, the key of the proposed model is that the system speculatively determines the segmentation based on the future prediction and its uncertainty. The result of computer simulation showed that the proposed model realized faithful visuo-manual tracking with realistic sensorimotor delays and with less computational costs (i.e., with fewer number of segments). Furthermore, it replicated "motor intermittency", that is, intermittent discontinuities commonly observed in human movement trajectories. We discuss that the temporally segmented control is an inevitable strategy for brain which has to achieve a given task with small computational (or cognitive) cost, using a slow control system in an uncertain variable environment, and the motor intermittency is the side-effect of this strategy

    Inferring land use from mobile phone activity

    Full text link
    Understanding the spatiotemporal distribution of people within a city is crucial to many planning applications. Obtaining data to create required knowledge, currently involves costly survey methods. At the same time ubiquitous mobile sensors from personal GPS devices to mobile phones are collecting massive amounts of data on urban systems. The locations, communications, and activities of millions of people are recorded and stored by new information technologies. This work utilizes novel dynamic data, generated by mobile phone users, to measure spatiotemporal changes in population. In the process, we identify the relationship between land use and dynamic population over the course of a typical week. A machine learning classification algorithm is used to identify clusters of locations with similar zoned uses and mobile phone activity patterns. It is shown that the mobile phone data is capable of delivering useful information on actual land use that supplements zoning regulations.Comment: To be presented at ACM UrbComp201

    Mitigating Epidemics through Mobile Micro-measures

    Full text link
    Epidemics of infectious diseases are among the largest threats to the quality of life and the economic and social well-being of developing countries. The arsenal of measures against such epidemics is well-established, but costly and insufficient to mitigate their impact. In this paper, we argue that mobile technology adds a powerful weapon to this arsenal, because (a) mobile devices endow us with the unprecedented ability to measure and model the detailed behavioral patterns of the affected population, and (b) they enable the delivery of personalized behavioral recommendations to individuals in real time. We combine these two ideas and propose several strategies to generate such recommendations from mobility patterns. The goal of each strategy is a large reduction in infections, with a small impact on the normal course of daily life. We evaluate these strategies over the Orange D4D dataset and show the benefit of mobile micro-measures, even if only a fraction of the population participates. These preliminary results demonstrate the potential of mobile technology to complement other measures like vaccination and quarantines against disease epidemics.Comment: Presented at NetMob 2013, Bosto
    • …
    corecore