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Resumen

Introducci on

Esta tesis aborda el estudio de sistemas sociales utilizando los procedimiéntasstde la
fisica. Para abordar estos problemas existen evidentemeétwelas de atlisis y predictivos

en la sociologp, pero la aportadbnh de la fsica proporciona tanto nuevas perspectivas
complementarias como potentes herramientas. Este enfoque resulta espeeiatinen los
problemas que involucran aspectos easticos y de diamica no lineal. Los procedimientos
utilizados pertenecen a lasfca de sistemas complejos e incluyen, aderde los ratodos
matenaticos tradicionales de lasica, los tomados de distintas disciplinas matgoas como

las redes complejas, la téarde juegos o la percoldxi. La aportadin no consisténicamente

en los procedimientos délculo y predictivos, sino sobre todo en el estudio de las propiedades

emergentes que surgen de los planteamientdstioals.

Contenidos

Se estudian sistemas particulares (no exclusivamente sociales) mediantedacicitn de
diferentes modelos basados en el agente (ABM), &sale redes de d@matas. Cuando
es posible, los modelos son analizados siguienétodos mateiticos de la fikica, con el
fin de alcanzar soluciones aftelas. Complementariamente al desarrollario, se realiza el
tratamiento experimental mediante simulacioneséniras, tanto con &todos de Monte Carlo
como determifsticos o mixtos. Este &todo de trabajo se ha revelado muy frigb para el

estudio de diferentes problemas abiertos, a los que se pretende comtribuicomprenén.



0. RESUMEN

Primera parte: Cooperacion.

La emergencia de la cooperagi en escenarios hostiles, donde la aacegdsta es ras
beneficiosa en primera instancia, constituye un objeto de estudio en thifemmpos de la
ciencia. Por ejemplo, la aparizi de organismos multicelulares, el comportamiento gregario
en animales o la forma@n de sociedades humanas son estudiados mediante este enfoque. En
primera aproximadcin la cooperaéin no se ve favorecida: Un organismo, animal o persona

al cooperar gasta unos recursos que puede necesitar para sulsistiras que el agente
egdsta sale beneficiado arriesgando menos su superviviencia. De acoerdste argumento,

la evolucbn conllevara una progresiva disminum de los individuos cooperadores, para
terminar con poblaciones formadas exclusivamente por agentestaego

Como respuesta a este interrogante evolutivo (ya planteado por ChanesmPse han
ido introduciendo diferentes mecanismos. La sefatde parentesco, introducida por William
Hamilton, consiste en una estrategia que permite conservar el genoma melactdicio de
un individuo en favor de la supervivencia de seres con los que ctenpaa alta proporon
de genes. No obstante, este mecanismo no explica la coapesatie individuos sin relaon
de parentesco, para la que se han ido postulando diferentes mecamslo®slémos treinta
anos.

Por un lado, la reciprocidad directa, propuesta por Robert Trigerbasa en el beneficio
gue obtienen al cooperar dos agentes cuando interaccionan entnep#tidas veces, pese a
que en undinica interac@n un agente egsta se viera favorecido frente a un cooperador.
Por otro lado, sdgn el mecanismo de reciprocidad de red propuesta por Robert Alxerod
en 1983 y formalizada posteriormente por Martin A. Nowak y Lord Robeay,Muando la
poblacbn esh dotada de una estructura subyacente, de manera que un individacditea
sblo con ciertos agentes, la coopetacpuede verse favorecida en agrupaciones (clusters) de
elementos cooperadores que se ayuden mutuamente, consiguiendotajaexmlutiva frente
a los egastas.

La metodologa seguida en los trabajos presentados consiste en implementar en diferentes
topologas de red los procesos de toma de decisiones de | tewvolutiva de juegos.
Este nétodo ha resultado ser muy frifero en lastltimas decadas para abordar diferentes
problemas. Los resultados muestrammo, para algunas damicas evolutivas, la estructura
subyacente favorece la coopefatia traes de la reciprocidad de red. En particular, en el
modelo dipolo introducido en el caplo 2, la formulacdn termodimica permite interpretar



los indicadores sociales macrépicos como observablessicos, para posteriormente poder
inferir resultados andlcos. Este modelo permite, a téde la distribuéin de Boltzmann,

un aralisis riguroso de un sistema consistente en una pdblacfluenciada por dos conjuntos
opuestos. La interpretani del modelo en&rminos sociales dota de significado maaéoo

al concepto de temperatura social. Llevandasnejos este paralelismo, se estudia como se
comportan dos poblaciones en contacto desde la perspectiva de la transieisalor entre

dos sistemas termodimicos bajo la influencia de respectivofibsa ermicos. A pesar de que,

al igual que la mayda de los modelos sociales, el modelo no es conservativo, se muestra como
la entropa en €rminos de informaéin es un punto de iniciodddo para el estudio de dichos
modelos.

En en el cajiulo 3 se profundiza en el estudio de la teoevolutiva de juegos en redes
complejas: Partiendo de investigaciones previas sobre la robustez athsi@oes iniciales,
se toma un modelo caracistico (dilema del prisionero en diferentes redes aleatorias) con
el fin de estudiar la reversibilidad del proceso. Una vez que el sistermazal@l equilibrio,
se varfa adialaticamente un pametro de la matriz de pagos. Los resultados muestran un
comportamiento reversible del modelo dentro de un amplio rango de valdrpar@metro.

No obstante, se demuestra le existencia de un punto de no retorno a gartialdsg sistema
exhibe un comportamiento no reversible, dando lugar a un ciclo dérésss. Esto es,
existe un estaddrhite tal que, una vez sobrepasado, la poblacgio recupera los valores
anteriores de cooperaxi al reestablecer el éstulo. Este resultado puede ser de utilidad en
diferentesambitos como el ecobico (puntoimite de degradacn de un habitat, por ejemplo),
ecorbmico (situaciones desesperadas)ei@.

A pesar de los diferentes mecanismos para explicar la persistencia depkramim en
entornos hostiles, un problema deidiif solucion es aquel en el que la poblaniesh bien
mezclada, esto es, cuando todos los agentém estacionados entré.s En el cafitulo 4
se estudia una damica evolutiva de la te@ de juegos, la damica replicador aplicada al
dilema del prisionero, implementada en dos redes totalmente conectadaslas@pitre is
El modelo consiste en dos poblaciones que interaccionan internamente tmetidifema del
prisionero evolutivo, acopladas -no evolutivamente- aésage un incentivo menos gravoso
para la cooperaon (hal®n-paloma). En el caso de poblaciones bien mezcladas, emit |
termodiramico, los resultados arntitos obtenidos muestran que, para determinados valores de
los paametros, la cooperdm no decae a cero; de hecho, evoluciona a estados polarizados y

casi-polarizados. Adeas del caso anterior con solanianaitica, se estudia nuemicamente el

Xi



0. RESUMEN

comportamiento del modelo en redes finitas aleatorias, donde se repraiiadigativamente

los resultados anteriores. En el caso de las redes aleatorias, laami@pesé influida por dos
mecanismos superpuestos: la polariaagy la reciprocidad de red. Por un lado, para valores
pequéios del paametro que penaliza la cooper@tj la polarizadn se opone a la reciprocidad

de red. Por otro lado, para valores mayores deimpatro los dos mecanismos promocionan la
cooperadn, viendoseesta doblemente potenciada. Los resultados del estudio aportan nuevos
mecanismos de control aplicables a diferentes campos.

En cualquier caso, las soluciones al problema general de la emergeraiaabperaéin
dependen deédmbito espeifico considerado. En lo concerniente a las interacciones humanas,
durante lodiltimos veinte &os ha habido una gran controversia sobre la dependencia del nivel
de cooperadin respecto a la estructura de la red de contactos. Pese diliigles estudios
tedricos realizados, los resultados no son concluyentes, puesto quieuas hiptesis de
partida es la manera en la que las personas actualizan €inaesito es, sus estrategias.
Estas estrategias habitualmente dependen del beneficio obtenido poembssadel entorno
y Sus respectivas acciones. No obstante, recientes experimentos igdekas estrategias en
las interacciones entre personas no tienen en cuenta el beneficio dgeidesacon los que
interaccionan, sino el nivel de coopei@tien la vecindad. Estos trabajos experimentalésest
realizados sobre conjuntos de pefoe mediano tani. En el estudio presentado en el
cagtulo 5, se introducen las estrategias propuestas en estos trabajos y se eétiddimante
el comportamiento bajo diferentes redes subyacentes de creciente coamapldptalmente
conectadas, regulares y hetekngas, siendo estadtimas las que se encuentran en los
sistemas sociales. Aunque el primer supuesto se puede resohiicamente, los restantes
se resuelven mediante simulaciones Bticas. Los resultados muestran que, cuando las
estrategias son independientes de la matriz de pagos, el nivel de acopes independiente
de la topologa de la red.

Las consecuencias del resultado suponen que, amigito de las interacciones humanas
y ante un problema que pueda ser descrito mediante el dilema del prisieherecanismo
de reciprocidad de red no juega un papel determinante en la emergenaiaa®eradn.
Verificar esta predicéin implica la realizadén de experimentos a gran escala, requisito
necesario para reproducir las redes de conectividad hétegag presentes en las sociedades.
En el cafitulo 6 se muestra el ensayo realizado para confirmar la anteriotasis: En primer
lugar, se realiza un experimento con una red regular de 625 individBos.otro lado, se

realiza simulhneamente otro experimento en una red hetareg, en la que la conectividad

Xii



varia para cada individuo. Cada uno de estos experimentos consta a sel deg fhses: el
experimento propiamente dicho y una fase de control en la que se elimirectl dé la red
mediante una reconeéXi aleatoria de los contactos en cada ronda. La inténacs realiza

a trawes del dilema del prisionero, donde el mayor beneficio colectivo se ehtiediante la
mutua colaboradin, pero la acdéin egdsta frente a un cooperador proporciona mayor ganancia
individual. Los resultados del experimento confirman las predicciobesas del capulo 5,

no apareciendo diferencia en los niveles de coop@ngoara las dos redes estudiadas dentro
del margen de error del experimento.

Segunda parte: La tolerancia como variable en la diamica cultural.

Mientras la didmica de opirfin estudia las probabilidades que tiene un grupo social de
alcanzar consenso respecto a una materia, Emtoa cultural surge como una generalibaci
en la que la cultura se modela a tea\de un vector de opiniones. El modelasmepresentativo
de dirmica cultural es el propuesto por Robert Axelrod en 1997, dondeptere la idea de
homofilia, esto es, la tendencia de las personas a relacionarse con simiatassimilitud
puede referirse a diferentes atributos (como idioma, clase socialoreligoitica, et@tera)
gue constituyen las componentes del vector cultural UElero de posibles valores que pueden
tomar estos atributos es una variable independiente que representadaldiveultural inicial.
El sistema proporciona dos fases diferenciadas: una multiculturaltedazada por la falta
de consenso y otra de globablizacien la que los individuos comparten opimisobre los
diferentes atributos. Desde entonces, se han estudiatiples modificaciones al modelo
original, a$ como otros nuevos, siendo un campo multidisciplinar muy activo actualmente.
En esta segunda parte de la tesis se aborda el concepto de tolerdoncs, e grado de
aceptadn frente a un elemento de diferente opimiintroducéndolo como una variable de
la dinamica cultural. En el cafulo 7, partiendo de los modelos de segregacurbana de
Schelling y cultural de Axelrod, di@amos un nuevo modelo (Axelrod-Schelling) en el que los
agentes se mueven en funicide la desavenencia con los nodos de su entorno, caracterizada por
un umbral de intolerancia. Al dotar de movilidad al modelo de Axelrod, pdadmse favorece
la fase de globalizadh cultural, hasta el punto de que, incluso para pegsielensidades de
huecos, el pametro de orden escala con é@hmero total de agentes. Por otro lado, cuando los
huecos superan el umbral de percdiaciadenas de las dos fases caratiticas del modelo
de Axelrod aparece una nueva fase fragmentada multicultural pareyglequios de la

Xiii



0. RESUMEN

diversidad cultural inicial. Junto con el estudio de los estados de equilibrimovilidad
introducida proporciona interesantes procesos de clustéizamiosbn y adhegin.

¢Puede la intolerancia considerarse una caiatiter cultural susceptible de imitaci y
difusibn? De ser ds ¢En q@& circustancias tiene una cultura tolerant@smposibilidades de
difundirse respecto a una intolerante? A diferencia del modelo antedindeda tolerancia
es una constante del sistema, en la modif@radéntroducida en el caplo 8 se considera
la intolerancia como un cacter cultural del individuo y, al igual que a los otros caracteres
propios del modelo Axelrod original, se le permite variar por iméiacultural. EIl desarrollo
de este refinamiento permite estudiar los casos en los que hay, o no, veldejas de las
culturas respecto a la tolerancia.

Mientras en los cdfulos [7,8] se introduce la tolerancia en el modelo original de Axelrod
a traves de la movilidad, en el caplo 9 introducimos una probabilidad de recor@xi
permitiendo a los agentes eliminar los enlaces con sus vecinos disparesisiilatdad
cultural es inferior a un pametro de tolerancia. La principal diferencia de este modelo con
el Axelrod-Schelling anterior es que, ademas de estar dispuestos luigesga una red no
regular,ésta es diamica, con una evolugh dada por la propia damica cultural, o que le
confiere mayor representatividad. Tal y como muestran los resultadssciedades tolerantes
el mecanismo de reconé@xi promueve el consenso cultural respecto a las redatcest No
obstante, valores intermedios de la tolerancia evitan la recomexia vez que la red ést
fragmentada, lo que determina una sociedad multicultural para valores idersiahd inicial
que en el modelo original de Axelrod implican globalizati Porltimo, en sociedades
intolerantes, aunque transitoriamente se forman grupos culturales ajslad@zonexin
inducida por la baja tolerancia facilita la transraisicultural entre los diferentes grupos,
resultando sociedades globalizadas incluso para valores muy altos dersidd#id cultural
inicial. En definitiva, valores intermedios de la tolerancia favorecen el mililtralismo,
mientras que valores extremos favorecen la globaliraci
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Chapter 1

Introduction.

1.1 Game theory.

In 1944, mathematician John von Neumann and economist Oskar Morgeastablished a
definition of game and its componeni9:(

“First, one must distinguish between the abstract concéptgame, and the individual plays of that
game. The game is simply the totality of the rules which desdt. Every particular instance at which
the game is played in a particular way from beginning to esda play. Second, the corresponding
distinction should be made for the moves, which are the coemaelements of the game. A move is the
occasion of a choice between various alternatives, to beenedttier by one of the players, or by some
device subject to chance, under conditions precisely pitesd by the rules of the game. The move is
nothing but this abstract occasion, with the attendant ietaf description, i.e. a component of the
game. The specific alternative chosen in a concrete instéuecén a concrete play is the choice. Thus
the moves are related to the choices in the same way as the igamehe play. The game consists
of a sequence of moves, and the play of a sequence of choicedly,Rhe rules of the game should
not be confused with the strategies of the players.[...]iEalayer selects his strategy i.e. the general
principles governing his choices freely. [...] The ruledloé game, however, are absolute commands.
If they are ever infringed, then the whole transaction bynidin ceases to be the game described by
those rules”(von Neumann and Morgenstern. Theory of Games and Economic Bavior (1944)).

Game theory (GT) is an area of applied mathematics that uses models to stualgtioier
with formalized incentive structures.€. games), and is therefore a field closely related to
decision theory. The origins of game theory go far back in time: In 1718gdaNaldegrave

proposed a solution for a two player gani®. (Nevertheless, GT as a specific field did not
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appear until 1928 through a series of papers published by John wondya 8). Modern game
theory was comprehensively formalized in 1962 by John von Neuman@sket Morgenstern
(1), and experienced a very important step forward with John Nashtsilbotion of strategic
equilibrium: the Nash equilibriumd4j. GT was firstly developed as a tool for understanding
economic behavior, but now is applied in many fields such as biology, Ehsiciology, traffic
control, etcetera; in fact, it applies to a wide variety of agents including heymaiaroorganism
and nonhuman animals. Further refinements to game theory include evolygoapons and

underlying topologies, among others.

1.1.1 Definitions.

In this section is a brief introduction to game theory related to the focus of thestleedeeper
study can be found irb( 6; 7).

A game is a mathematical representation of a conflict situation. The outcomeffpagsults
from mutual interaction between different agents or players. A playezfined as a decision
maker: a person, a people group, an animal or whatever kind of elemesegd®n the number
of playersN > 2, games are classified as two-person games, three-person gamesgend in
eral as N-person games. The interactions between the players aragmby rules that state
the actions each player can take, the information each player has availdhleautcomes of
the actions. A strategy defines the actions that a player will follow in eveyas®.

There is a distinction between games witkrfect completeandincompleteinformation.
Perfectinformation describes the situation when each player has available the itifama
determine all of the possible scenarios, strategies, actions and outcongesnalllong: so,
players have full information about the actions that have already taken.pla games with
completanformation, each player knows the rules of the game and the payoff funsatioall
the players, but players may not see all of the actions chosen by otlyersldnincomplete
information games, players may not know some information about the otharpléactions,
strategies, payoffs) or about the rulesg; game’s length).

According to the updating, games can be classifiesirasltaneousindsequentiabames.
In simultaneouggames, players choose their actions simultaneously, therefore, players may
predict other players’ action but don’'t know it. By extension, a gamelmclassified as
simultaneousf decisions are not taken simultaneously but players’ actions are in igoera
of others players’ actions. On the contrary,sequentialgames players make decisions in
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sequential order and later players have some knowledge on actiondyala&en by earlier
players.

Based on the total outcome, there aego-sungames andon-zero-sungames. In &ero-
sumgame, a player’s gain (or loss) is balanced by the losses (or gains) atttteplayers(s),
i.e. the total pay-offs for the players, for every combination of the availabt®ms, sum
to zero. Otherwise, imon-zero-sungames, total payoff is different from zero. Attending the
indiscernibility of players, games can be classified betvagemmetricor asymmetrigames. In
symmetriagames, payoffs depend only on the actions, not on who is chosen thesmwii,

the game isymmetric

1.1.2 Normal form.

A game can be can be represented through different forms, suckeasier and normal form.
Normal form is a description of a game by way of a matrix that relates plagetigns to payoff
functions. In order to have a normal form description of a game, we tagerisideration the
following data:
i) AsetN of players,N = {1,2,...,n}.
i) Each playen: has a finite number of actions, represented by the actions,set{1,2,...,m,}.
iii) Each playeru has a payoff function associateft,(: A; x As x ... x A, — R) that
provides the payoff of player.
Definition: A game in normal form is a structuré = (N, A, F), whereN = {1,2,...,n}Iis
a set of playersA = {A;, Ay, ..., A, } is an n-tuple of actions sets, one for each player, and
F ={F,F,,... F,}isann-tuple of payoff functions.

The normal form of a two-person symmetric game is given by a (i), where A is
a nonempty set, the set of actions, afids a real-valued function defined ofi x A, (i.e,
P(ij) € R, Vi,j € A). Thepayoff matrixP, defined as’;; = P(i, j), represents the payoff
of player I, given the actions chosen by players | and Ikaned; respectively. Note thd is a
m X m matrix, wherem is the number of possible actions. Inasmuch as the game is symmetric,
player II's payoff is given byP(j,4). In particular, a two-player m-action symmetric game is

defined by the matrix:
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P11 P12 le P(l,l) P(1,2) P(l,m)
P _ P.21 P.22 P2.m _ P(2.71) P(2.a2) (2,m) (L.1)
Pywi Ppn2 ... Pum P(m,1) P(m,1) ... P(m,m)

1.1.3 Pure and mixed strategies.

A player’s strategy determine the action the player will take at any stage gathe. A strategy
profile or strategy combination is a set of strategies for each player whilshspecifies all
actions in a game. A strategy profile consists of one and only one strategydiy player.
Then, strategy and move are different concepts: A move is an action takanplayer at
some point of the game. On the other hand, a strategy is a player’s algoristmetates
every scenario to the player’s actior® 9). Although the terms action and strategy represent
different concepts, sometimes have been used interchangeablyiaigdec the last twenty
years. This is due to the use of repeated one-round games in evolutilymenyics, where the
players action change is sometimes studied according to updating rules. tinetsis we try
to recover the original meaning of such terms; nevertheless, in chiapteruse the notation
strategy, updating ruleNote that original notation provides more levaisove, action, strategy,
updating rule

A pure strategyR determines the move a player will make for any scenario. A player’s
strategy se{ Ry, Ro, ..., Ry, } is the set of pure strategies available to that player. The convex
linear combination sef of pure strategies

S = {p=(p1,....pm) ER™ : p; >0, Y p; =1} (1.2)
i=1

is the set of mixed strategies. Therefore, a mixed strapeigyan assignment of a probability
p; to each pure strategy,;.

1.1.4 Minimax rule.

Minimax is a decision algorithm for minimize losses under the maximum loss scesamio;
ilarly, maximin rule consists in maximizing the minimum payoff. John von Neumannegrov
the minimax theorem in 1928): He stated that in every two-person zero-sum game with
finitely many pure strategies, there exists a valuand a mixed strategy’ for each playey,
such that:
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i) Given player 2’s strategy?, the best payoff possible for player 115 and
ii) Given player 1's strategy', the best payoff possible for player 2is

Subsequently, it has been extended to other types of games. A gerienali¥dNeumann’s
minimax theorem is the Sion’s minimax theorem that staié€ (

Let X be a compact convex subset of a linear topological spaceraacconvex subset
of a linear topological space. Lgtbe a real-valued function oX x Y such thatf(z, -) is
upper semicontinuous and quasiconcaveéoivx € X, andf(-,y) is lower semicontinuous
and quasi-convex o, Vy € Y. Then:

i = i . 1.3
mip sup f(z,y) sup mip f(z,y) (1.3)

In two-person zero-sum games, the minimax algorithm can be summarizede@snth
the best move for yourself (higher payoff) assuming that your oppgamidrchoose the worse
for you (lower payoff). In an iterated game, minimax method implies considatiqpssible
moves for all players and rounds.

1.1.5 Dominant strategy. Nash equilibrium. Stability.

A strategy is a stric{resp. weakdominant strategy if it provides greatéesp. greater or
equal)payoff to a given player than any other strategy, no matter other plesteaségies. Let
B be the set of strategies for which the functwr- vPw gets its maximum value; thaBis
called set of best responsesno

A set of strategies is Bash equilibriumf no player can get greater payoff by unilaterally
changing its strategy. Lét; be the strategy set for playgrS = S; x Sy x ... x S, be the set
of strategy profiles and;(x) be theplayer-is payoff function forz € S. Letz; be a strategy
profile of playeri andz_; be a strategy profile of all players except for playeA strategy
profile z* € S is a weak Nash equilibrium if:

In the same way, a strategy profité € S is a strict Nash equilibrium if:

fz<$j,$tl) > fz(xz,a?*,l), Vi,mi S Si,l'i 7& xf . (15)
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A game is finite if the number of players and the number of pure strategiespéacr
has are both finite. Nash proved that, taking into account mixed strategleastone Nash
equilibrium exists for all finite gamesl).

There is a intermediate equilibrium between strict and weak Nash equilibriaash Blqui-
librium is stableif an infinitesimal change in probabilities for any playeimplies: i) Any

other playew # u do not gets a higher payoff) Playeru gets a lower payoff.

1.1.6 Evolutionary game theory.

Evolutionary game theorfEGT) is defined as the application of game theory to evolving pop-
ulations, providing a useful framework to model Darwinian competition. Triggres of EGT

can be found in John Maynard Smith and George R. Price’s study almwethin which ani-
mal conflict can be modeled through survival strategies in hostile scer{atijo Evolutionary
game theory has been successfully used not only in many aspects ofybfelggthe basis

of altruistic behaviors, the emergence of multicellular organisms, grouptieelesexual se-
lection, parental care, coevolution or ecological dynamics), but alsthigr aciences such as
economics or sociologylg; 13; 14; 15; 16).

1.1.6.1 Replicator equations.

The usual method for studying evolutionary dynamics in GT is through replieguations.
These replicator equations establish a relation between the growth rate mfftetion of
players using a certain strategy (that can be interpreted, for exam@espgexie’s population
growth or a behavior evolution) and the difference between the aveeagef of that strategy
and the average payoff of the whole population (respectively the spétiess or the behavior
reward) (L2; 13). Replicator equation assume infinite and well-mixed populations and continu-
ous time. Usually, the interest is not in the transient but in the steady-statissiuhe stable
states.

The replicator equation can be obtained from Darwinian arguments. Qrstelqted that
expected offspring of a kind (mutation, race, specie, ...) is proportiontiletditness (that
provides food, welfare, safety, ...), the growth ratigz; of that kind: can be assumed as the
difference between kind’s fitness and mean population fitness, thatis, = f;(x) — f(x).
Assuming continuous time, the evolution of a population distributed(fimite) kinds is given

by:
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g =z fi(x) — p(x)], plz) = xifi(z) (1.6)
=1
wherez; (1 = 1,2,...,n) is the ratio of kindi in the population f;(z) is the fithess of type

i, andp(x) is the average population fitness. Siricgz; = 1, the population vectox =
(x1,...,xy,) evolves in the (n-1)-simplex defined by theverticesz; = &;5, j = 1,...,n.
Eq. 1.6is the most general form of replicator equation.

Under the assumption that kind’s fitness is a linear function of population thgaepli-

cator equation can be written as:

z; = z; ((Px), — XTPX) , a.7)

whereP is the payoff matrix and contain the fitness informatiddx ), represents the expected
payoff of i-kind andx™Px stands for the whole population’s mean payoff.

1.1.6.2 Replicator dynamics.

An alternative way to get the replicator equation, often used in socialcsers based on the
concept of imitation, rather than offspring, most related to biolddy (7; 18). Consider a
iterated two-player n-action symmetric game and a populatiovi pfayers. Let be the round
number,i = 1,2,...,n the actionsz! the proportion of population choosing actiorand
P! = P;(z') is the expected payoff of a player choosinat time (round). The evolutionary
dynamics can be model in the following way (replicator dynamics): assumeduht time
lapsedt, a randomly and equiprobably playei(the past action of, was:) chooses a random
playerv (the past action of was j) andu changes its action tg, if the payoffP]? of v is
greater than his payofP/, with a probability proportional to the payoff differend& — P
That is, once two players with past actionsndj have been chosen, the first player’s change
probability is given by:

I, = B(PL = PhO(P — P)) | (1.8)

i—j

where©(y) is the Heaviside functionq(y) = 1 if y > 0 and0 otherwise).
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If the actions are ordered (without loss of generality), suchBlfa{_: Pg <...< P! the
expected ratio of players choosing acticat timet + dt will be given by:

n 7

1 1
2 = gt~ —al(dt) Z wiB(P} — Pf) + Z Nxfxz'(dt)ﬁ(ﬂt - F)
j=i+1 i=1
LB (dt 5
x§+ﬂczﬁjv()(]git _ P (1.9)

where Pt = Zj P]tx§ is the whole population mean payoff. Under the assumption of large
population size, we can replagg™ by 2!+, getting:

il = ﬁxt.(P.f —PY . (1.10)

and making5 = N (time rescaling), we get the replicator equation:

iy = x;(P; — P) . (1.12)
The strategy above describedplicator dynamics, has been used extensively to describe
a large variety of problems. The main advantage is that it can be applied indirdt@on-
well-mixed populations but, unfortunately, the mean-field description is tiot aaymore and
those problems must be numerically solved, usually through extensive icahsmulations.
In fact, the first part of this thesis is focused in such kind of problems.

1.1.6.3 Other update rules.

A necessary ingredient of evolutionary game models is the way in whichtsagkaose their
actions. In order to frame the thesis’ subject of study, this descriptiorcisséa on repeated
two-player symmetric games. In simultaneous games fplayers choose their actions simul-
taneously), at a given time step, every player plays the game with all hdrhoegy usually
using the same strategy in all pairings. If there is an underlying topologyelghbors of
each player are given by the network(s) of the modé).(Once all the games are played each
agent collects the total payoff. Subsequently, players decide the actipmwih take in the
next round: This decision constitutes the strategy (update rule). Bebigegorementioned
replicator dynamics, some of the most used strategies are:
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Unconditional imitation : A randomly chosen playércompares its payoff; with its neighbor
with the largest payoff, say playér If P; > P; player: will imitate in the next round the last
action taken byj. Otherwise, playei will repeat action 19).

Moran rule : A randomly chosen playerchooses one of its neighbojgproportionally to its
payoff P;. In the next round ageritwill chose the last action taken lgy(20).

Fermi rule: A randomly chosen playercompares its payoff; with a random neighboy. If
P; > P; player: will imitate in the next round the last action taken pwvith a probability
proportional to:

1
l+e pB(Pj—F)

I, = (1.12)
Otherwise, playef will repeat action 21).
Best-response The best response is the strategy consisting on choosing, for theooxd,
the action which would have produced the higher payoff in the past raumue each player
knows the chosen action by its neighbof2)(

In some kind of problems, instead of considering that the strategies delireaty on
the payoff, it is more realistic to consider the fithess as a function of payaif instance,
weak selectiondescribes situations in which the effects of payoff differences are sWiatk
selection has been extensively studied in evolutionary biology, andthedéerevolutionary
game dynamicsZd). Nevertheless, not all the usual strategies take into consideration the
payoffs: Majority rule consists on the imitation of most common action in the neighborhood,
andanalysis players’ strategiesdescribed in chaptels and6, consists on the imitation of
neighborhood actions with a probability proportional to their freque@6y. (

1.2 Complex networks.

The study of the relations among elements of different systems unveil lyimdenetworks:
Regardless of its origins, many networks of different areas can baatkazed through com-
mon schemes, showing similar properti@s;(26; 27; 28). Examples of this can be found in
biology (e.g, regulatory, metabolic, signaling or neuronal networks), socioleqy, Gcientific
colaborations, coworking relations or information exchange networks)t@chnology €.9,
internet). The topology of the interaction network may provide the key torstetteding many
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A)

PO
b

Figure 1.1: Examples of graphsAlthough the three graphs have a similar number of nodey, onl
the one on the right can be considered a complex network. gyiRelattice of 25x25 (625 nodes).
B) Regular lattice of 25x25 (625 nodes) with periodical baary conditions. C) Complex network
consisting of 700 nodes and a heterogeneous connectivityr@iog to a binomial distribution.
Different colors and diameters represent different cotiviées.

complex systems and, in fact, complex networks have become a new parfadicpmplexity
(29).

1.2.1 Definitions.

A graphG = {N, L} consists of two set& andL, such thatV is not empty and. is a set of
couples of elements a¥. If L is ordered (unordered), then the graph is directed (undirected).
The elements:; of N are called vertices or nodes and the eleménts L are the links or
edges. Let N and K be the number of elementvirand L, respectively. We can refer to a
node by its order number i, then a linkonsisting of coupléi, j) can be referred b; or by

I, wherek is the order number of the linkin setL. The linkl;; is said to be incident in nodes

i and j, or to join i and j. Two nodes (i,j) are adjacent, connected or neighbtiiere exists

a link /;; incident in nodes i and jG' = {N', L'} is a subgraph of = {N,L} if N C N
andL’ c L. In order to get a matricial representation of graphwe consider the adjacency
matrix A: a NxN square matrix with componentg such that;; = 1 if and only ifthe linki;;
exists, otherwise;; = 0. The components;; of the diagonal of the adjacency matrix satisfy
a; = 0 and it is a symmetric matrix;; = aj; for undirected graphs. An alternative matricial
representation is given by the incidence matrix B: a NxK matrix with compordgnssich that

by, = 1 ifand only ifl;, = [;; for a nodej, otherwiseb;;, = 0.

10
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1.2 Complex networks.

1.2.2 Properties.

Let G = {N, L} be an undirected graph. The connectivityor degree of a nodé € G is
defined as:

ki o= > aij (1.13)
jEL
and represents the number of incident links ini. In the same wéy,# { N’, L'} is a directed
graph, the out-degree and in-degree of a node’ are defined as:
K=Yy
jer’
k;” = Z aji
jer’

(1.14)
and represent the number of outgoing and ingoing links respectivelyhartotal degree of the
nodei in a directed graph i; = k2! + k™. In order to characterize the topology of an undi-
rected graph, the degree distributittik) = Py is defined fork = 0,1, 2,... as the fraction
of nodes with connectivity k in the graph. Likewise, for directed graph¢ (), P™" (k) are
defined in the same way. As well, the n-moment#¢k), defined agk™) = >, k" P(k), give
us information about networks’ topology and therefore about theinkhehander the dynam-
ical processes that we study in this work. To deal the degree corredaftdi’|k) is defined
as the likelihood that a given link connecting a degkeeode i is connected to a node j of
degree!’, and satisfies the normalization equatl, P(k’|k) = 1 and the detailed balance
conditionk P(k'|k)P(k) = k' P(k|k')P(K'). Nevertheless, in finite size real networks we can
obtain clearer results computirig,, (k), that is, the average degree of the neighbors of degree
k nodes:

N
i=1

Depending ork,,, (k), the networks can be uncorrelated, assortati¥gs(k) increases with

N

k .
> aijit =Y KPRk . (1.15)
— 7 !

7=1

k) or dissortativesi,,,, (k) decreases with k).
The shortest patti;; or geodesic between two nodes (i,j) is the minimum number of links
required to connect i and j. In order to characterize the size of a net@wolbeside the values

11
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of N (number of nodes) and L (number of links), the diameter D&Erdf & is defined as the
maximum value of the shortest pathsGh For fully connected graphs, the characteristic path

length L is defined as:

L = 1,55 ﬁf dij (1.16)
N(N —1) i=1 j=1, j#i

as it diverges for disconnected graphs, can be useful the effjcienc
1 N
E = AKAT—@)EZ E:

i=1 j=1, j#i

1
2 1.17
Z (1.17)
With the purpose of characterizing the connectedness of amntatgether with the degree,
the closeness; of i is defined as the inverse of the average distance irtorall nodes:; =
N(Z?{:Lj# dij)~'. Besides, the betweenness &f defined as the average fraction of shortest
paths passing through(n; (7)) over total the shortest paths;(,) for every pair of nodes:

5 (i)
b — LAV (1.18)
;;;k;ggij "k

Another typical property of complex networks is clustering, it charaasrthe likelihood
that two nodes with a common neighbor are connected. One of the many ssabclustering
is transitivity T, which is defined as the normalized ratio of the number of traagully-

connected) triples divided by the amount of connected (fully or simplyxeoted) triples.

T = e ) (119)
When a subgrapt’ = {N’, L'} of G = {N, L} has higher connectivity thaf, i.e. the
nodes ofG’ are tightly connectedy’ is called a cluster. More precise definitions of cluster are

the n-cliqgue and the k-plex. A clique or 1-clique is a fully-connected saifyz’ of G. More
generally, a n-clique is a subgraph such that the largest geodesig between two nodes (i,j)
of G’ is n. On the other hand, a subgragh= {N’, L'} is a k-plex if it is a maximal subgraph
suchthat, > N’ — k, Vi € N’, thatis, each node @’ has at leaslV’ — k neighbors inG’
and there is not another graphGhcontainingG’ that satisfy this property.

12
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1.2.3 Weighted networks.

So far, we have considered unweighted networks, which means that kkebktween nodes
are either present or not, without an assigned value. However, mahye®vorks exhibit
heterogeneity in the links. This feature has been studied in many fields ssolial networks
(33; 34; 35, 36; 37), metabolic networks38; 39), predator-prey interactiong@; 41), neural
networks 85; 44), traffic of the passengers in airline networks;(43), internet traffic 60),
etcetera. Weighted networksg networks in which each link is characterized by a value)
provide a very useful tool to describe these systems.

A weighted networkG"Y = {N,L,W} consists of three set®, L and W, such that
N = {nq,no,...,nyx}is a notempty set oV nodes,L = {iy, 1o, ..., } is a set of K’ couples
of elements ofN (the links) andiV' = {w;, we, ..., wx} is a set of real numbers (weights)
associated to the links. A Weighted netwdam" can be described by & x N matrix I/,
the weights matrix , such that its componenj is the weight of the link from nodéto node
J, assumed thatv;; = 0 if such connection does not exist. The network is symmetric if
wi; = Wy, V1,7 .

In a weighted network:"", the weight distributiorQ (w) is defined as the probability for
a given edge to have weight. The node weight (or strength, or weighted connectivity) is
defined as;; = ;. v wy;. If there are not correlations between weights and connectivity, one
obtainss|k ~ (w)k. In the same way, measure coefficients of unweighted networks (such as
shortest paths, clustering coefficient, etcetera) can be generalizeigiotad networksag).

1.2.4 Real networks: distributions and topologies.

Complex networks can represent a huge range of real systems caneistimany highly con-
nected elements that can be found in different fields, such as sociolotpgyor technology.
Although the use of complex network theory makes up an approximation that ipdie of
information, it provides a holistic approach and details about emergenbpiena. Different
sorts of systems are characterized by different kinds of networks dig#fimilar properties as
degree distributions, path lengths, clustering, degree correlations, etc.

1.2.4.1 Regular graphs.

In graph theory, a regular graph (RG) is a graph where each veateihle same degree con-
nectivity. In addition, in a regular directed graph the indegree and orgdexf each vertex are

13
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205.230.185

Example of real network.Partial map of the Internet: Each node represents an IP address
while each line symbolizes a link between two nodes, the length of the lines intheadelay.

