422 research outputs found

    An infrastructure to communicate with wireless devices

    Get PDF
    Contemporary and future network protocols allow wireless devices to send and receive information with reasonable reliability and at reasonable speed. Yet, for an application to take advantage of the full networking capabilities of modern devices, much overhead is needed. Although the physical networking capabilities are embedded in the wireless device, an accepted standardized software protocol for utilizing these capabilities is not fully in place yet. There is a need for an infrastructure and a protocol for data communication with wireless devices. Such an infrastructure could serve as a middleware tool for wireless application developers that will decrease the amount of overhead for wireless application development. This work proposes the function and structure for that infrastructure, the details of the protocol that can be used and discusses issues of selfishness and cooperation when such middleware is used cooperatively by uncoordinated parties

    Trusted community : a novel multiagent organisation for open distributed systems

    Get PDF
    [no abstract

    Enhanced Interest Aware PeopleRank for Opportunistic Mobile Social Networks

    Get PDF
    Network infrastructures are being continuously challenged by increased demand, resource-hungry applications, and at times of crisis when people need to work from homes such as the current Covid-19 epidemic situation, where most of the countries applied partial or complete lockdown and most of the people worked from home. Opportunistic Mobile Social Networks (OMSN) prove to be a great candidate to support existing network infrastructures. However, OMSNs have copious challenges comprising frequent disconnections and long delays. we aim to enhance the performance of OMSNs including delivery ratio and delay. We build upon an interest-aware social forwarding algorithm, namely Interest Aware PeopleRank (IPeR). We explored three pillars for our contribution, which encompass (1) inspect more than one hop (multiple hops) based on IPeR (MIPeR), (2) by embracing directional forwarding (Directional-IPeR), and (3) by utilizing a combination of Directional forwarding and multi-hop forwarding (DMIPeR). For Directional-IPeR, different values of the tolerance factor of IPeR, such as 25% and 75%, are explored to inspect variations of Directional-IPeR. Different interest distributions and users’ densities are simulated using the Social-Aware Opportunistic Forwarding Simulator (SAROS). The results show that (1) adding multiple hops to IPeR enhanced the delivery ratio, number of reached interested forwarders, and delay slightly. However, it increased the cost and decreased F-measure hugely. Consequently, there is no significant gain in these algorithms. (2) Directional-IPeR-75 performed generally better than IPeR in delivery ratio, and the number of reached interested forwarders. Besides, when some of the uninterested forwarders did not participate in messages delivery, which is a realistic behavior, the performance is enhanced and performed better generally in all metrics compared to IPeR. (3) Adding multiple hops to directional guided IPeR did not gain any enhancement. (4) Directional-IPeR-75 performs better in high densities in all metrics except delay. Even though, it enhances delay in sparse environments. Consequently, it can be utilized in disastrous areas, in which few people are with low connectivity and spread over a big area. In addition, it can be used in rural areas as well where there is no existing networks

