
 

C
 

Consiglio Nazionale delle Ricerche 
 

 

 

 

 
 
 

  

  

CCoonntteexxtt  aanndd  rreessoouurrccee  aawwaarreenneessss  iinn  ooppppoorrttuunniissttiicc  nneettwwoorrkk  ddaattaa  

ddiisssseemmiinnaattiioonn  

  

  
  

  

CChhiiaarraa  BBoollddrriinnii,,  MMaarrccoo  CCoonnttii,,  aanndd  AAnnddrreeaa  PPaassssaarreellllaa  

    
 
 
 
 

 
IIT TR-06/2010 

 

Technical report 
 
 
 
 

Febbraio  2010 

 
 
 
 
 
 
 

Iit 
 

Istituto di Informatica e Telematica  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Context and resource awareness in opportunistic network data dissemination
Technical Report

Chiara Boldrini, Marco Conti, and Andrea Passarella
CNR-IIT, Via G. Moruzzi, 1 - 56124 Pisa, Italy
{c.boldrini,m.conti,a.passarella}@iit.cnr.it

Abstract
Opportunistic networks are challenging mobile ad hoc

networks characterised by frequent disconnections and par-
titioning. In this paper we focus on data-dissemination ser-
vices, i.e. cases in which data should be disseminated in
the network without a priori knowledge about the set of in-
tended destinations. We propose a general autonomic data-
dissemination framework that exploits information about
the users’ context and social behaviour, to decide how to
replicate and replace data on nodes’ buffers. Furthermore,
our data-dissemination scheme explicitly takes into account
resource constraints, by jointly considering the expected
utility of data replication and the associated costs. The re-
sults we present show that our solution is able to improve
data availability, provide fairness among nodes, and reduce
the network load with respect to reference proposals avail-
able in the literature.

1. Introduction
Opportunistic networks are wireless mobile self-

organising networks in which the network topology is as-
sumed to be extremely dynamic and unstable. Discon-
nections of nodes, high churn rates, dynamic creation and
merging of partitions are considered as normal features of
the network instead of exceptions, as in the conventional
MANET paradigm. Specifically, nodes’ movements are
exploited to bridge disconnected partitions, allowing end-
to-end communication despite prolonged disconnection pe-
riods. Research on opportunistic-network protocols has
mainly focused on routing issues (see [12, 17] for surveys
on this topic). In this paper we focus instead on data
dissemination protocols, to support applications in which
the set of users interested in receiving a given data is not
known in advance. Data dissemination protocols are re-
quired to support user-generated content applications in per-
vasive networks, in which users dynamically produce con-
tent on their mobile devices, and share it with a dynamic
and possibly unknown set of peers interested in the same
type of data. This data generation and access model is one

of the key features of the Web 2.0 model.
If nodes’ and network’s resources were unlimited, data

dissemination would be trivially achieved by flooding-
based schemes such as epidemic routing [15]. However,
such solutions become unsuitable as soon as resource con-
sumption is considered. Therefore, the first contribution of
this paper is proposing a general framework for resource-
aware data dissemination schemes. Specifically, as de-
scribed in detail in Section 3, in our framework data dissem-
ination is driven by the trade-off between the expected util-
ity of data for users, and the associated cost of in terms of re-
source consumption. Besides being completely distributed,
the proposed framework is general enough to be customis-
able to any definition of utility, and to consider any set of re-
sources. Providing such a general framework differentiates
our work from the PodNet project [10], which just proposes
heuristics for data dissemination applications. A utility-
based system is also proposed in [1]. However, this paper
considers routing protocols instead of data-dissemination
services, and assumes knowledge about the overall network
status (e.g., the set of nodes where a given data is cur-
rently replicated, the statistics of meeting times between all
nodes in the network), which might be impractical to ob-
tain. Energy-delay and storage-delay tradeoffs are investi-
gated in [14], but this work focuses again on routing issues,
and does not extend the framework to the general resource-
consumption problem.