This graph represents less than 30% of the Class C networks reackhahkedata collection
program. Different colors represent different allocatiofise Opte Project (2005).

14
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1.2 Complex networks.

equal to each other. A RG with vertices of degkes called a k-regular graph. A network is a
regular graphf and only ifthe vectoru = (1, ..., 1) is an eigenvector of its adjacency matrix
A;;. In addition, the eigenvalue of u is the constant degreéthe graph. Eigenvectorscor-
responding to other eigenvalues are orthogonal, tior such eigenvectors = (vy,...,vy),
we haved ", v; = 0 (seege.g.(79)).

RG of degree¢ = 0, 1,2 are trivial, but higher degree RG can be complex networks. In
some parts of this worke(g. chapter2) we use a kind of RG, called random regular graph
(RRG), characterized by a random distribution of links. Starting frongaleg lattice, a RRG

can be generated by randomization of links through a rewiring process.

1.2.4.2 Random graphs.

Erdos and Rnyi initiated in 1959 the study of graphs that grow through random gdroes
(76). The original Erés-Renyi grathﬁf}( consists of a set of N nodes, firstly disconnected,
and later linked by connecting K pairs of nodes at random. In the same@@,represents
a graph generated though a set of N nodes, firstly disconnected tanfifiked by connecting
each pair of nodes with probability p (figute?). Although both processes generate different
(but similar) kinds of network, for large values of N they provide the saigtildution. The

grathﬁfZ has on averagé;)p edges. The degree distribution of a nadg binomial:

P(k; = k) = (”;1)19’“(1 —p) (1.20)

In (77), Erdds and Rnyi showed that the topology Gﬁf; depends mainly op, in fact:

e

If p < 1/N, then the size5,,,, of the greatest connected component of gré&ﬁ will be

Smaz < In N, with a probability increasing with N.
If p=1/N, then almost surel,,,, ~ N?/3.

Ifp>1/N, thent,ff) will almost surely have a giant component and no other component will

contain more tha®(In V) nodes.

15
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Figure 1.2: Random network according to a Poisson distribution of theneativity. Red (blue)
colored circles represent the high (low) connectivity reodé&letwork sizeN = 800, averaged
degree(k) = 4

1.2.4.3 Small-world networks

Many real networks, such as social networgg; (63; 64), show the property that, although
the mean connectivity is much low that the system size, most nodes can heddaom
every other by a small number of steps. A small-world (SW) network is a mktwbere
the characteristic path length grows proportionally to the logarithm of the mletsize:

L xlogN . (1.21)

The Watts and Strogatz model consists of an algorithm to make graphs thalgsremall-
world networks with a high clustering coefficierd). Starting from a ring ofV nodes (that s,
a circle of nodes in which each node is connected t@ritanearest nodes), a rewiring process
is performed, so that with probabiligyeach node is disconnected from its clockwise neighbor
and connected to a random node. On one extreme, fo10 the ring remains unchanged and
we have a regular lattice; at the other extreme,foe 1 the procedure provides a random
graph with minimum connectivity,,,;,, = m.
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Figure 1.3: Random network generated through &eRenyi mechanism (left) and its connectivity
histogram (right). Different colors represent differeahoectivities. In the same way, the diameter
of each node is proportional to its number of neighbors. Métwgize N = 1000, averaged degree

(k) =2
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According to the SW definition, most pairs of nodes will be connected byaat tne short
path. Furthermore, from the high clustering coefficient property folltves SW networks
contain a high number of cliques and many highly connected subgraplas SRenetworks
usually have high degree nodes that serve as hubs of short pathihyeadegree distribution
are fat-tailed. Anyway, very different graphs (both real and artifiegdworks) can be defined
as small-world networks as long as they satisfy the proge&¥

1.2.4.4 Scale-free networks

The degree distribution of many real networks follows a power-law, &t lasymptotically.
That is, P(k) goes for large values of k as

Pk) ~ k7, (1.22)

where the value of the constaptis usually2 < v < 3. Power-laws are the only functions
f(x) that presents scale invariance: do not change if independent varigbi@ultiplied by

a common factor, apart from a dilatation. In reference to this property) aetworks are
called scale-free networks. Many networks belonging to a wide rangehjécts appear to
be scale-free: Social networks (by example the collaboration netwaskt)e collaboration
of movie actors in films or the coauthors relationships), biological netwoskie protein-
protein interaction networks, sexual relations in humans (related with thesidiff of sexually
transmitted diseases), semantic networks, many technological networks ®otld Wide
Web, etcetera. Although the average dedrees bounded, the variance

02 =<k?>—<k>?, (1.23)
diverges as the second momenk? >:

(1.24)

max max

kmaz
<H>:/‘ k2P(k) ~ k37 = k2

Emin
where the exponeft > 0.

The Barabasi-Albert (BA) model:

In 1999, A. L. Barahsi and R. Albert mapped of a portion of the Web, and show that some
nodes (hubs), had a connectivity degree very higher than the rest and that the degree
distribution of the whole network follows a power-law distributi@ib). They found that other
social and biological networks also had similar properties. Bagiahnd Albert proposed a
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mechanism, the preferential attachment, to explain the emergence of thelpavmaistribu-
tion. However, this mechanism only produces a specific kind of scaéenfrvorks, and many
other mechanisms have been discovered since (and earlier). Theeptigfleattachment mech-
anism generate a grapmf,f}( according to the next rules: starting framy isolated nodes, a
new node j withm < my links is added. The likelihood that j will connect to a given node i is

proportional to the i-degree:

P(j —i) = Zk;ik’l . (1.25)

The operation of addition a node is repeaféd- m, times. At the end, the graph obtained,
known as Barasisi-Albert (BA) network, will haveV nodes and{ ~ mN links, with< k >=
2m (figure 1.4).

The BA model has been solved in the mean-field approxima#déj (In the thermody-
namic limit¢ — oo, the degree distribution obtained k) ~ k=7 , with v = 3. For the
same value ofV and K, BA graphs have smaller average distance than ER graphs, resulting
L ~ logN/log(logN) (46). Furthermore, the clustering coefficient decreases with respect to
the size of the system @5~ N7, that is, slower than that observed for ER graghs 1/N.
Several variations of the model have been studied, such as directgtsdtd) or alternative

mechanisms for preferential attachmetf)( among many others.

1.2.4.5 Configuration model

Starting from a set oiV nodes and a given connectivity veclor(that is,V is the connectivi-
ties sequences, ko, . . ., kn, andk; the connectivity of linki), the configuration model (CM)
provides an algorithm to build up a networdkX 50). The CM takes the seéf?\‘,’fg of all graphs
with N nodes and connectivity vectdf, and consider all the elements @fjgfg with equal
probability. The algorithm consists of the following steps: firstly assigriglf-edges to each
nodei, after this connects by pairs the half-edges in an equiprobable way.napenponent
emerges almost surely whép = ", k(k — 2)P(k) > 0 and the maximum degrég,,.. is
not too large 49) (figure1.5).

The configuration model proposed by Molloy and Reed provides nesvwith degree
correlations, in the sense that the expected degree of the neighboigveihanodei is not

independent of;. Starting from the CMCatanzaro, Bogiia, and Pastor-Satorragroposed
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Figure 1.4: SF network generated through BaaabAlbert mechanism. Red (blue) colored circles
represent the high (low) connectivity nodes. Network size= 2000, averaged degreg) = 2.
The subgraph (detail) highlights the scale invariance @ryof power-law distributions.

the uncorrelated configuration model (UCM), capable to generate mandoorrelated scale-
free networks §1). The model adds a restriction on the maximum possible degree of the
vertices, governed by the structural cutbff,,. ~ v k.

1.3 Sociophysics.

The use of methods of probability theory and statistics for dealing with largalations in
solving physical problems constitutes Statistical Physics as a branch sitphgnd its proce-
dures are successfully used in a wide variety of fields of physics inlwviany interacting
entities. In the light of its usefulness, this successful framework hantlgdoeen extended to
other sciences including chemistry, biology, neurology, and even socied sciences, such as
economics and sociology.

Sociophysics is a multidisciplinary research field that applies theories andadsedhigi-
nally developed by physicists in order to study social topics, usually thokaling uncertainty
or stochastic processes and nonlinear dynaniié®)( In Statistical Physics, the elementary
components of studied systems usually are simple objects whose behaviadisored by
some well-know laws: the statistical study focuses on collective effectsodihe interactions
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Figure 1.5: Examples of configuration model graph3he C.M. algorithm allows to make a
network according to a given connectivity vector. Both dgi®@bove consist oV nodes and
a heterogeneous connectivity conforming to a truncatedepdew distributionP(k) = k=27,
A)N = 600, kmin = 2, kmae = 15, B)N = 2000, kpin = 2, kmas = 44. Different colors
and diameters represent different connectivities..

of a large number of elements. In contrast, the basic constituents of sbeiabmena are
humans, and each individual interacts with a variable number of indivithaisfor most indi-
viduals and problems, is negligible compared to the system size. Peoplé aiegie objects
following simple behavior rules, and modeling of social topics involves at gigglification
of reality. Clearly, this approach does not try to model the complexity of iddals, but focus
on the nature of interactions, seeking an holistic approach and drawmufus@mns about the
overall system. These conclusions include transitions from order todéisphase, transient
and stationary states, scaling properties, and so on. Obviously, the limitatittiresmodeling
of agents (people) condition the validity of the results, and should be taiteicaution. How-
ever, in most collective systems, global properties do not depend onstapiz configuration
but on global features as symmetries, conservation laws, temperatigmatfields, noise, etc.
Following this holistic view, the modeling of social systems includes only the mostrianmuto
characteristics of individuals, nevertheless criterion common to all sciemiifitling process.
A high number of scientists and multidisciplinary work teams are involved in thischra
of knowledge and the topics have been dealt in recent years with thisaagbpare so varied as
opinion dynamics, ethnic segregation, cultural dynamics, crowd behaaoial hierarchies,
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1. INTRODUCTION.

language dynamics and spreading phenomena among others.

1.3.1 Agent based models.

An agent-based model (ABM) is a class of numerical models for simulating theagtions
of autonomous agents with the purpose of studying their effects on thersgste whole.
Usually ABMs rely Monte Carlo methods to introduce randomness and the higibers of
interactions is performed trough specific computer programs. The origigasit based (AB)
modeling dates back to the late 1940s when the mathematician John von Neutaatnmg(s
from the Alan Turing idea) designed the von Neumann machine, a theorgyst@im based
on self replication. The concept was then improved by Stanislaw Ulam: Ulaigested to
build the machine as a set of cells on a g@)( The concept was taken up by von Neumann,
who created the first of the devices later termed cellular autor3aja The development of
computers led to AB modeling widespread since the 1990s. ABMs have bedraideal with
a wide range of problems in several fields as biologye(gs spread of epidemics, population
dynamics), biomedical applications, economics, dynamics of ancient ciioliia logistics,
traffic control, workforce management, distributed computing, people’satiogs, language
dynamics and social network effects.

One of the firsts ABM designed to explore a social issue was developEddmas Schelling
in 1971 62; 53). The Schelling’s residential segregation model studies the effectsreferp
ence for people to be in a similar neighborhood and consists of a regulae lattib a density
of empty sites, whose nodes mimic agents of different ethnicities. After an idistlbution
of the agents, at each elementary dynamical step an agent is randondy e@makit moves to
a empty site chosen at random if its ratio of other ethnic neighbors is higheattaerance
threshold T. After a long enough transition time, he found that the agentsrréma mixed
distribution only for very high values of the tolerance threshold, but tsgiemm segregated
neighborhoods for other values of tolerance (Figli&.

Opinion Dynamics is a social topic very dealt with AB modeling, it studies the ahéor
a social group to reach agreement or disagreement about a questisideCthis framework,
in the early 70’s Clifford an Sudbury defined a model for population dyina 64), the latter
named Voter Model has been used in fields so varied such as sociahidgn@opulation ge-
netics, chemistry and probability theory. The description of Voter Modebisihall complex:
each agent is provided of a variable that take two possible values, aadtatime step a ran-
domly chosen agent selects at random a neighbor and imitates its variabless YAlthough
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1.3 Sociophysics.

Figure 1.6: Dynamics of the Schelling modeThe Schelling’s model of residential segregation
studies the effects of intolerance in the population distion. People move if their neighborhood

is unfriendly according to a tolerance parameter. The msldelvs segregation in neighborhoods
for intermediate and high values of intoleran&@;(53). Colors represent ethnicities and opposite
sides are connected.

its extremely simple design and the fact that can be solved exactly in any finitaglonds5),
the model has been and is still studied in many sciences and according terdiffariants
(as e.g., different topologies, noise and external fields). Other opdyoamics model, the
majority rule model $6), explores a similar topic through a different procedure: Starting from
a complete graph whose nodes (agents) are provided of a variableé(pimat can take two
possible values (-1, +1), at each time step a random group of r ageatsdtes! and they share
the majority opinion inside the group. The group size r is taken at each ititerdom a given
distribution. The model includes an asymmetry: when r is even, a value abagie.g. +1)
can be promoted in case of a tie. Under the mean field assumption, Krapivdkyednerx7)
solved the model for a fixed value of r. They found three fixed pointe:worstable fixed point
that corresponds to a situation in which the population is evenly distributeditindatues of
opinion variable, and two stable fixed points that correspond to one-apfirtinen states. The
majority rule model has been studied under different network topologies, stat&-opinion
and plurality rule $8), as well as modifications that include mobility, external fields, variable
connectivity, etcetera ...

Other context of social research corresponds to the cases in whidbrojs modeled as
a vector of variables. These models are usually grouped under the fiaolaucal dynamics.
The most representative and studied model in cultural dynamics was iogdthy Robert Ax-
elrod in 1997 §9). The well-known Axelrod’s model for culture dissemination explores the
principle of homophily, developing the idea that a social agent will convgicglar people
easily than dissimilar ones, and therefore similar people tend to become everaliker It
consists of a regular lattice, whose nodes mimic cultural agents. Each dnesefnodes is
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Figure 1.7: Dynamics of the Axelrod modellop panels: For low values of the initial cultural
diversity (g), the system converges to a frozen monocultural stateacteized by a cultural group
shared by all the agents. Bottom panels: Otherwise, for Wédhes ofg the system remains in a

multicultural state in which agents do not share many tsaits their neighborhood59). Colors
represent different cultures and periodic boundary camditare applied.

provided with a set of” cultural features that can assum@ossible integer values. The pa-
rameterg represents the possible traits that each feature can assume. Thusaisuttadeled

as a vector off” integer variables. After assigning the traits at random, the system evalves a
follow: at each elementary dynamical step, an individuahdomly chosen imitates a feature’s
trait of a random neighboj with a probability equal to the cultural overlap ; between both
agents, defined as;; = (Z?zl 0o (i)05())/ F» Whered, , is the Kronecker's delta which

is 1if x = y and O otherwise. After a long enough transient, for a low value of the initial
cultural diversityq, the system reaches a frozen monocultural state, in which all agenés shar
every trait. On the other hand, for high values of the initial cultural dit)erdhe system can’t
arrive to cultural convergence but remains at a multicultural state, ciegized by agents who
hardly share features with their neighbors (Figird. The usual order parameter is the rel-
ative size of main culturés,,...) /N, i.e. the maximum number of agents sharing every trait
divided by the total population. Several others order parameters caseldeas the number

of different cultural domains in the asymptotic state over the total populgtien(N,)/N.
Then, the final states above mentioned are characterizéd,hy,) /N ~ 1,0 andg ~ 0,1
respectively. Both states are bounded by a phase transition at a créticaly depending on

F': this transition is continuous faF = 2, but discontinuous fof' > 2. Axelrod model has
been studied with many variants as random ndigg)( mass media effectd$0) and different
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network topologiesi41; 145 among others.

1.3.2 Topology.

The description of interacting relations (who interacts with whom, how oftemhich way
do agents relate), is a key of the modeling process in social dynamics. shia tool to
describe the relationship between agents is a network in which agentpezsemeted by the
nodes and links represent the interaction chances. ABMs rely ondfiffeetwork structures,
and outcomes usually strongly depend on the topology chosen. In a s@aeple are not
usually connected everyone to everyone but in several ways. Ttisga be modeled through
different network kinds (directed or indirected, weighted or unweightéc) and topologies,
including regular and complex networkes.g. lattice, small-world, RRN, ER or SF). Although
real networks, and particularly social networks, often differ fromifiaial networks in many
features, the dependence of model behavior with topology providesta toaderstand in what
way individual relationship influence on society.

A social network is a graph in which the nodes represent individuale@alsgroups and
the links symbolize the relationships among thesfy; (61). In fact, many of the concepts
used in the analysis of complex networks are based in social featudsaswusmall-world
property 62; 63; 64), as well as theoretical tools such as node centrality or clustering index
(65). Graph’ratio of theory has provided a very useful tool for measerg of different social
topics as collaboration networks, friendship or social interdependéuttitionally, new tech-
nologies provide new kinds of social interactions characterized by Idependence on the
physical location and higher connectivity of individuaii§). Complex network theory offers a
tool to study the properties of the contacts structure and the dynamics idvaltee forming
process. Examples of social networks are scientific colaborationk ésucoauthorship net-
works), actors coworking relations, information exchange, online koeisvorks friendship,
etcetera.

The influence of network topology on the behavior of social ABMs mentadnesection
1.3.1has been studied in the last decades, including several areas susgugkdynamics,
social behavior, rumors spreading, opinion models, cultural dynanteteea (sees.q.(67)).
For example, in opinion models, consensus critical values show a strgegadience on the
underlying topology%7). Similarly, Axelrod model for cultural dissemination displays depen-
dence of the phase transition on the network structiié; (L46); beyond this dependence, the
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dynamics of the model can be used to build a network through a rewiringgspwhich in
turn provides new system behaviot$6, 167).

In strategic gamesdl@; 17), the role of network topology is usually introduced through the
condition that, at every time step, one or more individuals interact with one og agents
chosen among their network neighbors. The specific model definitiomdspamong other
parameters, on the kind of synchronizatiem( synchronous, serial) and on the strategies and
updating rules considered. In particular, the dependence of sosih@bles on the underlying
topology has been widely analyzed through EGT models. For exampleneriddemma in
complex networks has been object of several studies for the last tweaty,focusing in the
influence of the structure of interactions among people on the level otcatipn (L6; 18; 94;

95; 109). The studies showed a strong dependence of the cooperation letred tapology,
that is, heterogeneity enhances cooperation. Nevertheless, thidldapens very sensitive to
the type of strategies and updating rules consideréeg (
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The emergence of cooperation.
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Presentation of Part I.

“First, let it be remembered that we have innumerable insts) both in our domestic productions
and in those in a state of nature, of all sorts of differenckmberited structure which are correlated
with certain ages and with either sex. We have difference®lated not only with one sex, but with
that short period when the reproductive system is activé g nuptial plumage of many birds, and in
the hooked jaws of the male salmon. We have even slightediffes in the horns of different breeds of
cattle in relation to an artificially imperfect state of theate sex; for oxen of certain breeds have longer
horns than the oxen of other breeds, relatively to the lewdttne horns in both the bulls and cows of
these same breeds. Hence, | can see no great difficulty inteamacter becoming correlated with the
sterile condition of certain members of insect communittesdifficulty lies in understanding how such
correlated modifications of structure could have been slaadcumulated by natural selection. This
difficulty, though appearing insuperable, is lesseneda®t,believe, disappears, when it is remembered
that selection may be applied to the family, as well as to tidévidual, and may thus gain the desired
end. Breeders of cattle wish the flesh and fat to be well mdragether. An animal thus characterized
has been slaughtered, but the breeder has gone with conédertbe same stock and has succeeded.
Such faith may be placed in the power of selection that a bofezittle, always yielding oxen with
extraordinarily long horns, could, it is probable, be fordhiey carefully watching which individual bulls
and cows, when matched, produced oxen with the longest ;hanalsyet no one ox would ever have
propagated its kind. Here is a better and real illustratiohccording to M. Verlot, some varieties of the
double annual stock, from having been long and carefullgctet to the right degree, always produce a
large proportion of seedlings bearing double and quiteidlowers, but they likewise yield some single
and fertile plants. These latter, by which alone the varien be propagated, may be compared with
the fertile male and female ants, and the double steriletglarith the neuters of the same community.
As with the varieties of the stock, so with social insectiectsien has been applied to the family, and
not to the individual, for the sake of gaining a serviceahtel.eHence, we may conclude that slight
modifications of structure or of instinct, correlated wittetsterile condition of certain members of the
community, have proved advantageous; consequently tfie feales and females have flourished, and
transmitted to their fertile offspring a tendency to prodwsterile members with the same modifications.
This process must have been repeated many times, untirddigpus amount of difference between the
fertile and sterile females of the same species has beengeddvhich we see in many social insects.”
(Charles Darwin. The Origin of Species by means of Natural Selection. (1859).

Understanding how cooperative behavior emerges in different dsrikegne of the major
guestions of modern science. The presence of cooperation in hostiteranents, that is,
when selfish behavior provides higher individual fithess as doesecatipn, has been studied
in many areas including microbiology, species evolution, population dynasgosomy and
sociology.

Theory of evolution is based on natural selection, which in turn is baseébdesurvival-

of-the-fittestrule. The limited resources available in a habitat promotes competition between
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organisms of the same or different species that have to struggle toesutivesfinal purpose
of this competition is to provide offspring. In such competition, cooperatioatikgast in the
first instance, faced to individual interest of survival and repotise success. Nevertheless,
cooperation and even altruism have evolved and persist, and evolutibaistsstudied this
guestion extensively for the last 150 years.

Cooperation between biological entities pursuing their own ends is key terstadding
biological issues such as the emergence of multicellular organisms or igiegéehavior,
but also to analyze human societies: people form families, tribes, cities, siatoworker
networks, companies, research teams, associations, etcetera.

Altruism is defined as a form of cooperation in which there is no directfiienethe or-
ganism carrying out the behavior, while mutually beneficial relationshigrseb cooperative
behavior in which there is a direct benefit to the actor as well as the rec{gi@n There are
several proposed mechanisms which help to explain cooperative bettheypare not neces-
sarily mutually exclusive, so that a combination of some of them may be applieglairgng
a particular case of cooperative behavior. The most widely acceptkstagied ones are:

Kin selection refers to evolutionary strategies that favor the persistence and repradsuc-
cess of an agent’s relatives, even at a cost to the survival ordegtion of the agent. Kin
selection implies cross-generational genetic changes driven by inteiatdween relatives
and may be applied when relatives influence one another on survivalffspring. William D.
Hamilton established, in 1964, a mathematic condition to explain altruistic behavimrgtinr
kin selection 69). According to Hamilton's rule, an altruistic action from agemd j may be
justified when:

rB>C (1.26)

wherer is the genetic relatednessidb j, defined as the probability that two genes taken at
random from the same locus in both individuals are identical by desBastthe reproductive
benefit obtained by andC' is the reproductive cost paid by

Group selectionmechanism in biology takes the assumption that genes can spread into a pop-
ulation because of the benefits they provide to the communiy Although group selection

is not widely accepted by evolutionists in biology for several reaserng the different time
scales between groups dynamics and reproduction), it is often appligdeoareas such as
human behavioral scienceslj.
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Reciprocity refers to situations where cooperation and/or altruism is enhanced byadibe-p
bility of future mutual interactions. There are three types of reciprocity thet bbeen deeply
studied:

i) Direct reciprocity mechanism was proposed by Robert Trivers in 1972).( If there is

a probability of repeated interactions between the same two players witbserateaction
available, then a strategy of mutual cooperation may be favored even ndrenooperate
actions brings larger short-term benefits. Direct reciprocity can egheooperation only if

the probabilityw of another encounter between the same two individuals is higher than the
cost-to-benefit ratia/b of the cooperative actiow > ¢/b.

i) Indirect reciprocity mechanism do not requires that the same two individuals interact again.
In a mutual interaction, actions are observed by third party individuals whbtrmifprm oth-

ers. Thus, social approval promotes cooperation by indirect regipr(v3). Indirect reci-
procity can enhance cooperation only if the probabilityf knowing a random agent’s repu-
tation is higher than the cost-to-benefit ratj of the cooperative actiop > ¢/b.

i) Network reciprocity. Real populations have spatial structures or underlying networks
which imply that some individuals interact more often than others. Accorditigetso-called
lattice reciprocitymechanism, the cooperative action can take advantage of the topology of the
network, so that cooperators clusters are often resilient to invasiorelmefiective actionl(9).

In this part of the thesis, we focus on the emergence of cooperation inl@omgtworks.
In the framework of evolutionary game theory, among other games thatlpsoa satisfactory
description of a wide range of situatioresd, the Public Goods Game), the Prisoner’s Dilemma
(PD) has become a standard for studying the cooperation. First, in ch24%e we investigate
in detail the dynamics of PD in different artificial networks under the assiompf a widely
accepted strategy: the replicator dynamics. Later, in chdptee take into consideration
observed strategies in human behavior and study the consequenceh ofilkes. Finally, in
chapter6 we test the predictions by a large-scale experiment.
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Chapter 2

The dipole model: Thermodynamic
study of a social system.

In Evolutionary Dynamics the understanding of cooperative phenomematimal and social
systems has been the subject of intense research during decadesug/attention here on the
so-called "Lattice Reciprocity” mechanisms that enhance evolutionaryaliof the cooper-
ative phenotype in the Prisoner’s Dilemma game when the population of danwephcators
interact through a fixed network of social contacts. Exact results dbigole Model” are
presented, along with a mean-field analysis as well as results from extensnerical Monte
Carlo simulations. The theoretical framework used is that of standard Stitistéchanics
of macroscopic systems, but with no energy considerations. We illustrajgother of this
perspective on social modelling, by consistently interpreting the onsettioklaeciprocity as
a thermodynamical phase transition that, moreover, cannot be captuaegolingly mean-field

approach.

2.1 Introduction.

Is the term "social temperature” just a rhetoric figure (suggestive metgr on the contrary,
could it be given a precise meaning? By working out in detail the evolutyodwanamics of
the most studied social dilemma (the Prisoner’s Dilemma) on a simple kind of arttfomgall

networks we will show here that the formal framework of equilibrium statikticechanics is,

to a large extent, applicable to the rigorous description of the asymptoticibelo&gtrategic
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

evolution, thus providing the key for a formal quantitative meaning of the sarcral "temper-
ature” in these contexts.

Evolutionary game theory, in contrast with classical game theory that$esusn the de-
cision making process of (rational) agents, is concerned with entire pgagmdaf agents pro-
grammed to use some strategy in their interactions with other agents. The agertdiaators,
i.e. entities which have the means of making copies of themselves (by inheritaag@ntg
infection, imitation, etc...), whose reproductive success depends onytbf phtained during
interaction. As the payoff depends on the current composition of strategieng the inter-
acting agents, this yields a feedback loop that drives the evolution of titegitr state of the
population.2)(17)(79)(80).

This darwinian feedback (frequency-dependent fithess) dynangigsndls strongly not
only on the particular game, and on the specifics of the way strategiesds|mgaalso on
the (social) structure of connections describing the interactions. Undeassumption of a
well-mixed populationgocial panmixisassumption), the temporal evolution of the proportion
of strategies among the population is governed by a differential equatimed@plicator
equation(see below). Well-known celebrated folk’'s theorems (see, €%9) éstablish a con-
nection between the asymptotic behavior of this equation and the powenftéots of classical
game theory based on the notion of best reply (Nash). However, if tig@ panmixia assump-
tion is abandoned, and individuals only interact with their neighbors in @lsoetwork, the
asymptotic of evolutionary dynamics generically differ in a substantial wam fthis "well-
mixed population” description. The social structure of strategic interactions out to be of
importance regarding the evolutionary outcome of the strategic competition.

We will consider here the Prisoner’s Dilemma (PD), a two-players-twdegfies game,
where each player chooses one of the two available strategies, ciapenadefection: A
cooperator receiveR when playing with a cooperator, arflwhen playing with a defector,
while a defector earnB when playing with a defector, arid (temptation) against a cooperator.
WhenT > R > P > S, the game is a PD (while i’ > R > S > P itis called Snowdrift
game, also "Chicken” or "Hawks and Doves”). Given the payoffdesing, whatever the value
of the prior assign of probability to the co-player’s strategy is, the exdgugoff is higher for
defection, and that is what a rational agent should choose. In the B galy the defective
strategy is a strict best response to itself and to cooperation, thus it issgrexample of
game with an unbeatabl8(@) strategy. Still, though there is no difficulty in the making of the
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2.2 Natural strategic selection on graphs.

strategic decision from Nash analysis, two cooperators are better offitlwedefectors, hence
the social dilemma.

In graph-structured populations, a large body of resedrgHl©; 81; 82; 83; 84; 85; 86; 87,

90; 101, 102 103 104) (and references therein) on evolutionary dynamics of the PD game has
convincingly show the so-callddttice reciprocityeffects: The cooperative phenotype can take
advantage of the topology of the social net, so that clusters of coopeaaoften resilient to
invasion by the (continuum-unbeatable) defective phenotype. Thisieatrent of asymptotic
macroscopic levels of cooperation due to the structure and topology tEggtranteractions in-
cludes, but it is far more general than, the so-called space reciproaityamsms, where social
nets are discretizations (solid state lattices) of the euclidian space, arsiaifipproximations
are often useful05). In this regard, one should stress the accumulated evidence)thetr(y
interesting social net(; 28; 45) are far away from being regular lattices, aiifl freedom of
connectivity scales (scale-free complex networks) enhaid@4(6 107, 109, 111, 112,113

the lattice reciprocity mechanisms up to unexpectedly high values of the temptatizmme
ter T' of the dilemma, where cooperation is very expensive (but affordable avalutionary
sense).

In this chapter we investigate in detail the lattice reciprocity mechanisms in aniaktific
network (Dipole Model) that models the competition for influence on a populaticocial
PD-imitators of two antagonist Big Brothers (nodes connected to the whelglatmn, but
with no direct connection between them).

2.2 Natural strategic selection on graphs.

We specify here the evolutionary game dynamics scenario, meaning the geammefrization,
the microscopic strategic dynamics (replication mechanism or strategic updaghgand the
social structure of contacts that we will consider along the chapter.

We normalize the PD payoffs to the reward for cooperatidg; 1, and fix the null payoff
at punishment? = 0. Note that provided the (differential or relative) selective advantage
among two individuals depends on their payoff’s difference (see Detmve can arbitrarily fix
the zero payoff level. Then only two parametéis= b > 1 andS = ¢ < 0 are tuned. Note
that the range > 0 defines a game named Hawks and Doves (also Chicken and Snowdrift)
where punishment and sucker’s payoff have the reverse ordewilN@ccasionally comment
on this range of parameters.
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

Moreover, we do not restrict our computation2i® > 7"+ S. This restriction means that
the total payoff for the two players is higher if both cooper&t®)(than if one cooperates and
the other defectsi( + S), and is usually incorporated in iterated games studies of the PD to
prevent agents taking turns at defection and then sharing the palfoffshe specifics of the
replicator dynamics (memory-less, markovian) in the next paragraphstoméd not expect
that this restriction qualitatively matters.

Regarding the replication mechanism, we implement the finite population A5ize 1)
analogue of replicator dynamic&g, 18). At each time step, which represents one genera-
tion of the discrete evolutionary time, each agéeptays once with each one of the agents in
its neighborhood and accumulates the obtained paysfts,Then, the individuals;, update
synchronously their strategies by picking up at random a neighiband comparing their re-
spective payoffs’; and P;. If P; > P;, nothing happens anickeeps the same strategy for the
next generation. On the contraryff > P;, with probabilityIl;_,; = n(P; — F;), i adopts the
strategy of its neighbof for the next round robin with its neighbors, before which all payoffs
are reset to zero. Hergis a number small enough to make_,; an acceptable probability;
its physical meaning is related to the characteristic inverse time scale: theitasgtre faster
evolution takes place.

From a theoretical point of view, this specific choice of the dynamics hasithe of
leading directly (seee.g. (17)), under the hypothesis of a well-mixed population and very
large population size, to the celebrated replicator equation for the freisen, of strategies
«a(= C or D) in the population:

pa:pa(fa_f) (2.1)

wheref, is the payoff of amy-strategist and is the average payoff for the whole population.
Note that time unit in equatior2() is scaled ta; .

For the payoffs of the Prisoner's Dilemma the asymptotic frequency ofezatqrs, from
the replicator equation, is driven to extinctign, = 0, while for the Hawks and Doves game,
its asymptotic value is/(b—1+¢) . As stated in the introductory section, we will be concerned
here mainly with populations that are not well-mixed, where predictions masttds nonlinear
differential equation are often of little use.

Regarding the structure of connections between interacting agents, weonsiider here
that it is given by a fixed graph.€. connections between players do not change by rewiring)
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2.2 Natural strategic selection on graphs.

where agents are represented by nodes, and a link between nodegesditat they inter-
act (play). Ifk; is the number of neighbors of agen{connectivity or degree), and is
the maximal possible one-shot-payoff difference £ max{b,b — €}), we will assumey =
(max{k;, k; }A)~! for the specification of the probabilitif;_,; of invasion of node by the
strategy of neighboy. This simple choice, introduced in§), assures thall,_,; < 1; in
heterogeneous networks it has also the effect of slowing down theionvpsocesses from
or to highly connected nodes, with respect to the rate of invasion pexéstween poorly
connected nodes, a feature not without consequendds (

We now introduce some notation, which is familiar to statistical physicists: Thigcoa-
tion (strategic microstaté) of a population ofN agents at time is specified by the sequence
Il = {si(t)} (@ = 1,...,N), wheres;(t) = 1 (or 0) denotes that nodeis at this time a co-
operator (resp. defector). The set of all possibleconfigurations is called the phase space.
Stationary probability densities of microstated) (I = 1,...2"V) are then representatives of
strategic macro-states' he average cooperatienof microstatd is defined as

Ji‘ 2.2)
Cl—N isz .

We denote byil;; the probability that the strategic microstate of the population at time
t+ 1is !, provided that it ig at timet. Note that)_, II;; = 1. A microstatel is afrozen
equilibrium configuration if the probability that it changes in one time step is nod, then
I;; = 1andIl,; = 0if I' # I. We will assume generic real values (irrational) of the payoff
parameters, so that if a configuration contains a C-D link it cannot bezarfroonfiguration.
The only possible frozen equilibrium configurations ateC andall-D. However, for a very
wide class of graphs, and a wide range of model parameters they atieenonly possible
stationary probability measures.

We now illustrate by means of easy examples the evolution of PD on graphsfir€u
and simplest example is a star-shaped graph consisting of a central orotkcted taV — 1
peripheral nodes. It is straightforward to check that any initial conditdh cooperators at
the central node and (at least) @t — (N — 1))/(1 — €)] + 1 peripheral nodes has a positive
probability of evolving in one time step to a configuration with a higher numberapetors,
and a null probability of evolving towards less cooperators. Thus, afletlemnfigurations
evolve asymptotically to thall-C equilibrium. The rest of configurations evolve towards the
all-D equilibrium. Therefore, ifV > (b—e+2) both equilibria are attractors (absorbing states),
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

in the sense that some configurations different from themselves evolvento e phase space
is partitioned into two basins of attraction.M < b — e 4 2, only theall-D frozen equilibrium
is attractor. The stationary probability densiti&g!) of the star are pure point measures (two-
or one- Dirac delta peaks) in the thermodynamic lifdit— oc.

Now take a star and add some arbitrary number of links between its petipoees. We
call this network a crown, whose head is the central node. If the heactigoed atty by
a defector, it will remain so forever, because the payoff of a pergdtoeoperator is strictly
lower than head’s payoff. Sooner or later the head (center) of thvencwdll be imitated by
the whole crown, and the evolution will stop when everybody be defedng.what happens
to a cooperator on the head? The answer is dependent on both, thpategyoof the crown
periphery and the cooperators disposition there: To ensure fixatiooopecation at the head
node, it suffices that a subs@tof peripheral nodes occupied by cooperators, and with no direct
links to the rest of the periphery, have a size > bk,,q, — e(N — ng — 1), wherek, 4, is the
maximal degree in the rest of the periphery. Under this provis¢'afl-the unique absorbing
microstate of all corresponding initial conditions.

Finally consider the graph schematized in FAdl, composed of the following:

(a) A component¥ of ny nodes with arbitrary connections among them.

(b) A node, say node 1, that is connected to all the nodé&sand has no other links.
(c) A component of no nodes with arbitrary connections among them.

(d) A node, say node 2, that is connected to all the nod&gsand, but not to node 1.

This is what we will call a Dipole Model network. It is a two-headed (notlasd 2) crown
(with peripheryd) plus a tailC hanging on head 2. To strength the special status of the head
nodes, let us nickname them as "Big Brothers”. They certainly enjoyteof@mnipresence
that fits well with the character of Orwell’s famous social sci-fiction ndg&. In the follow-
ing section we prove that for this simple network there exists a non-triviédstay probability
density of microstate®*([) for the strategic evolution of the PD game.

2.3 The Dipole Model.

The analysis of evolutionary dynamics of the PD on the Dipole network sliomishere is
a non-trivial invariant measure in phase space. Let us consider ttieo§nitial conditions
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2.3 The Dipole Model.