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    ADDRESSING SELFISHNESS IN THE DESIGN OF COOPERATIVE SYSTEMS

    Get PDF
    I sistemi distribuiti cooperativi, tra cui in particolare i sistemi peer-to-peer, sono oggi alla base di applicazioni Internet di larga diffusione come file-sharing e media streaming, nonch\ue9 di tecnologie emergenti quali Blockchain e l'Internet of Things. Uno dei fattori chiave per il successo di un sistema cooperativo \ue8 che i nodi che vi partecipano mettano a disposizione della comunit\ue0 una parte delle proprie risorse (es. capacit\ue0 di calcolo, banda, spazio disco). Alcuni nodi, poich\ue9 controllati da agenti autonomi e indipendenti, potrebbero tuttavia agire egoisticamente e scegliere di non condividere alcuna risorsa, spinti dall'obiettivo di massimizzare la propria utilit\ue0 anche se a danno delle prestazioni dell'intero sistema. Affrontare l'egoismo dei nodi rappresenta dunque un'attivit\ue0 imprescindibile per lo sviluppo di un sistema cooperativo affidabile e performante. Nonostante il grande numero di tecniche ed approcci presenti in letteratura, tale attivit\ue0 richiede elaborazioni complesse, manuali e laboriose, nonch\ue9 conoscenze approfondite in vari domini di applicazione. Obiettivo di questa tesi \ue8 di fornire strumenti sia pratici che teorici per semplificare lo studio e il contrasto dei comportamenti egoistici nei sistemi cooperativi. Il primo contributo, basato su un'analisi esaustiva dello stato dell'arte sull'egoismo in sistemi distribuiti, presenta un framework di classificazione finalizzato all'identificazione e comprensione dei comportamenti egoistici pi\uf9 importanti su cui concentrarsi durante la progettazione di un sistema cooperativo. Come secondo contributo, presentiamo RACOON, un framework per la progettazione e configurazione di sistemi cooperativi resilienti all'egoismo dei nodi. L'obiettivo di RACOON \ue8 di semplificare tali attivit\ue0 fornendo una metodologia generale e semi-automatica, capace di integrare in un dato sistema pratici meccanismi di incentivo alla cooperazione, attentamente calibrati in modo da raggiungere gli obiettivi di resilienza e performance desiderati. A tal fine, RACOON impiega sia strumenti analitici appartenenti alla teoria dei giochi che metodi simulativi, che vengono utilizzati per fare previsioni sul comportamento del sistema in presenza di nodi egoisti. In questa tesi presentiamo inoltre una versione estesa del framework, chiamata RACOON++, sviluppata per migliorare l'accuratezza, flessibilit\ue0 e usabilit\ue0 del framework originale. Infine, come ultimo contributo del lavoro di tesi, presentiamo SEINE, un framework per la rapida modellazione e analisi sperimentale di vari tipi di comportamenti egoistici in un dato sistema cooperativo. Il framework \ue8 basato su un nuovo linguaggio specifico di dominio (SEINE-L) sviluppato per la descrizione degli scenari di egoismo da analizzare. SEINE fornisce inoltre supporto semi-automatico per l'implementazione e lo studio di tali scenari in un simulatore di sistemi distribuiti selezionato dallo stato dell'arte.Cooperative distributed systems, particularly peer-to-peer systems, are the basis of several mainstream Internet applications (e.g., file-sharing, media streaming) and the key enablers of new and emerging technologies, including blockchain and the Internet of Things. Essential to the success of cooperative systems is that nodes are willing to cooperate with each other by sharing part of their resources, e.g., network bandwidth, CPU capability, storage space. However, as nodes are autonomous entities, they may be tempted to behave in a selfish manner by not contributing their fair share, potentially causing system performance degradation and instability. Addressing selfish nodes is, therefore, key to building efficient and reliable cooperative systems. Yet, it is a challenging task, as current techniques for analysing selfishness and designing effective countermeasures remain manual and time-consuming, requiring multi-domain expertise. In this thesis, we aim to provide practical and conceptual tools to help system designers in dealing with selfish nodes. First, based on a comprehensive survey of existing work on