The second contribution of this paper is to customise the
framework by proposing an autonomic,context-based data-
dissemination scheme (see Sections 3 and 4). Exploiting
context information about the users has proved to result in
particularly efficient forwarding schemes for opportunistic
networks [2, 3, 6]. In this paper we exploit context infor-
mation about the users, their habits, the social communi-
ties to which they belong to define the utility of data. Un-
der this approach nodes autonomically learn, without re-
quiring centralised information, the network state and the
users’ behaviour. Furthermore, it achieves a cooperative
data-dissemination scheme, by which users not only look
for data they are personally interested to, but also help dis-



seminating data of interest to users they have acquaintance
with. To the best of our knowledge, including the social di-
mension to data-dissemination protocols is an original con-
tribution of this paper.

In Sections 5 and 6 we compare our solution with the
best heuristics proposed in [10], showing that our utility-
based approach provides a more flexible solution, able to
optimise given target performance figures, such as, for ex-
ample, the hit rate or the fairness among users.

2. Reference scenario
As in [10], we assume a podcasting-like application, in

which data are organised in different feeds (or channels).
Data dissemination is based on pair-wise contacts between
nodes. During a contact, nodes advertise the channel they
are interested into, and exchange an index of the data ob-
jects they store in their buffer. The data dissemination pol-
icy decides which object each node should fetch from the
other peer. In general, data objects might be associated with
a TTL value, such that they can be discarded when the TTL
expires. We assume that users are organised in communi-
ties. Each community represent a social group (e.g., a work-
ing environment, a sport team, etc.). We assume that, at
any point in time, each user is associated with one “home”
community (e.g., the office mates during working hours).
Users can also have social relationships outside their home
communities, and therefore occasionally “visit” other com-
munities. Accordingly, to represent users behaviour, we
consider the home-cell community-based mobility model
(HCMM [4]), which is a group-based socially-inspired mo-
bility model. In HCMM user’s movements are driven by the
attraction exerted by i) other peers on the user (e.g., users
move to meet their friends), and ii) the attraction exerted by
physical locations on the user (e.g., users move to their of-
fice building). Finally, since communities represent homo-
geneous social group, we assume that the probability that a
user is interested in a given channel is the same for all users
of the same community.

3. A framework for resource-aware data dis-
semination

According to the scenario laid down in Section 2, the
goal of the data-dissemination protocol is selecting, upon
nodes’ encounters, which data objects should be fetched.
To this end, we exploit a utility-based approach, as follows.
Upon a pair-wise contact, nodes exchange an index of the
data they are carrying1. Each node computes the utility of
the data objects stored by the other peer (i.e., the peer’s ob-
jects) and of the data objects it currently stores (i.e., the
local objects). The node then selects those data objects (ei-
ther locally stored or available at the peer) that maximise

1Since in opportunistic networks data are carried in form of large bun-
dles, the index is typically much shorter than the data itself.

its overall utility, subject to the constraints imposed by the
resource limitations. Therefore, it selects the data to fetch
according to the solution of the following problem:

{
max

∑
k U

(p)
k x

(p)
k +

∑
k U

(b)
k x

(b)
k

s.t. resource constraints are met
(1)

where U
(p)
k and U

(b)
k are the utility of the k-th peer’s and

local object, respectively, and xk are the variables of the
problem.

By assuming that m resources have to be managed at
each node, and by denoting with cjk, j = 1, . . . , m the per-
centage of consumption of resource j related to the k-th data
(i.e., 0 ≤ cjk ≤ 1), the problem statement in Equation 1 can
be cast to a Multi-costrained 0-1 Knapsack Problem (MKP)
([9]):





max
∑

k Ukxk

s.t.
∑

k cjkxk ≤ 1 j = 1, . . . , m
xk ∈ {0, 1} ∀k

(2)

Note that, as the number of constraints is equal to the
number of resources, which is not expected to be high, com-
puting the optimal solution or accurate approximations of
the optimal solution is fast from a computational standpoint
[9]. The formulation in Equation 2 is quite flexible, as it can
be used for any set or managed resources, and for any defi-
nition of the utility function. In the following of this section,
we provide our definition of the utility function, which, by
exploiting context information, captures the utility of data
objects based on the users’ social behaviour.