Figure 2.1: Structure of the Dipole Network. Two nodes#nd2) are connected to all nodes in
F, whose elements can be arbitrarily linked to each other.eldagr, node is also linked to a set
C (with arbitrary internal connections as well). Initial abtions are indicated by colors: red for
cooperators (nodg and set®), blue for defectors (nodg), and green means arbitrary (§8t See
the text for further details.

defined by: () Big Brother 1 is a defectorjij Big Brother 2 is a cooperator, aniii { all nodes
in component® are cooperators. Note that this set cont&®s different configurations. We
now prove that, provided some sufficient conditions, this is a minimally invasanof the
evolutionary dynamics.

First, one realizes that Big Brother 1 cannot be invaded by the coogesitategy: The
payoff of a cooperator nodein J is P¢ = kf + 1 + e(k; — k{ + 1), wherek; is the number
of its neighbors ir0" andk{ < k; is the number of those that are cooperators. The payoff of
Big Brother 1 (BB1) is therP, > (k§ + 1)b. For the PD game, wheke< 0, the inequality
P, > Pf always holds, so that BB1 will always be a defector. (Note also thah®Hawks
and Doves game, a sufficient condition #&r > P isb > 1+ e(kp + 1), wherekp (< np) is
the maximal degree in componéfti.e. the maximal number of links that a nodednshares
within F.) We thus conclude that defection is fixed at BB1.

Second, thanks to its interaction with $&tBig Brother 2 resists invasion, provided its
sizenc is above a threshold: The payoff of a defector nodeF is P? = (k¢ + 1)b, where
k¢ is the number of its cooperator neighborsJinwhile the payoff of Big Brother 2 (BB2) is
Py, = ng + npe + n%(1 — €), wheren§, < np is the number of cooperators # Thus, a
sufficient condition fotP, > Pl-d isnc > b(krp+ 1) —npe. With this proviso, BB2 will always
be a cooperator, which in turn implies that all the nodes in the compaéhsiitremain always
cooperators. Note that far < 0 andb > 1, the absence of the componehtould imply
invasion of node, that would lead to fixation of the defective strategy on the whole network.
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

The previous argument proves that provided the sufficient conditiens b(krp+1)—eng
andb > 1+€(kp+1) hold, the subsetof phase space defined by, (ii), and (i) is an invariant
set. As this set does not contain equilibria, no stochastic trajectory eviobwvast to a frozen
equilibrium configuration.

Finally, one realizes thatis indeed minimal, because at any time, a defect6rlras a pos-
itive probability to be invaded by the cooperation strategy (at least fro@) Bhd a cooperator
in F has a positive probability of being invaded by the defection strategy (sttfieen BB1).
Therefore, any strategic configuration of the ket reachable in one time step from any other,
i.e. for all pairs (, I') of microstates irf, the transition probabilityI;;; > 0. Consequently,

J does not contain proper invariant subsets: it is minimally invariant. Moredwfowing
Perron-Frobenius theorem, there exists a unique stationary macrd?state This provides
a rigorous framework for the interpretation of results from numerical tél@arlo simulation
studies in evolutionary dynamics on dipole models, provided the sufficiawitians above.

While nodes inC and Big Brother 2 are permanent cooperators, and Big Brother 1 is a
permanent defector, nodesdhare forced to fluctuate. This partition of the network into sets
of nodes where each particular strategy is fixed forever, and a $leicaiating nodes, turns
out to be a generic feature of the discrete replicator dynamics (neighbotiamipaoportional
to payoffs difference) on many network settind9¢, 112). The simplicity of the Dipole Net-
work model allows on it an easy formal proof of existence of this partitionpreviding an
illustration of both, its origins and generic character. It also shows tmedioapplicability of
equilibrium statistical physics formalism to characterize the asymptotic behafvéeolution-
ary dynamics on these graphs. This will be made in the next section fofispaices of
structural traits for the subgraph

Let us note that if a direct link between BB1 and BB2 is added, then (gemdx2.4.3
asymptotic fixation in the whole network of either cooperation or defection willig depend-
ing on the relative sizec /ny of component€ andJ.

The name dipole for this structure of connections is suggested by the Etadégy © —

F — D) aspect of the whole graph. Note also that the numbér-eff andF — D connections
scales linearly with the sizer of the fluctuating interior, that is to say that the poles (C and
D) act as an externally imposed (AC) field Bhwhose strength is proportional to the internal
levels of cooperation. As the cooperation (and then the fithess) leveteHirsustained (as
proved by the previous theorem), this is a closed macroscopic system wath-taivial self-
sustained social activity of cooperation at evolutionary equilibrium.
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2.3 The Dipole Model.

The interest of the Dipole Model is by no means restricted to a mere academia#lus
tion: First of all, we can make a technical use of it in macroscopic stability aisasfudies
of PD-evolution on highly heterogeneous complex networks. Indeed]utiiations inside
the subseff are the effect of the competition for invasion among two non-neighboritbg hu
(hugely connected nodes), where opposite pure strategies haheddaation, in their com-
mon neighborhood. This is a local strategic configuration that mimics thosairbaiften
observed in stochastic simulations of evolutionary dynamics in highly heteeogs (scale-
free) networks 109 112). Simple multipolar network models can easily be constructed (e.g.
by establishing direct links fror@i to & in a way that simple sufficient conditions guarantee that
the theorem still holds), that are indeed indistinguishable from typical gicgpatterns found
in the numerical simulations on scale-free networks. This makes the Dipotevesy useful
technical device to analyze the stability mechanisms of the cooperator cl(is6r4.12) in
scale-free structured populations, as well as the kind of temporal fticiigaof cooperation
that one should expect in the fluctuating set of nodes.

Regarding potentialities for econo-socio-physics applications of the Dipotiel, it could
be viewed as a sort of schematic (then simplistic, cartoon-like) model for theetition for
influence of two powerful superstructural institutioresg, like "mass media”, political par-
ties, or lobbies) on a target population, in strongly polarized strategicxdsnt€he analysis
rigorously provides sufficient conditions for the parameter values evfieation of strategic
traits is proved impossible, so that temporal fluctuations dominate foreverge p@pulation
of social imitators¥. The influence on each individual of the two competing institutions is
simulated here through the omnipresent ("Big Brother” nodes 1 and 2hineig, whose own
high appeal for imitation (the strength of Big Brother’s influence) is in tunmditioned by the
strategic composition of the target population. Here the interest could wiiebsudy of the
influence that metric and topological network characteristics of the saaiatgre have on the
strategic macro-state, and thus on the quantitative valussoidl indicators We address some
aspects of this issue in the next section.

At a more general level, the design of experiments in social sciencedlaswvieeoretical
studies of artificial societies could greatly benefit from having at handlsitmg non-trivial
"exactly soluble statistical-mechanical models” that may provide safe guidks&op further

intuitions on social phenomena that demands more comprehension.
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2.4 The role of social structure in Big Brothers competition.

In this section we present some analytical and numerical results on théiewahy dynamics
of games in the Dipole Model for different choices of topologies of thetdilating set¥. The
sufficient conditions stated in the previous section are assumed her&¥édtare interested in
the situation wherer > 1, i.e. large size of the fluctuating population.

First we will briefly comment on the straightforward limiting case when the maorus
setT is a fully connected set, so thag = ny — 1. This is the well-mixed population limit, for
which it is easy to show that the replicator equati@ri) is an exact description. The payoffs
of polar nodes BB1 and BB2 are given By = benp and P = ng +cnp + €(1 — ¢)np, while
the payoffs of a cooperator node and a defector nodeane P, = cnp + ¢(np — cnp + 1)
andP; = (cnp + 1)b. One easily realizes tha?. < P, provided the sufficient condition
(b > 1 + enp) for fixation of defection at node 1. Thus the (one time step) probabilidiss
(invasion of a cooperator node i) and@Q ¢ p (invasion of a defector node if) are

1 P —P. (1—c¢)np P;— P,
(np+1)A(np +1) (np+1) AMnp+1)
1 P, — P,

Qcp = (np + 1) Alnp £n0) (2.3)

Qpc =

Assuming that the size d¢f is macroscopicpr > 1, the fraction of cooperatorsin &

evolves according to

¢=(1-¢)Qcp — cQpc - (2.4)
Now, if ng > 1, andnc/(ng)? — 0, then bothQop and the first term in the right-hand
side of@Q p¢ vanish, and we arrive to the differential equation

c(l—c)
A

¢ = (e(l—c)—(b—1)c) . (2.5)
This is, with a simple re-scaling of time, the replicator equatihi)( note that in the limit
np > 1 that we have considered, the probability that a nod# ipicks up a Big Brother
when updating its strategy is negligible, and then the evolution inside the comapte®is
overwhelmingly determined by the internal connections, and thus by theatpliequation.
In other words, in this limit of maximal possible connectivity, BB1 and BB2 awvdamnger
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bigger than the nodes i and their influence on the fluctuating set is negligibly small in the
thermodynamic limit.

We now turn attention to situations whéetg < np, far from the social panmixia. In sub-
section2.4.1we will explicitly solve the opposite trivial case of disconnectedet ¢ = 0),
which turns out to reduce to the standard textbook ideal two-states madsiltadtical Physics.
After that, in subsectior2.4.2 the "random regular” network structure féris seen to be
amenable to a plausible mean-field approach, but insufficient to explairhéremenology
shown by Monte Carlo numerical results. These show beyond any daurfitcal behavior, a
transition point separating two qualitatively different types of social mataites. This transi-
tion is sensibly interpreted as the onset of lattice reciprocity. In other wiattise reciprocity
is a true critical social phenomenon

2.4.1 Fis adisconnected graph (ideal-gas).

Let us now obtain some explicit results for one of the simplest choices failofi@ogy of
connections inside the fluctuating set, namely = 0. In this case each node ff is only
connected to Big Brothers. This is in fact an effective single node pmgbidnere homogeneity
(i.e., mean field assumption) i is exact; in other words, the absence of internal interactions
in the set¥ is a sort of ideal-gas condition easy to exactly deal with in the large size limit.
Note that the sufficient conditions for fixation of defection at BB1 andamperation at
BB2 are respectivelyh > 1 + ¢, andnc > b — enp. Denoting byc(t) the instantaneous
fraction of cooperators iff, one finds for the (one time step) probabilijy - of invasion of a
cooperator node iff
cb—(1+¢€)/np

Qpc = A , (2.6)
and using the notatioA = ¢ + (n¢ — b)/np andB =1+ n¢/np
At c(l—¢)
Qcp = T 9AB (2.7)

for the probability of invasion of a defector nodedin Note thatA > 0 due to the non-invasion
of BB2 (sufficient) condition.

Providedn > 1, the fraction of cooperatorsin F evolves according to the differential
equation 2.4), which after insertion of expressiong.§) and @.7), and re-scaling of time,
becomes

¢=f(c) = Ag + Ajc + Asc® | (2.8)
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where the coefficients are

Ay = A, (2.9)
Ay = 1—-e—A+B(l+¢€)/np , (2.10)
Ay = —(1—€+bB) , (2.11)

One can easily checkd(, > 0 and A, < 0) that there is always one positive ragt of
f(e), which is the asymptotic value for any initial conditior< ¢(0) < 1 of equation 2.8).

Fore = 0, in the so called weak PD gamie( at the border between the PD and the Hawks
and Doves game), if one further assumes that the relative giz¢ of the component F is
large enoughi.e. u(F) — 1, andu(C) — 0, one easily obtains that the stationary solution of
equation 2.8) behaves ag* ~ (b + 1)~! near the limitu(F) — 1.

From the point of view of the sef, whenny > 1, the model corresponds to a non-
interacting (ideal) set of independent phenotypic strategists that fluctuatéo a polar field
(Big Brothers influence) whose strength is self-consistently determinéuelgverage cooper-
ationc. This problem is equivalent to the equilibrium of an ideal paramagnetic salhimisy
(telegraphic) magnetic AC field of intensity proportional to the average ntiagtien.

A typical and correct statistical-physicists approach "from scratch”igoo-states model
is the familiar micro-canonical setting: At (dynamical) macroscopic equilibriumptiobabil-
ity of each strategic micro-state= {s;} of fixed value ofc; = c is uniform

p—ol (2.12)

whereQ = ng!/((cnp)!(np — enp)!)) is their number. The lack of informatiofi = In

of the macro-state as a function of global cooperatigiz, i.e. the relationS(ngc), can be
regarded as the analogue of the micro-canonical fundamental "thenawnigal” relation, and

its first derivative is the intensive paramete(thus the analogue of the inverse thermodynam-
ical temperature), that after using Stirling’s approximation is easily obtaised a

5:m<kw). (2.13)

c

This relation is the analogue of a thermodynamical equation of state, which saxply
presses the connection of the equilibrium value of the macroscopic aimpelevelc to the
"entropic” intensive parametegt. Note thatc is determined by the balance conditian= 0):

l—c_@pc
c Qcp

(2.14)
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from where the equation of stat2.{3 determines’ as a function of model parameterg(b,

¢, andnc/nr). For example, when = 0, 8 = Inb > 0, indicating that the disorder of the
activity increases with increasing cooperation. The maximal value -ef co corresponds to
zero disorder{ — o), while its minimal zero value corresponds to highest possible value (at
b = 1) of cooperation€ = (1/2)). Note that values of < 1 correspond to negative values,
where entropy decreases with increasing values of cooperation, ettisi®D domaint

An alternative (and equivalent in the thermodynamic limit) setting is to considertibéew
space of2"F configurationd = {s;}.*}, of unrestricted;, but under the condition that the
average value = ), P;¢; is fixed. This is the analogue of the canonical setting. The normal-
ization factorZ = ), exp(—f¢;) is the analogue of the familiar canonical partition function
(Boltzmann’s Zustandsumme), that due to the agents independercg)(is easily factorized
asZ = (14 exp(—p))"*.

In the canonical setting a most informative macroscopic quantity is the "apatity” ana-
logue: The fluctuations af along representative (typical) stochastic trajectories at equilibrium
under the evolutionary dynamics of the game are, following the standardakdgnamical for-
malism, given bydc/9(5~1), so that this quantitative social indicator detects very precisely
sudden variations of the macroscopic cooperation with payoff's parasndtethis ideal-gas
kind of case there are no critical points and fluctuations do not divE@eexample, foe = 0

they are given by the (Bernouillian) binomial varianegc(1 — ¢) = npb/(b + 1)

2.4.2 Fis arandom regular graph.

Random regular networks are random networks of fixed degréd nodes being thus equiv-
alent, a sensible approach is to assume (mean-field likee.ge€117)) that the fraction of
instantaneous cooperators in the neighborhood of a node is the fractidime whole sef. In
other words, one neglects local fluctuationg.of he contribution of the internal interactions to
the variation ofc is then of the "replicator equation” type, as discussed above for the ctample
graph case. The difference here is thatjif < np the contribution of the interactions with

Big Brothers cannot be longer neglected.

*Note: The Stag Hunt game corresponds ta 1 ande < 0, and it is the archetype of coordination games. A
clear case for the deep importance of this game in Social Studies caarbifo(L16).
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Figure 2.2: Macroscopic cooperation in a random regular graph stradamnthe setf, with k = 4,
andnr = 4000, ande = 0. A decreasing sequencemnf /n , as indicated in figure, has been used.
Symbols represent numerical Monte Carlo results, and fiferelint lines represent the mean-field
predictions as given by the solutiof-€ 0) of Eq. 2.17).

2.4.2.1 Mean-field approximation.

The payoffs of Big Brothers BB1 and BB2 are givenBy= bcnp andP, = ng+cnp+e(1—
¢)nr, while the payoffs of a cooperator node and a defector nodewatder the mean-field

assumption are:
P.=ck+1+4+ek(l—c)+1) , Pi=(ck+1)b . (2.15)

The differential equation for is then

o = (1 - C)(PQ - Pd) . C(P1 - PC)

(1 —c¢)ck(P. — Py)

2.1
4 2PA (2.16)
which under the assumptidib < np, takes the form
s — 1 / / /2 r.3
¢=flc) = (k:—|—2)QBA( o+ Ajc+ Aye” + Ase’) (2.17)

where the coefficients are
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6 = (E+2)(B—1+¢) , (2.18)
1 = 22(1—¢—B)+k(2(1-¢—Bb-e¢)
+k*Be , (2.19)
Ay = 2(e—1—-Bb)+k(e—1—B(l1+¢))
+k*B(1 —b— 2¢) (2.20)
Ay = E2Bb—1+¢) , (2.21)

Note that the assumptionc > b — nre (i.e. the condition for Big Brother 2 to be a
permanent cooperator) implies th&f > 0, so that:(0) > 0 and one positive root, say, of
f(c) is then ensured, in agreement with the theorem of se@i@nin Fig. 2.2 we show the
asymptotic value of the average cooperatiorersus the temptation parameteias obtained
from (2.17), for several different values ofc /np, e = 0, andk = 4.

Within the mean field approximation, it is possible to obtain explicitly the equilibrium
macro-statej.e. the stationary probability distribution densif§j’, which as expected from
section2.3 turns out to be of the Boltzmann type. Let us consider two different (arlgitr
strategic microstatds= {s;} (: = 1, ...,nr), andl’ = {s’}, of the fluctuating set. For any pair
of microstateg!/, ') we define the following numbers:

ny o= Y 0,900 (2.22)
mo = Y (1= 0u)00 (2.23)
noo = i55¢,52552,07 (2.24)
no = Y (1=054)0q1 (2.25)

i
i.e, n11 is the number of nodes that are cooperators in both microstaggthat of the nodes

that are cooperators inbut defectors iri’, etc... Using equatior2(?) it is straightforward to
obtain

1
aq—c = E(nlo —no1) - (2.26)
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

Now, let us assume that the probabilities that a nbdkRanges strategy are independent
of nodei (homogeneity assumption, mean-field), and denote the® by (transition from
defector to cooperator) ar@dp o (for the transition from cooperator to defector). Then we can
easily see that the transition probabilities between the microgtatedi’ are given by

My = (1-Qpc)" (1 —Qcp)""QptQéD, (2.27)
My = (1-Qpc)"™ (1 —Qcp)" " QpEQED, (2.28)

Henceforth, denotingxp(—3) = Qcp/Q pe, one easily obtains the expression:
;i exp(—Beynp) = My yexp(—Benr) (2.29)
from where the unique solution to the fixed point equation
P =2, (2.30)
is easily found to be:
P; = Z " exp(—Banr) | (2.31)

whereZ is the analogue of the canonical partition function

7 — [QCD—’_QDC] " (2.32)

@pc
Note that Eq. 2.29 expresses the "detailed balance” condition, which is thus proved to
be satisfied. As it is well-knownl(L8), the canonical probability distribution densit.81)
is the unique density that maximizes the lack of information (entrofy}s — >, P;In P,
among those (compatible) densities that share a common value for the mawaaerage
of cooperationc = ), P;¢;. This provides a "generalized thermodynamic” meaning to the
parameters: it is no other than the intensive entropic parameter associated to coopgeratio
that is, the Lagrange multipliel {9 120) associated to the restrictian= ), P;¢; on the

compatible measures (canonical restricted maximization of entropy), that is:

B = 05 : (2.33)
npodc

The parametef simply measures how fast the entropy of the equilibrium macro-state in-
creases versus global cooperation variations. Its formal role is treat ahalogue of inverse
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2.4 The role of social structure in Big Brothers competition.

thermodynamical temperature. Let us note that, at variance with many woekslutionary
game dynamics (sed.§) and references therein) where an analogue of temperature is intro-
duced’ad hoc” as a parameter entering into the definition of the (stochastic) strategic updating
rules, the parametet (2.33 is a kind of emergent property that characterizes the equilibrium
macro-state, and thus is a function of the model parameters (not a modelgier itself).

The fluctuations of the micro-states cooperatigmamely(ng)*(>",(Pic?) — (3, Picr)?)
are given bynrc(1 — ¢). This is the analogue of the heat capacity. The dependence on the
game and network parametérs, nc/np, k of the fluctuations of cooperation is obtained by
solving for the cooperation equilibrium valde= 0 in (2.17), and plotted in Fig2.3(panel b)
for k = 4, e = 0, and decreasing values of the ratig /nr.

2.4.2.2 Numerical results, and the mean-field failure.

In this subsection we compare the mean-field results with those obtained frorte Marlo
simulations implementing the updating rules on the dipole model with a random regar
work structure for the fluctuating sgt

In order to illustrate the Boltzmannian character of the stationary probabilisityeP* (1),
P@), where P(c) is the probability that

g(c)
a microstate has an average cooperatig@.2), as inferred from the simulation results, and

we plot in Fig.2.4 the numerical estimates f (

g(c) =np!/((enp)!(np —cnp)!) is the degeneracy @f(i.e., the number of microstatésuch
thatc; = ¢). The data correspond to a random regular network structure foothpanent¥

with degreek = 4, and parameter valués= 1.1, nr = 5000, nc = 500, ande = 0. As one
can see from the perfect straight line shape of the plot, the data are dumgistent with the
Boltzmann’s densityZ.31).

Though the system evolution is governed by dynamical rules (strategatinogylwhich "a
priori” could be thought to lead to non-equilibrium behaviors, one finds ttia asymptotic
regime of the PD evolutionary dynamics in the dipole model is a true macrosapglibeéum
regime, where the formalism of generalized thermodynaniig6) @pplies.

The results of the asymptotic value of the average cooperati@nsus the temptation to
defectdb are presented in Fi@.2 for (relatively small) values ofic/nr ranging fromo0.025
down to4 x 1073, but still satisfying the sufficient condition for the fixation of cooperation
at BB2. The comparison with the mean-field predictions show that the mddmfiproxima-
tion overestimates the cooperation value. Most notably, for very small value- /nr, the
numerical results show, at abdut- 1.4, a fast decay of cooperation to values close to zero
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Figure 2.3: Fluctuations of cooperation in a random regular graph sirecfor the setf. The
upper panel (a) shows, far= 4, ¢ = 0, np = 4000, and a decreasing sequencewf/n  values
as indicated, the fluctuations of cooperation observed int¥l€arlo simulations. The lower panel
(b) shows the mean-field predictions. The mean-field appré@shown in text to be unable to
predict the observed phase transition. This qualifies nétwexiprocity as a true "critical” social
phenomenon.
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Figure 2.4: Plot of In (1;((:;) versus cooperation, showing the Boltzmannian character of the
stationary probability density of microstates, for a ramd@gular network structure for the sét
The parameter values abe= 1.1, ng = 5000, k = 4, nc = 500, ande = 0. The results shown
here correspond to x 10* Monte Carlo steps (after a long enough transient), for eaehod the

1.5 x 103 different network realizations and/or initial conditions
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

(thus suggesting the existence of a phase transition), while the cordisgatecay for the
mean-field prediction is smooth in the whole range.

To which extent the mean-field approximation fails for low values of the paame /n r,
can be appreciated by confronting its predictiapc(1 — ¢), for the fluctuations of coopera-
tion with the results from Monte Carlo simulations. In F&J3 (panel a) we see how a peak
in cooperation fluctuations is revealed, whef/nr — 0, signaling the occurrence of a phase
transition between two qualitatively different equilibrium macroscopic biehsythat corre-
spond to low and high temptation regimes. The mean-field assumption is thus cuedyitati
wrong if the payoff received frord by Big Brother 2 becomes negligible versus the size

The reasons for this qualitative failure of the mean-field approximation rethe lattice
reciprocity of internal interactions, which is totally absent in the mean fieldoepation. Let
us remind here our remark above on the replicator-equation-type ot effenternal interac-
tions in equationZ.8) because of the mean-field assumption. The transition signaled by the
divergence of fluctuations &t reveals the onset of internal lattice reciprocity, a conclusion that
we now substantiate (see also apperiik4below).

Forb > b*, say in the low-temperature (high temptation) phase, the macro-state is domi-
nated by fast defection invasions on the relatively few nodes that desntageous cooperators
due to sporadic interactions with Big Brother 2. In the appe@dxdwe show that, in the low
c and lown¢/np regime, the BB-imitation events in a given node are typically separated by
intervals of time of about—! time units large. In those large intervals when Big Brother 2’s in-
fluence is null, the very few and mostly isolated instantaneous cooperetaygiakly invaded
by defector internal neighbors. In this regime lattice reciprocity has noceh# develop, and
cooperation is only weakly sustained by the sporadic influence of BB2.

On the contrary, fob < b* (high temperature, or low temptation phase) the local fluc-
tuations of the neighbors strategic field favor the building up of cluster®operators that
resist invasions during time intervals that are comparable to the charactenstimtervals
between BB-imitation events. Under these circumstances the "extra payaffBB2 receives
from © does not anymore need to be high in order to sustain high levels of ctiopertn-
ternal lattice reciprocity enhances the probability of highly cooperativeasstates, so that
the macro-states below transition differs substantially from those of thetéigptation phase.
This was not captured by the mean-field approximation, for these eftspigre a sizable like-
lihood of occurrence for the local fluctuations of the strategic field, aadhéglect of them is
all a mean-field approach is based upon.
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2.4 The role of social structure in Big Brothers competition.

To summarize the discussion of the results shown in figure, a random refgulature
of interactions insidef is enough to support lattice reciprocity mechanisms that cannot be
captured by a simple mean-field approach. The onset of lattice reciprocitg oipole model
is furthermore interpreted as a "thermodynamical” phase transition, in atigdormal sense
(divergence of the fluctuations of an equilibrium extensive paramegecaibperatior). One is
then lead to a sensible and precise formal framework where such a tésocad temperature”
is not a vague metaphor, but it denotes a truly quantitative parameter, a légi{measurable,
observable) social indicator.

2.4.3 What if BB1 and BB2 are directly connected?

If a direct connection between Big Brothers is added (for the set of ioitiadlitions specified in
section2.3, and the conditions on parameters given ibidem), one must compare theictresp
payoffs to see who can invade the other. One easily finds that the dyb#& defector BB1 is
higher than that of the cooperator BB2 provided the following conditionsold

b_
DC ebte—1)—et+—C (2.34)
ng ng

wherec is the (instantaneous) average cooperatioff.inin this case, BB2 will be invaded
with a non-zero probability. Once this eventuality occurs, no cooperatdf Or in €) can
later invade BB2 because all of them have lower payoffs, and fixatidefetction in the whole
network will occur. Note that as the average cooperatiofi fluctuates, the condition above
must be satisfied at the precise time when BB2 has chosen (by chance)pareoits payoff
with BB1, and that due to the high connectivity of BB2 (which is naw + np + 1) the
later event occurs with a very low probability for macroscopic valuesaf In other words,
the eventual invasion of BB2 from BB1 and the subsequent fixationfetcten in the whole
network can take on a very long time.

If the opposite condition holds, say if

"C S elb+e—1)— et € (2.35)
ng ng

when BB1 has chosen to compare its payoff with BB2, then invasion of BBbecur with a
non-zero probability. After this has occurred, BB1 becomes a fluctuatide (for it could be
eventually invaded by an instantaneous defectdF)irbut in the long term fixation of cooper-
ation in the whole network will occur.
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The introduction of a direct connection between Big Brothers in the DipoledVimdikes
fixation of opposite strategies on them impossible, and then asymptotic fixatithe avhole
network of either defection or cooperation will occur, depending onétetive sizenc /np of
component® andJ.

2.4.4 Lowc approximation.

In order to simplify expressions we assume hereafter) andk = 4, and denoté = n¢/np.
For the case of a random regular graph structure of the fluctuating tes probabilityl152
that an instantaneous defector node chooses to imitate Big Brother 2 (measiat from BB2)

is, to first order im !,

BB 1 c+0
G T (k+2) (1 +0)b

(2.36)

while the probabilitylI2Z ., of an invasion event from BBL to an instantaneous cooperator
node inJ is, to first order ina ",

mes = __°© 2.37

Thus, foré < ¢, typical intervals between invasion events from Big Brothers in a node are
(of the order of)c~! time units large. For large values of the temptation, where the valae of
is expected to be very small, the dynamics is consequently dominated, forlyypmgy large
intervals of time, by internal strategic interactions. Let us analyze them.

The internal neighbors of a cooperat@re overwhelmingly likely instantaneous defectors
in this "low ¢” regime, so that will be quickly invaded by them. The only chance for it to resist
invasion would be that its instantaneous neighborhood microstate hadtaineasoperator
neighbors and thdt < (3/2) (note that in this strategic configuration, the payoff & P, = 3
and that of its typical defector neighbors2is). These neighborhood microstates (cooperative
clusters) are so rare fluctuations that low values of the temptateme necessary for their
non-negligible occurrence. Providéds below the transition value, the resilience to invasion
(lattice reciprocity) of cooperative clusters enhances the likelihood eétfiectuations, which
in turn reinforces the clusters resilience, and so on. This positive &e&dmechanism of
cooperative fluctuations enhancement is thus what triggers the transitiagghty cooperative
macro-states, and qualifies lattice reciprocity as a critical social phen@ameno
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Figure 2.5: Fraction of cooperators as a function of the temptation teaté in a ER (BA)
topology for the seff, with nrp = 4000, nc = 3804 ande = 0, —0.2. Each point is averaged over
1600 realizations (40 networks, 40 initial conditions).

2.4.5 General cased is a general random graph.

Let us pay attention to the behavior of the model wheis a graph characterized by a given
degree distributio? (k). While the random regular network (RRN) considered in the previous
section corresponds to the distributi®tk) = 6(k — kr), now we consider two cases: when
F is a Erdds-Renyi (ER) or Barahsi-Albert (BA) network. While in homogeneous ER graphs,
P(k) follows a Poisson distribution centered g, in BA networks the degree distribution
follows a power-law, and the different connectivity distribution determihesystem behavior;
as will be detailed below, the hubs of the S&in the BA case are a deciding factor.

With regard to the roots of cooperation, highly connected nodes are keiiraents in the
intensity of lattice reciprocity mechanism. This is mainly due to the effect that ttveorle
topology has on the distribution of strategies: the formation of clusters gfecators prevents
the invasion of the strategy D in them. If the connectivity distribution is suchttiwat are
very connected vertices, the hubs having an initial strategy C are likelyrto ¢ooperative
clusters, and the change of strategy of these hubs is very unlikelyrdingdo this argument,
BA networks will promote cooperation more than ER ones.

We have numerically studied the system by performing Monte Carlo simulatitarsraf
plementing in the fluctuating séta network topology generated by a routine taken fradd.

This algorithm provides a random network such tRét) depends on a continuous parameter
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10 20 30 40 50
k

Figure 2.6: The main panel shows the probability for a fluctuating nodestoain as a cooperator
for a periodr, for e = —0.2 (PD),b = 2 and a BA structure for the s&. The permanence
probability follows a power law. The inside panel shows thaepss of the main panel, for all
connectivity classes. Nodes with higher connectivity amreresilient to strategy change, which
provides a microscopic basis for lattice reciprocity. Setext for further details.

a: o = 0 (resp, 1) generates a Scale-Freedqp, Poisson distribution) graph. We have scanned
the parameter spader, ¢, b}, with0 < o < 1 (SFto ER). The conditioh > 1 + e(kp + 1),
in practicee > 0, involves PD. In the same way, the constraipt > b(kpr + 1) — enp implies
a large number of BB2 stabilizer agents (8gfor a high connectivity, as in the BA case.
Regarding macroscopic cooperation, the numerical results obtained sloavoany abrupt
transition when the parametervaries: the gradual change fram= 0 (SF) to 1 (ER) implies
a gradual change in The results of the asymptotic value of the average cooperatian be
seen in figure@.5. The figure shows greater cooperation BA graphs than in ER ones, as we
argued above. Moreover, the dependenceai e (always fore < 0, i.e,, PD game) turns out
to be approximately linear for all values @fdepending very little on the type of network:
cle) =cle=0)(1+ke), (e<0), k=~ 1.
This relation is valid for all values df, as verified by low variance of

6e(b) = 31, (€.9.0%(6) = 0.004 for ¢ = —0.2).

2.45.1 Fluctuations.

Given that the elements of the $Etlways have a non-zero probability of strategy change, we
have studied the distribution of tlebharacteristic cooperation time., which is defined as the
average period that a node remains as cooperator. The simulationsisthaitve is indepen-
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Figure 2.7: Fluctuations of cooperation in a ER (BA) topology for the Setwith ny = 4000,
nc = 3804 ande = —0.2, 0.2.

dent of, that is, the characteristic cooperation time for a given connectivity is artdgnt
of the network topology. Figur2.6 shows the probability”(7)that a node of the sék keeps
strategy C during a period, in a BA graph, fore = 0, b = 2 and different connectivity classes.
The probability of permanence decreases exponentially over time andyexted, nodes with
higher connectivity have higher characteristic cooperation time, wdooltitutes a manifes-
tation of the microscopics roots of lattice reciprocity and explains why BA networks show
higher cooperation rates than ER ones. The inset of figushows the slopes of main figure,

and represents the coefficienbf the relation:

P(1) x e (2.38)

As shown,\(k) is monotonically decreasing, which highlights the relationship between

connectivity and network reciprocity.

As in the previous sections, we study the fluctuations of cooperation atoolgastic tra-
jectories. Nevertheless, for a ER or BA structure for thedsahe analogy between the coop-
eration rate variance and the heat capacity is not as justified as in tharraeagolar structure
and, therefore, the study is restricted to Monte Carlo simulations. As shofigune 2.7, BA

structures presents more fluctuations than ER ones.
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2.5 Heat transfer: Two dipoles in contact.

The system shown so far constitutes a Markov process. We have sssgiion 2.4.2 that, in

the scope of applicability of mean field approximation (as whiéma RRN), the model satisfies
detailed balance conditior2 29. Therefore, in the stationary state we deal with a reversible
Markov process described by the Boltzmann distribut@B3@. However, the analogy of the
model with a real particle system has a drawback: the equivalent aj\eisethe total number

of cooperatorsn g, which means that the model is not conservative. Despite that, it's hard
not to wonder how two dipoles behave when they come into contact. Theshtaréhis
extension of the original model is wide: On one hand, we can study the vabitihe social
temperature concept and evaluate its relation to the physical temperatutberfore, the
expanded model allows to study the interaction between two evolutionaryrigseboth with

two pure strategies.

2.5.1 The double dipole model.

In order to simulate the heat transfer, we consider two dipbleandD-, composed by respec-
tive fluctuating sets;, the hubsBB1; and BB2; and the cooperating set§. The subscript

1 indicates the dipole subsystem to which it belongs; 1, 2. Both dipole subsystems have
the same sizenc, = nc, = nc, np, = np, = np. Therefore, from now on, these sizes
will be denoted by andnyr. The parameter is common for both dipoles, and the differ-
ence in payoffs is determined by the respective paramgteihe definition of temperature,
gt = —(lng%)*l = f(b), leading to the Boltzmann distributiog.30), takes us to uskas
an independent variable. This procedure allows to control the tempeateach of the two
dipoles when they reach their respective stationary states.

Let I’ be the set of initial conditions: the Big BrothefsB1; are defectors, Big Brothers
BB2; are cooperators, and all nodes in g€tsare also cooperators. There is not constraint to
initial strategies for elements in ses. To ensure that I’ is a invariant set of the evolutionary
dynamics, we maintain the restrictions of sectib8 now take the formng > byae(kp +
1) —enp andb; > 1+ e(kp + 1), whereb,,q, = sup{b;}.

2.5.2 Dynamics.

The subsystem®; and D,, after setting their parameters, are left to evolve according to the
usual dynamic to reach equilibrium. Once reached their respective stgtgiatest = 0), we
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Figure 2.8: Structure of the Double Dipole Network. On the left side ipresented the model
before thermal contact: Without any link between the détsand ;. On the right, after the
thermal contact: With links connecting nodestgfto nodes off,. Nodesl; and2; (Big Brothers)
are linked to all nodes if;. Furthermore, nodey are also connected to all nodes(in Nodes in
setsF;, C; are internally connected, forming a defined network. Ih@@nditions (on left side) are
indicated by colors: red for cooperators (nodesind setC;), blue for defectors (nodek), and
green means arbitrary (seffs). See the text for further details.

connect both fluctuating sets as follow: We choose at random aiafer; and a neighbor
j1, in the same way, we choose another negdef F> and his neighbor,. Subsequently,
we remove links connecting those nodes, and conietd i, andj; to jo. We repeat this
processkknp/2 times, wherex is a coupling parameter. After that, the system will evolve
again according to the habitual dynamics. When a nioafedipole n choose a neighboy of
dipole m to play, both agents take's pay-off matrix, i.e. the temptation to defecttis. We

have studied the evolution of the system, the observables and stationary states

2.5.3 Effective temperature.

The intrinsic observables of the extended model@reHowever, it is possible to study the
final temperature of each subsystem by introducing the concept cofiefféeemperature.

By exp(—f8) = Qcp/Qpc, we know that stationary state temperature in an isolated
dipole, when7 is a RRN, is a functiory (b, e, nc, nr). Besides, if all other parameters keep
fixed, the cooperation is given by a monotonically decreasing funetion Therefore, if we

keep constant all other parameters, each valuscofresponds to a value bf
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We define the effective temperature of a subsysteitb;, ¢, nc, nr) as the value oB~!
that would fall to his levet; of cooperation in an isolated dipole(b;, €, nc, nr) in stationary
state. The effective temperature is applicable to each subsystem, onoetperimal contact
and reached a new stationary state.