selfishness, we develop a classification framework to identify and understand the most important selfish behaviours to focus on when designing a cooperative system. Second, we propose RACOON, a unifying framework for the selfishness-aware design and configuration of cooperative systems. RACOON provides a semi-automatic methodology to integrate a given system with practical and finely tuned mechanisms to meet specified resilience and performance objectives, using game theory and simulations to predict the behaviour of the system when subjected to selfish nodes. An extension of the framework (RACOON++) is also proposed to improve the accuracy, flexibility, and usability of RACOON. Finally, we propose SEINE, a framework for fast modelling and evaluation of various types of selfish behaviour in a given cooperative system. SEINE relies on a domain-specific language for describing the selfishness scenario to evaluate and provides semi-automatic support for its implementation and study in a state-of-the-art simulator.Les syst\ue8mes distribu\ue9s collaboratifs, en particulier les syst\ue8mes pair-\ue0-pair, forment l\u2019infrastructure sous-jacente de nombreuses applications Internet, certaines parmi les plus populaires (ex\ua0: partage de fichiers, streaming multim\ue9dia). Ils se situent \ue9galement \ue0 la base d\u2019un ensemble de technologies \ue9mergentes telles que la blockchain et l\u2019Internet des Objets. Le succ\ue8s de ces syst\ue8mes repose sur la contribution volontaire, de la part des n\u153uds participants, aux ressources partag\ue9es (ex : bande passante r\ue9seau, puissance de calcul, stockage de donn\ue9es). Or ces n\u153uds sont des entit\ue9s autonomes qui peuvent consid\ue9rer comme plus avantageux de se comporter de mani\ue8re \ue9go\uefste, c\u2019est-\ue0- dire de refuser de collaborer. De tels comportements peuvent fortement impacter les performances et la stabilit\ue9 op\ue9rationnelles du syst\ue8me cible. Prendre en compte et pr\ue9venir les comportements \ue9go\uefstes des n\u153uds est donc essentiel pour garantir l\u2019efficacit\ue9 et la fiabilit\ue9 des syst\ue8mes coop\ue9ratifs. Cependant, cela exige du d\ue9veloppeur, en d\ue9pit de la grande quantit\ue9 de techniques et d\u2019approches propos\ue9es dans la litt\ue9rature, des connaissances multisectorielles approfondies. L'objectif de cette th\ue8se est de concevoir et \ue9tudier de nouveaux outils th\ue9oriques et pratiques pour aider les concepteurs de syst\ue8mes distribu\ue9s collaboratifs \ue0 faire face \ue0 des n\u153uds \ue9go\uefstes. La premi\ue8re contribution, bas\ue9e sur une analyse exhaustive de la litt\ue9rature sur les comportements \ue9go\uefstes dans les syst\ue8mes distribu\ue9s, propose un mod\ue8le de classification pour identifier et analyser les comportements \ue9go\uefstes les plus importants sur lesquels il est important de se concentrer lors de la conception d'un syst\ue8me coop\ue9ratif. Dans la deuxi\ue8me contribution, nous proposons RACOON, un framework pour la conception et la configuration de syst\ue8mes coop\ue9ratifs r\ue9silients aux comportements \ue9go\uefstes. Outre un ensemble de m\ue9canismes d'incitation \ue0 la coop\ue9ration, RACOON fournit une m\ue9thodologie semi-automatique d\u2019int\ue9gration et de calibration de ces m\ue9canismes de mani\ue8re \ue0 garantir le niveau de performance souhait\ue9. RACOON s\u2019appuie sur une analyse du syst\ue8me cible fond\ue9e sur la th\ue9orie des jeux et sur des simulations pour pr\ue9dire l\u2019existence de n\u153uds \ue9go\uefstes dans le syst\ue8me. RACOON a \ue9t\ue9 \ue9tendu en un deuxi\ue8me framework, RACOON++. Plus pr\ue9cis, plus flexible, RACOON++ offre \ue9galement une plus grande facilit\ue9 d'utilisation. Une derni\ue8re contribution, SEINE, propose un framework pour la mod\ue9lisation et l'analyse des diff\ue9rents types de comportements \ue9go\uefstes dans un syst\ue8me coop\ue9ratif. Bas\ue9 sur un langage d\ue9di\ue9, d\ue9velopp\ue9 pour d\ue9crire les sc\ue9narios de comportement \ue9go\uefstes, SEINE fournit un support semi-automatique pour la mise en \u153uvre et l'\ue9tude de ces sc\ue9narios dans un simulateur choisi sur la base de l\u2019\ue9tat de l\u2019art (PeerSim)