3.1. Context-aware utility
According to our reference scenario, the utility function

should reflect not only the utility for the local users, but also
the utility for the other members of the user’s communities.
Therefore, we define the utility value computed locally by a
node for a data object k as:

Uk = u
(l)
k +

∑

i

ωiu
(c)
k,i (3)

where u(l) is the utility for the local user, u
(c)
k,i is the util-

ity for the i-th community the user belongs to, and ωi is a
cooperation index (a real number between 0 and 1), which
defines the willingness of the user to cooperate with the i-th
community. It is clear that this utility definition permits a
social, non-greedy behaviour.

In general, we define the utility of an object for a com-
munity (or for the local user) as a function of context pa-
rameters that describe the community (or the local user) it-
self. This permits to see u

(l)
k and u

(c)
k,i in a homogeneous

way. They can be seen as the utilities related to the i-th
context the user is in touch with, considering the local user
just as one of these contexts. Therefore, Equation 3 can be



expressed as
Uk =

∑

i

ωiuk,i (4)

The first step to define the utility function is identifying
the parameters it should depend on. Specifically, we use the
definition provided by Equation 5. Note that, to simplify the
notation, in Equation 5 we remove the explicit indication of
the context and the data object the utility refers to (i.e., u in
Equation 5 is any of the u(i) factors in Equation 4 for any
data object).

u = fu(access probability, value,
context stability, resources’ consmuption) .

(5)
In Equation 5 we identify four main parameters:

• Access probability. This parameter should capture the
likelihood that the data object will be accessed by users
in the context. The highest the access probability, the
more the data should be useful for the users in the con-
text.

• Value. This parameter quantifies the advantage for the
users in the context brought by the fact that the local
user stores that particular data object. It can also be
seen as the marginal utility for the users of the local
node storing the data. We will discuss in more depth
this parameter in the following of the section.

• Context stability. This parameter captures the stability
of the context the utility refers to, and is a sort of re-
liability index for the previous two parameters (access
probability, value). The lower the context stability the
lower the utility should be.

• Resource consumption. As we will describe in the fol-
lowing, the value parameter describes the value of the
data object for the users in the context, irrespective of
any costs related to storing or fetching it. This parame-
ter permits to trade off the value of the data object and
its associated costs.

In the rest of this section we provide a possible concrete
realisation of the general form in Equation 5. Let us firstly
focus on the contribution to fu of the value parameter. We
quantify the value of a data object as a function of its avail-
ability in the context, and its residual TTL. The rationale
behind considering the availability is that rare data in the
context should be preferably stored (thus, should more valu-
able). This idea is borrowed from common p2p systems
(e.g., BitTorrent), which try to preferentially replicate data
that are less widespread, since data being already spread are
easy to get from the network. The rationale behind consid-
ering the residual TTL is the fact that data that are going to
become invalid quite soon should not be of high value. By

assuming that availability and residual TTL are independent
parameters, we define the value of the data object as

v = fv(availability) · gv(TTL) . (6)

We also assume to have two system-wide parameters, vmin

and vmax, that are the minimum and maximum values of
any data (i.e., vmin ≤ v ≤ vmax). While the residual TTL
can be easily computed, to quantify the data availability we
assume that the local node has an estimate of the probability
of users in the context to actually receive the data object, de-
noted as pav (we will discuss how to obtain such estimates
in concrete example in Section 4). Based on the above re-
marks we can define fv() and gv() as follows:
{

fv() =
√

vmax −
(√

vmax −√vmin

)
eλ(pav−1)

gv() =
√

vmax −
(√

vmax −√vmin

)
e−θTTL

(7)
The definition of fv and gv is the simplest one satisfying the
following requirements:

1. v should be in the interval [vmin, vmax]

2. fv should be minimum when pav is maximum (i.e.,
pav = 1), and maximum when pav is minimum (i.e.,
pav = 0).

3. gv should be minimum when TTL is minimum (i.e.,
TTL = 0), and maximum when TTL is maximum
(theoretically, TTL = ∞).