We can study now the temperatures of the subsystems before and afteg jphtin in
contact. The problem is that, knowing the asymptotic value; ofve can not infer3 for any
topology in setd, unless we use an approximation as MF. Therefore, we use the othserve
value of ¢ as relatives of the temperature. The Big Brothers’ influendkicating sets; is
determined by its payoffs, which in turn are a functiorgb;, nc, n ande. An interpretation
of the influence of BBs orF; is that the setd’; are thermodynamic systems in contact with
respective heat baths. The influence of the heat baths remains dfiegpgbhe dipoles in
contact, therefore the effective temperature of both subsystems nebd aqual once it has
reached the new stationary state, unless the coupling parameter (s5.

In the model, there are only two strategies or accessible levels by elemethecamexists
a extern source of cooperation: The s@is It is therefore possible to have configurations in
which there are more elements adopting cooperating strategy than dedeahdithe system
can be characterized by a negative effective temperature. This is osdybe if the external
field (heat bath) has enough influence, that is, for high valueg:oNegative temperatures are
possible in both dipole, before and after heat contact, for high encalges/ofn.

2.5.4 Mean-field approximation.

For an isolated dipole, in subsecti@m.2we assumed that the fraction of instantaneous co-
operatorsc[i] in the neighborhood of a node i, is the fractiorof the whole set¥. In or-
der to generalize MF approximation, now we mak& to correspond to the weighted aver-
age of the cooperation: We assume that for a fluctuant mpdéethe dipole D+, in thermal
contactx with another dipoleD,, the fraction of cooperators in the neighborhoodi pis
cli1] = (1 — K)e1 + keo. In the same way, we takéis] = kep + (1 — k)ce. In the model,
according to2.5.2 when a node of dipole n chooses a neighbor to play, theytakim this
approximation we assume the average temptation to defedb; +b-) /2 for heat interactions
(between two fluctuating sets).

Under these assumption, the payoffs of Big BrothBis1; and BB2; are given byP;; =
bicing and Py; = ne + eing + €(1 — ¢;)np, while the payoffs of a cooperator node and a
defector node af;; are:

60



2.5 Heat transfer: Two dipoles in contact.

Pa=k(Aer + kea) + 14+ e(k(AN1 —c1) + 6(1 —¢2)) + 1)
Py =k(ker +Aea) + 14+ e(k(k(l —c1) + A1 —¢2)) + 1)
b

Py = (k:)\cl + 1)()1 + krcab |
Pgo = krcib + (kdea + 1)by

(2.39)

wherel =1 — k.

b; > 1 implies Py; > P.;. Without loss of generality, we assume that> b;. If there is
not constraint tos, can not ensure that; > P.; nor Py > Py for anyi # j. For nodes in
F;, each time step, the probabiliti€sy; (a cooperator changes its strategy to defector) and
Qcpi (a defector changes its strategy to cooperator) are:

Opey = tu—Ffa
(k + 2)7’LFA
—i—k)\(l — C1)(Pd1 — Pd) + Ii(l — CQ)(Pdg — Pcl)H(PdQ — Pcl)
(k+ 2)2A ’
Qopi = Py1 — Py n kﬁcz(Pcz — Pyp)H(Ps — Pa)
(k + 2)BnpA (k+ 2)2A ’
P — Py
@pcz = (k+ 2)npA
—i—kﬁ(l —c1)(Ppn — Po)H(Py — Pea) + M1 — ¢2)(Pg2 — Pe2)
(k+ 2)2A ’
Qs = Py — Pyo n kﬁcl(Pcl — Py)H (P — Pgo)
(k + 2)BnpA (k+ 2)2A ’

(2.40)

whereH (z) represents Heaviside’s step function, that takes value: T~if0, 0 otherwise.
After a time step, the fraction of cooperators in Bets given by:

ci(t +1) =ci(t) + (1 — ¢i(t))Qecpi — ci(t)Qpci - (2.41)

Now, we can replace2(39 and .40 in (2.41) to achieve two coupled finite difference
equations fok;. These equations provide the evolution of the system and the stationary state
according to MF approximation.
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Figure 2.9: Evolution of macroscopic cooperation after putting in emtttwo dipoles#{ = 0),
with & = 4, np = 4000, ¢ = 0, n¢ = 100, by = 1.1, and for different values df;, = 1.5 (A,B),
bs = 1.8 (C,D) and coupling parametes: = 0.25 (A,C), k = 0.5 (B,D). Solid lines represent the
results of the simulations, while dotted lines represemtMir approximation. Black lines represent

to dipole D, and red lines to dipol#®,. Time unit corresponds to a Monte Carlo step. See the text
for further details.
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Figure 2.10: Macroscopic cooperation levetsfor both subsystems, versus the size of pure
cooperators sets, with= 4, nr = 4000, ¢ = 0, x = 0.5 and RRN structures in fluctuating sdts
Upper panelsshow the results of Monte Carlo simulations, after a longughdransient, averaged
over5 x 10* steps and x 10 different network realizations. The temptation paranstérboth
sybsystems are fixed & = 1.1 (blue, +) andb, = 1.5 (red, x). The upper-left panel corresponds
to the stationary state before putting in contact the dpa@ed the upper-right panel corresponds

to the stationary state after exchangingn g links. Lower panels Mean field estimate for the
same values of parameters.
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2.5 Heat transfer: Two dipoles in contact.

before contact after contact

Mean field Experiment

Mean field

Figure 2.11: Upper panels Cooperation levels in dipole®; (blue, +) andD- (red, x) versus the
differenceb, — b, of temptation parameters. The rest of parameters have beshtéib, = 1.1,

k =4, ngp = 4000, nc = 100, ¢ = 0 andx = 0.5. SetsF; are endowed with a random regular
graph structure. Symbols correspond to the value of ¢ oramhesl stationary state, averaged over
5 x 10* Monte Carlo steps and farx 10® different networks, before (left) and after (right) putfin
in contact the dipolesMiddle panels. Mean-field estimation of cooperation levels in dipoles
(solid blue lines) andD, (dashed red lines), before (left) and after (right) contémt the same
values of parametersLower panels Mean-field estimation of effective temperaturEs;; of
dipolesD; (solid blue lines) and), (dashed red lines), before (left) and after (right) contéuot
the same values of parameters.

In all panels, the temptation paramebegrof dipole D, remains constant (blue), while varying the
respective parametés of dipole D, (red).
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

2.5.5 Numerical results.

We compare the mean-field results, obtained by evaluating the expreg2sidnhiteratively,
with experimental ones obtained from Monte Carlo simulations. The valugsarice station-
ary state is reached, are related to the effective temperatures accargibgl

In order to study transition phenomena, we measure the cooperation evdtatiothe sta-
tionary states for the isolated dipol&s to the stationary state after thermal contact. R
shows the evolution of cooperation, by comparing simulations results with kifRas, for
different values of coupling parameterandb, — b; (in monotone bijection to initial temper-
ature difference). One can observe that the mean-field predictionslerioigher cooperation
values. This failure of MF approximation, as in the sectofh.2.2 highlights the importance
of lattice reciprocity, which is ignored in MF approximation. As expected, thisédtimate,
provided by the finite difference equatior’s42), is coherent at = 0 with the MF estimate of
the sectior2.4.2.2 provided by the fixed point of the differential equati@(©).

The results for the asymptotic values of the average cooperation, that isltles of; at
the stationary states before and after the thermal contact, versus thé fiimtuating set<”;
are represented in figur2.(0. As shown, for low values afi the difference in cooperation
between the dipoles is smaller than for high values@f This is a consequence of the BB’s
influence, which grows as do the size of the set of cooperating nodgsanBther way, the
influence of heat bath increases with /n . This has a direct explanation because the size of
nc does not affect the payoff of fluctuating nodes, but it does incrirspayoff of cooperator
hubsBB2;.

The upper panel of figur2.11shows the average cooperation c versus the difference in the
temptation to defedi; — by, once fixedne = 100, np = 4000, ¢ = 0, kK = 0.5, by = 1.1
and takingb, as independent variable. For high value$gfthe proportion of cooperators of
both subsystems after heat transfer and once reached the new syasiatertend to equate:
The heat bath effect decreases with,.., and cooperation final ratios tend to be equal when
be increases. When we use the MF approximation, the same results can beednfatm
the perspective of effective temperature, as shown in the lower pafiguee 2.11 Effective
temperature decreases@sncreases, and then it increases whemcreases. The final tem-
perature difference depends on the value of the coupling pararmetdrighers implies lower
difference. Howevers > 0.5 means that in average, nodes have more links to the other fluctu-
ating set than to his. Therefore, for small enougtsize ands > 0.5, the final temperature of
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initially hotter dipole will be lower than the opposite dipole final temperature.

2.6 Prospective remarks

The plausibility of a thermodynamical perspective on evolutionary gamendigsastudies is
not a new issue, for it is somehow implicit (or at least connatural) to a bbdgsearch lit-
erature on statistical mechanics of strategic interactia6s121). What our simple analysis
here shows is that it can sometimes be strengthened up to a formal interprefai@ntitative
macroscopic social indicators as thermodynamic quantities. In the exteittitblgs to under-
stand and to quantitatively characterize the phenomenology of sociatandraical models,
it should be recognized as a powerful theoretical perspective. Wlesen more important,
this perspective emphasizes the central role of quantitative (experimaogatyvational) stud-
ies in social sciences, and could provide, in those contexts, alternatblalmneanings to
guantitative social indicators and even suggestions for new and beétgr on

Any "general-physics” trained scientist recognizes that entropyoreag is an extraordi-
nary powerful tool for the analysis of macroscopic behavior in (matettiad)itional-physics
systems. It turns out that some of the models (at least a bunch of interestisy of social
phenomena are to a large extent amenable to a macroscopic descriptientidrarodynam-
ical concepts have proved to be essential. Of course, some notionsdik&First Law of
Thermodynamics” could be often absent in these new contexts. Howevemphasize that
the absence of energy as a variable in social models is not a shortcomihg fapplicability
mutatis mutandof many aspects of the thermodynamical formalism to these models. A word
of caution is nevertheless worth here regarding typical system sizesrotted social ex-
periments, where finite size effects could be hugely determinant. Also,hmudsnot expect
always social processes to be amenable to equilibrium descriptions,nétkats them even
more interesting from the physicists point of view.

Nowadays, it is somewhat generally accepted that physics in genatataistical physics
in particular, offers a powerful tool-box for problem solving in soci@esces and many other
areas. Recent trends in cognitive scieric& have correctly emphasized the power of the "di-
versity of perspectives” in problem solving, so it does not come aspisarthat adding phys-
ical perspectives to social models may sometimes pave the way to the needkthimugh.
Perhaps one should also wonder about the possibility of reverse flowse thterdisciplinary
approaches to social sciences. After all, the proper use of a tool teelfssreshaping, and
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

one could perhaps expect some kind of feedback. In other wordgresdmy new physics that
we can learn from the study of social and economic complex systems? Onigcitigrse to
empirical and quantitative methods in the study of social phenomena may likelgigies for
sensible answers to this question.
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Chapter 3

Cooperation in changing
environments: Irreversibility in the
transition to cooperation in complex
networks.

In this chapter, we study the evolutionary dynamics of the prisoner’s dilename gn differ-

ents complex networks, focusing on its reversibility under adiabatic vargatbthe payoff
matrix parameteb (temptation to defect). We find that, for the networks considered, the pro-
cess is reversible provided it is kept away from the absorbing statesrtReless, irreversibil-

ity appears when the level of cooperation reaches a tipping point, emexdiysteresis cycle

whose shape depends on the underlying topology.

3.1 Introduction.

Evolutionary dynamics has been widely used to describe the evolution oflmalpeconomic
and social systemsl®). The replicator dynamics afvolutionary game theor(feGT) pro-

vides a powerful tool to study the progress of strategies through theteawwslution (L7; 79).

In this respect, one of the hot topics of the evolutionary game dynamics isntterstand-
ing of the observed evolutionary survival of cooperative behavioorgy individuals despite
selfish actions provide higher fitness (reproductive success).ibBoghe most used EGT
model to formalize the emergence of cooperation is iterBtegbner’s DilemmgPD), a sym-
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3. COOPERATION IN CHANGING ENVIRONMENTS: IRREVERSIBILITY IN THE
TRANSITION TO COOPERATION IN COMPLEX NETWORKS.

metric two-player two-actions game where each player choose one of thavailable ac-
tions: cooperation or defection: A cooperator receiv&$rom another cooperator ansl
from a defector; a defector receivésfrom a cooperator an@ from another defector; pay-
offs satisfyT” > R > P > S. Several studies on the iterated PD on complex networks
(16; 19; 81; 82, 83; 84; 85; 86; 87, 90; 101; 102 103 104) show that the cooperation level
depends strongly on the topology of the network. The existence of catipe enhancing
mechanisms based on the interaction structure now is widely accepted: $teFioly of coop-
erators could provide high enough payoff to the cooperator nodesis irvasion of defectors,
even when defection is favored by the one-round two-players ganhgsand-or small values
of PS (i.e, PS <« TR), cooperation decreases slowly whét increases from zero, and
becomes zero at a value Bf R > 1 that depends on the network considered.

Recent studies of replicator dynamid®6) on graphs show that fixation of cooperation on
certain nodes occurs after transients, in which the trajectories arectdréad by a partition
of the network into three sets: the €ebf pure cooperators (nodes where cooperation is fixed),
the setD of pure defectors (nodes where defection is fixed), and the sdéfluctuating nodes
(nodes that never reach an unchanging action). Furthermore tmelsa<f cooperation in the
evolutionary PD on complex networks has been recently studiEg),(showing that the level of
cooperation under different network structures is robust agaimisiticen of initial conditions.
The aim of the present study is to investigate evolutionary PD on complex netimachanging
environments, in particular its reversibility under variations of temptation toctiéfeand to
determine how topology affects reversibility.

3.2 The model.

We consider a two-players two-actions game, where each player choosef the two avail-
able actions, cooperation or defection: A cooperator earns R wheimglagth a cooperator,
and S when playing with a defector, while a defector edtnghen playing with a defector, and
T (temptation to defect) against a cooperator. When R > P > S, the game is called Pris-
oner’s Dilemma (PD), while if” > R > S > P itis called Snowdrift Game (SG). In this work
we study a variant of PD called weak Prisoner’s Dilemma, placed in its boymédspect to
SG, thatisl’ > R > P = S. In PD (including weak variant), whatever the opponent’s action,
the payoff is never higher for cooperation, and a rational agentidlohowose defection. Still,
two cooperator agents receive higher pay®fR) than two defector onegP), which leads to
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the dilemma. Provided the relative selective advantage among two indivicegads on their
payoff’s difference (see below), we can normalize without loss oégaity the pay-off matrix
taking R = 1 and fix the punishmen® = 0. Then only a parametdr = b > 1 is a system

variable.

In this study we implement the following replication mechanism: At each time step, eac
agent; plays once with each one of its neighbairs.(agents connected ) and accumulates
the obtained payoffsp;. After that, the individualsj, update synchronously their actions
choosing a neighbgrat random, and comparing their respective paybffandp;. If P; > P;,
nothing happens andpreserves its action. Otherwise,#f > P;, i adopts the action of its
neighborj with probability IT;; = n(P; — P;). Next, all payoffs are reset to zero. Herg,
is a positive real number, related to the characteristic inverse time scalexrgee itais, the
faster evolution takes place. We consider that players and connectitisdn them are given
by a fixed graph where agents are represented by nodes, and atlivéebenodes indicates
that they interact. We choose here the maximum valug thfat preserves the probabilistic
character ofl;;, that is,n = (max{k;, k;}b) !, wherek; is the number of neighbors of agent
1 (connectivity or degree). This choice, introducediB)( slows down the invasion processes
from or to highly connected nodes (hubs), with respect to the rate dimvarocesses between
poorly connected nodes.

Our aim is the study of the reversible (or irreversible) character of e@ion levelc
under the variation of the temptation to defect paramigt@rherec is defined as the number
of cooperator nodes divided by the total populatioa N./N. In order to study the system’s
behavior, we choose an initial value lof= b, such that the asymptotic cooperation vadtie
close to a halfc(by) ~ 0.5. Once the system has reached stationary state, we deéreage
guasi-static way, that is, in ste@sh < 0 small enough to ensure that the system remains very
close to equilibrium. Along this process, we compute the stationary value pecationc(b)
for each value ob. To avoid getting stuck in the absorbing states we deal with large enough
networks sizesl{ > 10°), considering that fluctuations decrease according to the square root
of the system size. Once the system has almost reached the absorbirg-=siateve reverse
the sign of the increase iy i.e. Ab > 0, to almost reach the other absorbing state 1, and

then again decreagdo complete the cycle.
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TRANSITION TO COOPERATION IN COMPLEX NETWORKS.

3.3 Results.

To study the influence of network topology in the reversibility of the proce&sconsider

three different network models: Random Regular Graphs (RRGisERdnyi and Scale-free
networks. In the case of RRGH., random networks of fixed degréewhich means that every
node has the same number of neighbors), adiabatic cycles are identitéd; tha behavior

observed in the numerical simulations with RRG corresponds to a resrsible process

3.3.1 Erdds-Renyi networks.

Erdos-Renyi (ER) networks are random graphs characterized by a binongedeléistribution
of any particular node, this distribution is Poisson for large nunibaf nodes. To study the
processes reversibility, we have performed numerical simulatior®’imdependent networks
of size N = 1.2 x 10° generated through Edd-Renyi algorithm. As outcome, for reduced
cycles, that is, when the return points are far from absorbing states N.(byin) > 1,
N.(bmaz) > 1) the processes are reversible and the level of cooperation is indagesfdhe
sign of the increase ih. Nevertheless, when return points are close enough to the absorbing
states ¢(bmin) ~ 1, c(bmaz) =~ 0), ER networks show a dramatic irreversibility. In fact, once
the level of cooperation reaches a tipping point, all processes areriiele. In particular,
there is a strong resilience of cooperation (defection) when increas#oggasing) the value of
b. However, the backward and forward transition curves are identicahfermediate values
of cooperation. The proximity of the tipping points:(b,,in), ¢(bmas) to the absorbent states
in both ends of cycle turns out to be similar= ¢(byin) = € = ¢(bpaz) @and, for the networks
size used, it takes on the valae: 2 x 1073.

As a result, once the population has reached a cooperation level dimow/) a tipping
point, the system shows a reticence to retrieve the past level of coopesdiem the parameter
b increases (decreases). This phenomenon is independent of thaelpaiER network, being
observed in all network realizations. FiguBel shows the level of cooperatiofe) versus
the temptation to defedt, averaged ovet0? realizations in distinct ER networks. Different
realizations show differerttincreasing and-decreasing curves, whose envelopes are depicted
as dotted lines in Figurg.1 Remarkably, the dispersion of the different curves is much larger

for theb-decreasing direction.
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Figure 3.1: Cooperation leve|c) versus the temptation to defécaveraged over0® ER networks
(solid lines) and envelopes (pointed lines). Red linesaspnt semicycles with increasihgnd
blue lines represent semicycles with decreasirithe network size i&V = 1.2 x 10°. See the text
for further details.

3.3.2 Scale-free networks.

Scale-free (SF) networks are random graphs whose degree distitit(%) follows a power
law, that is, P(k) ~ ck~. We ran simulations ir5 x 10 independent networks of size
N = 1.2 x 10° generated through the Bagsdi-Albert algorithm. Although most of the SF
networks show nearly reversible behavior, arobfitl of networks show a strong hysteresis.
Nevertheless, irreversibility in SF networks should not be considerad@® event: Increas-
ing the network size increases the proportion of networks that shovergiée behavior. The
explanation for this fact is that the use of larger networks allows to apprciaser the absorb-
ing states: = 0, 1 without getting stuck in them. Based on this argument, we have separated
realizations showing a reversible behavior from irreversible ones. dsetlatter cases, hys-
teresis shows up only for low values &f in other words, when cooperation is very small,
backward and forward(b) curves are almost identical. Moreover, the behavior of the system
in b-increasing semicycles is always similar, the cooperation le\igltaking approximately
the same value in all realizations, regardless they are reversible orgitdee On the contrary,
c(b) curves are different for different (irreversible) realizationg-tlecreasing semicycles, and
show a substantially larger dispersion that those of ER networks.

The results of the average cooperation le\las a function of the temptation to deféct
for SF networks showing irreversible behavior, are presented in figi@reThe return points
bimin, bmaz Were chosen such thatb,,..) = 1 — c(bnin) = ¢, for a value ofe = 1073. Note
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3. COOPERATION IN CHANGING ENVIRONMENTS: IRREVERSIBILITY IN THE
TRANSITION TO COOPERATION IN COMPLEX NETWORKS.
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Figure 3.2: Cooperation leve{c) versus the temptation to defécaveraged ovet00 SF networks
(solid lines) and envelopes (dotted lines). Red lines mgaresemicycles with increasirbgand
blue lines represent semicycles with decreasin@nly irreversible realizations are shown. The
network size iV = 1.2 x 10°. See the text for further details.

that, despite the small value afthe network sizeV is large enough to asses that we are not
dealing with pathological cases, since a vatue- 0.001 involves a number of cooperators
N, = 120. In the same way; = 0.999 implies 120 defector nodes. As shown in envelopes
(dotted lines), the degree of irreversibility varies greatly from each @@diz. Specifically,
irreversibility depends on the particular network, since for a given nétwepeated cycles
share approximately the samé) curves for a given (forward or backward) direction. A
most remarkable feature of the irreversibility in SF networks is that, forénslile network
realizations, the value of the temptation to defect needed to reach a coapéegel ofc =
1073 is b,in < 1, that is to say, outside the PD game range.

3.4 Microscopic roots.

Previous studieslQ9, 112 113 have shown that, in the asymptotic states of the evolutionary
dynamics of the PD game, under the updating of the actions explained ahevestwork is
generically partitioned into three sets of nodes: Pure cooperatorss(mdege cooperation has
reached fixation), pure defectors, and fluctuating strategists (ndua® ixation is impossi-
ble so that defection and cooperation alternate forever). Pure @ioperesist invasion by
grouping together in cooperator clusters, each of these connectgidpbb keeping around it

a cloud of fluctuating strategists. The basis for an understanding of theiisible behavior
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3.4 Microscopic roots.
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Figure 3.3: Numbern... of cooperator clusters (blue, thick lines) and relative gizmain cooper-
ator clusterG./N (red, thin lines) in ER networks. Solid lines represkutecreasing half-cycles
and dashed lines represénincreasing half-cycles. The system size\is= 1.2 x 10°. We have

averaged over 50 simulations.

in ER networks is found by looking along bothificreasing and-decreasing) branches at the
details of this microscopic organization of cooperation. In particular, int\idiows we pay
attention to the number and size of pure cooperator clusters as a funchiofRigéire3.3shows
the averaged relative sizé&./N) of the largest cooperator cluster, and the average) of
the number of cooperator clusters versus the temptation to defiedboth semicycles for ER
networks.

Let us first analyze the&increasing semicycle. In typical configurations near the absorbent
statec = 1, the pure cooperators percolate the network conforming a giant catopetuster
whose averaged relative siz&./N) ~ 1. As the temptation to defeétincreases, starting
from such configurations, the existence of a single very large clusteuref cooperators al-
lows initially for a very efficient resilience to invasion by defectors until lugeofb ~ 1.16
is reached. From there on, invasion processes are dramatically edremoducing the frag-
mentation of the large cluste(G./N) decreases quickly, the large cluster giving birth to an
increasing numbet,.. of small clusters of pure cooperators, thab at 1.23 reaches its maxi-
mum valuen.. ~ 160 when the large cluster size has been reducédtgN) ~ 0.15. Further
increase ob reduces both the number of pure cooperator clusters and the size ofgéstla
one: Atb ~ 1.8 basically only the largest cluster remains with a very small size which keeps
decreasing further beyond the tipping point (typically found at 2).

Now we analyze thé-decreasing semicycle. Back from the typical configuration reached
past the tipping point near the absorbing state 0, when decreasing the temptation value
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Figure 3.4: Relative size of the main cooperator cluster/N for reversible processes (dashed
line, red) and irreversible ones (solid line, black) in thdecreasing semicycle\p < 0) on SF
networks. Averaged over thH&0 different networks studied that show irreversible behavithe
system size iV = 1.2 x 10°.

b the very small size of the remaining pure cooperator cluster cannot bérefienlarge its
size) enough from cooperative fluctuations nearby; correspolydimglevel of cooperatiofc)
remains well below the values observed for thiecreasing branch. It is not until a value of

b ~ 1.6isreached, thaz./N) starts a significant increase. Simultaneously, some cooperative
fluctuations in the cloud of fluctuating agents form separated small cdopehasters, so that
n.. also starts to significantly detach from zero. At aroéind 1.5 both (G./N) andn.. (as
well as the average level of cooperatign) show already values that are very close to those
exhibited by theh-increasing branch. However, once reached the valuel.23, wheren,.

has its maximum value (and, as explained in previous paragraph, the fregioe of the large
cluster of pure cooperators reached an end irbimereasing branch), though further decrease
in b leads to an increase of:./N), and a concomitant decreasergf. due to the connection

of small cooperator clusters to the largest one, these processes takeapla slower pace
than the corresponding fragmentation occurring foritecreasing branch. The consequence
is that the cooperation level values in this rangé eflues for theb-decreasing branch are
significantly lower than those for theincreasing semicycle. Note that though the values of
(G./N), ne, and(c) in the range of intermediate23 < b < 1.5 values are very similar in
both branches, the system keeps memory of the path followed, demonsthatimgportance

of the particular topological details of the organization of cooperator chiste

A significant difference, regarding the microscopic organization opeaation, between
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3.4 Microscopic roots.

ER and SF networks, is the observation first reported.iig)that for SF networks pure co-
operators group together in a single cluster, while in ER networks theyisaggtegated into
several cooperator clusters for generic values. dh our simulations here we are using net-
work sizes that are larger than those usedLidg| by a factor of30, and for SF networks we
have observed nodes that, though being isolated from the main coopsuster, remain co-
operators during observational time scales. Strictly speaking they apaireotooperators, for
the probability of invasion by the defective strategy is not strictly zero (inh&lcases ana-
lyzed), though it turns out to be exceedingly small, due to the large conitg¢tiegree) of
these nodes. These quasi-pure cooperators appear in bothibievansl irreversible network
realizations. For a network size &f = 1.2 x 10° its number is never larger thanfor re-
versible realizations anitincreasing branches of irreversible ones, and not larger tthdor
b-decreasing branches of the latter. Their contribution both direct anckaddthrough the
cloud of fluctuating strategists each one keeps nearby) to thedefeboperation can be con-
sidered as negligible. Still one cannot discargriori an eventual role they might play in the
reshaping of the main cooperator cluster during the hysteresis cyclatmuter irreversible
realizations.

In figure 3.4 we plot the relative size of the cooperator clusi@r./N) averaged ovet00
irreversible realizations for both forward and backward branchawefycle. Contrary to
what happens for ER networks at high values of the temptation to defeet starting to
decrease it frond,,;,, the size of the cooperator cluster in SF networks initially follows very
closely the values of the forward branch uitit: 2.5. However, significant differences in the
average cooperation valye) (see figure3.2) are already noticeable fro~ 3, indicating
that the contribution from the cloud of fluctuating strategies is lower for tlegvard branch.
When further decreasingdown fromb ~ 2.5, the averaged size of the cooperator cluster
takes on values progressively lower than in thiecreasing branch. This agrees nicely with
the observation just made in the previous sentence on the cloud of flucteatitegies, for
the growth of the cooperator cluster originates from the cooperativieiéltions in its frontier,
and thus the strength of these fluctuations determines the pace of the dzesgmosvth. The
difference between forward and backward branches persists @othie tipping point, which
somewhat surprisingly occurs for valuesbajutside the PD game range.
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Chapter 4

Evolutionary dynamics on
Interdependent populations.

Although several mechanisms can promote cooperative behavior, tmergéneral consensus
about why cooperation survives when the most profitable action fordividnial is to defect,
specially when the population is well mixed. Here we show that when a replidegcevolu-
tionary game dynamics takes place on interdependent networks, cthapéehavior is fixed
on the system. Remarkably, we analytically and numerically show that this isteyease for
well mixed populations. Our results open the path to new mechanisms able to sostaer-
ation and can provide hints for controlling its raise and fall in a variety of lgickd and social
systems.

4.1 Introduction

The onset of global cooperation in large populations of unrelated agdms defective ac-
tions provide the largest short-term benefits at the individual leveltitotes one of the most
amazing puzzles for evolutionary dynamidsl(124; 171; 172). During the last decade, the
structure of the interactions among individuals seems to have provided awvdgr coop-
eration to survive in those scenarios, such as the Prisoner’s Dilemmag@g, in which
defective behaviors are evolutionary favored under the well-mixeghgstson (L6; 88). Al-
though recent results have shown that network reciprocity is not alaajable mechanism to
explain cooperation among humans (s&g, chaptei), larger cooperative levels are achieved
if an evolutionary game dynamics takes place on top of structured populatidngetworks, in
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which nodes account for players and links represent the existeryzarad interactions. More-
over, further including real structural patterns of large systetfis(6cale-free distribution for
the number of contacts a player ha8& 109, the small-world propertie8(), nonzero density
of triads (L73), etc) provides also high cooperative outputs.

On the other hand, in most cases, a real populatidye it a biological or a social system
— is not isolated and interactions take place at and between different levdds/érs) follow-
ing different rules {74, 175. Think of for instance in an economical system, where different
levels account for different competitive markets and their interdepeneie(developers, man-
ufactures, providers). The rules governing the interactions at oee &g not necessarily the
same that those driving the dynamics at another layadmittedly, within each layer com-
petition should exist while this is not necessarily the case for inter-layeaittens. Thus, a
natural question arises as to whether the observed degree of inteddepg in real systems is
a relevant factor for the emergence and survival of cooperativavier.

The previous interdependency, which is also referred to as multiplexitypeaasily incor-
porated into the framework of any dynamical process by coupling two og metworked popu-
lations in which links between individuals of the same population involve a diftatynamical
relationship to those stablished between members of different populatioGsl{i 7, 178). In
this chapter, we focus on the case in which an evolutionary PD game dhigésteractions
between agents of the same population. On its turn, the existence of linksebedgents of
different populations allow the two networks to interact. We will assume thattter inter-
actions are ruled by the Snowdrift (SD) game. In this way, defection isspad when facing
other defectors outside the original population, thus balancing the evauiadvantage that
defectors find by exploiting cooperators in their respective populations.

We henceforth analyze what new emergent behavior results from the welltikgure of a
system made up by two populations that interact through a number of linkectimg nodes
located at each subsystem. Exact analytical calculations can be cautiéor dhe case in
which the population of each layer is well mixed, through the nonlinear asatyshe two-
coupled-variable replicator equation for the strategic densities in bottsla@eir results show
the emergence of a nepolarizedstate in which all the individuals in one of the populations
cooperate while all in the other population defect. In addition we djndsi-polarizedstates,
so that all the agents in one population are defectors, while most of theartharooperate.

Moreover, we also numerically show that the previous results hold forake of networked
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4.2 The model: Evolutionary dynamics on two interacting populations.

(a) b=1.100 (b) b=1.120 (c) b=1.174 (d) b=1.300
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Figure 4.1: Phase portrait of replicator equatich ) for the symmetric casei(= 1) and weak PD

(r = 0) intra-population game, for different values of the tentiptab, with p = 0.3, ande = —0.4.
The direction of velocity field is indicated by the arrowsdats modulus by the colors. We also
plot the interior nullclines. For low values éf(a), the polarized states A and B are attractors.
They lose stability ab = b“? (b), in favor of the quasi-polarized states A’ and B’. These imtu
destabilize ab = b° (¢) when the nuliclines coincide in a line of marginally stabdgiéibria. From
there on, the interior equilibrium E becomes the globabattr(d).

populations. As we will discuss later on, our findings provide new mecimeisr the rise and

survival of cooperation and for its control.

4.2 The model: Evolutionary dynamics on two interacting popu-
lations.

Let us first describe the evolutionary dynamics of two interacting popukatibisize N; and
N>. Two agents belonging to the same populatio= 1, 2) play a PD game so that a coopera-
tor facing a cooperator (defector) in populatieobtains a payofl = 1 (S = 0). On the other
hand, a defector facing a cooperator (defector) obtains a benéfitefb > 1 (P = r > 0).
The games played between agents of different populations follow the saramgterization
except for the situation in which two defectors meet. In this case, the agbpianishment is
negative,P = ¢ < 0 — thus, inter-populations games follow the SD formulation. Importantly,
the strategists’ competition for replication only occurs among own-populatéyers. That is
to say that there is no "interbreeding” (as it happens for differentispgin biological con-
texts) or "strategic diffusion” (as for functionally heterogeneous layesocial or economical
contexts) among the individuals of different populations. In terms of inggéfbr/and irrel-
evant) knowledge, the strategists from a population are unaware ofgheatang success of

strategies in the other population (or/and this information is irrelevant forptegion).
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4. EVOLUTIONARY DYNAMICS ON INTERDEPENDENT POPULATIONS.

4.3 Well-mixed populations: Analytical formulation.

To start with, consider the case in which agents of the same population) @agexell-mixed.
Let us also assume that bol¥y, and N, are large enough,e., N1, Ny > 1. Under these
simple assumptions, an exact analytical description via the analysis of tee pbétrait of
the two-dimensional replicator equation for two-by-two matrix games is possibtair well-
mixed population approximation an individual in populatierhas N, — 1 neighbors inside
this population. Moreover, for interactions between the two layers, weosgathat any pair of
nodes (each one of a different population) is present with probabpilifjhus, the number of
inter-population links is equal to- N; - N».

Let us callz, the fraction of cooperators in the populatianThe replicator equations for
the evolutionary game dynamics are

i o= (= a)[(N = D@1 =b+7r)—r) +
Nop(w2(1 —b+€) —e)]
bo = wo(l—2)[(No—1)(xa(l —b+r)—r) +
Nip(zi(1=b+e€)—e)]. (4.1)

The results of the theoretical analysis (see sectidifior details) of these coupled deterministic
equations are illustrated in Fig.1for the symmetric (thus non-generic) cdée = N», and the
simple weak £ = 0) PD game for those intra-population encounters. Below we will comment
on the main qualitative changes for the generic case,whenever both the size proportion
B = Ni/Ns # 1 and general PDr(> 0) game for intra-population interactions apply.

The analysis of Fig4.1 shows a rather natural non-linear resolution of the conflict intro-
duced by fitness-punishmer) (o inter-populations defective encounters. Briefly said, even-
symmetric {; = x9) states D (both populations are fully defective) and C (fully cooperative
populations) are both, for arby> 17, unstable against perturbations in all directions, and sta-
bility resides instead on odd-symmetric polarized states [A (all-D in populatemd all-C in
population2) and its symmetric transformed B (all-C in populatiband all-D in population
2)] for strictly positive temptatio less than a bouni’?(e; p) = 1—pe (see Fig4.1a). At this
critical (bifurcation) value ob the interior nuliclinest; = 0 andiy = 0 (see Fig4.1b) touch
states A and B respectively. Increasing the value of the temptataroveb”? the polarized
states lose their stability in favor of the quasi-polarized states [A’ (all-Dand mostly C ir2)

and its symmetric B’ ], which detach from A and B and become attractors =Ab® = 1 — = ;
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4.3 Well-mixed populations: Analytical formulation.

the interior nullclines coincide (see Fig.1.c) becoming a line (AB’) of marginally stable
equilibria. Finally, forb > b¢ (see Fig4.1d) the global attractor is the interior even-symmetric
state E, the intersection of the interior nullclines, which keeps approadcmshagncreases, the
neighborhood of the highlimit attractor, say the state D of fully defective populations.

This scenario remains qualitatively unchanged for strictly positive valtiggeqparameter
r, provided0 < r < —pe, the only change being that the bifurcation vahie where the
quasi-polarized states loose stability, becomes:
T — pe
1-p

=1+ 4.2)

In other words, the weak PD limit (= 0) for the intra-population game is structurally stable
respect to (small enough) positive parametric variations of the game paramieorr > —pe,
the scenario changes drastically: D is now a stable equilibrium, but stilb, forv“? (which
doesn’t depend on), the polarized states are also stable equilibria. Only for largerb“?P
values of the temptation, D becomes the unique global attractor. Summarizingtits fer
the symmetric case, the attractor states for increasing valuggrom b = 17 follow the

sequence:
ABY AB B E. (4.3)
buP buP
(@) D,A,B 2 DA 2 D
buP b4P b
(b) AB A3 AAA AE
byP buP
(c) AB &% A A A
b%@ be bul)
(d) AB 3 AB 2AANAN

b%}’ , be buP , be
e AB3AB ZAAANAE
buP buP be
) AB & AB A AB 3 A

) A,Bbg A B b$ A, B %A’ b—i‘> E

Table 4.1: Sequence of attractors in phase space for equadidp @sb increases fronb = 1.