    Dynamics and collective phenomena of social systems

    Get PDF
    This thesis focuses on the study of social systems through methods of theoretical physics, in particular proceedings of statistical physics and complex systems, as well as mathematical tools like game theory and complex networks. There already ex- ists predictive and analysis methods to address these problems in sociology, but the contribution of physics provides new perspectives and complementary and powerful tools. This approach is particularly useful in problems involving stochastic aspects and nonlinear dynamics. The contribution of physics to social systems provides not only prediction procedures, but new insights, especially in the study of emergent properties that arise from holistic approaches. We study social systems by introducing different agent-based models (ABM). When possible, the models are analyzed using mathematical methods of physics, in order to achieve analytical solutions. In addition to a theoretical approach, experi- mental treatment is performed via computer simulations both through Monte Carlo methods and deterministic or mixed procedures. This working method has proved very fruitful for the study of several open problems. The book is structured as follows. This introduction presents the mathematical formalisms used in the investigations, which are structured in two parts: in part I we deal with the emergence of cooperation, while in part II we analyze cultural dynamics under the perspective of tolerance

    Dynamics and collective phenomena of social systems

    Get PDF
    Esta tesis aborda el estudio de sistemas sociales utilizando los procedimientos teóricos de la física. Para abordar estos problemas existen evidentemente métodos de análisis y predictivos en la sociología, pero la aportación de la física proporciona tanto nuevas perspectivas complementarias como potentes herramientas. Este enfoque resulta especialmente útil en los problemas que involucran aspectos estocásticos y de dinámica no lineal. Los procedimientos utilizados pertenecen a la física de sistemas complejos e incluyen, además de los métodos matemáticos tradicionales de la física, los tomados de distintas disciplinas matemáticas como las redes complejas, la teoría de juegos o la percolación. La aportación no consiste únicamente en los procedimientos de cálculo y predictivos, sino sobre todo en el estudio de las propiedades emergentes que surgen de los planteamientos holísticos. CONTENIDOS Se estudian sistemas particulares (no exclusivamente sociales) mediante la introducción de diferentes modelos basados en el agente (ABM), a través de redes de autómatas. Cuando es posible, los modelos son analizados siguiendo métodos matemáticos de la física, con el fin de alcanzar soluciones analíticas. Complementariamente al desarrollo teórico, se realiza el tratamiento experimental mediante simulaciones numéricas, tanto con métodos de Monte Carlo como determinísticos o mixtos. Este método de trabajo se ha revelado muy fructífero para el estudio de diferentes problemas abiertos, a los que se pretende contribuir en su comprensión. PRIMERA PARTE: Cooperación. La emergencia de la cooperación en escenarios hostiles, donde la acción egoísta es más beneficiosa en primera instancia, constituye un objeto de estudio en diferentes campos de la ciencia. Por ejemplo, la aparición de organismos multicelulares, el comportamiento gregario en animales o la formación de sociedades humanas son estudiados mediante este enfoque. En primera aproximación la cooperación no se ve favorecida: Un organismo, animal o persona al cooperar gasta unos recursos que puede necesitar para subsistir, mientras que el agente egoísta sale beneficiado arriesgando menos su superviviencia. De acuerdo con este argumento, la evolución conllevaría una progresiva disminución de los individuos cooperadores, para terminar con poblaciones formadas exclusivamente por agentes egoístas. Como respuesta a este interrogante evolutivo (ya planteado por Charles Darwin) se han ido introduciendo diferentes mecanismos. La selección de parentesco, introducida por William Hamilton, consiste en una estrategia que permite conservar el genoma mediante el sacrificio de un individuo en favor de la supervivencia de seres con los que comparte una alta proporción de genes. No obstante, este mecanismo no explica la cooperación entre individuos sin relación de parentesco, para la que se han ido postulando diferentes mecanismos en los ultimos treinta años. Por un lado, la reciprocidad directa, propuesta por Robert Trivers, se basa en el beneficio que obtienen al cooperar dos agentes cuando interaccionan entre ellos repetidas veces, pese a que en una única interacción un agente egoísta se viera favorecido frente a un cooperador. Por otro lado, según el mecanismo de reciprocidad de red propuesta por Robert Alxerod en 1983 y formalizada posteriormente por Martin A. Nowak y Lord Robert May, cuando la población está dotada de una estructura subyacente, de manera que un individuo interacciona sólo con ciertos agentes, la cooperación puede verse favorecida en agrupaciones (clusters) de elementos cooperadores que se ayuden mutuamente, consiguiendo una ventaja evolutiva frente a los egoístas. La metodología seguida en los trabajos presentados consiste en implementar en diferentes topologías de red los procesos de toma de decisiones de la teoría evolutiva de juegos. Este método ha resultado ser muy fructífero en las últimas décadas para abordar diferentes problemas. Los resultados muestran cómo, para algunas dinámicas evolutivas, la