Let us now focus on the access probability parameter.
Theoretically, each user could have a different access prob-
ability to any given data object. However, we choose to
consider a single aggregate parameter for all users sharing
a similar context. This relies on the fact that users are in the
same context because they share interests, and therefore we
can reasonably assume a rather homogeneous access prob-
ability across users of the same context. The access prob-
ability is throughout referred to as pac, and is computed as
described in Section 4.

As mentioned before, the context stability parameter is
meant to be a reliability index for the access probability
and value indexes. The value and the access probability
are the way in which we embed context information de-
rived from the users’ social behaviour in the data dissem-
ination policy. Therefore, their contribution should be re-
duced in case of unstable contexts (e.g., due to high user
churn rates, or significant variability of the access probabil-
ity, etc.). Based on the value and access probability defini-
tions described above, it is reasonable to quantify the con-
text stability through the coefficients of variation of the ac-
cess and availability probabilities (cvpac and cvpav , respec-
tively). Specifically, we define the context stability index
(cs) as follows:

cs(cvpac, cvpav) = e−h max(cvpac,cvpav) . (8)



The last contribution to the utility function we have to
define is related to the resource consumption. To quantify
this parameter, we need to aggregate consumption related to
each data object over all resource. To this end, we define an
aggregate consumption c as the weighted sum of the single-
resource consumptions, i.e.,

c =

∑m
j=1 wjcj∑m
j=1 wj

, (9)

where wj is the weight assigned to resource j. Note that this
definition also allows us to rank resources based on their rel-
ative importance (computing similar aggregates is common
when defining heuristics for solving MKPs). Finally, the
contribution to the utility function related to the resources’
consumption is defined as:

fc() =
1

eµc
. (10)

Through this definition we comply with the following re-
quirements: i) the consumption function should be equal to
1 when resources’ consumption is negligible (this is nec-
essary for the following definition of the utility function),
and ii) the usefulness of the data should decrease more than
linearly with the consumption increase. As far as the latter
point, please note that by tuning the µ parameter, it is pos-
sible to control the impact of the consumption on the utility
function.

Based on the above discussion we are finally in the po-
sition of defining a concrete formula for the utility function
of a data, related to a particular context. Specifically, we
specialise Equation 5 as follows:

u = pac · cs · v

eµc
, (11)

where cs is defined as in Equation 8, v is defined as in Equa-
tions 6 and 7, and c is the resources’ consumption related to
the data, as defined in Equation 9. Note that Equation 11 has
the same general form of utility functions widely adopted in
the literature about cache replacement systems ([13], [16]).
Usually, in this field the utility is defined as the product of
the access probability by the value of the data. Furthermore,
resource consumption is usually considered just in terms of
data size. Our definition of the utility function is more gen-
eral from this standpoint, as it allows for any set of managed
resources, and it still valid in the limit case of negligible re-
source consumptions (in that case, the consumption contri-
bution to u simply disappears).

In conclusion, the main features of the proposed frame-
work we would like to highlight are as follows:

• we explicitly take into consideration users’ social be-
havior through the access probability, the context sta-
bility and the value parameters;

• we introduce a reliability index (the context stability)
to take into consideration possible variability of the in-
formation describing the users’ social behavior;

• we use a general resource consumption index (not lim-
iting to the data size only) which permits to take into
consideration any set of resources to be managed.

The framework proposed in this section is quite general,
and can be specialised for managing a number of differ-
ent resources. In the following of the paper, we explain
how this framework can be implemented by exploiting Hi-
BOp, a context-aware framework for data forwarding and
dissemination we have proposed in [2], and we investigate
the performance of the framework when applied to manage
the nodes’ buffer space.

4. HiBOp-D: a context-aware data dissemina-
tion protocol

To implement our framework in a real opportunistic net-
work we exploit the algorithms for managing context in-
formation defined by HiBOp [2], which is a context-aware
routing protocol for opportunistic networks. The resulting
protocol is a HiBOp customisation for data-dissemination,
that we call HiBOp-D.