The arrow indicates a bifurcation at thevalue that appears over the arrow. The scenarios (a)-(g)
correspond to different ranges of values of the parametessp ande, that are made explicit in
section4.4. Note that except for the scenario (a), that corresponds o —/pe, polarized and
quasi-polarized states dominate the asymptotic behavior.
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4. EVOLUTIONARY DYNAMICS ON INTERDEPENDENT POPULATIONS.

when0 < r < —pe while, whenr > —pe, the sequence is:
bup
D,A,B — D. (4.4)

For the general casl¥; # Ns, the lack of the population interchange symmetry modifies
some of the features seen in the symmetric case. Without loss of generaligswene that
B = N1/N2 > 1. On one hand, the lower boundsofor the stability of the fully defective state
D becomes now = —gpe. On the other hand, the bifurcation values at which the polarized
states lose their stability are now different,

bgp:1—%<b%=1—,@pe, (4.5)

as well as the bifurcation values (provided they exist) at which quasripethstates destabi-

lize, b3 < b5, where

c _ T2 _ (pE)Q
Vp =1+ (r + Bpe) — p(Br + pe) (4.6)
2 2
14 02— (0" wn

(Br + pe) — p(r + Bpe)

Let us note that the polarized state A, where the defective population igef lsize, turns
out to have a wider range of stability, as well as a larger basin of attrattian,the state B.
The results of the complete analysis of the replicator equatidl) &re summarized in Table
4.1, where we show the sequences of attractors coexisting in phase $pacgven scenarios
(a)-(g) correspond to different ranges of values of the parameté ande (see sectiod.4
for further details).

From the previous analysis of well mixed populations, one sees that palaaird quasi-
polarized states appear as generic attractors of the evolutionary dyrfamvasie ranges of
model parameters, which in turn has the effect of enhancing in a rentaskaip the asymptotic
levels of cooperation in the two-populations system.

4.4 Phase portrait analysis of the two-variable replicator equation

The replicator equation that describes the continuum time evolution of theaiopfractions
x1(t), z2(t) in subpopulations 1 and 2 can be written as:

i = F1 (21, 22) , (4.8)

i‘g = ?2(1‘1,1’2) y (49)
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4.4 Phase portrait analysis of the two-variable replicator equation

where the velocitie§’ », after time rescaling, are explicitly given as:
371(331,1’2) = 351(1 — xl)[ﬁ(:cl(l - b‘l‘ T) — T) ‘l-p(l‘z(l — b+ 6) - 6)] s (410)
952(331,$2) = 932(1 — 1‘2)[(.132(1 —b + T) — T) + Bp($1(1 —b + 6) - 6)] . (411)

The unit squar® < x1,x2 < 1 is the invariant set of interest here. To follow the phase
portrait variation of a two-degrees of freedom nonlinear system likatemu @.9) is pretty
straightforward for one-parameter variations. We are dealing with a nvdussleb, r, e, 3,
andp are free model parameters, each one inside their natural raage,> 17,0 < r < 1,

e < 07,8 >1,and0 < p < 1. In our systematics below, we will consider continuum
variation of b, from b = 17 up to infinity, at fixed values of the other parameters and so
we will obtain the “critical” (bifurcation) point$*(e, r; 3, p), where the phase portrait of the
evolution experiencegualitative changesSomewhat, the direction of increasing temptation

is often most considered in recent literature on PD games. But we will pagttiention also to
variations of the parameter and find two important critical values that do not depend on the
value of the temptatioh, so that different scenarios of phase transitions (inside the well-mixed
population approximation to the thermodynamical lidvit, No — oo) asb varies do appear.
Finally, we choose als@ as an interestinge(g, for control applications) parameter to vary, and
find also two critical values that are temptation independent, that in turnsasethe number

of those scenarios.

The best visualization of the velocity field is a phase portrait where fixgdil{lerium)
points and nuliclines are also plotted, as in Fig. 1 in the main text. A nullcline is the tafcu
points defined byF;(x1, x2) = 0 for somei. The nullclines that correspond # (1, z2) = 0
are the straight lines

2 =0, (4.12)

=1, (4.13)
_ (b —1—7)— (Br+pe)

Ty = =19 : (4.14)

while those that correspond #&(x1, x2) = 0 are
x2 =0, (4.15)

20 =1, (4.16)
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4. EVOLUTIONARY DYNAMICS ON INTERDEPENDENT POPULATIONS.

1 fp(b—1— ) — (r+ Bpe)

2= b—1-r)

(4.17)

The possible equilibria are the crossing points of any line from the firstpgvath any
other line from the second one, so there are nine candidates. Magrealesolutions in the
unitsquare( < x1,z9 < 1, interest us, and this exclude two of the crossing points (see below),
leaving the following seven possibilities, namely the four corners of the quare:

o A=(0,1),
e B=(1,0),
« C=(1,1),
e D=(0,0),

and those whose location depends on parameter values:

e We call A’ the crossing point of nuliclines4(12 and @.17), whose coordinates are
z1(A") =0and

o AY) = m . (4.18)

e We call B’ the crossing point of nullcline€l(14) and @.15), so thatz,(B’) = 0 and

no_ —(Br + pe)
z1(B") = m . (4.19)

e Finally, we callE the crossing of4.14) and @.17). Its coordinates are obtained as:

11 (F) = (b—1—7r)(Br+pe) —pb—1—¢€)(Br+ pe)
1 Bllp(b—1—¢€)?—=(b—1—1)?] )

(4.20)

29(E) = (b—1—7)(r+ Bpe) —p(b—1—€)(r + Bpe) |

(pb—1—¢€)2—(b—1—r)2 (4.21)

The (missing in the list) crossings o4.03 - (4.17), and of @.14) - (4.16), are easily seen
to be always outside the unit square for the range of parameters caukicdso inside this
range, the non-generic eventrailiclines’ coincidencenly could happen provided = 1 and

r > —pe, atavalué(e,r; 5 =1,p) =1+ Tl%f;f. Only then, the exotic (forced by symmetry)
situation in which there is a segment of marginally stable equilibria occurs.
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4.4 Phase portrait analysis of the two-variable replicator equation

To determine the bifurcation points, one uses the spectral analysis ohtasygee per-
turbations around equilibria. The linearized evolution of small perturbatomsnd the fixed
pointx* is given by the matrix:

Oh 0%

o0z Oxo ( )
4.22

0Ty 0%y

8x1 8x2 x=x*

In what follows, the presentation of the results from the phase portralysia of the non-
linear coupled ODEA4.1]) tries to rationalize them in terms of evolutionary game theoretic
concepts, within a thermodynamical limit (statistical physics) perspective.

4.4.1 Symmetric caseN; = No(= N).

For simplicity, as well as for illustrate neatly the systematics that we follow, wl/za&rst
the case of equal population sizes. For this case, where populatiomdeatizal (though
distinguishable), the population interchange symmetry imposes that phasetgeinvariant
under permutation of coordinates;(+ x2), @ non-generic property that limits severely the
possible scenarios. The stability analysis of the equilibria shows that thergva generic
scenarios for the sequence of bifurcations that appear whemeases from™ up to infinity:

(s1) If r > r. = —pe there is only one bifurcation & (r,e, = 1,p) = 1 — pe. For
b < b“P, the phase portrait has three stable equilibria with their own basins of attractio
D, A, and B. The equilibria C, A'and B’ are unstable, and E is outside tlitesqoare. At
b = b"P, A and B destabilize (through collision with A and B’ that exit the unit sqlQiare
becoming saddle equilibria, and D becomes the unique global attractorfé#?. This
translates into the following sequence of attractors when temptation increases't:

D,AB Y D. (4.23)

(s2) If r < rc(p,€), however, D is always unstable, and there are two bifurcatiohg”at
andb® (and note that"? < b°). Forb < b"P the equilibria C, D are sources, E is a
saddle, and A and B are attractors, becoming saddle equilibti& athere A" and B’
enter into the unit square. Fot? < b < b° A and B’ are the only attractors. At
b¢ the segment AB’ of marginally stable equilibria is the limit set for all trajectories
(nullcline’s coincidence). Far > b° E becomes the unique (and even-symmetric) global
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4. EVOLUTIONARY DYNAMICS ON INTERDEPENDENT POPULATIONS.

attractor. This last bifurcation restores the symmetry of the asymptotic evolinzbn
was spontaneously broken at loweralues. The sequence of stationary limiting (point)
densities is:

AB Y AR % E. (4.24)

Note that the conditiom = r.(p, ¢) that separates the regimes where the equilibrium D
is unstable« < —pe) or attractor { > —pe), corresponds to the exact compensation of the
surplusrN of defective intra-population interactions of a defector and the punishpadhit
receives from inter-population interactions. Below this critical value, defiection is unsta-
ble to cooperative fluctuations. But, as we have just seen, even in @apertishment from
coupling is weaker than surplus, polarized states have their own basattraxtion, away
from whole defection, at low values &f > 1*. This can be rationalized from the role that
punishment plays in our -no interbreeding, punishing defective couseting. Populations’
strategic polarization emerges as stable generic asymptotic state of evoluéonyleen de-
fectors can afford external punishment (D being then fully stable): dipgex (two coupled
populations) has always the option to become polarized or quasi-polg@raeided the initial
conditions belong to its basin of attraction.

4.4.2 General caseN; # Ns.

The parametep determines the fraction of inter-to-intra-population interactions any agent
plays per unit time in the symmetriéV{ = N;) case. This fraction changes fip andp/3

(6 > 1) for small and large populations respectively, when symmetry of populetierchange

is absent. This combination of parameters regulates how important to the tiaglipawer
(fitness) of an individual the inter-population coupling is, and we therttsaefor the largest
population the effective coupling/ is smaller. This makes the polarized state A (where pop-
ulation 1 is defective) more robust than the polarized state B, and probitadare attractors,
the basin of attraction of A is correspondingly larger. This is a major quaktatsange in the
phase portrait of the velocity field of evolution in the absence of symmetrg.cbhcomitant
change is the shift, and in more extreme cases the disappearance, ofitbatlnihs associated
to the quasi-polarized equilibria A" and B'g., biffB andb$ p:

b (1,6 8,p) = 1 — (p/B)e , (4.25)
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4.4 Phase portrait analysis of the two-variable replicator equation

by (r, € B8,p) =1 — Bpe, (4.26)
c . _ r? — (p€)2

) = G B b ) “2n
Va(r,e 8,p) =1+ A — (b)) (4.28)

(Br + pe) — p(r + Bpe)

Note that the minimum of this set of valueg)g’, its maximum i$¢, and that the relative order
of the other two values is parameter dependent. Several new genergcissef phase portrait
variations naturally follows from these major effects, when the "populatiteréchange” sym-
metry is absent. Still, let us remark that the evolutionary attractiveness ofitheyommetric
polarized (A and B) and quasi-polarized (A’ and B’) asymptotic densiti#sleminates ample
regions of parameter space.

A first scenario, similar to the first one seen above for the symmetric ca®eind when
r > rd(e; B,p) = —Ppe. In this scenario, the fully defective state D is stable forbatt 1
values. For very low values &f A and B are also stable. Due to asymmetry, the instabilities of
A and B occur at different bifurcation valudg;” < '), so that state B destabilizes first when
bincreases fronh = 1, as expected,e.,

(i) If r24 < r there are only two bifurcations &}y < b'Y. Forallb > 1T, C is unstable
and E is outside the unit square. Fok b}/, the states D, A and B are attractors. At
bjgp, B collides with the unstable B’ that exits the unit square, then becoming desadd
with unstable direction corresponding to defective fluctuations in cotpeopulation
1. The same happensutatis mutand{l < 2 interchange) to A ak’’, leaving finally D
(for b > b'}’) as the global attractor.

bP

buP
D,AB & DA A D (4.29)

At r = r2, for a defective individual in population 2, and state D, the "internapsisr -
coupling punishment” balance exactly compensates. This means that adpamgimoperator
makes no difference to its replicating power, and thus a zero eigenvalearsan the spectrum
of the Jacobian (linear stability) matrix of the fully defective state D. Insidedhger < 24,

D is always unstable face to cooperative fluctuations in the smaller popul&iother down
in surplus ¢) values, at- = r? = —(p/B)e, D becomes also unstable face to cooperative

fluctuations in the large population. In other words, when decreasirgm large (compared
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4. EVOLUTIONARY DYNAMICS ON INTERDEPENDENT POPULATIONS.

to rZ') positive values of intra-population surplus,0tb (weak PDIlimit), there are two critical
values, where qualitative changes of the phase portrait occur, timaid® with the change of
stability of D from stablex > 4) to saddle {Z < r < r%), to sourcef < r5).

Providedr < r#, if one consider the high (— oc) limit, one easily finds that it can be
either "mixed type” (state E, interior to the unit square) or "quasi-polatitst@te A, on the
verticalz; = 0) regarding its convergence to virtually full defection. The transition betwe
these two qualitatively different "high temptation limit behaviors”, for givedues ofe, p, and
r, is controlled by the value of the population rafi@nd it occurs at the critical value:

B (ersp) = 2= (4.30)
r — pe
At this value of the population ratio, the bifurcation valbfg (where A’ collides with state
E, this one entering into the unit square) formally diverges, so that theionllccurs (or
doesn’t), depending on the value of the population ratitor fixed value ofp, r, ande.
On the other side, the bifurcation valuebgtonly occurs providea < B, but its relative

order with respect t6')” depends also on the value @fvith a critical value at:

—pe(p?e — 1) \/p €2(p?e —r)? — 4p%e(r — €)(p?e? — r2) (4.31)

B .
Be (e, p) = 2pPelr = 6)

The different possible combinations of all the previous possibilities givéll@ving sce-

narios:

(i) If 7B < r < 74, then the stable linear manifold of the saddle point® £ 0) does not
allow B’ to be a stable equilibrium, while its unstable directien & 0) pushes evolution
to polarized A or quasi-polarized A’ states; C is a always a source far alll. Two

different scenarios are realized depending on the inter-populatiorvedtie, 3:

(#i1) If B > B2 (see Eq.4.30, bifurcations only occur abyy < b%F. At by, the

collision of B and the unstable exitirg’ occurs, while atbjp, it takes place the

collision of A with the enteringtate A. The corresponding sequence of attracting

equilibria is given by:

u

A, B NN (4.32)
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4.4 Phase portrait analysis of the two-variable replicator equation

(iii)

(ii2) If B2 > B, besides the bifurcations describedin ), there is an additional bifur-

cation atb, where A collides with state E that enters into the unit square. The

corresponding sequence of attracting equilibria is given by:

AB A2 AA3A 3E (4.33)

The presence or absence of the bifurcati@ndetermines whether the approach to the
high temptation limit is via "mixed interior type” E state, or "edge quasi-polarized’typ
A state, so that for values of below critical (32'), virtually full defection (—,17) is

approached with non-zero cooperation levels in both populatiobsliasrges.

If r < rB, both quasi-polarized states A’ and B’ enter into the unit squair’andb’y’,
respectively. B’ always destabilizes & (> b}, always) to become a saddle through
collision with the exiting unstable interior equilibrium E. This may happens bé¢&srin
(¢441) and ¢ii2) below] or after [as indiis) and ii4)] the entrance of A ab’y’” depending
on 3 value (relative to32). And finally note that the bifurcation &, only occurs for

B < B4, as analyzed above, to arrive to the following possible four scenarios:

(i7i1) If max(8Z, B2) < B, thenby, < b, andbs is absent:

bup be bup
AB Z AB 2 A AN (4.34)

(iii2) If BB < B < B2, thenb, < b7, andb, occurs:

blép , be buP , be
AB A3 AB BAAAAE (4.35)

(iii3) If B2 < B < BB, thenb'y < b5, andbs, is absent:

puP puP

AB B AB 4 AB B A (4.36)
(iiig) If B < min(BZ, BB), thend'{ < b%, andbS occurs:

b

buP be be
AB 3 AB 4 AB BA AJE (4.37)
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This analysis provides the three-dimensional phase diagrath¥) for fixed, though ar-
bitrary, e andp. It exhibits a wealthy of different macroscopic phases separateditigatr
lines and surfaces. It shows that polarized and quasi-polarize@pdasinate wide regions
in parameter space. This illustrates the effects of inter-population tradmesdi(even under
the simplest possible structure of inter and intra population contacts) on ¢héiem of PD
replicators.

AB Y aB % E. (4.38)

when0 < r < —pe while, whenr > —pe, the sequence is:

D,AB Y D. (4.39)

45 Random networks.

On the other hand, for structured populations, where individuals irtteitictheir neighbors as
dictated by a given network of contacts, it is known that under some assunsgooperation
is enhanced, a phenomenon called network reciprocity.

While for well mixed populations, the stability of polarized states extends dows=ta ™,
one should expect that at small> 1 values, the enhancement of cooperative fluctuations
due to network reciprocity in the defective population 1 destabilizes theipetbstates below
some critical valué'®. Moreover, one should also expétt” to decrease with the parameter
p, because higher values pfincrease the payoff that a (defector) individual in population
1 obtains from encounters with (cooperator) individuals of populatiain® decreasing the
resilience of cooperative fluctuations ("network reciprocity”) in pogiolal. In other words,
for low values of, the interaction between populations acts against network reciprocitgeThe
expectations are fully confirmed by the results from simulations of the evoargiatynamics
in populations with a random network structure of intra-population contasiisg the discrete
version of replicator dynamics.

In Fig. 4.2 we show the average cooperati¢f) level (over a sample 0200 different
realizations) on the two-population system as a function @dr different values ofp, and
parameters as indicated. The two populations have a randorasdEamhyi (28)) network of
contacts with average degrée) = 6. In the initial conditions, the individuals of both popu-
lations were chosen cooperators with probabilitg. The plateau atc) = 1/2 points out the
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Figure 4.2: Average level of cooperation in the two-population systesragunction ofb, for
different values of the fractiop of inter-population contacts. Other parameterssate 0, ¢ =
—0.4, N; = N, = 10%. The two populations have a random (&seRenyi) network of contacts
with average degreg:) = 6. See the text for further details.

asymptotic polarized state. Moreover, the states ith< 1/2 correspond to quasi-polarized
regimes where all the individuals in one population are defectors, while thits (c) > 1/2,

at values ob < b'°¥, results from states where all the individuals in one population are coop-
erators. This represent a new type of quasi-polarized states thahateiaind to be attractors

of the dynamics for well mixed populations. The comparison with the averagpetation
level for non-interacting populationg & 0 in Fig. 4.2) confirms that for low values af the
inter-population interaction acts against network reciprocity.

From a complementary perspective, the networked populations showttraatars, im-
possible to be such for coupled well-mixed populations, because theyese#felt of network
reciprocity. On the other hand, for larger valuesbotthe populations’ coupling favors the
achievement of substantial levels of cooperation, well beyond the tymbas ofb for which
network reciprocity ceases to be effective, being an effect alreeglsept in the well-mixed
case. This clarify farther the confluent effects of these two diffemethanisms of coopera-
tion enhancement.

Finally, the robustness of polarized and quasi-polarized states sugmaststhe coupling
to a defective population as an engineered (control) procedure todrdgic levels of cooper-
ation in a target population. To check for this possibility, we have coupletha [@opulation
1 with random (equiprobable in strategies) initial conditions to a smaller defgatipulation
2. In Fig. 4.3 we show the asymptotic average level of cooperation in a target populdtion o
size N, = 10° for different values of the average numba, - p, of inter-population contacts
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4. EVOLUTIONARY DYNAMICS ON INTERDEPENDENT POPULATIONS.
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Figure 4.3: Average level of cooperation in the population 1 as a fumctd b, for different
values of the fraction of inter-population contacts. The population 1 (of si¥e = 10°) has
been coupled to a smaller population/Z;(= 10%). While initial strategies in population 1 are
equiprobables (random initial conditions), the populatostarts from the absorbent state of fully
defection. Other parameters are= 0, e = —0.4. Both populations have a random (BedRenyi)
network of contacts with average degrgéé¢ = 6.

per individual of the target population. The results suggest that sughgements can provide
new mechanisms to control and/or sustain cooperation in different kingstdras.

Summarizing, two PD populations SD-coupled in conditions of strict inbregdimgnter-
population strategic diffusion) evolve easily to polarized and quasi-pethsirategic probabil-
ity densities in the well-mixed thermodynamical limit of the evolutionary replicatoadyins.
This happens also when population structure is a complex network of tentawere other
mechanisms (known as network reciprocity) of enhanced cooperatiompésate. The con-
fluence of both mechanisms has been analyzed in depth showing thatgt@arzpposes net-
work reciprocity at small values of the temptation parameter, while both awtigy) together
enhancing cooperation in one of the layers for higher temptation valuespfi®nomenon, that
could be rationalized as the effect of incorporating a punishment totidefeater-population
encounters, illustrate the remarkable effects that structural multiplexity intesdn evolution-
ary dynamics.
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Chapter 5

Human behavior in Prisoner’s
Dilemma experiments suppresses
network reciprocity.

During the last few years, much research has been devoted to strategaciions on complex
networks. In this context, the Prisoner’'s Dilemma has become a paradigmated, raod

it has been established that imitative evolutionary dynamics lead to veryediffeutcomes
depending on the details of the network. We here report that when oee iteth account the
real behavior of people observed in the experiments, both at the métediel and on utterly
different networks the observed level of cooperation is the same. Véestiow that when
human subjects interact in an heterogeneous mix including cooperatfastode and moody
conditional cooperators, the structure of the population does not pramiotieibit cooperation

with respect to a well mixed population.

5.1 Introduction

In recent years, the physics of complex systems has widened its scapedigiering interact-
ing many-particle models where the interaction goes beyond the usualpt@iderce. One

such line of research that has proven particularly interesting is evoluig@ame theory on

graphs 16; 88), in which interaction between agents is given by a game while their own state

is described by a strategy subject to an evolutionary prod€s81). A game that has attracted
a lot of attention in this respect is the Prisoner’s Dilemma (F2) 93), a model of a situation
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in which cooperative actions lead to the best outcome in social terms, bug ¥he riders or
non-cooperative individuals can benefit the most individually. In mattieedaerms, this is
described by a payoff matrix (entries correspond to the row playeysffsaand C and D are
respectively the cooperative and non-cooperative actions)

c|D
cl1]s (5.1)
D[T|O

with T > 1 (temptation to free-ride) anfl < 0 (detriment in cooperating when the other does
not).

In a pioneering work, Nowak and Mag9) showed that the behavior observed in a repeated
Prisoner’s Dilemma was dramatically different on a lattice than in a mean-fieldagup In-
deed, on a lattice the cooperative strategy was able to prevail by formistgidwf alike agents
who outcompeted defection. Subsequently, the problem was considdiexidiy hundreds
of papers 16; 18; 94; 95; 109, and very many differences between structured and well-mixed
(mean-field) populations were identified, although by no means they waagsin favor of
cooperation 96; 97). In fact, it has been recently realized that this problem is very sensitive
to the details of the systemd&, 115, in particular to the type of evolutionary dynamic&)
considered. For this reason experimental input is needed in ordercio aesound conclusion
about what has been referred to as ‘network reciprocity’.

Here, we show that using the outcome from the experimental evidence titifeoretical
models, the behavior of agents playing a PD is the same at the mean field levial &ry
different networks. To this end, instead of considering sahdéocimitative dynamics 19;

21; 98), our players will play according to the strategy recently uncoveredriyi&et al. (23)
in the largest experiment reported to date about the repeated spatiaifiBgd out on a lattice
as in Nowak and May'’s papet 9) with parameter§” = 1.43 andS = 0.

The results of the experiment were novel in several respects. Firgipphiation of players
exhibited a rather low level of cooperation (fraction of cooperative astin every round of
the game in the steady state), hereafter denote¢:by Most important, however, was the
unraveling of the structure of the strategies. The analysis of the actioeis kgkthe players
showed a heterogeneous population consisting of “mostly defectofgtf{dd with probability
larger than 0.8), a few “mostly cooperators” (cooperated with probabiligelethan 0.8), and
a majority of so-called moody conditional cooperators. This last groupisiaal of players
that switched from cooperation to defection with probabifty“ =1 —d — v¢; = 1 — PE¢
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and from defection to cooperation with probabiIRfD =a+fc=1- IDiDD, ¢; being the
fraction of cooperative actions in play&s neighborhood in the previous iteration. Conditional
cooperation, i.e., the dependency of the chosen strategy on the amoonpefation received,
had been reported earlier in related experime®® énd observed also for the spatial repeated
PD at a smaller scald.(0). The new ingredient revealed in Grugt al.’'s experiment 23) was

the dependence of the behavior on the own player’s previous actinoe liee reason to call

them “moody”.

5.2 Results

To study how the newly unveiled rules influence the emergence of cdapeiraan structured
population of individuals, we first report results from numerical simulatioina system made
up of N = 10* individuals who play a repeated PD game according to the experimental ob-
servations. To this end, we explored the average level of cooperatioaridifferent network
configurations: a well-mixed population in which the probability that a playeracts with
any other one is the same for all players, a square lattice, aisH#ehyi (ER) graph and a
Baralasi-Albert (BA) scale-free (SF) network. It is worth mentioning that tepehdence on
the payoff matrix only enters through the parameters describing the glagéivior ¢, -, a,
£ and the fractions of the three types of players). Once these parametdivsed the payoffs
do not enter anywhere in the evolution, as this is only determined by the hexighthe local
fractions of cooperative actions within each player’s neighborhobdsThere is no possibility
to explore the dependence on the payoffs because we lack a conrmttien them and the
behavioral parameters.

In Figure5.1 we present our most striking result. The figure represents, in a cottaec
scale, the average level of cooperation as a function of the fraction stiyremoperatorsyc,
and mostly defectorsyp, for a BA network of contacts. The same plots but for the rest of
topologies explored (lattice and ER graphs) produce indistinguishahlésr@gth respect to
those shown in the figure. We therefore conclude that the averageofes@bperation in the
systemdoes notdepend on the underlying structure. This means that, under the assumption
that the players follow the behavior of the experimentdg)(there is no network reciprocity
i.e., no matter what the network of contacts looks like, the observed levaelapfecation is

the same. This latter finding is in stark contrast to most previous results cominfgom
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Figure 5.1: Dependency of the average level of cooperatiomahe density of strategists.Den-

sity plot of (c), as a function of the fractions of the three strategies -ipesbperatorsC, mostly
defectors,D, and moody conditional cooperators;. Pannels A), B) and C) correspond to a reg-
ular lattice ¢ = 8), Erdds-Renyi((k) = 6) and Barahsi-Albert (k) = 6) network of contacts
respectively, but independence of cooperation level onidpelogy make them indistinguishable.
The system is made up df = 10* players and the rest of parameters, taken fra@s),(are:

d = 0.38, a = 0.15, v = 0.62, = —0.1. The thin lines represent the mean-field estimations
[c.f. Eq. 6.5)] for {¢) = 0.32, 0.44, 0.56, 0.68. They very accurately match the contour lines of the
density plot corresponding to those valueg@f thus proving that the same outcome is obtained
in a complete graph (mean-field). Simulation results haenl@eraged over 200 realizations.

numerical simulations of models in which many different updating rules —allehtbased
upon the relative payoffs obtained by the players— have been explored

Mean-field Approach. The previous numerical findings can be recovered using a simple
mean-field approach to the problem. Let the fractions of the three typesydrp bepc,
pp and px, for mostly cooperators, mostly defectors, and moody conditional catpsy
respectively, with the obvious constrapné = 1—pp—pc. Denoting byP;(A) the cooperation
probability at timet for strategyA(= C, D, X) of the repeated PD we have

(c)e = pcP(C) + ppP(D) + px P (X), (5.2)

whereP,(C') = P(C) and P,(D) = P(D) are known constants [in our cas§C) = 0.8,
P(D) = 0.2]. The probability of cooperation for conditional players in the next time stp
be obtained as

Fri1(X) = (d+7{(0)e) P(X) + (a + Ble)o)[1 = B(X)], (5.3)

where the first term in the right hand side considers the probability thatdit@mal cooperator
keeps playing as a cooperator, whereas the second terms stands diudtien in which a
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Figure 5.2: Absence of Network Reciprocity.Average cooperation level in the stationary state,
(c), as a function of the density of mostly cooperators and two different values of the dgnsit
pp of mostly defectors, for two different kinds of networksgtdar lattice ¢ = 8), and Barabsi-
Albert network (k) = 8). The network size iV = 10* and the rest of parameters are as in Figure
5.1 Lines represent the mean-field estimations. Results amages over 200 realizations. The
inset is a zoom that highlights how the different curves carap

moody conditional cooperator switched from defection to cooperatiopmasotically

Jim P(X) = P(X),  lim (c): = (c).
From Eq. 6.3),
B a+ B{c)
P = T e &4
thus 6.2) implies (with the replacementy = 1 — pc — pp)
Apc + Bpp =1, (5.5)
where
_ P(C) - P(X) _ P(D) - P(X)
A= ——————= B=—"7""—_-"-+ 5.6
() - P(X) (@)~ P(X) 60

are functions ofc). From Eq. b.5) it follows that the curves of constafit) are straight lines in

the simplex. Figur®.1clearly demonstrates this fact: The straight lines are plots of &£8). (

for different values of¢). It can be seen that they are parallel to the color stripes, and that the
values of{(c) they correspond to accurately fit those of the simulations.
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Figure 5.3: Asymptotic level of Cooperation Time evolution of the cooperation level until the
stationary state is reached. The results have been obtagmadiumerical simulations on different
networks with different sizes. The Mean-Field curve is tbiison of Eq. 6.3). P(C) = 2/3,
P(D) =1/3, P(X;t =0) =1, (k) = 8 pp = 0.586, pc = 0.053, d = 0.345, a = 0.224,

v = 0.64, 3 = —0.072. Averages have been taken otér realizations.

Figure5.2 depicts the curvéc) vs. po for two different values ofp, as obtained from
Eq. 6.5 and compared to simulations. This figure illustrates the excellent quantitgtiee-a
ment between the mean-field result and the simulation results. The match béteearalyt-
ical and numerical results is remarkable, as it is the fact that the resgliddelepend on the
underlying topology. This is the ultimate consequence of the lack of netweaigrocity: the
cooperation level on any network can be accurately modeled as if indigidere playing in
a well-mixed population.

The steady state is reached after a rather short transient, as illustratgdii@3-3. This
figure compares the approach of the cooperation level to its stationargstiained iterating
Eq. 6.3 and from numerical simulations on different networks with differentsiZéne initial
cooperation level has been set(to, = 0.592, close to the value observed in the experiment
of Ref. 23). The transient does exhibit a weak dependence on the underlyinggypand
specially on the network size, but for the largest simulated size<( 10%) the curves are all
very close to the mean-field prediction.

Distribution of Payoffs. The only observable on which the topology does have a strong
effect is the payoff distribution among players. Figdrd shows these distributions for the
three studied topologies, and at two different times —short and long. Srabetiort times,
this distribution peaks around certain values at long times. This reflectsahthéd payoffs
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depend on the number of neighbors of different types around a giarer, which yields
a finite set of values for the payoffs (the centers of the peaks). Tin@sders occur with
different probabilities (determining the height of the peaks), accorditigetaistribution

Qk)=> <kckkD>p'écp’EDp'§(Xp(k), (5.7)

k>1
wherep(k) is the degree distribution of the network ake= (k¢, kp, kx), butitis understood
thatkx = k — ko — kp. The standard convention is assumed that the multinomial coefficient
(¢.%%,,) = 0 wheneveri < 0, kp < 0 orkx < 0.

The approach to a stationary distribution of payoffs exhibits a much lorgesignt. This
is due to the fluctuations in the payoffs arising from the specific actionpérate or defect)
taken by the players. These fluctuations damp out as the accumulatetspmioach their
asymptotic values. Thus, the peak widths shrink proportionally t&. In fact, one can show
that the probability density for the distribution of payalfifor strategyZ can be approximated
as

Wz(IT) = > G(IT - ap(Z)u(k), Viar(Z)o (k) Q(k), (5.8)
k>1
whereG(z, v) = (27+2)~1/2¢*/27* the mean payoff per neighbor received by atrategist
against a cooperator is
w(2) = L{P(Z) + T~ P(Z)]},

with k = ko + kp + kx, and the average cooperation level in the neighborhood of the focal
player and its variance are

pk) = keP(C)+kpP(D) + kxP(X),
o(k)? = keP(C)[1— P(C)] + kpP(D)[1 — P(D)]
+kxP(X)[1 — P(X)].

The approximate total payoff distributioW/ (IT) = pcWe(I1) + ppWp(II) + px Wx (IT), is
compared in Figur&.4with the results of the simulations for the longest time.

5.3 Discussion

In this work we have shown both analytically and through numerical simulattwatsif we
take into account the way in which humans are experimentally found to be¥tssme facing
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Figure 5.4: Payoffs Distribution. Distribution of the pay-off per neighbor in the stationatgte
for different network topologies: regular latticé & 8), Erdds Renyi ((k) = 8) and Baraksi-
Albert network (k) = 8). Black and blue lines represent the results of numericalikitions for
two values of time: = 10 (black shallow curves) ant= 10* (blue, thick line curves) while red
lines represent the theoretical estimations for the dgpsitbabilities at = 10*, as obtained from
Eq. 6.8. N = 10% pp = 0.586, pc = 0.053, and other parameters are as in Fighre The
simulation results are averages ovét realizations.

social dilemmas on lattices, no evidence of network reciprocity is obtained.articyar,
we have argued that if the players of a Prisoners’ Dilemma adopt an updatéat only
depends on what they see from their neighborhood, then cooperatips th a low level —
albeit nonzero— irrespective of the underlying network. Moreover,have shown that the
average level of cooperation obtained from simulations is very well pestitty a mean-field
model, and it is found to depend only on the fractions of different strategislditionally, we
have also shown that the underlying network of contacts does manifdfiritde distribution
of payoffs obtained by the players, and has a slight influence on th&drdrehavior.

To conclude, it is worth mentioning that our results only make sense whéie@jp evo-
lutionary game models aimed at mimicking human behavior in social dilemmas. Themdep
dence on the topology seems to reflect the fact that humans update theisaatarding to
a rule that ignores relative payoffs. Interestingly, absence of n&tweaiprocity has also been
observed in numerical simulations using best response dynaftizsaf update rule widely
used in economics that does not take into account the neighbors'dpaybfs suggests that

the result that networks do not play any role in the repeated PD may beagareany dynam-
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ics that does not take neighbors’ payoffs into account. We want tedtiasthe same kind of
models thought of in a strict biological context are ruled by completely diffemechanisms
which do take into account payoff (fithess) differences. Thereforguch contexts lattice reci-
procity does play its role. In any case, our results call for further éx@ats that uncover what
rules are actually governing the behavior of players engaged in thistaadsmcial dilemmas.
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Chapter 6

Heterogeneous networks do not
promote cooperation when humans
play a Prisoner’s Dilemma.

It is not fully understood yet why we cooperate with strangers on a daigysb In an in-
creasingly global world, where interaction networks and relationshipsdegtwdividuals are
becoming more complex, different hypotheses have been put forwaaxptain the founda-
tions of human cooperation on a large scale and to account for the trueatins/that are
behind this phenomenon. In this context, population structure has begassed to foster
cooperation in social dilemmalsut theoretical studies of this mechanism have yielded contra-
dictory results so far, and the issue lacks a proper experimental tesgendaough systems.
We have performed the largest experiments to eate humans playing a spatial Prisoner’s
Dilemma on a lattice and on a scale-free network (1229 subjects). We elsbat the level

of cooperation reached in both networks is the same, comparable to thraaléisnetworks

or unstructured populationgVe have also found that subjects respond to the cooperation they
observe in a reciprocal manner, being more likely to cooperate if in theguievound many

of their neighbors and themselves did so. This implies that humans do nadeonsighbors’
payoffs when making their decisions in this dilemma, but only their actions. €uits, that
are in agreement with recent theoretical predictions based on this bedlavie, suggest that

population structure has little relevance as a cooperation-promoter or imlgbitting humans.
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6. HETEROGENEOUS NETWORKS DO NOT PROMOTE COOPERATION WHEN
HUMANS PLAY A PRISONER’S DILEMMA.

6.1 Introduction

The strong cooperative attitude of humans defies the paradignnod economicuand poses

an evolutionary conundruni®3 124). This is so because many of our interactions can be
framed as Prisoner’'s Dilemma83% 125 126) or Public Goods Gamesl?27), famous for
bringing about a “tragedy of the commong’2@). Several mechanisms have been suggested
as putative explanations of cooperative behavi@9|, among which the existence of an un-
derlying network of contacts constraining who one can interact with rasved very much
attention. This mechanism was first proposed by Nowak and M8y Wwhose simulations on

a square lattice with agents that imitate the behavior of their neighbor with theshigdngoff
showed high levels of cooperation in the Prisoner’'s Dilemma. The ensuinddeades have
witnessed a wealth of theoretical studies that have concluded that thadlesd-metwork reci-
procity” (129 is indeed possible under a variety of circumstanbesin many other contexts
networks do not promoteor even inhibit- cooperation16; 88). The effect of regular and ho-
mogeneous networks on cooperation is very sensitive to the details of thé [@adedynam-

ics, clustering)while theoretical results and simulations indicate that heterogeneous nstwork
should be particularly efficient in fostering cooperation in social dilemrggs108 109. A
natural way to shed some light on these partially contradictory results weutd test exper-
imentally the predictions of the different models. Such tests are currentlinta¢k30), as

the few available experimental works only deal—with some excepf8p-€ with very small
networks (00, 131; 132). Interestingly, the only theoretical result33) that takes into account
the behavioral information extracted from experiments predicts that néittmeogeneous nor
heterogeneous networks would influence the cooperative behaviar Prigoner’s Dilemma,
i.e., the observed cooperation level should be the same as if every plegracted with every
other one.