estructura subyacente favorece la cooperación a través de la reciprocidad de red. En particular, en el modelo dipolo introducido en el capítulo 2, la formulación termodinámica permite interpretar los indicadores sociales macroscópicos como observables físicos, para posteriormente poder inferir resultados analíticos. Este modelo permite, a través de la distribución de Boltzmann, un análisis riguroso de un sistema consistente en una población influenciada por dos conjuntos opuestos. La interpretación del modelo en términos sociales dota de significado matemático al concepto de temperatura social. Llevando más lejos este paralelismo, se estudia como se comportan dos poblaciones en contacto desde la perspectiva de la transmisión de calor entre dos sistemas termodinámicos bajo la influencia de respectivos baños térmicos. A pesar de que, al igual que la mayoría de los modelos sociales, el modelo no es conservativo, se muestra como la entropía en términos de información es un punto de inicio sólido para el estudio de dichos modelos. En en el capítulo 3 se profundiza en el estudio de la teoría evolutiva de juegos en redes complejas: Partiendo de investigaciones previas sobre la robustez a las condiciones iniciales, se toma un modelo característico (dilema del prisionero en diferentes redes aleatorias) con el fin de estudiar la reversibilidad del proceso. Una vez que el sistema alcanza el equilibrio, se varía adiabáticamente un parámetro de la matriz de pagos. Los resultados muestran un comportamiento reversible del modelo dentro de un amplio rango de valores del parámetro. No obstante, se demuestra le existencia de un punto de no retorno a partir del cual el sistema exhibe un comportamiento no reversible, dando lugar a un ciclo de histéresis. Esto es, existe un estado límite tal que, una vez sobrepasado, la población no recupera los valores anteriores de cooperación al reestablecer el estímulo. Este resultado puede ser de utilidad en diferentes ámbitos como el ecológico (punto límite de degradación de un habitat, por ejemplo), económico (situaciones desesperadas), etcétera. A pesar de los diferentes mecanismos para explicar la persistencia de la cooperación en entornos hostiles, un problema de difícil solución es aquel en el que la población está bien mezclada, esto es, cuando todos los agentes están relacionados entre sí. En el capítulo 4 se estudia una dinámica evolutiva de la teoría de juegos, la dinámica replicador aplicada al dilema del prisionero, implementada en dos redes totalmente conectadas acopladas entre sí. El modelo consiste en dos poblaciones que interaccionan internamente mediante el dilema del prisionero evolutivo, acopladas -no evolutivamente- a través de un incentivo menos gravoso para la cooperación (halcón-paloma). En el caso de poblaciones bien mezcladas, en el límite termodinámico, los resultados analíticos obtenidos muestran que, para determinados valores de los parámetros, la cooperación no decae a cero; de hecho, evoluciona a estados polarizados y casi-polarizados. Además del caso anterior con solución analítica, se estudia numéricamente el comportamiento del modelo en redes finitas aleatorias, donde se reproducen cualitativamente los resultados anteriores. En el caso de las redes aleatorias, la cooperación está influída por dos mecanismos superpuestos: la polarización y la reciprocidad de red. Por un lado, para valores pequeños del parámetro que penaliza la cooperación, la polarización se opone a la reciprocidad de red. Por otro lado, para valores mayores del parámetro los dos mecanismos promocionan la cooperación, viéndose ésta doblemente potenciada. Los resultados del estudio aportan nuevos mecanismos de control aplicables a diferentes campos. En cualquier caso, las soluciones al problema general de la emergencia de la cooperación dependen del ámbito específico considerado. En lo concerniente a las interacciones humanas, durante los últimos veinte años ha habido una gran controversia sobre la dependencia del nivel de cooperación respecto a la estructura de la red de contactos. Pese a los múltiples estudios teóricos realizados, los resultados no son concluyentes, puesto que una de las hipótesis de partida es la manera en la que las personas actualizan su acción, esto es, sus estrategias. Estas estrategias habitualmente dependen del beneficio obtenido por los agentes del entorno y sus respectivas acciones. No obstante, recientes experimentos indican que las estrategias en las interacciones entre personas no tienen en cuenta el beneficio de los agentes con los que interaccionan, sino el nivel de cooperación en la vecindad. Estos trabajos experimentales están realizados sobre conjuntos de pequeño o mediano tamaño. En el estudio presentado en el capítulo 5, se introducen las estrategias propuestas en estos trabajos y se estudia teóricamente el comportamiento bajo diferentes redes subyacentes de creciente complejidad: totalmente conectadas, regulares y heterogéneas, siendo estas últimas las que se encuentran en los sistemas sociales. Aunque el primer supuesto se puede resolver analíticamente, los restantes se resuelven mediante simulaciones numéricas. Los resultados muestran que, cuando las estrategias son independientes de la matriz de pagos, el nivel de cooperación es independiente de la topología de la red. Las consecuencias del resultado suponen que, en el ámbito de las interacciones humanas y ante un problema que pueda ser descrito mediante el dilema del prisionero, el mecanismo de reciprocidad de red no juega un papel determinante en la emergencia de la cooperación. Verificar esta predicción