Given the utility function of Section 3.1, designing a data
dissemination protocol that works according to that utility
means i) to define which are the contexts a node operates
in, and ii) how the information about these contexts is col-
lected. Regarding the first problem, we need a way of de-
tecting the communities a node belongs to and matching
them to the current environment the node is in. The detec-
tion of communities is not a trivial task and researchers are
still working on it (see [7] for first approach to the problem).
Assuming that each node keeps track of the most frequent
events of its life, we suppose that, as each node spends the
most of its time with nodes of the communities it belongs
to, the most frequent events will correspond to events re-
lated to these communities. For tracking the most frequent
events of nodes’ life, we borrow the History table mecha-
nism from HiBOp protocol. In HiBOp, the History table
keeps track of the history of the environment in which each
node operates, thus enabling some statistics on the history
of the node. We assume the information stored in the His-
tory table to be relevant with respect to the communities the
node belongs to.

We also maintain HiBOp’s mechanism for collecting
context information. In the HiBOp protocol, nodes pe-
riodically send a summary of their personal information
(which we called Identity Table) to all other nodes in radio
range. Then, the information collected during these Neigh-
bour Discovery phases is inserted into the History table for
keeping track of the history of the environment in which
each node operates.



As we want to detect the interests of the communities a
node belongs to, and the current data distribution (needed
for computing availability value), we extend the HiBOp
solution adding to the personal information (IT table) ex-
changed during the Neighbour Discovery phase the follow-
ing data:

• Interests: each node specifies the channels he is inter-
ested in;

• Cache composition: for each channel, a node specifies
the fraction of cache space occupied;

• Local availability: the ease with which a node can re-
trieve information of each channels.

The data transmitted by current neighbours are then pro-
cessed at the end of each neighbour discovery phase.
Specifically, the interests of each peer are used to compute
the access probability of the CC (Eq. 12), the cache compo-
sition of each peer is used to evaluate the current availability
for each channel (Eq. 13), and the local availability is used
to compute the ease that your peers have to retrieve infor-
mation for each channel (Eq. 14):

pac,ch =
∑

i∈CC

δi,ch/NCC (12)

pav,ch =
∑

i∈CC

Si,ch/
∑

i∈CC

Si (13)

p̂av,ch =
∑

i∈CC

p
(l)
av,ch,i

NCC
, (14)

where δch
i is equal to 1 if node i is interested to channel ch

(otherwise it is equal to 0), Si is total cache space of node
i, Sch

i is the amount of cache space of node i occupied by
channel ch. CC values are basically samples that are used
to compute historical values. They are added to the History
table according to a time-window average:

p
(h)
ac,ch ← αp

(h)
ac,ch + (1− α)pac,ch

p
(l)
av,ch ← αp

(l)
av,ch + (1− α)pav,ch

p
(h)
av,ch ← αp

(h)
av,ch + (1− α)p̂av,ch

In addition, for each parameter, we keep last L values, in
order to compute the coefficients of variation.

Summarising, our context-aware utility function for a
data object i belonging to channel ch is given by Ui =
u

(local)
i + u

(history)
i , where:

u
(local)
i =

p
(l)
ac,ch·fv(p

(l)
av,ch)·gv(TTLi)·cs

(l)
ch

eµci
(15)

u
(history)
i =

p
(h)
ac,ch·fv(p

(h)
av,ch)·gv(TTLi)·cs

(h)
ch

eµci
(16)

where p
(local)
ac,ch is equal to 1 for all channels in which the

local user is interested, otherwise is set to 0.

Node Speed uniform in [1,1.86] m/s
Buffer size 10 objects

Transmission Range 20m
Sampling period 5s

λ 15

Table 1: Configuration Parameters

5. Simulation Setup
To evaluate our utility-based data-dissemination frame-

work, we consider a very simple scenario. We consider
just a single community, and focus on intracommunity dy-
namics only. Nodes move according to the Random Way-
point (RWP) mobility model, following to the procedure de-
scribed in [11] for RWP convergence. While, in general, so-
cial based mobility models (such as HCMM) fits better our
framework, HCMM and RWP are equivalent when just a
single community is considered [4]. The evaluation with
more than one community is left as a future work. The
single-community scenario is a worst-case scenario for our
data-dissemination framework, as the advantage of exploit-
ing information about users’ social behaviour is likely to be
much more evident in the case of several groups of users,
each with different interests. Therefore, this setup allows us
to evaluate the framework in a rather limiting, unfavourable,
case.