6.2 The experiments.

Here, we close the cycle by testing the above theoretical predictic@8 &nd contributing
to the current debate on the existence and effects of network reciptyciperforming ex-
periments on large samples of structured populations of individuals whadtérough a
Prisoner’s Dilemma (PD) game. Specifically, we have designed a setup ih 4228 human
subjects were placed either in a square lattice or in a scale-free netwarkpramore than
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number of nodes

Figure 6.1: Players in the experiment were sitting in diffeent physical locations, but played

in two virtual networks. Panel A is a snapshot at round 10 of a graphic animation riitiag
the activity during the experiment. On a map of Abaghe image displays small buildings repre-
senting the schools. Arrows (green for cooperate and reddfact) represent actual actions taken
by players. They travel towards the school where their remid@ssigned neighbors were sitting.
Buildings are colored green and red, proportional to thpeeve number of cooperative and de-
fective actions taken by the subjects in that school. Thetteif the yellow column on top of each
building is proportional to the school’'s accumulated pé&oPanels B and C show snapshots of
the two networks at that same round, along with their degisteilslitions (in the case of the het-
erogeneous network, both the theoretical distribution tiedactual realization corresponding to
the network of the experiment are represented). Colorsatelithe corresponding player’s action
(green for cooperate, red for defect). The size of a nodedigsgutional to its degree.

50 rounds they played 2 x 2 multiplayer PD gamevith each of theirk neighbors, taking
only one action, either to cooperate (C) or to defect{ihe action being the same against all
opponents. The experiment was simultaneously carried out on two diffeireual networks:
a25 x 25 regular lattice witht = 4 and periodic boundary conditions (625 subjects), and a het-
erogeneous network with a fat-tailed degree distribution (604 subjectsithieer of neighbors
varied betweert = 2 andk = 16). Figure6.1depicts a snapshot of a visual representation of
the experiment as well as of the two networks. Subjects played a repeagall) (Prisoner’s
Dilemma (PD) with all their neighbors for an initially undetermined number of reuriRhy-
offs of the PD were set to be 7 ECUs for mutual cooperation, 10 ECUa fmafector facing

a cooperator, and 0 ECUs for any player facing a defector (weaklBJp. \We note that this
choice of payoffss as in Grujt et al.'s experiment on a smaller regular lattizé)((see Figure
6.1) and such that cooperation should reach a high level according todfiatdge simulations
(19; 88; 108 109. The size of each network was large enough so that clusters of redogse
could form (the underlying mechanism by which cooperators may thti/g (L34)).
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On this general setup,ercarried out two treatments, which we widifer to asexperiment
and control. In the experiment, subjects remained at the same positions invioeknith the
same neighbors throughout all the rounds played. In the can¢@imentve removed the ef-
fect of the network by shuffling the neighbors of each subject in enaergd. Therefore, in this
phase, the players were always connected to the same number of nejghitthese neighbors
changed from round to roun@n the screen, subjects saw the actions and normalized payoffs
of their neighbors from the previous round, who in the contretmentvere different from
their current neighbors with high probability. Ateatment®f the experiment were carried out
in sequence with the same subjects. Players were also fully informed of taeedifsetups
they were going to run through. The number of rounds in égdimenivas randomly chosen
between 50 and 70 in order to avoid subjects knowing in advance whes geuag to finish,

resulting in 51 and 59 rounds for the experimental and cofrieatmentsrespectively.

6.3 Results and Discussions.

Figures6.2A and 6.2B show the fraction of cooperative actions,in each round for the two
networks and for bothreatments The first feature worth noticing in this figure is that, in
the experiment phase, the level of cooperation in either network quickigsdirom initial
values around 60% to values around 40% and finally settles at a slowerapaend 30%,
much lower than theoretical models predig6;,(19; 88). This is especially remarkable for
the heterogeneous network, on which no previous results are avadablés in stark contrast
with the predictions that this kind of networks should be particularly efficieniromoting
cooperation §8; 108 109). In the control, the initial level of cooperation is already at these
low values. This behavior is consistent with previous findings in experimeititssmaller
lattices @3; 100) as well as with unstructured populatiodSg, 136). Regarding the slow decay
undergone by these curves after the first quick drop in the level gferation, we believe that
this is associated to a process of learning (see below). However, theenuatkable result
that this figure provides is that, quite unexpectedly, the network doesametdmy influence in
the evolution of the level of cooperation. In fact, both curves are nédelytical—the slightly
lower values obtained for the lattice are likely to arise from the small differém¢he initial
level of cooperation—despite the very different nature of the netwalrkentacts between the

players.
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6.3 Results and Discussions.

The experimental result we have just reported is in very good agreevithrthe theoretical
prediction in ((33). This prompts us to investigate in detail what is the players’ behavior, as
the reason why this prediction was different from earlier ones is the udeeapdate rule
observed inZ3). The distributions of subjects by their individual cooperation levels (aezta
over the whole experiment) depicted in Figuée2C and6.2D show quite some heterogeneity
of behavior: a few subjects have a high level of cooperation (abo%&),78 sizable fraction
cooperated less than 20% of the rounds, whereas the bulk of subjeetisteamediate levels of
cooperationlmportantly, the comparison of these distributions of actions, which turn dag to
statistically indistinguishable (see Kolmogorov-Smirnov test data on Tablef the appendix
6.5), provides additional evidence that the behavior observed in the twmretis the same.
This finding, along with the identical behavior of the cooperation level, ssigghat subjects
use the same strategies in the lattice and in the heterogeneous networtessgaf the fact
that in the latter the number of neighbors of each individual is heterogshedistributed.

After considering the aggregate distribution of actions, let us now looldeper insights
on the individual behaviors. As in previous experiments on smaller latti&#s100) or un-
structured populationd.85 136), our results are compatible with a coexistence of at least three
basic strategies: cooperators (players who cooperate with a highbiityb@egardless of the
context), defectors (players who defect with a high probability regssddé the context) and
“moody” conditional cooperator2B) (players whose action depends on their previous action
as well as the level of cooperation in their neighborhood). A searcimfwrydy conditional
cooperation shows the results depicted in Fighu® Panels A and B show the fraction of
cooperative actions occurred after a cooperation/defection, actdumof the level of coop-
eration in the neighborhood. The plots are the fingerprint of moody condltimoperation:
players are more prone to cooperate the more their neighbors coopéhatedboperated than
if they defected. Furthermore, Figude3also supports the striking finding that the strategic be-
havior of subjects is remarkably similar whether they are playing on the latiigeré®.3A) or
on the heterogeneous network (Figét8B). On the other hand, panels C and D show that the
next action of a subject cannot be predicted knowing the largestfpdifference he/she sees
in the neighborhood, thus confirming that subjects did not use paydfeifEes as a guidance
to update their actions.

Figure 6.4 provides further evidence of the significance of the moody conditiongp-co

eration by means of a nonparametric bootstrap check. The series ofsatztian by every
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individual are randomly reassigned to other positions in the lattice or the rleand the prob-
ability of cooperation is recomputed. This is doné fithes and the results show that the two
probabilities become independent of the context. Of course, suchufteghwill not change
the dependence on the player’s own previous action, as the order aétibas is not altered,
and consequently there are still two distinct lines corresponding to thelpiidyp of cooper-
ation following cooperation or defection, but tdependence on the number of cooperators in
the previous round is fully removed.

The existence ofalmost pure)ooperators and defectors aside from moody conditional
cooperators can be further supported through a comparison with thehsstograms but for
the control condition (see Figu6 of the appendix), since for the latter a larger number
of subjects are in the region that would correspond to defectors. Thisemterpreted as an
indication that a fraction of—probably—moody conditional cooperatoasigkd to a defective
strategy, given that retaliation is ineffective in the control condition. Furttore, performing
running averages of the levels of cooperation during the experimenlitmon (see Figures
6.7 and6.8 of the appendix) shows that the number of subjects whose level of iapeis
below a given threshold increases with time—irrespective of the predise ofthe threshold.
Not only this gives support to the existence of this kind of players, butdbissistent with a
continuougalbeit small)flow of players who change from moody conditional cooperation to
defection—a behavior that could be understood as a generalized fargrim strategy. Notice
that this flow can account for the slow decay observed all along thefrilie @xperiment and
control observed in Figureg2A and6.2B.

Finally, another important point that our experiment allows to address to sateat is
the dependence of the actions on the connectivity of the participants fdreteeogeneous
network. The results are displayed in Figé.&, where we represent the average cooperation
level ¢ as a function of the connectivity of the playefs, for both treatments: experiment
and control. As can be seen from the plots, there might be some trend soloasel levels
of cooperation with increasing degree for small connectivities, partigulathe control (the
levels for the first three values of the degree in the experiment are nististdly different).
However, looking at the figure as a whole it becomes clear that thereriieseem to be
any statistically significant trend. It has to be borne in mind that in this type tfarks the
number of hubs or large-degree nodes is intrinsically small, and thetestatistics for them
is not very accurate (notice the size of the error bars). Going bey@nceults would require

much larger networks (which would still have the same problem for their hidggree nodes).
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Additionally, the bottom panels of Figui@5 show the frequency of cooperative actions of
nodes with degreé after playing as C or D with respect to the fraction of their neighbors
that cooperated in the previous round. The results are a clear evitdetceoody conditional
cooperation is indeed the general behavior even if one disaggregateatthin terms of their
degree. As we have already stated above for the total level of cdimperr higher degrees
the statistics is poorer and the analysis does not lead to such cleartdtg.res

6.4 Conclusions

To sum up,we have performed a large-scale experimental test of the hypothesetvedrk
reciprocity, i.e., that the existence of a structure in the population may affeperation in so-
cial dilemmas. Our experiment shows that, when it comes to human behaviexistence of
an underlying network of contacts does not seem to have any influettoe global outcome.
We want to stress that this conclusion applies only to human cooperatiomeandrk reci-
procity may still be relevant in other contexts, e.g., in microbiolay7. Players seem to act
by responding to the level of cooperation in their neighborhood, andehiers the network
irrelevant. In addition, players behave in a ‘moody’ manner, being significantly leskylike
cooperate following a defection of their owithe levels of cooperation attained in a regular
lattice and in a highly heterogeneous network (hitherto thought to be a i@impeenhancer)
are indistinguishable, and the responsive behavior of subjects afpdse independent of the
number of neighbors they have or on the payoff differences theynals&he results are in
full agreement with the theoretical prediction it3Q); the fact that the key hypothesis in that
model is that people behave in the way we have just described, providiesrfsupport to our
finding of moody conditional cooperation in networked Prisoner’s Dilemmas.

Our results have implications for policy making when cooperation is a des#eavior.
Although further experiments with other social dilemmas still need to assesaihe of appli-
cability of our conclusions, the present study suggests that imposing ankettructure might
be a sterile effortlt should be noted, however, that this cavéaés not imply that networking
is useless to achieve cooperation—results would probably be veryetifférthe network is
allowed to be formed by the subjects as part of the game. Recent experonagrsups of up
to 20 people 138 139 strongly suggest this, but to the best of our knowledge no large-scale
experiments have been carried out to test this is€uethe other hand, the theoretical work
in (133 does not predict the slow decay of the cooperation level observeeé xieriments,
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Figure 6.2: The level of cooperation declines and is indepelent of the network of contacts.
Fraction of cooperative actions (level of cooperation) fmemd during the experiment (panel A)
and the control (panel B) for both networks, and histografmsooperative actions in the lattice
(panel C) and in the heterogeneous network (panel D). Thedrams (panels C and D) show the
number of subjects ranked according to the fraction of coaipe actions they perform along the
experiment in the two networks. A Kolmogorov-Smirnov tdsbws that the distributions are sta-
tistically indistinguishable (see appendix5). They illustrate the high heterogeneity in subjects’
behavior, their levels of cooperation ranging from neadyozo almost one in a practically contin-
uous distribution. The corresponding histograms for thetrod (Figureexp.figS4 of the appendix)
show that a sizable group of subjects lowered their levelsooperation hence becoming mostly
defectors. Actually, the decline in the level of coopenatatoserved in the experiment (panéls
and B) can be explained as a constant flow of subjects to mdeetoe strategies (for evidence
supporting this hypothesis see Figuegand6.8 of the appendix).
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Figure 6.3: Players’ behaviour depends both on the level ofapperation in the neighborhood
and on their previous action. Frequency of cooperative actions after a cooperativedtieéeac-
tion, conditioned to the context (fraction of cooperatieé@ns in the neighborhood in the previous
round) observed in the lattice (A) and in the heterogeneetsark (B). Details of the linear fits
and comparison with randomizations to prove statistigalificance can be found in the appendix.
The plots demonstrate that there is a relevant dependertbe oantext for subjects that cooperated
in the previous round (i.e., were in a “cooperative moodig tooperation probability increasing
with the fraction of cooperative neighbors much as for theditional cooperators found by Fis-
chbacheet al(99). However, after having defected, this dependence is less, @nd if anything,

it suggest an exploiting behavior—subjects who defectedesseprone to cooperate the more co-
operation they find around. Panels C and D show how subjeatscebperated or defected are
distributed according to the largest payoff-per-link éi#nce in their neighborhoods between the
two actions. These plots reveal that a player’'s decisiorotperate or defect was independent on
the payoffs-per-link they observed (an information thaseaplicitly provided during the experi-
ment).
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Figure 6.4: Null hypothesis statistical significance testProbability of cooperating after playing
C or D, conditioned to the context (fraction of cooperativians in the neighborhood in the
previous round), averaged ov&d® random shuffling of players. Panel A) corresponds to the
experimentakreatmentin the lattice, panel B) to the santeeatmentbut for the heterogeneous
network, panel C) to the control phase in the lattice and lfl2ht the same contrateatmenfor

the heterogeneous network. The results show that theredspendence on the context and hence
that the results of panels A and B of Figure 3 are statisticalevant. The anomalous variance (or
even absence of data) observed at a fraction of C’s in thénheipood close t6.9 is not a relevant
feature of the experimental results but a consequence akttydow probability of having events
contributing to that bin of the histogram in the heterogerseoetwork. This anomaly can also be
noticed in Figure 3.
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Figure 6.5: Dependence of the strategies on the connectiyitThe upper panels show the co-
operation levet as a function of the connectivity; in the heterogeneous network, averaged over
all rounds of the experiment (upper left panel) and the @biftpper right) of the experiment. In
the lower panels, we plot the frequency of cooperative astif players with degree as indicated,
after they have cooperated or defected, as a function of#otidn of cooperative actions in their
neighborhood during the previous round, along the experitmeatment in the heterogeneous net-
work. Statistics is restricted to nodes of connectivity: 2 (lower left panel)t = 3 (lower center)
andk = 4 (lower right).
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which we have conjectured that arises from moody conditional coopsragcoming defec-
tors in a generalized grim behavior. Such a change in the percentatpsefgusing different
strategies is not included in the theoretical model, and therefore a nexwstég require to
account for such changes and, if possible, to justify them within an evoanjyoframework.
Finally, given that in our setup players have to play the same action with allrtbigjhbors,
it is clear that our results should be related to those of public goods expgsimén fact,
conditional cooperation was first observed in that cont@&}. (Our findings suggest that the
“moody” version we have found can also arise in public goods gamesatlfgtihe case, it is
likely that network reciprocity does not apply to public goods games on mkswélopefully

our experiment will encourage further research in all these directions.

6.5 Appendix 1: Additional material about the experimental re-
sults

Here we present further results aimed at supporting the findings shdiwa jimevious sections.
As there, we will refer to the basic types of individuals found in the expartnas mostly
cooperators (players who cooperate with a high probability regardi¢be context), mostly
defectors (players who defect with a high probability regardless of diméegt) and moody
conditional cooperators (players whose action depends on their psea@ion as well as the
level of cooperation in their neighbourhood, see BGA and B).

Figure6.6 shows the histograms of the number of players ranked according to thierfra
of cooperative actions they performed along the control phase, in theelgitmelA) and in
the heterogeneous network (paBgl The same results but for the experimental phase can be
found in panelsC andD of Figureexp.fig:2. The comparison between the plots shows a large
increase in the fraction of individuals that never or almost never catgebin the control with
respect to the experiment. This is likely to be a consequence of the faat thatexperiment
there is an initial amount of cooperation well above 50%, which is not the icahe control.
At the other extreme of the plots, the (small) amount of highly cooperativeeagmains
approximately the same, indicating that their motivation has nothing to do with haxvimgf a
fixed environment for their interactions. The general picture thus arfsimg the control part
is that there is not much cooperation, and the majority of players do noecatepother than

occasionally.
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Figure 6.6: Distribution of cooperative actions in the contol. We represent the number of
players that cooperated during the given number of roundsr(alized by the total number of
rounds played). The results correspond to the control pt&isglar results were presented @

On the other hand, Figug7 displays the time evolution of the distribution of cooperative
actions in the experimental part. The histograms show the players’ fregasra function of
the fraction of cooperative actions along successive 10-rounddsecimrresponding to the ex-
perimental phase in the lattice (left column) and in the heterogeneous netigtitkcolumn).
The results show evidence of some degree of learning as the experiogregses: Indeed, the
number of people who cooperate never or rarely increases with time. higl e consistent
with the decay of cooperation shown in Fig.2 A; while the first, quick drop in cooperation
would be explicable within a computer model with a fixed proportion of defectmoperators
and moody conditional cooperators, the second part of the evolutionch shower decay,
is inconsistent with such a model and must then come from changes in therwopf the
different types of players.

The phenomenon we have just described can also be shown in a diffeaaner, namely
by monitoring the evolution of mostly defectors both during the experimentatamigol parts
of the experiment. Figuré.8represents the fraction of agents whose probability to cooperate
is below a given threshold (indicated in the rightmost legend) at everydr@iime ¢t). To
calculate this quantity, we have taken into account the actions of the playéarg the previous
10 rounds. The results obtained show an increasing trend (more efodené experimental
phase, top panels) for both the square lattice and the heterogeneouosknethich confirms
the tendency of the players to learn that they should defect as time goes on.

We also report on the statistical analysis we carried out about the expg¢aindata. First,

in order to determine whether or not the likelihood to cooperate differs signifiy in the two
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Figure 6.7: Time evolution of the distribution of cooperative actions. The different panels
show how frequently players cooperated in different timgqus. The results correspond to the
first treatment (experiment). Rows represent periods 1318( 0, top), 11-20{, = 10), 21-
30(@to = 20), 31-40¢, = 30) and 41-50f, = 40, bottom) as indicated.

studied networks, we use the Kolmogorov-Smirnov (KS) test for the twosktta We take
as a first sample the distribution of the probability to cooperate in the lattice, ctadudaer

all rounds of the experimental phase. The second sample used asdnphe KS test corre-
sponds to the same distribution but for the heterogeneous network. aiteette distributions
represented on Figu&2 The maximum difference between the cumulative distributions for
the experimental phase (51071 with a corresponding value faPxs = 0.995. The statis-
tics of both samples, together with the ones corresponding to the contrse [Btig. 6.6 are

summarized in Tablé.1

Finally, Table6.2 summarizes the statistical fits (obtained from a weighted least squares
regression) of the conditional probabilifyto cooperate, conditioned on the player’s action in
the previous roundX =after C', after D) and on the density of cooperators in the players’
neighborhoods during the previous round. Fits are defineB (Y| X, p) = a + bp. The data

fitted correspond to the results shown in FigGrgA,B.
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Figure 6.8: Evolution of the fraction of mostly defectors. Fraction of agents with a coop-
eration probability lower than a givethreshold as a function oft(=round), according to their
cooperative actions through the previous 10 rounds, fdemint values of thehreshold =
0, 0.1, 0.2, 0.3, 0.4. Columns represent results for the lattice (left) and therdogteneous network
(right), while rows correspond to the two treatments: expent (top) and control (bottom).

6.6 Appendix 2: Experimental setup.

6.6.1 Volunteer recruitment and treatment

The experiment was carried out witB29 volunteers chosen among last year high-school stu-
dents (17-18 years old) @ different High Schools located throughout the geography of the
Autonomous Region of Aram, Spain, whose capital is Zaragoza, where the University of
Zaragoza is. 34 High Schools were in the province of Zaragoza, 5 irrtivénpe Huesca, and
3 in the province of Teruel. For the recruitment of the students, we codt#ittecoordina-
tors of a program (Ciencia Viva, "Living Science”) of the local gawaent that supports the
dissemination of Science among public high schools of Anadgvoreover, we also contacted
many of the private schools of Zaragoza City also offering them the plitysdd taking part
in the experiment. In all cases, the experiment was referred to as "d sgga&iment” and no-
body (including the high-school teachers in charge of the coordindtioay in advance what
the experiment was about (see below).

Following the call for participation, we selected 1300 volunteers. In dasatisfy ethical
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experiment control
lattice heterogeneous lattice heterogeneous

mean 0.03703 0.03703 0.03226 0.03226
95% confidence (0.02434,0.04974) (0.02335,0.05072) (0.02549,0.04858)| (0.02607,0.04800)
standard deviation 0.03210 0.03459 0.02918 0.02772
high 0.0976 0.104 0.106 0.0878

low 0 0 0 0

third quartile 0.06560 0.06126 0.05440 0.05795
first quartile 0.006400 0.006623 0.006400 0.01159
median 0.04000 0.03146 0.0448 0.03808
Median absolute deviatior 0.02844 0.02937 0.02495 0.02275

Table 6.1: Statistics of the distribution of the probability to cooater cumulated over all rounds of the experimental and
control phases in both networks. See the text for furtheaildet

lattice heterogeneous
a b a b
afterC' | 0.457 +0.015 0.122 +0.034 0.475 £ 0.016 0.126 £ 0.039
afterD | 0.350+0.021 | —0.149 £+ 0.050 | 0.309 £+ 0.069 | —0.0269 + 0.035

Table 6.2: Values of the fitting parameters for the results shown in E@uB A,B. Fits are defined by (C|X,p) =
a + bp, being X =afterC, or afterD. See the text for more details.

procedures, all personal data about the participants were anonyamdedeated as confiden-
tial. Moreover, the Ethical Committee of the University of Zaragoza apptellgorocedures.
On the day of the experiment, the aforementioned 1229 volunteers shgwetitlu541 males
and 688 females representing the 44.02% and 55.98% of the total numbdayeisp respec-
tively. Out of the 1229 students, 625 played the game on a square lattider(@eés and
351 females keeping the male to female ratio) and 604 on an heterogenéweasknén the
first topology, every player hakl = 4 neighbors while in the second, the connectivity varied
between 2 and 16 following a distributid%(%) = P(k) = Ak=27, with A = (3, P(k))~L.

All the students played via a web interface specifically created for theriexpet (see
below) that was accessible through the computers available in the compaoies i their
respective schools. At least one teacher supervised the experimeathncomputer room
(which at most had a maximum capacity of 20 students), preventing anydtiteramong the
students. To further guarantee that potential interactions among studatitgysnext to each
other in the class do not influence the results of the experiment, the assigoinptayers to
the different topologies was completely random. Hence, the odds of hawingarticipants
geographically close (i.e., of the same school and seating next to eachwhtmewere also
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neighbors in the virtual topology was quite small. In addition, as describlesvbthe col-
ors used to code the two available actions of the game were also selectechigridirther
decreasing the likelihood that neighboring participants could influendeaher.

We describe in the following section the steps followed by each participaimgdthe
experiments. In short, all participants went through a tutorial on thesdreguding questions
to check their understanding of the game. When everybody had gonggthtioe tutorial, the
experiment began, lasting for approximately an hour. At the end of theriexents volunteers
were presented a small questionnaire to fill in. Immediately after, all partitsipaceived their
earnings and their show-up fee. Total earnings in the experimentddrme 2.49 to 40.48

euros.

6.6.2 Experimental platform and interface

The experiment was run using a fairly sophisticated web application s@dlyifiteveloped to

this purpose. The application was made entirely using free softwaresldexeloped in Ruby
On Rails, a technology used by other popular websites like Twitter, andMgS@L database
that stores all data needed to carry out the experiment and the subsanalysis. MySQL is a
freely available open source relational database management sysehobh&tructured Query
Language (SQL), the most popular language for adding, accessingamaging content in a
database.

The application was designed to be used by three different user prdfilles of all, we
have the players, who were shown at the beginning a detailed tutoriab&itexr understanding
of the interface and basis of the experiment. Secondly, there are teadhemwere responsi-
ble for supervising students through their dedicated web monitors, facilitdténgork of the
central administrator work and contributing to the success of the experifaiatly, the ad-
ministrators were responsible for controlling the game and everything tlahagpening in
real time. The application, which was designed using technologies compatthlaliplat-
forms, was managed from a standard web browser. There was aitasippat, a daemon or
process running in the background whose function was to update thlesrasd play instead
of players who do not play within the specified time frame for each action.

Considering that the experiment required that aroig@) students could play online si-
multaneously, we used a server with enough power, and many optimizatiomp&réormed in
terms of connections to the server, access to database, client-saéavexd@ange, lightness of

119



6. HETEROGENEOUS NETWORKS DO NOT PROMOTE COOPERATION WHEN
HUMANS PLAY A PRISONER’S DILEMMA.

the interface, control logic, etc. The experiment started on Decemb@02Q,at 10:00 CET.
The steps followed during the development of the experiment were:

1. Administrators opened the registration process.
2. Players (students) gradually registered.
3. Once all students had registered, teachers informed the administiattirsivscreen.

4. As soon as the required number of participants have registered (thisatoond 20
minutes), administrators blocked further registrations and initiated the readlitige

tutorial.
5. Students and teachers read the tutorial.
6. Teachersinformed (also via their screens) administrators that thingeeas completed.
7. The experiment treatment began, which lasted 51 rounds.

8. Students played according to some predefined times (a maximum of 20dsquen
round to choose an action). During these steps, teachers controlladyfgrotential
problem using a chat channel that connected them to the administratonse{®ned
above, if one student did not play within the 20 seconds given for edidnathe daemon
played automatically (see below). The administrators were able to identify \abomot
playing and to contact the teachers if the situation persisted. Howeverxkerent
went smoothly and no feedback to the professors for misbehavior waede

9. The experiment treatment finished and a brief tutorial on the seconttongol) was

shown.
10. Once teachers and students had read the tutorial, the former notifedhti@strators.
11. Administrators started the control treatment, which lasted 59 rounds.
12. Students played as in the previous treatment.

13. Once the control treatment finished, volunteers were presentexttagslstionnaire to

fill'in.

14. All participants checked their earnings and were given their shpfiea!
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6.6 Appendix 2: Experimental setup.

6.6.3 Synchronous play and automatic actions

The experiment assumes synchronous play, thus we had to make s@neetyabund ended in
a certain amount of time. This playing time was set to 20 seconds, which welseche@uring
the testing phase of the programs to be enough to make a decision, while atrhdime not
too long to make the experiment boring to fast players. If a player did rassghan action
within these 20 seconds, the computer made the decision instead. This auta@usicdwas
randomly chosen to be the player’s previous action 90% of the times and plositgpaction
10% of the times. We chose this protocol following previous testings perfibbyméhe authors
of a similar experiment (se€8)). Volunteers were informed that the computer would play
for them if their decision took more than the prescribed time-out. Howevey, \tieee not
informed of the precise strategy used by the computer in order to avoidianynttheir own
choices of strategy. In any case, for the reliability of the experiment it isitapbthat a huge
majority of actions were actually played by humans, not by the computer. Thistity, when
averaged over all rounds, yields that the 90% of the actions wererthgsaumans, regardless
of the underlying network of contacts.

6.6.4 Questionnaires

At the end of the experiments volunteers were presented a small questoton@ll in. The
list of questions (translated into English) was the following:

1. Describe briefly how you made your decisions in part | (Experiment).
2. Describe briefly how you made your decisions in part Il (Control).

3. Did you take into account your neighbors’ actions?

4. Is something in the experiment familiar to you? (yes/no).

5. If so, please point out what it reminds you of.

6. If you want to make any comment, please do so below.

The first three questions have a clear motivation, namely to see whetBsit{lygsome) players
did have a strategy to decide on their actions. Question 3 was intended kondinetber players
decided on their own or did look at their environment, because only in thisdast imitative
or conditionally cooperative strategies make any sense. Questions 4 amdsed on the
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possibility that some of the players recognized the game as a Prisoner’s Dileatauase they
had a prior knowledge of the basics of game theory. The final questibaljogred them to

enter any additional comment they would like to make. We did not carry out a deiailed

guestionnaire to avoid the risk of many players’ leaving it blank (the whotegment was
already very long).

122



Part Il

An evolutionary dynamics approach to
tolerance.
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Presentation of Part Il.

In this part of the thesis, we address the second research theme: tla@delender the
framework of social dynamics. The concepts of tolerance and intoleraage been ap-
proached from many perspectives including biology, sociology and siplyy (4). For the
purposes of this thesis, we consider toleranceageetmissive and indulgent attitude in relation
to those subjects whose characters, opinions or behaviors differ frers owri and, comple-
mentarily, intolerance or bigotry ashe refusal to accept subjects with different characters,
opinions or behaviors from ones otwn

Despite antecedents in classical greek (as well as from the hellenisticp@auach period)
philosophers€.g. Socrates, Epictetus, Marc Aurellius), toleration does not become a seriou
subject of philosophical and political concern in Europe until the 16thl&iid Centuries. Mo-
tivated by the Religion’s Wars which followed Reformation and CountecRedtion, thinkers
as Milton, Bayle, Spinoza and Locke defended religious tolerance. Athertgnlightenment’s
philosophers, perhaps Voltaire was the one that most vividly expréssetws in defense of
religious tolerance, and surely Kant was the most rigorous one.

At the end of the 18th Century one can see tolerant ideas embodied in prad¢hedJSA
Constitution’s Bill of Rights. In the 19th Century at the formulation of political fddesm, J.S.
Mill argues that the only proper limit of liberty is harm (to others), and thditipal power
should have no authority to regulate those activities and interests of indigithat are purely
private and have no secondary effects on others.

Already in the 20th Century, toleration became an important component afisvkiaown
as liberal theory. It has been defended by liberal philosophers alitcc@l theorists such as
Dewey, Berlin, Popper, Dworkin and Rawls, but also criticized by Msgecand other modern
marxist thinkers who worry that toleration and its ideal of state neutrality is Ignarether
hegemonic Western ideology, a useful "superstructural mask”. Aftesaame politically neo-
liberal practices in Europe politics are indeed quite far from being tolénsarty ample sense
of the term. Nowadays, a concern for racial equality, gender neutrafitgnd of prejudice,
respect for cultural and ethnic difference, and a general commitment ltaatturalism has
fueled ongoing debates about the nature of toleration in our age of glatatizand homo-
geneization.

To a 21st Century social sciences theorist that might worry about iksses, a basic
methodological question is wether or not social tolerance can be measuraeast semi-
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guantitatively inferred from observations. What about consider it pgrameter in an ABM
investigation? The accepted meaning of the "tolerance” parameter of tediggimodel is but

a possible operational use of the concept of toleration. So we see tladnesidy a half-century
old tradition of using tolerance as a social parameter in social modeling of gbhem®mena.
Moreover, given that intolerance is the main cause of conflicts at all |evels two-person

disputes to multipart struggle and wars, and considering that, unfortunstelal rejection

and self-exclusion based on real or perceived characteristics igirttie the human condition
and has always been present in every culture and time pefipd§), the cultural diffusion

enhanced by development of mass media and new technologies leads teeasimgneed to
address tolerance under the perspectives of social and cultusainitys

Tolerance and intolerance are issues that can be properly addtessegh ABMs, as
shown, for example, the fact that one of the first social ABM was thieleatial segregation
model developed by Thomas C. Schelling in 1932; 63). The Schelling’s model shows how
a preference to have similar neighbors can lead to segregation for eblatiwall values of
intolerance (see Introductidh3.7). Nevertheless, ABM have not paid much attention to the
study of tolerance, in contrast to other related topics such as homop8j)yopinion formation
(153 or rumor spreadingl5).

In the Axelrod model (see Introductioh3.1for a basic presentation) treocial influ-
enceon the "cultural” individual characteristics defining the cultural stateeapp itself as
homophile satisfactigrthe driving force of cultural change (or cultural evolution). One might
say that the "incentive” to modify a cultural trai.Q. conversion to a new, non-inborn faith,
changing of musical taste, or going into bio-organic food consumption) iagpgation to a
greater share of cultural features with nearby agents. Simple and efajeppealing, ho-
mophile satisfaction is the "benefit function” in an economic framework fortiariaof the
model. Economic language is well-fitted to permeate Political Sciences modelindyuand
man social behavior, though not always, can sometimes be understoohénaieeconomy of
"moral feelings” and/or other categories.

Importantly, the Axelrod’s dynamics assumption, namely "the more similar two alltur
agents are, the more similar they’ll likely become in the future”, seems alsmberon a sen-
sible theorist’s inference from social experiences and observatiote. that this assumption
leads naturally, for a dimer of cultural automata, to a self-sustained ircoéasltural similar-
ity. Though this may suggest that the dynamics is just a trivial acceleratderteyto cultural
consensus, when passing from the cultural dimer analysis to the neligitlals state analysis
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of a focal agent, one realizes that the (ensemble averaged) mean similahig/focal isn’'t
forcefully an increasing function of time dynamics: it could decrease in timeysamics is

not that trivial. Despite that, the tension between the two extreme macrostatgis, global-
ization and multiculturalism, is regulated by the (initial) degyex cultural diversity, as in the
dimer analysis: Provided is so large as to render negligible the probability of sharing some
cultural feature, no option other that multiculturalism prevails for the dimenedkas for the
whole macroscopic population, where frozen multicultural patterns dominatasymptotic
states for large initial cultural diversity.

Another basic feature of this modeling framework of cultural dynamics is itsigon-
biasedsetting respect to trait values: There is no advantage of particular trgésiiag "socio-
cultural ineffectiveness” power. A physicists’ term for this basic featstrait symmetry The
complete invariance under interchangeability of traits imposes that the hormgsy cul-
tural macroscopic state contaig$ microscopic states, that are equally likely provided traits
are uniformly distributed in the initial conditions. Along any particular stochasgjectory, the
macroscopic consensus reaches fixation (thus irreversibly breakitig symmetry) through
an unbiased random walk, as it occurs in Evolutionary Genetics wheteaheharacters are
fixed in some populations. The same occurs regarding traits frequenoiesticultural macro-
scopic states.

Our daily experience would easily sanction as too simplistic both (homophily xenct e
symmetry) basic features of this cultural dynamics: to put it crudely, duhagearly eighties
of last century, when | became more a reggae than heavy metal rodlesl yasing Spaniard,
is a different socio-economic situation from the coetaneous conversiaryoung Mexican
"catholic™-born to the "Jehovah'’s witnesses ” faith, that are treated distinguishable pro-
cesses inside this framework. The model, however, is not aimed to adutesguals’ cultural
issues. Also, for a field anthropologist interested, say, in the cultuciihdeof Patagonia pop-
ulations, such a bareness of details in the description of cultural dynamitcs seem useless,
likely a mere kidding exercise. However, no particular cases of importdntral processes
(as culture extinction) motivate this model.

Our kind of theorists’ social modeling is (no more and no less than) an xtli¢scien-
tific) attempt to gain insight into basic fundamental mechanisms that operatenas sEnse
universally, in the emergence of collective social behaviors. We knawtlie Ising model is
invaluably useful, far away its strict applicability éog. magnetic materials experiments. This
important message is well-understood inside our physicists’ culture, apefuily, will be
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increasingly so across other scientific cultures. It is amply heard, dtitessme branches of
social and economical sciences research, in connection to the Schellitgy, nvbere residen-
tial segregation based on ethnic (racial, unchangeable agent fe@aliffiezentiation of individ-
uals, is modeled through a very simple homophile satisfaction driven mobilityntigsgsee
Introduction for a basic presentation).

Although intolerance and homophily are close ideas, the relation betweercdiotkpts
is not trivial: while homophily refers to the preference to not interact witlsidigar people,
this preference does not implies social rejection. Nevertheless, theofbahd the Schelling
model share the sanms®cial force the homophile satisfaction. In the first one it fuels the
cultural change (under conditions given by a cultural diversity patareavhile in the second
it determines moving decisions (conditioned by a tolerance parameter) inogragy” of
residential neighborhoods. Each model addresses a differentisgecial issue, and inside
own domain, each one is a basic archetype model ultimately based on homaisiection
as a social force.

