23,203 research outputs found

    Consistency Management Strategies for Data Replication in Mobile Ad Hoc Networks

    Get PDF
    In a mobile ad hoc network, data replication drastically improves data availability. However, since mobile hosts\u27 mobility causes frequent network partitioning, consistency management of data operations on replicas becomes a crucial issue. In such an environment, the global consistency of data operations on replicas is not desirable by many applications. Thus, new consistency maintenance based on local conditions such as location and time need to be investigated. This paper attempts to classify different consistency levels according to requirements from applications and provides protocols to realize them. We report simulation results to investigate the characteristics of these consistency protocols in a mobile ad hoc network

    MELOC - memory and location optimized caching for mobile Ad hoc networks

    Get PDF
    The advancement of Mobile ad hoc networks (MANET) is tremendous in the field of social and military applications. Caching and Replication are the two common techniques used to improve data access efficiency in Mobile Ad hoc networks. Caching favors data access efficiency by bringing data closer to the source. Existing caching approaches are deficient in reducing the number of cache locations, thus reducing the number of copies, which is needed for many mission critical applications considering safety and security. Conversely, reducing the number of caches should not affect the efficiency of data access. We design an efficient broker based caching model named Memory and Location Optimized Caching (MELOC) , which reduces the number of cache locations, and at the same time preserves data access efficiency. Our caching model mostly chooses centrally located nodes as cache location. In addition, we cache only essential data closer to the source, saving memory. Hence our approach bears the name Memory and Location Optimized caching (MELOC) . Our initial MELOC model suits only small MANET topology of 30 nodes. We further extend our initial caching model to suit large MANET topology of 100 nodes by overcoming certain disadvantages pertaining to large network topology --Abstract, page iv

    Effects of Data Replication on Data Exfiltration in Mobile Ad hoc Networks Utilizing Reactive Protocols

    Get PDF
    A swarm of autonomous UAVs can provide a significant amount of ISR data where current UAV assets may not be feasible or practical. As such, the availability of the data the resides in the swarm is a topic that will benefit from further investigation. This thesis examines the impact of le replication and swarm characteristics such as node mobility, swarm size, and churn rate on data availability utilizing reactive protocols. This document examines the most prominent factors affecting the networking of nodes in a MANET. Factors include network routing protocols and peer-to-peer le protocols. It compares and contrasts several open source network simulator environments. Experiment implementation is documented, covering design considerations, assumptions, and software implementation, as well as detailing constant, response and variable factors. Collected data is presented and the results show that in swarms of sizes of 30, 45, and 60 nodes, le replication improves data availability until network saturation is reached, with the most significant benefit gained after only one copy is made. Mobility, churn rate, and swarm density all influence the replication impact

    Context and resource awareness in opportunistic network data dissemination

    Get PDF
    Opportunistic networks are challenging mobile ad hoc networks characterised by frequent disconnections and partitioning. In this paper we focus on data-dissemination services, i.e. cases in which data should be disseminated in the network without a priori knowledge about the set of intended destinations. We propose a general autonomic datadissemination framework that exploits information about the users\u27 context and social behaviour, to decide how to replicate and replace data on nodes\u27 buffers. Furthermore, our data-dissemination scheme explicitly takes into account resource constraints, by jointly considering the expected utility of data replication and the associated costs. The results we present show that our solution is able to improve data availability, provide fairness among nodes, and reduce the network load with respect to reference proposals available in the literature

    Multicast Data Replication Approach for Improving Fault Tolerance in Mobile Ad hoc Networks

    Get PDF
    Multicast data replication provides a possible solution for improving data accessibility in highly dynamic and fault prone mobile ad hoc environments. Our novel multicast data replication approach operates in a self-organizing manner where the network nodes that has unit host detector construct a connected dominating set (CDS) based on the topology graph by collecting information from neighboring nodes using multicast if gathered data from neighbors have two non-adjacent neighbors then use that virtual backbone for efficient data replication, data search and routing. In this study, we compare our proposed approach with SCALAR and evaluate it in average hop counts and successful delivery ratio with different node numbers and speeds.It is shown that the average hop counts increased but with falling rate and 20 percent successful delivery ratio is achieved, so it is demonstrated that PM act with respect to fault tolerance improvement, power consumption and load balancing is occurred

    A Lightweight Content Replication Scheme for Mobile Ad Hoc Environments

    Full text link
    The mobile, wireless, and self-organizing features of ad hoc networks pose many challenges with respect to continuous availability and accessibility of data. In such a dynamic environment, there are many advantages in replicating a data item so there are multiple copies, including reduced response times and higher data availability. Also, if done efficiently, replication can help reduce energy usage. In this paper, we propose the Expanding Ring replication strategy for pull-based information dissemination environments. One of our primary objectives is the development of a lightweight scheme for mobile nodes. We evaluate the performance of our scheme with respect to a number of parameters and compare it to a system without replication. Our results show a reduction in the average response times and the message processing overhead on nodes. The scheme also does well when both, the overall willingness of nodes to cache data and their individual caching capabilities vary

    A Lightweight Distributed Solution to Content Replication in Mobile Networks

    Full text link
    Performance and reliability of content access in mobile networks is conditioned by the number and location of content replicas deployed at the network nodes. Facility location theory has been the traditional, centralized approach to study content replication: computing the number and placement of replicas in a network can be cast as an uncapacitated facility location problem. The endeavour of this work is to design a distributed, lightweight solution to the above joint optimization problem, while taking into account the network dynamics. In particular, we devise a mechanism that lets nodes share the burden of storing and providing content, so as to achieve load balancing, and decide whether to replicate or drop the information so as to adapt to a dynamic content demand and time-varying topology. We evaluate our mechanism through simulation, by exploring a wide range of settings and studying realistic content access mechanisms that go beyond the traditional assumptionmatching demand points to their closest content replica. Results show that our mechanism, which uses local measurements only, is: (i) extremely precise in approximating an optimal solution to content placement and replication; (ii) robust against network mobility; (iii) flexible in accommodating various content access patterns, including variation in time and space of the content demand.Comment: 12 page

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability
    • 

    corecore