In our setup data objects can belong to three different
channels. Each node is interested into one channel. In-
terests are distributed among nodes according to the Zipf’s
law. The nodes move, with a typical pedestrian speed, in a
250x250m cell. In the middle of this cell, an Access Point
(AP) stores 100 data objects for each channel. These objects
are generated before the simulation begins and remain the
same for the whole duration of the experiment (TTL = ∞).
All the data objects have the same size, equal to 50 KB.
Nodes’ buffer size is set to 10 objects only, so as to test the
framework in a resource constrained environment as far as
buffer limitations. Furthermore, we consider only the buffer
as the constrained resources to be managed according to the
scheme in Equation 2. Reference values for other config-
uration parameters are summarised in Table 1. Note that,
since all data objects have the same size, all objects of the
same channel have the same utility for a given node, and
thus the utility computed by Equation 11 is the utility of the
channel.

The performance of the following policies for choosing
which data objects to store upon a pair-wise contact is com-
pared:

Context-aware (CA) Objects are selected based on the
context-aware utility function explained in Sections 3
and 4.

Access Probability (aP) This policy can be viewed as a
special case of our utility function in Equation 11,



when only the access probability is considered. Nodes
tend to preferentially select data objects of the channel
the local user is interested.

Uniform (U) Objects are selected randomly among all
available objects in the local and peer’s buffers (regard-
less the channel they belong to). This policy has been
proved to be one of the best in [10].

Uniform mono-channel (UM) Nodes select a channel at
random, and store all objects of that channel. We con-
sider this version of the uniform policy as we found
that nodes under the aP and CA policies tend to store
objects of a unique channel only.

The performance of these policies is evaluated in terms
of the quality of service (QoS) perceived by the users and
the resource consumption. The QoS is measured in terms
of hit rate, system utility and fairness level. To measure the
hit rate, we simulate a user periodically requesting (with a
period equal to 300s) a data objects for each channel (the
object of a given channel is randomly selected according
to a uniform distribution). We consider a hit if the object
is available on at least one node’s buffer, a miss otherwise.
The system utility is computed as the sum of the channel
hit rate weighted with the access probability of each chan-
nel, i.e., SU =

∑
i pac,ihri. The fairness of each policy

has been computed according to the Jain’s fairness index
[8] (using the hit rate as a measure of the service level ob-
tained by each channel). Resource consumption has been
measured in terms of the traffic generated in the network,
i.e., the average number of data transmitted by all nodes
during the simulations. This includes data exchanged for
context creation, buffer state messages, request messages
and data objects themselves. Simulations run for 90000s.
Exchanges of data objects upon nodes’ contacts start after
an initial transitory required to build nodes’ context. Re-
sults shown in the following section have a 95% confidence
interval, obtained through the independent replication tech-
nique.

6. Simulation Results
6.1 Impact of network size

In this first set of experiments we evaluate the perfor-
mance of the policies under a variable number of nodes,
ranging from 8 to 72.

The Access Probability policy (Figure 1) serves chan-
nels in a way proportional to the probability that they are
requested by nodes: channel 1 receives the best service,then
channel 2, and finally channel 3. On the opposite, the Uni-
form policy (Figure 3) guarantees to all channels an equal
level of service in terms of hit rate. Between these two
extremes lies our context-aware caching policy (Figure 2),
which maintains the same ordering as the Access Probabil-
ity policy but reduces the gap between channels with differ-
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Figure 1: Average hit rate (aP)
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Figure 2: Average hit rate (CA)

 0

 20

 40

 60

 80

 100

 8  16  24  32  40  48  56  64  72

A
ve

ra
ge

 H
itR

at
e 

[%
]