Our goal in this part of the thesis is to incorporate intolerance into the culiyrelmics
through different mechanisms. Starting from the Axelrod’s model, in chaptee introduce
intolerance allowing agents to move from a culturally dissimilar environment to atladable
places according to a intolerance threshéld This is possible thanks to the introduction of
a density of empty sites in the lattice of the original model. We show that, when the den-
sity h of empty sites is low enough and the agents percolates the lattice, mobility eshance
the convergence to monocultural state. Moreover, the transition yatlepends linearly with
the system size. On the other hand, for large enough valugswhenl — h is below the
site percolation threshold, a new multicultural fragmented phase appdavs &lues of the
initial cultural diversityq; however, the monocultural phase of the original Axelrod’s model is
recovered for intermediate valuesgftriggered by mobility, as well as the disordered (multi-
cultural) phase for large values @f In chapter8, we extend the previously described model
by considering intoleranc€ as an individual cultural feature susceptible of imitation through
the cultural dynamics. This asymmetry introduced in the traits of Axelrod dyrsaafiimws to
study the preference of tolerant traits to be present or not in dominéotesi We consider
two options in order to introduce individual intoleransgcial rejection(i.e., the agents move
according to their neighbors’ intolerance) aself-exclusior(agents move incited by its own
intolerance to their neighbors). In both cases we show that tolerant traitsae likely to be
present in dominant cultures. Moreover, the advantage of toleraneages with the density
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h of empty sites, being higher in t®cial rejectionscheme. In order to obtain a more realistic
model, given that social networks are heterogeneous, in Chapterintroduce tolerance into
cultural dynamics throughetwork plasticity allowing agents to remove links to its dissimilar
neighbors and reconnecting them to other individuals chosen at raritltismmethod allows

to consider heterogeneous and dynamic networks, with a network dyndnvies by the cul-
tural dynamics. Starting from the dynamics designed by Vazetiet. (166), we introduced
tolerance through a parametéthat modulates the intensity of rewiring mechanism. We show
that rewiring mechanism induces opposite effects. As expected, fertatges of tolerancg,
rewiring promotes the convergence to globalization. Nevertheless, fomatiate values of

Z, the rewiring mechanism enhances the formation of disconnected culustdrs for values

of the initial cultural diversityg which present globalization in non-evolving networks. Fur-
ther, for low values o7, although clusters are present in transitory states, rewiring promotes
cultural spreading between clusters for large enough values afid monocultural phase is

recovered.
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Chapter 7

Residential segregation and cultural
dissemination: An Axelrod-Schelling
model.

In the Axelrod’s model of cultural dissemination, we consider mobility of calt@gents
through the introduction of a density of empty sites and the possibility that ageatslig:
similar neighborhood can move to them if their mean cultural similarity with the nerglolod
is below some threshold. While for low values of the density of empty sites the madility
hances the convergence to a global culture, for high enough valitehefdynamics can lead
to the coexistence of disconnected domains of different cultures. Inebisie, the increase
of initial cultural diversity paradoxically increases the convergencedonainant culture. Fur-
ther increase of diversity leads to fragmentation of the dominant culture amaiths, forever
changing in shape and number, as an effect of the never ending gractinity of cultural

minorities.

7.1 Introduction

The use of agent-based models (ABME) in the study of social phenomena provides useful
insights about the fundamental causal mechanisms at work in social syStbekrge-scale
(macroscopic) effects of simple forms of (microscopic) social interactienery often surpris-

ing and generally hard to anticipate, as vividly demonstrated by one of thest@xamples

of ABM, the Schelling 62, 53) model of urban segregation, that shows how residential seg-
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regation can emerge from individual choices, even if people have faidyant preferences
regarding the share of like persons in a residential neighborhood.

To gain insights on the question of why cultural differences betweenithdils and groups
persist despite tendencies to become more alike as a consequence lahsaraetions, Ax-
elrod (9) proposed an ABM for the dissemination of culture, that has subsequaaggd
a prominent role in the investigation of cultural dynamics. Questions coimcethe estab-
lishment, spread and sustainability of cultures, as well as on the "prosamsd of cultural
globalization versus the preservation and coexistence of culturakitiveare of central impor-
tance both from a fundamental and practical point of view in today’s world

The Axelrod model implements the idea that social influence is "homophilie”, the
likelihood that a cultural feature will spread from an individual to another elegs on how
many other features they may have already in com(&6n The resulting dynamics converges
to a global monocultural macroscopic state when the initial cultural diverditglev a critical
value, while above it homophilic social influence is unable to inforce cultuoahogeneity,
and multicultural patterns persist asymptotically. This change of macrosbepavior has
been characterized41; 142, 143 144) as a non-equilibrium phase transition. Subsequent
studies have analyzed the effects on this transition of different lattice taorie structures
(145 146), the presence of different types of noise ("cultural driftt 4 148), as well as
the consideration of external fields (influential media, or information faeki(149 150 and
global or local non-uniform couplingd$1). Along with other models of social dynamics (as
e.g, models of opinion formationl63 154), rumor spreadingl(c5), etc) cultural dynamics are
of interest in the field of non-equilibrium phase transitions in lattice modelghas stochastic
spatial models motivated by population dynamics or evolutionary biol8gy Up to now, no
investigation of the effects of agent mobility on cultural transmission hasdsreied out, with
the exception of157), where individuals move following the gradient of a "sugar” landscape
(that they consume) and interact culturally with agents in their neighborheodmnobility is
not culturally driven.

In this chapter we incorporate into the Axelrod dynamics of cultural trangoniskse pos-
sibility that agents living in a culturally dissimilar environment can move to otheitedola
places, much in the spirit of the Schelling model of residential segregatiois. réquires the
introduction of a density of empty sitésin the discrete space (lattice) where agents live. As
anticipated by 157) the expectations are that the agents mobility should enhance the conver-
gence to cultural globalization, in the extent that it acts as a sort of glahbgliog between
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agents. It turns out that these expectations are clearly confirmed waelenisitys, of empty
sites is low enough so that the set of occupied sites percolates the latticeafiéion value
depends linearly with the number of agents, so that in an infinite system (thenaumical
limit) only global cultural states are possible. However, for large enoatjres ofh, new phe-
nomena appear associated to this mixed Axelrod-Schelling social dynanuksliilg a new
multicultural fragmented phase at very low values of the initial cultural dityeis (seemingly
first order) transition to cultural globalization that is triggered by mobility, ardftagmenta-
tion of the dominant culture into separated domains that change continucuslg eesult of
erosive processes caused by the mobility of cultural minorities.

7.2 The model

In the Axelrod model of cultural dissemination, a culture is modelled as a vettérinte-

ger variables{os} (f = 1,..., F), called culturafeatures that can assume values,o; =
0,1,...¢ — 1, the possibldraits allowed per feature. At each elementary dynamical step, the
culture{o(7)} of an individuali randomly chosen is allowed to change (social influence) by
imitation of an uncommon feature’s trait of a randomly chosen neiglibwith a probabil-

ity proportional to the cultural overlap;; between both agents, defined as the proportion of
shared cultural features,

F
1
wij = % D 0op(iaG) (7.1)
f=1

whereJ,, , stands for the Kronecker’s delta which is lzif= y and 0 otherwise. Note that in
the Axelrod dynamics the mean cultural overlgpof an agent with its k; neighbors, defined
as

k.
1 T

w; = kf Zwij , (7.2)
i

not always increases after an interaction takes place with a neighboeng agdeed, it will
decrease if the feature whose trait has been changed was previbasdg svith at least two
other neighbors.

To incorporate the mobility of cultural agents into the Axelrod model, two newrpaters
are introduced, say the density of empty sitesand a threshold@” (0 < 7' < 1), that can
be calledintolerance After each elementary step of the Axelrod dynamics, we perform the
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following action: If imitation has not occurred ang; # 1, we compute the mean overlap
(7.2 and ifw; < T, then the agent moves to an empty site that is randomly chosen. Finally,
in the event that the agehtandomly chosen is isolated (only empty sites in its neighborhood),
then it moves directly to an empty site. Note, additionally, that in the presencdesfsity of
empty sites, the sum in equation.?) runs over neighboring agents, and not on neighboring
sites, so thak; can take on the valués 1, .. .4 for a square lattice geometry.

We define the mobilityn; of an agent as the probability that it moves in one elementary
dynamical step (provided it has been chosen):

m; = (]_ — (Di) (“)(T — (:Ji) , (73)

where©(x) is the Heaviside step function, that takes the valuexL¥f 0, and O ifz < 0. For
an isolated agent, that moves with certainty, one may convene that its meaalcwentap is
zero, so that expressiofi.@) applies as well. The average mobility of a configuration is the
average of the mobility of the agents:

1 N
m = N Zmz , (7.4)
i=1

where N is the total number of cultural agents. We will consider below two-dimensional
square lattices of linear siZe, so thatV = (1 — h)LQ, periodic boundary conditions, and von
Neumann neighborhoods, so that the nunihesf neighbors of an agernitis 0 < k; < 4. We
fix the number of cultural features fo = 10, and vary the parametegsh andT’, as well as the
linear sizeL of the lattice. As it happens also for the genuine.(without mobility) Axelrod
model, no qualitative differences appear for different valueg’'of 3, the only difference
being that larger values df make it easier the convergence to cultural globalization. One can
easily realize that the probability that the overlap between two randomly cloodteires, say
andj, is positiveP(w;; > 0) = 1 — ((¢ — 1)/¢)¥", is an increasing function of the parameter
F.

Note that forF" = 1, no matter how largg > 2 is, the overlapy;; is either0 or 1 so
that there is no chance for cultural interaction (imitation). In this limit case ageht keeps
forever its own initial culture, and the size of each culture is fixed by the irdtalditions
(no cultural evolution). In this case the model effectively reduces tasiore (one among the
many possible variants) of the Schelling model of urban segregationifispky; it becomes
a Schelling model with myopic long range move. Some recent papers in thephterature
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Figure 7.1: Order paramete(S,,...)/N versus scaled initial cultural diversity/N for a very
small density of empty site/s = 0.05 and different values of the intoleran¢e= 0.3, 0.7, and of
the lattice linear sizé, = 20, 30, 40, as indicated in the inset.

on the Schelling model aré %8, 159, 160, 161). See alsol62) for some critical comments on
the physical perspective of the Schelling model.

7.3 Results and Discussion

For the initial conditions for the cultural dynamics, cultural agents are randomly distributed
in the L x L sites of the square lattice, and randomly assigned a culture. The simulation is
stopped when the numbey, of active links {.e., links such thad < w;; < 1) vanishes. The
results shown below are obtained by averaging over a large numberaftygic 102 — 10%)
of different initial conditions.

The usual order parameter for the Axelrod modéSsay) /N, where(Smax) is the average
number of agents of the dominant (most abundant) culture. Large vallese (o unity) of
the order parameter are the signature of cultural globalization. In7Figwe plot the order
parameter versus the initial cultural diversity scaled to the population gi2€é, for a small
value of the density of empty sitéds = 0.05, and different values of the intoleran@eand
of the linear sizel.. We observe the collapse in a single curve of the graphs corresponding
to different lattice sizes and, moreover, that the results are rather itngeis the intolerance
values. Figurer.2 represents the cultural distribution in both states: ordered phase for low
values ofg/N, and disordered phase for high valueg o .

For a fixed value of the initial cultural diversity the larger the sizév of the population
is, the more likely an agent can share a cultural feature with someone elsepoyhlation.
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Figure 7.2: Cultural distribution when the density of empty sites isdwetheir percolation thresh-
old: The system is characterized by two phases as in thenatigixelrod Model: A monocultural
phase for low values of initial cultural diversity g/N (lefhart, g/N=0.1) and a multicultural phase
for high values of g/N (right chart, g/N=5). The center c{gfiN=1) represents an anomalous state
that is present only in some realizations. Each color remtssthe cultural group that owns the
node. Empty cells are represented in black. Here has been ta30, h=0.05 and T=0.8.

Hence, as mobility allows contacts with virtually anybody, the increase of thelation size
enhances the tendency towards cultural globalization, and the monotitidered) phase
extends up to higher values of the parameatefhe critical valueg. of the transition between
consensus and a disordered multicultural phase diverges with the ssigm ~ N, so that
in the thermodynamical limit only global cultural states are possible for a smadiitsteh of
empty sites.

We will focuss hereafter on larger values of the denaityf empty sites, a regime where
the cultural dynamics shows strikingly different features. At very lowes of the initial
cultural diversityg (so that cultural convergence is strongly favored), the asymptotic stedes
characterized by low values of the order paramétif.x) /N. The reason for the absence of
cultural globalization in this regime is the existence of disconnected monodudmains,

a fact that requires values of the densiity- / of cultural agents at least close to (or below)
the site percolation threshold value for the square lattice (0.593). ItV Higve plot the order
parameter versus the densityof empty sites, for three different values @fN, intolerance

T = 0.7, and linear lattice sizé, = 30. For the largest value of/N = 4.0 corresponding

to the culturally disordered regime, the order parameter is rather insertsitifie 1 values.
This is also the case fgt/ N = 1.1, a value representative of the cultural globalization regime.
However, for the lowest value af/N = 0.5, we observe the decrease of the order parameter
whenl — h takes on values close to the site percolation threshold, signaling the apgeafa
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Figure 7.3: Order paramete(S,,....) /N versus scaled initial cultural diversigy/N for an inter-
mediate value of the density of empty sites= 0.5. Panel (a) corresponds to a high value of the
intolerancel’ = 0.7, and different lattice linear sizes = 20, 30, 40, 50, while in panel (b)

L = 40, and different values of the intoleran€e= 0.2, 0.4, 0.7, 0.9 are used. See the text for
further details.
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Figure 7.4: Order parametefS,,...) /N versus density. of empty sites, for three different values
of the scaled initial cultural diversity/N = 0.5, 1.1, 4.0, T = 0.7, and linear lattice siz& = 30.

the fragmented multicultural regime. This new kind of macroscopic multicultured sdhus

of a very different nature from the "genuine” multicultural phase of thiginal Axelrod model

(h = 0). Though cultural convergence is locally achieved inside each geoaiathister, the
absence of contacts between clusters makes impossible the existenceabizgtmm. The
values of the order parameter in tliiagmentedohase, represented in Fig.3a as a function

of ¢/N with h = 0.5 andT" = 0.7 and for several values df, decrease with increasing lattice
size, and the expectation is that the order parameter vanishes in the theamoci limit,
because the largest cluster size below percolation should be indepafdba lattice size.
Left chart of figure7.5 shows the cultural distribution of this new multicultural fragmented
phase, next to the phases of original Axelrod Model.

The increase ig from the very small values that correspond to the fragmented multicultural
phase has the seemingly paradoxical effect of increasing the ondeneter(Syax) /N values,
i.e., the increase of the initial cultural disorder promotes cultural globalizafiorunderstand
this peculiar behavior, one must consider the effect of the increagénahe initial mobility
of the agents. One expects that the higher the valugisf the lower the initial values of
the cultural overlaps;; among agents are, and then the higher the initial mobility of agents
should be. Under conditions of high mobility, the processes of local clltoravergence are
slower than the typical time scales for mobility, so that the agents can easily rafowe lfull
local consensus can be achieved, propagating their common feanates)tzancing the social
influence among different clusters. In other words, the attainment @fréiif local consensus
in disconnected domains is much less likely to occur, and one should expeaxidtsening of
a dominant culture domain that reaches a higher size.

138


AxelrodSchelling/figures/fig3.eps

7.3 Results and Discussion

Figure 7.5: Cultural distribution for a empty sites density above thmgrcolation threshold. A
new multicultural fragmented phase appears for very loweslof the initial cultural diversity
(left chart, g/N=0.1), in adition to the two phases of oraif\xelrod Model (the ordered phase
of center chart for g/N=1 and the disordered phase of rigattdor g/N=5). Here has been taken
L=30, h=0.45 and T=0.8. Colors represent the cultural gsaamq black sites the empty cells.

A straightforward prediction of this argument is that one should obseigieeh values
of (Smax) /NN for higher values of the intoleran@, because agents mobility is an increasing
function of this parameter (see ed@-3)). The numerical results shown in Fig.3b for different
values ofT andh = 0.5 nicely confirm this prediction, in support of the consistency of the
previous argument. Interestingly, for very low valuesiofvhen mobility is not enhanced,
multiculturalism prevails for the whole range @fvalues. On the contrary, for high values of
the intolerancel’, an almost full degree of cultural globalization is reached, as indicated by
the values Smax) /N ~ 1 of the order parameter. In those final states almost all agents belong
to a single connected monocultural cluster. One should also note that,ddnfitues of the
intolerancel” and the density: of empty sites, the previous argument indicates that the relevant
variable for this transition is the initial cultural diversigyand noty/N, so that the interval of
values ofg/N that corresponds to the multicultural fragmented phase shrinks for singesl
values.

To characterize the passage from the multicultural fragmented phase @ gtotsensus
with increasing initial cultural diversity, we have computed the histogramse¥étues of
Smax/N at values ofg where the order parameter increases, see F&y. The histograms
display the bimodal characteristics of a first-order transition. In a fractforalizations, the
transient mobility is able to spread social influence among the clusters sdabhak cpnsensus
is finally reached. This fraction increases withto the expense of the fraction of realizations
where fragmented multiculturality is reached. Note that no significant chahgleape and
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Figure 7.6: Histograms of the values &f,,,...,/IN, nearby the transition from the fragmented mul-
ticultural phase to globalization, fér x 10? realizations at (from left to right and top to bottom)
q = 100, 150, 250, 400, for L = 30, h = 0.5, andT = 0.7. The histograms display the
characteristic behavior of a discontinuous (first ordeggehtransition.

position of the corresponding part of the histogram is noticeable, agemt its progressive
reduction to lower volumes, whenincreases.

Further increase of the initial cultural diversifyenhances the likelihood of agents sharing
no cultural feature with anybody else in the finite population. The presgfitbese culturally
"alien” agents decreases the value of the order parameter and thesmaktheir number
with ¢ is concomitant with the transition to multiculturality in the original Axelrod model (as
well as here, for finite populations). We see in Fig3b that the increase of the intolerance
parametefl’ shifts this transition to higher values @f N, in agreement with the enhancement
of the convergence to globalization tHAtproduces via mobility, as discussed above. Each
alien agent has, at all times, a mobility; = 1, and the average mobility cannot decrease
in time to zero value when they appear. In other words, the asymptotic states adltural
dynamics are no longer characterizedrby= 0. The time evolution of the average mobility
for particular realizations dt = 0.5, 7" = 0.7, L = 30 and different values of /N is shown
in Fig 7.7. The value of;/N beyond which the stationary average mobility is larger than zero
signals the appearance of these alien cultural agents.

In addition, the restless character of the alien agents has an importahbeffbe geometry
of the dominant culture, namely ieyosion As an illustrative example, let us consider the
situation represented in the inset of Fi@8, in which an ageni of the dominant culture is
placed at the frontier of a cluster, having a single neighbor of his kirdlaasaume that an alien

agent;j has moved recently to one of the empty neighboring siteés\dfhen agent is chosen
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Figure 7.7: Average mobilitym versus time for h = 0.5, L = 30, T' = 0.7 and different values
of the scaled initial culture diversity/N as indicated. Unlike the other figures, in this case each
curve represents the results of a single realization. Seteit for further details.

for an elementary dynamical step, there is a probahi}i/of choosing agent for an imitation
trial. Asw;; = 0, and theno; = 1/2, the agent will move from there to a randomly chosen
empty site whenever the intolerance parametér is- 1/2. We see that, for this particular
situation, the erosion of the dominant culture cluster will occur with probabitigy lealf.

Note that the erosion of the dominant culture cluster does not change ¢hg,gizof the
dominant culture. It simply breaks it up into separate domains, some of thesisting of
single (isolated) individuals. These isolated members of the dominant culiiiev@ntually
adhere to domains, to be at a later time again exposed to erosion, and sberyeforle the
shape and number of domains of the dominant culture (as well as that ofhe anes),
fluctuate forever. The number) of isolated dominant culture agents reaches a stationary
value that results from the balance between erosive and adhestespes. To quantify the
strength of the eroding activity of cultural minorities we show in Fi@ the stationary value
of the averaged fractioh%) of isolated individuals of the dominant culture versus the scaled
initial cultural diversity, forh = 0.5, T = 0.7, andL = 30. Soon after the transition from the
fragmented multicultural phase to globalization occurs, erosion increesestically, largely
contributing to the large values of the stationary mobititythat characterize the multicultural
states in the model here introduced.

Figure7.9 shows the order paramet8y,,../N versus intolerance T, for a scaled diversity
initial ¢/N = 1.1 and different densities of empty sites h. This valug AV is high enough
to avoid cultural globalization in the Axelrod limit, but low enough to allow the oyeriEhere
exists a threshold of intoleranc, below which the order parameter $,,,,/N ~ 0. If
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Figure 7.8: Cultural minorities continuously erode the dominant adtdomain, that breaks into
separate domains and isolated individuals. As a quanttatieasure of this erosion phenomenon
we plot here the stationary value of the averaged fractidS, ... of isolated individuals of the
dominant culture versug/N, for h = 0.5, T = 0.7, andL = 30. The inset shows an illustrative
configuration where erosion can take place.

T < T, the mobility is low and can not promote cultural convergence. Although empty site
enhance mobility, paradoxically it is found thAt increases with h. The explanation for this
phenomenon is that the influence of h on the mobility is small, but the increasengdlies

a decrease of N, therefore also a decrease ofggfif had been fixed. This in turn implies

a increase of mean overlap, a decrease of mobilityn; and finally the incerase df,. as
observed. For low values of h,ff > T, the order parameter is fourtd},,./N ~ 1, that is,
above a critical value of mobility the system reaches monocultural state. iBsasty when h

is high enough to allow the formation of site clusters, it can be seen a discousitnehavior:

Now a node can have. = 0, 1, 2, 3 or 4 neighbors, and,,,...(T") presents steps for T=n/m.

7.4 Theorical analysis

Leti be a node of dominant culture D, ardts number of links to his cultural domain. If i has
an allien neighbor of culture O, every time step the probability for i to stay unchanged, ie,

to preserve his features and rest in D-group is:

o k+ (1 —wpo)H(HERe — 1) e
o = ) : (7.5)

142


AxelrodSchelling/figures/fig6.eps

7.4 Theorical analysis

o
©

1 og}],“T““'\\;\\/y-"T TS

o
T

“
|

<Smax/N>
I
|

o
i

| ® @ h=0.1 _

| <-4 h=0.25
02— ] ¢ h=05 —

Figure 7.9: Order paramete$,,,.../N versus intolerance T, for differents values of h, g/N=1.d an
L=30. The shape corresponds to discrete and continuoustasgfethe algorithm. Results have
been averaged fdi0? different initial conditions. See the text for further déta

where H represents the Heaviside function. The probaldiityfor i to change, that is, to leave
the group D is:

wWDO
sc = , 7.6
kE+1 (7.6)

and the probabilityP,,, for i to move is:
1 —wpo k —wpo
P,=——"H(T - ———= 7.7
" k+1 ( k+1 ) (7.7)
From now on, we deal with stationary state, and therefore weuake= 0.

In order to calculate an estimatesf, we consider:
n": number of D-agents exposed to real erosion, ie, having an allienbaigihey belong
to a D-cluster with at least three elements’ is the sum of nodes like that, with links to

D-agents:
' =30 n(x).
ng: D-agents exposed to erosion that belong to a 2-agents domain.
n®: number of empty sites adjacent to a D-domain.
HE: number of empty sites adjacent to isolated D-agents.
We take into account the useful time step, ie, we only consider a step wiventzoecurs.
That only implies a time translation and does not affect fixed points. We stedyndist likely

events of erosion and adhesion:

e a;: Simple adhesion eventy — nf —1, AN >0,
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e ¢;: Simple erosion eventty — nd +1, AN" = -1,
e ay: Double adhesion eventiy — nf’ — 2,
e ¢5: Double erosion eventn) — nf’ + 2,

and, their respectives probabilities are:

D, E
Pla) = s ,
hL?(n® + nf + nv)
n¥ 1 3 1 K
Ple)) = (1 - ) v H(T - ,
(1) hL? no—i-né)—i—n“;n g - )
ny HP
Plaz) = —5 103 02 ’
nY +ny +n*hL
Ple1) = (1 - n” )an%H(T — %)
hL2) n0 +nd + nv
(7.8)
A necessary condition for equilibrium is:
Pla1) + 2P(az) = Pler) + 2P(es)
(7.9)

Therefore, under this assumptions (we are not taking into accountsailje events), we
can replac€.8in 7.9to estimate/’:

T<1/2: b = 0,

hLQ_ e_HD u(] U
12 <z b = (LEont = He)((1) +ng)

2(n® + HY)
2 Dy(1 1 1
23 <3jt: pp = PEZnHYGR() +gntQ2) + po
nP + H}
T aja: b — (BEZnC = HOGRU() + 5n(2) 4 gn(3) + ooy
S nf + HY

(7.10)

Figure 7.10 shows the comparison between theorical estimate for the isolated dominant
culture agentleD and experimental results. As one can see, although theory underestimates
the value of isolated agents, adjustment is quite good. The explanation fatethaion is
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Figure 7.10: Isolated dominant culture agent§ versus the scaled initial cultural diversigyV,
for T=0.8, h=0.3 and L=30. Circles represent simulatiorultssfor 10 realizations, and lines
theorical estimation.

that we have ignored some kinds of events. Howevgrestimate is rooted not only in system
parameters, but also in other observables related to the spatial distritpagiiméter, location
of aliens), so that rather than a prediction is a check of the analytical method

7.5 Conclusions

We have introduced a model of cultural dynamics in which agents can miveadiry cultural
dissimilarities with their environments, at the style of the Schelling model of urbgregation.
The introduction of agents mobility through this segregation mechanism into tbkeofbcul-
tural dynamics leads to an enhancement of the convergence to culturalizggion for small
densities of empty sites, so that the behavior of the order parameter (i.egldtieersize of
the dominant culture) scales with the numbérof cultural agents. That is, the transition to
multiculturalism only occurs for finite populations.

Furthermore, for larger densities of empty sites, when cultural agent®tparcolate the
lattice, a new type of multicultural fragmented phase appears at low valtlesioitial cultural
diversity q. Though the initial cultural overlap is enough to trigger the local culturalvec
gence inside each geometrical cluster of agents, cultural globalizationlgger possible
due to the lack of cultural transmission between monocultural isolated donfaimgded the
values of the intoleranc@ are high enough, this regime is followed by a new transition to
globalization for increasing values g@fthat is triggered by the increase in the initial mobility.
Moreover, in the genuine Axelrod transition from global consensus larigation, the shape
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and number of cultural domains are here dynamically fluctuating by the comedtitiance of
erosive and adhesive processes associated to the agents mobility.
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Chapter 8

Selective advantage of tolerant
cultural traits in the Axelrod-Schelling
model.

In the previous chaptétwe introduced the Axelrod-Schelling model, that incorporates into the
original Axelrod’'s model of cultural dissemination the possibility that cultagénts placed
in culturally dissimilar environments move to other places, the strength of this molslitg b
controlled by an intolerance parameter. By allowing heterogeneity in the iatmerof cultural
agents, and considering it as a cultural featuee, susceptible of cultural transmission (thus
breaking the original symmetry of Axelrod-Schelling dynamics), we addnese the question
of whether tolerant or intolerant traits are more likely to become dominant in tigeterm
cultural dynamics. Our results show that tolerant traits possess a cleativ@eadvantage in
the framework of the Axelrod-Schelling model. We show that the reasothisrselective
advantage is the development, as time evolves, of a positive correlatioremettregenumber of
neighbors that an agent has in its environment and its tolerant character.

8.1 Introduction

In the Axelrod-Schelling model introduced in chapfewe focused on mobility, considering
the driving force of mobility is the agents’ cultural dissimilarity with their enviromipée.,
homophile (dis)satisfaction, the same that drives cultural transmissiorin§taom the Ax-
elrod model for culture dissemination and the residential segregation mio8ehelling, two
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new parameters where introduced, namely the denhsitiyempty lattice sites (places that are
available to moving agents), and an intolerance paraniétbat controls the strength of the
mobility: If an attempt to cultural interaction (imitation) fails, then the agembves to a ran-
domly chosen empty lattice site if its mean cultural similadity< T'. T here is a threshold
for tolerance, in such a way that high values/otharacterize intolerant societies.

In this chapter, we extend the Axelrod-Schelling model by considering natoteT’ as
a cultural feature, and then it is no longer a parameter (a property of tlb&vpopulation)
but an individual property of agents subjected to cultural transmissiae.t®its influence on
the dynamics through the rule of mobility, the question of whether or not cdrtita of this
feature are more likely to be present in the dominant culture makes semsergdo what
occurs with the rest of cultural features, whose particular traits do floeimce the dynamics,
and are thus selectively neutral.

We have performed extensive numerical simulations that implement differestfor the
mobility of agents, whose results show unambiguously that tolerant traitegsoasselective
advantage over intolerant ones., they are better adapted for survival in the long term dy-
namics. Furthermore, by a stochastic analysis we present argumenigaglhioat the reason
of this cultural evolutionary success of tolerant traits is the establishmeng ipajbulation of
a negative correlation between the numbgof neighboring agents, and the valiligof the
agent intolerance. This is presented in secB8dh Before, in sectior8.2, we reconsider the
transition between fragmented multiculturalism and globalization, first analyzeltapter?,
by using an alternative scheme for mobility with homogeneous intolerance néWwischeme
corresponds to the homogeneous version of one of the rules of mobilidyinisection8.3
(mobility by social rejection), so that this helps in the interpretation of some skthesults,
and at the same time, it throws a new light on the understanding of the mechanggrasng
this transition. Finally, we summarize our results in the concluding chapter

8.2 The transition from fragmented multiculturalism to globaliza-
tion revisited

One of the new phenomena that appear associated to the mixed Axelreltisisckocial dy-
namics is the existence, for values of the deniity #) of agents below the lattice percolation
threshold, of a multicultural macroscopic phase at very low values of thel icitimral diver-
sity ¢. In this regime, the processes of local cultural convergence are faatehe typical time
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scales at which mobility is able to induce global convergence to a monocudtatal In this
multicultural state agents are aggregated into disconnected (monocultusséyslwhere dif-
ferent cultural consensus have been achieved. Hence theframgmeentedor this multicultural
phase.

If the value ofg is increased (see figure 1a), the behavior for the order paragsgter) /N,
becomes rather sensitive to the value of the intolerance paraffieteor very low values of
T multiculturalism persists, while for very high values, a first order transitioncimplete
globalization is observed. At intermediate valuesipfthe order parameter increases versus
g but complete globalization is not reached. The observation that the iecofdie initial
cultural diversity promotes cultural globalization may seem paradoxicalfisst sight, but it
is not difficult to rationalize it by noting that an increasegihas also the effect of enhancing
mobility, which is in turn an important driving force towards globalization. Mwe, insofar
as higher values df’ enhance agents’ mobility, the different behaviors that are observed fo
different values of the intolerance are consistent with this interpretation.

To deepen further our current understanding of the complex compdtetseof different
parameter variations that lead to the transifi@gymented multiculturalism-globalizatipmwe
study here this transition in a different scheme for the mobility of cultural @géfe remind
here that in the original scheme of chapteafter an elementary step of the Axelrod dynamics,
if imitation has not occurred and;; # 1, the agent moves to a randomly chosen empty site
wheneverw; < T'. If the agent turns out to be isolated, then it moves with certainty. We refer
hereafter to this scheme as A. The mobitity of an agent is defined as the probability that it
moves in one elementary dynamical step (provided it has been choses)intthe scheme A:

m =(1-a) 6T —) , (8.1)

7

whereO(x) is the Heaviside step function, that takes the valuexl# 0, and 0 ifx < 0.

In the new scheme, hereafter referred to as B, after an elementaryfdieg Axelrod
dynamics, if imitation has not occurred ang # 1, the agent moves to a randomly chosen
empty site with probability1 — @w;) 7. In the case that agents isolated, then it moves with
certainty, as in the previous scheme. The mobility of agémthe scheme B is thus given by

mP=01-a)?T . (8.2)

7

As shown in the figure.2, in both schemes the mobility is a decreasing functiow of
However in the scheme A the mobility vanishes in the intetvat 7' (being independent on
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Figure 8.1: Order parametefS,,..) /N versus scaled initial cultural diversity N for a density
of empty sitesh = 0.5 and lattice linear sizd. = 40. Panel (a) corresponds to scheme A for
different values of the intolerance parameter. Panel (lesponds to scheme B. See the text for

further detalils.
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Figure 8.2: Mobility m; for a nodei as a function of his mean overlap in schemes A and B. In
the scheme A the mobility vanishes for> T'. Otherwise, whenever # 1 andT > 0, it does not
vanish in the scheme B.

T for @ < T), while it does not vanish in the scheme B, provideet 1 (andT > 0), though
it takes lower values than in the scheme Adox T where it depends linearly dAf.

In figure 8.1(b) we plot the order parameter versus the scaled initial cultural diversity
for h = 0.5 and different values of the intoleran€g for the scheme B and a two-dimensional
square lattice geometry. In contrast with the results for the scheme A (shdignre 8.1(a)),
the behavior of the order parameter turns out to be rather insensitive talthes of the in-
tolerancel’, and the transition from the fragmented multicultural phase to globalization takes
place for all the values df that we have used. How to fit these observations into the interpre-
tation framework given in chaptér(succintly reproduced above in a previous paragraph) for
the transition?

To have a better picture of the speed at which the processes of culbmkadrgence take
place and what parameters are more influential on them, we have inspecteddlevolution
of the histograms afy, namelyP(w, t), at values of the initial cultural diversity close (below
and above) to the transition. In all cases and for both schemes, thispitytadensity evolves
always from being sharply concentrated near= 0 att = 0, to become later widespread,
the centroid shifting to progressively higher valuesoadis time goes by, until it concentrates
nearw = 1, finally becoming a Dirac delta functioi{w — 1). The time scale at which this
evolution occurs seems not to be influenced by the scheme (A or B) adapudetie influence
of the value off" is also minor. The important parameter that mainly determines the time scale

of local cultural convergence is the initial cultural diversity The lower its value the faster
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this process takes place. Then, what makes a truly meaningful difeebstieween, on one side,
both scheme A at higii” values and scheme B at dllvalues and, on the other side, scheme
A at low T" values (where the transition to globalization is absent), is that agents with high
cultural overlap do not move in the latter.

These results throw a new light over the mechanisms that trigger the transdiarttie
fragmented multicultural phase to cultural globalization. The increase of it icultural
diversity slows down the local cultural convergence, giving then achto mobility to induce
global cultural consensus. But it is the mobility of agents with a significart kuigal cultural
overlap (however small its mobility could be, as it is the case for the schemieB @tvalues),
and not just the amount of overall mobility, what allows the effective culttrealsmission
among the disconnected clusters of the fragmented states so making possitaldscence
of the giant monocultural cluster characteristic of the globalization state. biflityds strictly
limited to culturally marginal agents, its power of cultural transmission is unableeiwome
the fragmentation into disconnected cultural clusters.

8.3 Heterogeneous intolerance.

As we have already mentioned in the introductory section, the mobility of cultgealta in the
Axelrod-Schelling model is driven by the same utility (or social driving &rthat underlies
the cultural dynamics of the Axelrod model (as well as the dynamics of thell&ghmodel),
namely "homophile satisfaction”. In the model, those agents that are pladdd fmfly ho-
mogeneous cultural environments don’t move. Cultural dissimilarities arenlyesource of
mobility, and the parametéF, that controls the strength of mobility, quantifies the degree
of (in)tolerance to cultural dissimilarities. Being a model parameter, tolersnaejuantity
characteristic of the whole (artificial) society. In other words, in this cdntee can speak
of tolerant (low value ofl") or intolerant societies. However, it seems to us rather natural
to consider (artificial) societies where different agents have diffadegtees of tolerance to
cultural dissimilarities. This certainly opens the possibility of new interestingtoures to be
investigated inside the model.

In what follows, we consider that each cultural agehtas assigned a real number<
T; < 1, called intolerance. Moreover, we are going to consider the intoleradnagemts as
a quantity associated toaultural feature i.e. a component of the cultural vector, and then
subjected to temporal changes as a result of cultural interactions. Widssubf generality,
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one can associate the agents’ intolerance to the first compenefithe cultural vectofo}.
As this variable takes on integef, (, ..., ¢ — 1) values, one has to choose some functfon)
that takes values in the intervl 1], and define the intolerandg of agent; to be

T, = f(o1(i)) - (8.3)

Next we have to specify the particular way in which the agents’ intoleragies into the
dynamical rules. Many alternatives can indeed be considered for igarfist choice will be
the following: After an elementary step of the Axelrod dynamics, if imitation ha®ocurred
andw;; # 1, the agent moves to a randomly chosen empty site with probability

R
7, 4 (1 —wiy)Tj (8.4)

j=1

where the sum extends to tkeneighbors ofi, and if the agent is isolated §; = 0) it moves
with certainty. In this choice, the intolerantiecta; of a cultural agenij is seen as its degree of
hostility towards a culturally dissimilar neighbfrand is weighted by the cultural dissimilarity
(1 —w;j). The mobility of an agentis here the result of thgocial rejectionof its neighbors,
due to cultural dissimilarities.