implica la realización de experimentos a gran escala, requisito necesario para reproducir las redes de conectividad heterogéneas presentes en las sociedades. En el capítulo 6 se muestra el ensayo realizado para confirmar la anterior hipótesis: En primer lugar, se realiza un experimento con una red regular de 625 individuos. Por otro lado, se realiza simultáneamente otro experimento en una red heterogénea, en la que la conectividad varía para cada individuo. Cada uno de estos experimentos consta a su vez de dos fases: el experimento propiamente dicho y una fase de control en la que se elimina el efecto de la red mediante una reconexión aleatoria de los contactos en cada ronda. La interacción se realiza a través del dilema del prisionero, donde el mayor beneficio colectivo se obtiene mediante la mutua colaboración, pero la acción egoísta frente a un cooperador proporciona mayor ganancia individual. Los resultados del experimento confirman las predicciones teóricas del capítulo 5, no apareciendo diferencia en los niveles de cooperación para las dos redes estudiadas dentro del margen de error del experimento. SEGUNDA PARTE: La tolerancia como variable en la dinámica cultural. Mientras la dinámica de opinión estudia las probabilidades que tiene un grupo social de alcanzar consenso respecto a una materia, la dinámica cultural surge como una generalización en la que la cultura se modela a través de un vector de opiniones. El modelo más representativo de dinámica cultural es el propuesto por Robert Axelrod en 1997, donde se explora la idea de homofilia, esto es, la tendencia de las personas a relacionarse con similares. Esta similitud puede referirse a diferentes atributos (como idioma, clase social, religión, política, etcétera) que constituyen las componentes del vector cultural. El número de posibles valores que pueden tomar estos atributos es una variable independiente que representa la diversidad cultural inicial. El sistema proporciona dos fases diferenciadas: una multicultural caracterizada por la falta de consenso y otra de globablización en la que los individuos comparten opinión sobre los diferentes atributos. Desde entonces, se han estudiado múltiples modificacionesal modelo original, así como otros nuevos, siendo un campo multidisciplinar muy activo actualmente. En esta segunda parte de la tesis se aborda el concepto de tolerancia, esto es, el grado de aceptación frente a un elemento de diferente opinión, introduciéndolo como una variable de la dinámica cultural. En el capítulo 7, partiendo de los modelos de segregación urbana de Schelling y cultural de Axelrod, diseñamos un nuevo modelo (Axelrod-Schelling) en el que los agentes se mueven en función de la desavenencia con los nodos de su entorno, caracterizada por un umbral de intolerancia. Al dotar de movilidad al modelo de Axelrod, por un lado se favorece la fase de globalización cultural, hasta el punto de que, incluso para pequeñas densidades de huecos, el parámetro de orden escala con el número total de agentes. Por otro lado, cuando los huecos superan el umbral de percolación, además de las dos fases características del modelo de Axelrod aparece una nueva fase fragmentada multicultural para valores pequeños de la diversidad cultural inicial. Junto con el estudio de los estados de equilibrio, la movilidad introducida proporciona interesantes procesos de clusterización, erosión y adhesión. ¿Puede la intolerancia considerarse una característica cultural susceptible de imitación y difusión? De ser así: ¿En qué circustancias tiene una cultura tolerante más posibilidades de difundirse respecto a una intolerante? A diferencia del modelo anterior, donde la tolerancia es una constante del sistema, en la modificación introducida en el capítulo 8 se considera la intolerancia como un carácter cultural del individuo y, al igual que a los otros caracteres propios del modelo Axelrod original, se le permite variar por imitación cultural. El desarrollo de este refinamiento permite estudiar los casos en los que hay, o no, ventaja selectiva de las culturas respecto a la tolerancia. Mientras en los capítulos [7,8] se introduce la tolerancia en el modelo original de Axelrod a través de la movilidad, en el capítulo 9 introducimos una probabilidad de reconexión, permitiendo a los agentes eliminar los enlaces con sus vecinos dispares si su similaridad cultural es inferior a un parámetro de tolerancia. La principal diferencia de este modelo con el Axelrod-Schelling anterior es que, además de estar dispuestos los agentes en una red no regular, ésta es dinámica, con una evolución dada por la propia dinámica cultural, lo que le confiere mayor representatividad. Tal y como muestran los resultados, en sociedades tolerantes el mecanismo de reconexión promueve el consenso cultural respecto a las redes estáticas. No obstante, valores intermedios de la tolerancia evitan la reconexión una vez que la red está fragmentada, lo que determina una sociedad multicultural para valores de la diversidad inicial que en el modelo original de Axelrod implican globalización. Por último, en sociedades intolerantes, aunque transitoriamente se forman grupos culturales aislados, la reconexión inducida por la baja tolerancia facilita la transmisión cultural entre los diferentes grupos, resultando sociedades globalizadas incluso para valores muy altos de la diversidad cultural inicial. En definitiva, valores intermedios de la tolerancia favorecen el multiculturalismo, mientras que valores extremos favorecen la globalización

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    • …
    corecore