Number of Nodes

Average HitRate - Uniform

Ch 1 Ch 2 Ch 3

Figure 3: Average hit rate (U)
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Figure 4: Average hit rate (UM)

ent popularity. Also note that there is basically no differ-
ence, in our setup, between the U and UM policies. There-
fore, exchanging single data objects belonging to different
channels or a bulk of objects of the same channel achieve
the same results when the selection is done in a uniform
fashion. Figures 1- 4 also highlights that no policy is able
to reach a 100% hit rate, not even when the sum of nodes’
buffers would be enough for storing all the data objects for
all channels (this is the case for nodes more than 30). This
is because no policy is able to control the replication level
of data objects across the network. This results, for some
objects, in more than one copy being present on nodes’
buffers, while, for other, not even a copy being available.
Improving the policies to achieve higher diversity of stored
objects is one of the most required extensions of our frame-
work.

Figure 5 shows the system utility index. Being SU a
measure of user satisfaction, it is quite expected that the aP
policy, by favouring the most popular channel, satisfies the
majority of the users. However, Figure 6 shows that this is
paid in terms of fairness. On the other hand, uniform poli-
cies achieve, by definition, the highest fairness, at the cost
of lowest system utility. Therefore, a better trade off be-
tween the maximisation of the overall utility and fairness
should be met. Figure 5 highlights that this trade off can
be satisfactorily reached by the CA policy. Its fairness level
approaches that of the uniform policies while still maintain-
ing an higher level of user satisfaction (between 10% and
20% more).

Beside being a good trade-off between user satisfaction
and fairness, the utility-based framework shows a resource-
saving advantage as well. Figure 7 shows the traffic over-
head for all caching policies. The most efficient policy is aP
because, once node interests have spread all over the net-
work, values for access probabilities don’t change anymore
during the simulation. This results in fewer exchanges of
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Figure 5: System Utility
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Figure 6: Fairness

data objects (basically, only nodes sharing the same inter-
est exchange objects). In the CA policy, the utility rank-
ing changes dynamically based on the availability measure,
thus resulting in a slightly higher traffic overhead. The uni-
form policies waste more resources because they don’t take
into account the state of the network, and thus objects are
exchanged at every association between nodes. We have
also made a separate analysis for traffic due to data ob-
ject exchanges and traffic due to protocol overhead (con-
text information, message requests, cache state messages).
It’s interesting to note that total traffic overhead is slightly
dependent on the overhead due to protocol operations [8,
9]. Therefore, data exchanged for building node context
are negligible. This result is particularly significant to our
context-aware caching policy, which was expected to gen-
erate more protocol overhead than the others. This expec-
tation has been confirmed, but its relevance has been drasti-
cally reduced.
6.2 Adding off-line prefetching

In the previous experiment, nodes’ buffers were empty at
the beginning of the simulation. In this second set of exper-
iment we want to evaluate the impact of preloaded buffers
on the evolution of the system. We consider to different
filling policies: uniform filling, in which nodes’ buffers are
filled at random at the beginning of the simulation, and max-
imum diversity filling, in which nodes’ buffers are filled as
to maximize the diversity of data objects (i.e. avoid repli-
cation). We fix the number of nodes to 16. Figures 10- 13
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Figure 7: Traffic overhead
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Figure 8: Data overhead
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Figure 9: Protocol overhead

show that, preloading data on nodes at the beginning of the
simulation doesn’t affect data dissemination performance.
However, this is just a preliminary result, which should be
confirmed with further analysis.

6.3 Turning the AP off
The AP is fundamental to the regeneration of data ob-

jects in the network: in fact, even when all nodes have
deleted a given object, the AP guarantees that this object
can be injected into the network again. In order to eval-
uate how the presence of the AP affects the behaviour of
the system, we fill nodes’ buffers at the beginning of each
simulation, and “turn off” the AP. We explore two different
policies for initial filling: uniform filling, where data to be
copied on nodes’ buffers are selected uniformly among all
available objects, and maximum diversity filling, where ob-
jects are copied on nodes as to minimise replications. We
consider the case of 16 nodes, in which not all objects can
fit into nodes’s buffers to highlight the importance of the AP
role in this challenged setting.