The Axelrod-Schelling model with homogeneous tolerance, as the origkedid®’s model
does, assumes an unbiased scenario in the sense that the traits of & f@atura are com-
pletely interchangeable: Nothing in the dynamical rules distinguishes amdegedif traits,
and then the likelihood that each particular trait is present in the dominanteolta realiza-
tion is the same for all of them, provided they are uniformly distributed in the initiatltions
for the dynamics. The particular traits that survive in the dominant cultuaeyofen realization
reach fixation by neutral selection, so that averaging over many indeperealizations, one
obtains a uniform distribution of traits in a large enough sample of dominantesltu

However this symmetry of the model is broken in our current case of lggtremus intoler-
ance regarding the cultural featurg, for its particular values do influence the local dynamics
through the dynamical rule of mobility. Then, the question of how likely aresgbfiit traits to
prevail and be present in the dominant culture makes now sense in thiymeaesry-breaking
scenario. Do tolerant traits possess a cultural selective advantagefttoe contrary, are intol-
erant traits better adapted to survive? Moreover, by which dynamicdlamems the "natural”
selection of particulaf” values is built up in the time evolution of the populations of cultural
agents?
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Note that if one takes fof (z) in equation 8.3) a constant function, so thd; = 7" inde-
pendent ofi, one recovers the scheme B introduced in the previous se&iorn the extent
that the behavior of the order parametst,....) /N (for a density of empty sited = 0.5) in
scheme B was seen to be rather insensitive to the valiig ohe should expect in the present
case of heterogeneous intolerance, that the order parameter f@igydéempty sited = 0.5
will be as shown in figurd.1(b). Thus the choice made above in equati®d)(is technically
convenient for the purpose of investigating the question on the selediamtage of tolerant
traits, just because it is expected that it leads to states of cultural globalizagome ranges
of the initial cultural diversity, when the very term "dominant culture” is mosianingful.

We consider two-dimensional square lattices of linear sizeith periodic boundary con-
ditions. The numbeF’ of cultural features is fixed té" = 10, and we have used two values
of the density of empty sites, namély= 0.05, representative of the situation in which agents
percolate the lattice, antl = 0.5 as representative of the opposite case. Far) we will

consider a simple linear function:
Ty =q 'o1(i) . (8.5)

For the initial conditionsN = (1 — h)L? agents are randomly distributed on the< L lattice
sites and randomly assigned a culture. The simulation of the cultural dynarsiopged when
the number of links for whicld < w;; < 1, commonly called active links, vanishes. Besides
the order parameter, we compute the intolerafig®f the dominant culture, the average intol-
erance(T"), and sometimes, the histogram of intolerance values of the final state. Siitsre
that we show below are obtained by averaging over a large number (typléd — 10%) of
different initial conditions.

In the two panels of Figur8.3we show our numerical results fér= 0.05 (panel a) and
h = 0.5 (panel b). First, we confirm the expectations on the behavior of the patameter
discussed above: Given the insensitive character of the order paramthe scheme B to the
value of the intolerance parametErfor both values of:, no effect on(S,,,...)/N due to the
heterogeneity of agents’ intolerance is observed.

The numerical results for the intolerance valligsof the dominant culture for both values
of the density of empty sites clearly show that very tolerant traits are betiptetito survive
and become a part of the dominant culture. This occurs in the whole rdngdues of the
initial cultural diversity that leads to values of the order parameter muckrangnN —! (so
as the term dominant possess a meaning). By comparing the grappssbbwn in Figs8.3a
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Figure 8.3: Order paramete{S,,...)/N (stars), intoleranc&p of the dominant culture (circles),
and average intoleran¢@’) (squares) versus scaled initial cultural diversgityV for a lattice linear

size L = 40, for the scheme of mobility corresponding to equati8r), Panel (a) corresponds
to a density of empty sites = 0.05. Panel (b) corresponds to= 0.5. See the text for further

details.
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Figure 8.4: Comparison ofl, and(T") for L = 40 andL = 100, A = 0.5 and the same mobility
rule used in Fig8.3

and8.3b, we observe that thEp values are significantly lower far = 0.5 than forh = 0.05,
so that the strength of the selective advantage of tolerant traits inciehsesthe density:
of empty sites is higher. The fact that the average intolergigeof the final configurations
is higher thanl'p, provided the order parametdf ! < (S,..)/N < 1, indicates that the
non-dominant surviving values of the intolerance are typically larger thardominant one.
We further show in Fig8.4 that the results regarding the behaviofief and(T") for L = 40,
are essentially unchanged for lattice of sip@ x 100.

In Fig. 8.5 we show the histogram d&fp values, obtained fror® x 10? realizations, at
fixed value ofg/N = 1.1, for a density of empty sitels = 0.05. One should note that though
the mean value of the dominant intolerance i$'at= 0.07, the probability density is sharply
peaked afl’p, = 0 and quickly decays to negligible values’Bs increases. In other words,
the lower the value of p, the more probable, so that the mean value is only indicative of the
dispersion scale of the density.

In order to explain why tolerant traits are better adapted to prevail in theténgof the
dynamics, let us consider the subsHtT, ¢t) of those cultural agentsfor which, at timet,
T; < T, whereT is an arbitrarily chosen value of the intoleranesg( 7" = 0.3 or more, or
less). Let us denote by(7',¢) the cardinal ofA(7,¢), and call{ (T, t) the set of lattice links
(4,7), such that the agentbelongs toA (7, t) and the agenf is not in this set (sd@; > T)). If
time is measured in elementary step units, the difference

An(T,t) =n(T,t+1) —n(T,t) (8.6)
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Figure 8.5: Histogram of the values of the intoleran@g of the dominant culture fo2 x 103
realizations, at scaled initial cultural diversigyN = 1.1, and a density, = 0.05 of empty sites.
See the text for further details.

can only take on the valugs +1. To compute the probability?, that An(T,t¢) takes on the
value+1, one has to sum over all links, j) € £(T,t) the product of the following factors:

a) the probability {V—') of choosing agent for a cultural imitation trial,

b) the probability éj‘l) that its neighbot is chosen,

c) the probability ¢;;) that ageny imitates an uncommon feature’s traitiofand
d) the probability(ﬁ) that the chosen uncommon featureris

Note that for a link(é, j) in the setl (T, t), the strict inequalityv;; < 1 holds. Then we
obtain

1 1 Wis

Pp=—u > -2 8.7

T NF ki (1— wij) (8.7)
(i) EL(T1)

In a similar way, the probability’_ that An (7', ¢) takes on the value-1 is

1 1 Wij
P.=_— - .
NF Z ki(l—wij) (88)
(i,§)€L(T\t)
We see that the number of agents in the 4€f, t) performs a complicated random walk
with left- and right-step probabilities changing in time as dictated by the modehagsaThe

expected value o\n (T, t) is given by the differencéP, — P_), then

1 (ki — ki) wi
E[An(T,t)] = — - g 8.9
(1,7)€L(T't)
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This equation is the basis for an understanding of the selective advaritegerant traits.
Indeed, following equation8(4), agents with highl; values promote the mobility of their
neighbors (leaving empty sites in their neighborhoods) more than toleramisadp, so that one
should expect that a negative correlation between valuesaofd7; may be easily developed in
the population, and tolerant agents may likely have larger valugstbfin those of intolerant
agents. If this is the case, then equati8rB) indicates that the random walk performed by
n(T, t) will be biased to the right, and the number of tolerant agents will likely incraasiene
evolves. The cultural selective advantage of tolerant traits has its ondhedias produced by
the negative correlation degree-intolerankg (7;) that is directly induced by the dynamical
rule of social rejection.

The equation&.9) allows also to rationalize the observation that the selective advantage of
tolerant traits is strengthened by higher values of the dehsitiyempty sites, because higher
h values easily allow for higher values of the degree differenkgs ;) for (i, 5) € L£(T,t),
and so the bias favoring the increaseT’, ¢) can be stronger.

We have also considered a second way in which agents’ intolerancearenttte mobility
rule of the dynamics: After an elementary step of the Axelrod dynamics, if imitd@snnot
occurred andy;; # 1, the agent moves to a randomly chosen empty site provided

w; < Ty . (8.10)

Note that if one takes fof (x) in equation 8.3) a constant function, so thd = 7' indepen-
dent ofi, one recovers the scheme A for homogeneous intolerance, that whsud®apter
7: Intolerance value is a threshold for the cultural overlap. But there @stedse an impor-
tant difference with respect to equatidh4) regarding the interpretation, or meaning, of the
intolerance. In8.10 what determines whether an agémboves or not, is its own intolerance
valueT;, instead of that of its neighbors, as in the previous case. Though bo#midgal rules
are based on homophile dissatisfaction, they in fact implement differergiplaumechanisms
for mobility. Whether the average social rejection (hostility) of my neighborsase impor-
tant than my own degree of tolerance with a dissimilar environment or not, inettisidn of
moving, may be a question with widely different (as well as context-depghpohelividual an-
swers, and it is certainly not inside the scope of this work to enter into sdgtassion. We
regard here both as alternative plausible mechanisms for mobility, which maydeiffer-
ences regarding the selective advantage of tolerant traits in the AXetioelling model with
heterogeneous intolerance.
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Figure 8.6: Order parametefS,,...) /N (stars), intoleranc&)p, of the dominant culture (circles),
and average intoleran¢@’) (squares) versus scaled initial cultural divergityv for a lattice linear
size L = 40, for the scheme of mobility corresponding to equati8ri(). Panel (a) corresponds

to a density of empty sites = 0.05. Panel (b) corresponds to= 0.5. See the text for further
detalils.
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Figure 8.7: Time evolution of the average number of neighbors per agerand average intoler-
ance(T), forg/N =1, L = 40 andh = 0.5 as obtained from 200 realizations in the scheme of
equation 8.10.

Figure 8.8: Time evolution of the tolerance distribution when the dgnsf empty sites is below
their percolation threshold in a representative realiwatiEach cell represents a node. The color
code is a quasi-continuum, from blue for tolerant nodes tbfoe intolerant ones. Left chart
represents the initial conditions, center charts the inégliate states and the right one the stationary
state. Here has been taken L=30, h=0.05.

Figure 8.9: Time evolution of the tolerance distribution when the dgnef empty sites is above
their percolation threshold in a representative realiratiCodes are the same that in fig@&.
L=30, h=0.5.
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8.4 Summary and concluding remarks.

We show in figureB.6 the results obtained for the dynamical rule associated to equation
(8.10. Though the values dfp are in this scheme higher than those characteristic of the
scheme analyzed before, certain degree of selective advantagerahtdtaits is unambigu-
ously observed. Also, the selective advantage is stronger for higsitgénof empty sites,
as before. Now, however, agents move depending on their own intoteratues, and then
it is not (at least) as clear as before that a negative correlation degoéerance could be
established, which would in turn explain the selective advantage of tokeadtst

A possibility for this comes from the fact that intolerant agents move to emptyraibes
easily than tolerant agents do, so that a negafiye {;) correlation could appear provided
the lattice sites occupied by agents are more likely to have agents in their ndigbtddhan
empty sites are. To check for this, we have computed the time evolution of tregaveumber
of neighbors(k) of agents. Figure.7 shows that, after some (long) transient, the average
degree of agents increases above its initial value (thabhis= 4(1 — h), for a square lattice and
von Neumann neighborhood). This increasé/gfcorresponds to the coalescence of clusters
that will become monocultural in due (short) time. Interestingly, we also segumnefB.6
the decrease of the average intolerafiEeas soon as the average degree increases, so giving
further support to the argument.

Consequently, also in the case that the agents’ mobility is the result of theintmerance
to cultural dissimilarity, the tolerant traits possess selective advantage thesdstablishment
of a negative k;, T;) correlation which in this case has its origin in the agents’ aggregation
processes concomitant to the increase of local cultural overlaps. Gderwed fact that the
selective advantage of tolerant traits is now weaker than in the case whwityneinduced by
social rejection, may likely be the effect of two confluent factors; ontarel, the development
of a negative degree-intolerance correlation is not now a direct qoesee of the dynamical
rule, and on the other, as analyzed in previous se@i@nagents’ aggregation processes are

much less effective when intolerance enter as a threshold for mobility.

8.4 Summary and concluding remarks.

In the Axelrod-Schelling model for cultural dissemination among mobile ageveshave
considered the intolerance, that was originally (chap}ea model parameter controlling the

strength of agents’ mobility, as a variable associated to a cultural featutéhas subjected to
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cultural transmission. We have performed extensive numerical simulatiotved different dy-
namical rules for mobility, whose respective homogeneous versionsalgzad with respect
to the transition from topologically fragmented local consensus to globalralltonsensus
that occurs at very low values of the initial cultural diversity. In the fokthese dynami-
cal rules (mobility by social rejection) agents move due to the intolerance iofriighbors,
weighted by their cultural dissimilarity, while in the second one the mobility dependbe
agent’s own intolerance to the cultural dissimilarity with its environment. In bosesaur
results indicate that tolerant traits are selectively advantageous, sodhiatdlerance values
present in the dominant culture are preferentially low. One then sees ledwedhking of the
original symmetry (indifference of the dynamics respect to particular feattrait values, that
leads to purely neutral selection of dominant characters in cultural evo)sffectively allows
for the appearance of natural selection of advantageous traits.

The selective advantage of tolerant traits increases with the dénsitgmpty lattice sites,
and is also higher for the first scheme, where mobility is the result of thel sefgation from
the neighborhood. A stochastic analysis allows the rationalization of all theserical obser-
vations, and points to the dynamical development of a negative correlaimeéen the number
of neighbors of an agent and its intolerance value as the origin of theigeladvantage of
tolerant traits. We should emphasize here that regarding the rule of ¢uhitagtion, nothing
privileges tolerant traits over intolerant ones,, Axelrod’s cultural interactions are completely
unbiased, so the bias towards tolerant traits can only come from the irdloétize tolerance
cultural feature on the mobility of agents, that shapes the instantaneousrketiainterac-
tions among cultural agents. One should expect analogous findingthésrreetwork updating
dynamics as the one considered (in the symmetric context)&fy (67), also showing topo-
logically fragmented phases, provided the trait symmetry is broken at theretypdating
rule level.

In this regard, the term tolerance -in the context of the Axelrod-Schellirdginbas a very
precise and narrow meaning, much more limited than its usual meaning in soeiaesand
political philosophy, where it certainly means much more than just a conditiéaatgr of the
mobility of individuals and groups. However, inside the limitations of a simple tapased
model like this one, our findings on the "adaptive to survival” charadteslerant traits in cul-
tural dynamics, point to basic mechanisms that can be highly influential in auéwolution.

162



Chapter 9

Co-evolutionnary network approach
to cultural dynamics controlled by
Intolerance.

Starting from Axelrod’s model of cultural dissemination, we introduce drieg/probability,
enabling agents to cut the links with their unfriendly neighbors if their cultsirailarity is
below a tolerance parameter. For low values of tolerance, rewiring prertia¢econvergence
to a frozen monocultural state. However, intermediate tolerance valuenprewiring once
the network is fragmented, resulting in a multicultural society even for valiiegial cultural
diversity in which the original Axelrod model reaches globalization.

9.1 Introduction

The growing interest in the interdisciplinary physics of complex systemdocassed physi-
cists’ attention on agent-based modelird®;(156) of social dynamics, as a very attractive
methodological framework for social sciences where concepts anditowmistatistical physics
turn out to be very appropriaté42) for the analysis of the collective behaviors emerging from
the social interactions of the agents. The dynamical social phenomenzm@sininclude res-
idential segregation5g; 53), cultural globalization §9; 141), opinion formation {53 168),
rumor spreadingl(55 169 and others.

The question that motivates the formulation of Axelrod’s model for cultussemination
(59) is how cultural diversity among groups and individuals could survespde the tenden-
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cies to become more and more alike as a result of social interactions. Thé asedmes a
highly non-biased scenario, where the culture of an agent is defiredetf equally impor-
tant cultural features, whose particular values (traits) can be transnbitechitation) among
interacting agents. It also assumes that the driving force of culturalrdias is the "Thomophile
satisfaction”, the agents’ commitment to become more similar to their neighborsovtart
the more cultural features an agent shares with a neighbor, the more likehg&mt will imi-
tate an uncommon feature’s trait of the neighbor agent. In other wordkigher the cultural
similarity, the higher the social influence.

The simulations of the model dynamics show that for low initial cultural diversitya-
sured by the numbey of different traits for each cultural feature (see below), the system
converges to a global cultural state, while foebove a critical valug, the system freezes
in an absorbing state where different cultures persist. The (non-aquifipphase transition
(110 between globalization and multiculturalism was first studied for a squaraptgom-
etry (141, 143 144), but soon other network structures of social linkd% 146, 152 were
considered, as well as the effects of different types of noise ("@lltlrift”) (147, 148), exter-
nal fields (modeling.g.influential media, or information feedback)49, 150, 163 164), and
global or local non-uniform couplingd $1; 165).

In all those extensions of Axelrod’s model mentioned in the above parlagtiae cultural
dynamics occurs on a network of social contacts that is fixed from thetoute®wever, very
often social networks are dynamical structures that continuouslypesiasimple mechanism
of network reshaping is agents’ mobility, and a scenario (named the Ax8kbdlling model)
where cultural agents placed in culturally dissimilar environments are allowetbt@ has
been analyzed in chaptefsand8. In this model, new interesting features of cultural evolution
appear depending on the values of a parameter, the (in-)toleranceothatls the strength of
agents’ mobility.

A different mechanism of network reshaping has been considereidbty 167), where a
cultural agent breaks its link to a completely dissimilar neighbor, redirectingaitremdomly
chosen agent. At variance with the mobility scenario of the Axelrod-Schetiiodel, that lim-
its the scope of network structures to clusters’ configurations on the gtattuncture (square
planar lattice, or others), the rewiring mechanism allows for a wider settefark structures
to emerge in the co-evolution of culture and social tie&).

In this chapter we introduce in the scenario of network rewiring a tolerpacameter”
controlling the likelihood of links rewiring, in such a way that the lindit = 1~ recovers
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the case analyzed ii§6 167), where only links with an associated null cultural overlap are
broken. Lower values of correspond to less tolerant attitudes where social links with progres-
sively higher values of the cultural overlap may be broken with some pililgahat depends

on these values. The results show a counterintuitive dependence ofdlent®Z on the
critical valueg.. On one hand, as expected frof6G 167), rewiring promotes globalization

for high values of the tolerance, but on the other hand, very low valigs(avhich enhance

the rewiring probability) show the higher valuesgf Indeed, a non monotonous behavior is
observed ing.(Z): Our results unambiguously show that for some intermediate values of the
toleranceZ, cultural globalization is disfavored with respect to the original Axelrodtsdel
where no rewiring of links is allowed. In other words, rewiring does moags promote glob-
alization. On the other hand, the resulting network topology depends cmanging from a
Poisson connectivity distributioR (k) to a fat tailed distribution fog ~ g..

9.2 The model

As in Axelrod’s model, the culture of an ageits a vector of " integer variablego (i)}

(f = 1,...,F), called culturalfeatures that can take oy values,o¢(i) = 0,1,...,q — 1,

the culturaltraits that the featuref can assume. Thé&/ cultural agents occupy the nodes
of a network of average degrég) whose links define the social contacts among them. The
dynamics is defined, at each time step, as follows:

e Each agent imitates an uncommon feature’s trait of a randomly chosen neighiwith
a probability equal to theicultural overlapw;;, defined as the proportion of common

cultural features,

1
wij = o D oy (i)s (9.1

whered, , denotes the Kronecker’s delta which is kif= y and 0 otherwise. The whole
set of NV agents perform this step in parallel.

e Each agent disconnects its link with a randomly chosen neighbor agewnith prob-
ability equal to itsdissimilarity 1 — w;;, provided the dissimilarity) — w;; exceeds a
threshold {olerance 7,

1-— Wij > Z (92)

165



9. CO-EVOLUTIONNARY NETWORK APPROACH TO CULTURAL DYNAMICS
CONTROLLED BY INTOLERANCE.

and rewires it randomly to other non-neighbor agent. The tolerengeZ < 1lis a
model parameter.

First we note that the initial total number of links in the network is preserveckingWiring
process, so the average deg(ég remains constant. However, the rewiring process allows
for substantial modifications of the network topological featueeg, connectedness, degree
distribution, etc. In that respect, except for the limiting situation of very low indidtural
diversity ¢ and a very high tolerancg (where the likelihood of rewiring could be very low),
one should expect that the choices for the initial network of social ties hawnfluence in the
asymptotic behavior of the dynamics.

When the threshold tolerance satisfies% < Z < 1, only those links among agents
with zero cultural overlap are rewired, so the model becomes the onedtndies6 167). On
the other hand, when the tolerance takes the value 1, there is not rewiring likelihood and
the original Axelrod’s model is recovered. Wh&n= 0 rewiring is always possible provided
the cultural similarity is not complete,e., w;; # 1, so that it corresponds to the highest
intolerance.

The usual order parameter for Axelrod’s mode|$$,...) /N, where(S,,..) is the average
(over a large number of different random initial conditions) of the nundbexgents sharing
the most abundant (dominant) culture, avds the number of agents in the population. Large
values of the order parameter characterize the globalization (culturaéosus) regime. We
also compute the normalized sig8;,,) /N of the largest network componerni, the largest
connected subgraph of the network).

9.3 Results and discussion

We have studied networks of siz&s= 900, 1600; averaging oveb0 - 2000 replicas. Checks
for robustness of main results with larger sizeNdof= 2500 were also made. The considered
cultural vectors havé’ = 10 cultural features, each one with a variability= 5 - 10000.
We studied different values of the tolerance threshiolg (0, 1) and different values of the
average connectivityk) = 4,10, 20, 40. Each simulation is performed fov, F, (k), Z, and
q fixed. For the sake of comparison with previous resulés(167), we will present results for
(k) = 4.

The behavior of the order parameter for different valueg @$ seen in Fig9.1 Like in
(166), three different macroscopic phases are observed with increaaingsvofq, namely a
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Figure 9.1: Order parameter as a function of the variabiljtfor different values of the tolerance
thresholdZ. N = 900, (k) = 4, average ovet000 replicas.

monocultural phase, with a giant cultural cluster, a multicultural one with drisected mono-
cultural domains, and finally a multicultural phase with continuous rewirin@. fdture of the
latter phase has been successfully explained®@)( At very large values of the initial cultural
diversity ¢, the expected number of pairs of agents sharing at least one cultiirélettames
smaller than the total number of links in the network, so that rewiring cannpt $iere we
will focus attention on the first two phases and the transition between them.

In figure 9.2 we show the size distribution of the dominant culture over different realiza-
tions, measured for different values @fat a particular fixed value of the tolerange= 0.5.
In the region ofg values near the transition from globalization to multiculturalism, the distri-
bution is double peaked, indicating that the transition is first order, as irrigiea Axelrod’s
model. The transition valu@., may be roughly estimated as thealue where the areas below
the peaks of the size distribution are equal. The estimates of the transition fooidifferent
values of the toleranc& are shown in Fig9.3. The non monotonous character of the graph
q.(Z) seen in this figure reveals a highly non trivial influence of the toleranapeter on the
co-evolution of cultural dynamics and the network of social ties.

Let us first consider the (most tolerant) cage= 0.9 that, except for the system size
N, coincides exactly with the situation consideredi67), i.e., only links with zero cultural
overlap are rewired. As discussed ir6(), for ¢ values larger than the critical value for a fixed
network (¢.(Z = 1) ~ 60), rewiring allows redirecting links with zero overlap to agents with
some common cultural trait (compatible agents), so reinforcing the powerca snfluence
to reach cultural globalization. Once all links connect compatible agemisijg stops (note:
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Figure 9.2: Histograms ofS,,,.../N for different values of;, and for a fixed toleranc& = 0.5,
N =900, (k) = 4. From this figure one getg. ~ 20.

the decrease to zero of a positive cultural overlap cannot be strictiyded, though it may be
considered as a non typical event). From there on, the network seuweiliremain fixed, and
globalization will be reached with the proviso that the network has so farineth@onnected.
This is the case for most realizations (fdf = 900) up to values ofy ~ 240. Increasing
further the cultural diversity, increases the frequency of rewiring events and slows down the
finding of compatible agents, favoring the topological fragmentation into mkta@mmponents
before rewiring stops. Under these conditions, the asymptotic state wilstohdisconnected
monocultural components.

On one hand, network plasticity allows to connect compatible agents, so fingrgtobal-
ization; but on the other hand it may produce network fragmentation, soifigvmulticultur-
alism. What we have seen in the previous paragraph is that fer0.9 the first effect prevails
over the second one up tp(Z = 0.9) ~ 240. Going from there to less tolerant situations
(decreasing?), increases the likelihood of rewiring, making easier that network fragatien
occurs before rewiring stops. This has the effect of decreasingritieakvalue ¢.. In fact,
from Fig.9.3we see that foiZ = 0.7,0.6, and0.5 multiculturalism prevails for cultural diver-
sities where the original Axelrod’s model shows cultural globalization. &s¢hcases network
plasticity promotes multiculturalism in a very efficient way: Agents segregate freighbors
with low cultural similarity and form disconnected social groups where fathl@ultural con-
sensus is easily achieved, fpralues low enough to allow a global culture in fixed connected

networks.
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Figure 9.3: Critical value of the diversity). versus the tolerance threshald obtained from the
distribution of sizes of the dominant cultur®. = 900, (k) = 4. See the text for further details.

For very low values of the tolerance parameter, though network fragti@nteccurs eas-
ily during the evolution, Fig9.3 shows that globalization persists up to very high values of
the initial cultural diversityg. To explain this seemingly paradoxical observation, one must
realize that network fragmentation is not an irreversible process, movidks connecting
agents with high cultural overlap have a positive rewiring probability. Wrldese circum-
stances, transient connections among different components ocaegsefiitly so as to make
it possible a progressive cultural homogenization between componentsitieatvise would
have separately reached different local consensuses9.RBiijjustrates the time evolution for
g = 100 and different values of . Panel (a) shows an example of cultural evolution where net-
work fragmentation reverts to a connected monocultural networifer 0.2. Panel (b), that
corresponds t& = 0.6, shows that social fragmentation persists during the whole evolution,
while in panel (c), which corresponds to the most tolerant situatign= 0.9), the network
remains connected all the time.

The degree distribution of the network is Poissonian centered dhpdor all ¢ values,
except forg = q. where it becomes fat tailed, with several lowly connected (and discteuhiec
sites. For very higly values, in the dynamical phase, the network rewiring is esentially random,

so P, (k) is again Poisson like, centered aroufgl.
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Figure 9.4: Time evolution of mean overlap and number of topologicastus for diferent values
of toleranceZ = 0.2(a), Z = 0.6(b), Z = 0.9(c). N = 900, ¢ = 100. See the text for further
details.

9.4 Summary

In this chapter we have generalized the scenario for co-evolution dfddke cultural dynam-
ics and network of social ties that was consideredli®g( 167), by introducing a tolerance
parameterZ that controls the strength of network plasticity. Specificallyfixes the fraction
of uncommon cultural features above which an agent breaks its tie with labegigvith prob-
ability equal to the cultural dissimilarity), so that, the lower thealue, the higher the social
network plasticity.

Our results show that the network plasticity, when controlled by the tolenaa@ameter,
has competing effects on the formation of a global culture. When tolerahaghisst, network
plasticity promotes cultural globalization for values of the initial cultural diitgrwhere multi-
culturalism would have been the outcome for fixed networks. On the cgrtpaintermediate
values of the tolerance, the network plasticity produces the fragmentattbe @rtificial) so-
ciety into disconnected cultural groups for values of the initial cultura¢mdity where global
cultural consensus would have occurred in fixed networks. Forlegrywalues of the toler-
ance, social fragmentation occurs during the system evolution, but thvenkeplasticity is so
high that it allows the final cultural homogenization of the transient grooipgery high values
of the cultural diversity. Intermediate tolerances promote multiculturalism, whtle éxtreme
intolerance and extreme tolerance favor the formation of a global cultefeg the former

170


AxelrodRewiring/figures/Fig4.eps

9.4 Summary

more efficient than the latter.
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Chapter 10

Conclusions.

Starting from the idea of many interacting entities, we have addresseckediffecial and eco-
nomic issues using procedures and theoretical tools from complex systgsisyy in addition
to other fields, such as complex networks and game theory. Although so@alces obvi-
ously have their own methods to deal with such kind of problems, this methgdgilelds new
approaches, especially in problems that involve stochastic and/or nardiyreamics aspects,
and enhances the study of emergent properties arising from aggegppiroaches.

In the first part of the thesis, we address a issue related to diffelientss such as biology,
economics or sociology: the evolution of cooperation in hostile environmigatisis, when in
the first instance the selfish behavior is more advantageous for the imalivitht cooperative
action. This problem has been dealt with in a variety of ways. In this contextPrisoner’s
Dilemma (PD) has become a paradigm for studying the emergence of ctopdrhavior.
Besides, the thermodynamical perspective on evolutionary game dyndodéssgusede.g,
in chapter2) is not a new issue, as can be found in research literature on game thépry
121), and allows us to interpret the social indicators as physical obsesvabtklater to infer
analytical results.

In chapter2 we investigate in detail the dynamics of PD in an artificial network (Dipole
Model) that models the influence on a population of two antagonist hubsectethto the
whole population, but with no direct connection between them. Based viopssstudies{09;
112 113 that have shown that the asymptotic states of evolutionary PD in complexnkstwo
are characterized by three kinds of agents (pure cooperatorsdpfaetors and fluctuating
agents), we designed the model so that the hubs remain as pure strategesspeifically,
we constrained the initial conditions in order to cancel the probability of glyatbange for
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the hubs. The analytical formulation enables a thermodynamic approach &fstem, which
provides a description with a range of validity limited by the effects of netwgkltmy. The

results, besides providing mathematical meaning to the concept of socialrégorpehelp to
understand the behavior of a population under the influence of two ippdtuential elements
(e.g, mass media).

In chapter3, we study the reversibility of the evolutionary dynamics of PD in different
complex networks under adiabatic variations of the temptation to defect. $iksrehow that,
for the topologies analyzed, the process is reversible provided it isaveqy from absorb-
ing states, but when the cooperation reaches a tipping point the systemdseareversible
showing a hysteresis cycle which is a function of the considered netwdk causes of irre-
versibility vary from one topology to another: the centralization of codper@usters around
cooperator hubs in scale-free (SF) networks prevents the onsetweérisibility in most SF
networks. However, the multiple clusterization of cooperators iro&ifenyi (ER) networks
determines that, once the tipping-point is reached, irreversible transitiwagsaoccur, and
irreversibility is more evident around the absorbing states.

In chapterd we take into consideration a topic that has been deeply studied in the last year
multiplex networks Usually, real populations (regardless of their nature) are not isolated
interlinked by interactions between different layet§4 175. In addition, the interactions
that take place within a given layer may be governed by different ruléshianteractions
between elements of different layefis/G 177, 178). In this context, we study the influence
of interdependency between different layers on the degree of catapein stratified systems.
In particular, we focus on the case in which relations within layers arergedeoy an evolu-
tionary PD, while elements of different layers interact through the Snéw8D) game. This
scheme models a situation in which defection is punished in interactionsutsider defec-
tors. Our model consists of two populations, provided with an internal structucentacts,
that interact through interpopulation links. When the populations are wellénixe carry
out analytical calculations that populations that show, in a region of thenpeer space, a
polarizedstate consisting of &ull-cooperationcommunity connected to fall-defectionpop-
ulation. Other regions of the parameter space stoasi-polarizedstates, characterized by a
population where every agent defects linked to another where modsagmperate. In order
to deal with networked populations, we solved the system numerically and that previous
states appear when population structure is a complex network of contaet® network reci-

procity promote cooperation. The results show that, while for small valugeaémptation to
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defect parameter polarization opposes network reciprocity, for highgstégion values both
mechanisms have the same sign promoting cooperation in a layer. As an applieatitind
that the cooperation level in a target population can be controlled througbhmed defective
population.

However all the above, the statement that underlying network structin@eas coop-
eration in human interactions is based on some assumptions, hamely thatpstsairgies
depends on neighbor’s pay-offs. Althoug network reciprocity meishaim humans has been
deeply studied in the last twenty years (seg, (16; 18; 94; 95; 96; 97; 109), the conclusions
are in general contradictory, because the strategies are usually thégismf the models with-
out experimental suppor?$). In chapters, instead of assuming that people choose following
one of the usal strategies, we analyzed the problem taken as startinghgonetsults of re-
cent experiments2@; 100) on the behavior of small human populations in iterated PD games.
These works shown that people do not take into account the neightaysffe, but, instead,
they consider the cooperation level in their neighborhood. We have dtodithematically the
implications of such strategies in heterogeneously-connected large popsilaSpecifically,
we solved analytically the mean-field case and compared the theoretidéd kel data ob-
tained from numerical simulations made in three network topologies: regulae|afiR and
SF. This comparison show that cooperation level is exactly the samediegmof the net-
work structure. The consequences of this prediction are very impobecapuse, if eventually
confirmed by experiments, they will allow to discard the network reciprocityhaeism in
human prisoner’s dilemma-like situations. Experimental confirmation implies iex@ets in
heterogeneous networks, and therefore, large scale experiments.

In chapter6 we show the results of the large-scale experimental test we have pedforme
to test the conclusions above mentioned. Our experiment shows thatlinreghuman be-
havior, the underlying topology does not have influence in the obsexa®geration level. In
particular, the cooperation levels observed in a regular lattice and in agetsous network
are indistinguishable, moreover, the behavior of subjects appears tadygeimdent of their
connectivity. This conclusion applies only to human cooperation in static nesythere-
fore network reciprocity may still be relevant in other contextg{ in microbiology (37) or
evolving social networksl(79). Our experiment confirm that most people follow the strategy
shown in previous works2@), consisting of the imitation of neighbor’s actions with a probabil-
ity that depends on their frequency. Accordingly, the results confirnthiheretical prediction
made in chaptes. These results may be applied to promoting cooperation in real systems, the
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study suggests that improving network structure might be an innefectliay fpoit invites to
incentive individual behavior.

In the second part of the thesis, we study some aspects of social dyné&oicsing our
attention in particular on a issue that has been approached from biolagpc#d)ogical and
philosophical perspectives: the intolerangé)( Intolerance, defined as “the refusal to accept
subjects with different characters, opinions or behaviors from ongs,as amenable to be
dealt with agent based models (ABM), in fact, one of the first ABM desigioeexplore a
social issue was the segregation model of Schelltt). (Despite this, ABM have not paid
much attention to the intolerance in itself, while related issues of social dynasuich as
homophily 69) , opinion formation {53 or rumor spreadinglc5- have been deeply and
widely studied.

In chapter?7, we have introduced a model of cultural dynamics allowing agents to move
according to their degree of cultural disagreement with their neighbdrhear small density
of empty sites, the introduction of mobility into the Axelrod cultural dynamics promtiie
convergence to cultural globalization, with the consequence that the pad@meter scales
with the system size. Therefore, the transition to multicultural population omiyredor finite
populations i¢e., in the thermodynamic limit there exists only monocultural phase). Further-
more, for larger densities of empty sitég( when population density is below the percolation
threshold), a new phase (that we aalllticultural fragmented pha¥@ppears at low values of
the initial cultural diversityy. The causes of this new phase can be founded in the early stages
of the dynamics: for low values af, the initial cultural overlap is enough to promote local
cultural convergence enhancing the formation of isolated clusters nfsagech isolation pre-
vents cultural diffusion between different domains. For high enougleseof the intolerance
thresholdl’, the increase of has the effect of increasing the initial mobility, and the monocul-
tural phase of the original Axelrod model is recovered, followed by thiicoltural phase for
high enough values af and finite populations. Moreover, in the last transition from order to
disordered phase, the dynamics sherasion-adhesioprocesses associated to the agents mo-
bility; in fact, the increase ig enhances the probability of agents without a common cultural
feature with anyone elsal{ens.

In chapter8, we refined the Axelrod-Schelling model by considering the intolerdhes
a variable associated to a cultural feature, and thus subjected to culaumsinission. There
are (at least) two natural ways of relating mobility and individual intoleraagents can move
due to the intolerance of their neighbos®¢ial rejection or agents can move motivated by its
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own intolerance to the cultural dissimilarity with its environmesgl{-exclusioh In both cases
our results indicate that tolerant traits are more likely to spread, so that thimalat culture
tends to have low values of intolerance. In addition, the selective adwanfaglerant traits
increases with the densityof empty sites, and is also higher for thecial rejectionscheme.

While in chapters7 and 8 we introduced tolerance into the original Axelrod’s model
through mobility, in Chapte® we consider network plasticity, allowing agents to remove links
to its dissimilar neighbors. Rewiring mechanism into Axelrod dynamics was crmesicdby
Vazquez, Gonalez-Avella, Egiluz and San MiguelX66); in their model, an agent was able
to break its link to an antithetical neighbare(, they do not share any trait), redirecting it to
another agent at random. In our research, we have generalized tled pnoposed in Refs.
(166, 167), by introducing a tolerance parametémwhich modulates the intensity of plastic-
ity. We show that rewiring mechanism can produce opposite effectsndegeon the toler-
ance valueZ: while for large values ofZ, rewiring enhances monoculturalism compared to
non-evolving networks, for intermediate values of therewiring mechanism promotes clus-
terization into disconnected cultural groups for values of the initial culixedrsity ¢ which
would show monoculturalism in fixed networks. Finally, for low valuesZpftransient states
show clusterization phenomena, but rewiring (encouraged by low taleyamhances cultural
transmision between groups for very high valuesg,ofielding monocultural states. In conclu-
sion, intermediate tolerance values enhance diversity, high values @friotegreatly promote
globalization while low values of tolerance weakly promote it. Note that, unlike ttedréd-
Schelling described in chapterss, the networks used are heterogeneous and dynamic, with a
network dynamics given by the cultural dynamics.
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