Table 2 shows that when the AP is off a certain level
of service is maintained, though highly downgraded. This
shows that, when the buffer size is very small, the AP is
key to provide a reasonable service level. These results also
show that, in these settings, the different initial filling poli-
cies seem to have no, or very little effect, on system perfor-
mance for all caching policies. While still preliminary, this
set of results suggests interesting properties of the system
related to the AP role. We are analysing the system in more
depth to achieve better understanding on this point.
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Figure 10: Average hit rate (aP)
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Figure 11: Average hit rate
(CA)
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Figure 12: Average hit rate (U)
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Figure 13: Average hit rate
(UM)

uniform max div
AP on AP off AP on AP off

aP 35.38± 0.16 9.33± 0.32 35.38± 0.14 9.43± 0.37
CA 26.23± 0.30 6.09± 0.39 26.10± 0.26 6.06± 0.44
U 23.93± 0.17 5.45± 0.23 23.88± 0.20 5.65± 0.25

UM 22.92± 0.39 4.2± 1.06 22.93± 0.35 6.34± 1.34

Table 2: System utility with and without the AP.

6.4 Dense scenario
The last set of results we show highlight a mis-behaviour

of the CA policy that arises in denser scenarios without AP,
and a simple modification to fix it. Specifically, we consider
a scenario with 16 nodes, but with transmission range equal
to 80m (instead of 20m). This results in an increase of the
average number of neighbours from 0.3 to about 5. There-
fore, in this setting basically each node quickly achieves
a complete view of what is available in the buffers of all
the other nodes. Qualitatively, since the CA policy takes
into consideration availability to compute utility, the least
spread channels at the beginning of the simulation become
the most useful. All nodes immediately discard objects of
the other channels, which cannot be later resumed, due to
the absence of the AP. In this case, the initial configuration
of the simulation environment plays a key role in determin-
ing which channel is going to “survive”. Table 3 shows the
percentage of total buffer space (considering all the nodes’
buffers as a single shared buffer) occupied by each channel
for the utility-based policies (CA and aP only). CA results
refer to different simulation runs. Note that aP does not suf-
fer from this problem as it does not take into account the
dynamically changing state of the nodes’ buffers.

A simple fix to this problem for the CA policy is as fol-
lows. When nodes meet, they compute the utility of the
channel as usual, but then they use the utility values to de-
fine the share of local buffer to be occupied by each chan-
nel’s objects. The last row in Table 3 shows that this simple

ch1 ch2 ch3
aP 56.04± 0.00 24.81± 0.00 18.54± 0.00

CA (orig) 1.79± 1.23 0.00± 0.00 92.44± 1.69
0.61± 0.60 0.56± 0.62 98.10± 1.54
89.66± 0.66 9.92± 0.10 0.00± 0.00
0.00± 0.00 99.25± 1.04 0.00± 0.00
96.62± 1.59 0.00± 0.00 2.77± 1.38

CA (fix) 42.04± 8.59 34.33± 7.46 22.95± 15.94

Table 3: Percentage of nodes’ buffer occupied by each channel.

modification is able to fix the CA misbehaviour. We are
currently investigating the applicability of this modified CA
policy in more general settings.

7 Conclusions
In this paper we have introduced a new autonomic

utility-based data-dissemination framework for opportunis-
tic networks which heavily exploit context information
about the users’ social behaviour. We have compared the
performance of the framework with other solutions con-
sidered among the best in the literature. Results have
shown that our approach is flexible enough to achieve dif-
ferent targets, and specifically can be customised either to
achieve the maximum hit rate for most popular data, or to
achieve a fairer behaviour with acceptable reduction of the
hit rate. We have also shown preliminary yet interesting
results showing that, in particularly challenged scenarios,
network elements, such as Access Points, that can store
all available data, are key. We have also highlighted some
possible unstable behaviour of our framework, and shown
a simple modification to fix it. The presented results are
still quite preliminary, however they highlight that a utility-
based framework is an interesting direction to be further in-
vestigated to provide data dissemination services in oppor-
tunistic networks.
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