
2012 73

Carlos Gracia Lázaro

Dynamics and collective
phenomena of social

systems

Departamento

Director/es

Física de la Materia Condensada

Moreno Vega, Yamir
Floría Peralta, Luis Mario

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA 



Departamento

Director/es

Carlos Gracia Lázaro

DYNAMICS AND COLLECTIVE
PHENOMENA OF SOCIAL SYSTEMS

Director/es

Física de la Materia Condensada

Moreno Vega, Yamir
Floría Peralta, Luis Mario

Tesis Doctoral

Autor

2012

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA



Departamento

Director/es

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA



Dynamics and Collective Phenomena
of Social Systems.
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despacho y de experiencias.
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Christian Sanabria y Zhen Wang por su camaraderı́a y los buenos momentos compartidos.

Igualmente gracias a todos los miembros del grupo de Fı́sica Estad́ıstica y No Lineal

de la Universidad de Zaragoza, por el magnı́fico entorno de trabajo que habéis compartido
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Resumen

Introducci ón

Esta tesis aborda el estudio de sistemas sociales utilizando los procedimientos teóricos de la

fı́sica. Para abordar estos problemas existen evidentemente métodos de ańalisis y predictivos

en la socioloǵıa, pero la aportación de la f́ısica proporciona tanto nuevas perspectivas

complementarias como potentes herramientas. Este enfoque resulta especialmente útil en los

problemas que involucran aspectos estocásticos y de dińamica no lineal. Los procedimientos

utilizados pertenecen a la fı́sica de sistemas complejos e incluyen, además de los ḿetodos

mateḿaticos tradicionales de la fı́sica, los tomados de distintas disciplinas matemáticas como

las redes complejas, la teorı́a de juegos o la percolación. La aportacíon no consistéunicamente

en los procedimientos de cálculo y predictivos, sino sobre todo en el estudio de las propiedades

emergentes que surgen de los planteamientos holı́sticos.

Contenidos

Se estudian sistemas particulares (no exclusivamente sociales) mediante la introduccíon de

diferentes modelos basados en el agente (ABM), a través de redes de autómatas. Cuando

es posible, los modelos son analizados siguiendo métodos mateḿaticos de la f́ısica, con el

fin de alcanzar soluciones analı́ticas. Complementariamente al desarrollo teórico, se realiza el

tratamiento experimental mediante simulaciones numéricas, tanto con ḿetodos de Monte Carlo

como determińısticos o mixtos. Este ḿetodo de trabajo se ha revelado muy fructı́fero para el

estudio de diferentes problemas abiertos, a los que se pretende contribuiren su comprensión.
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0. RESUMEN

Primera parte: Cooperación.

La emergencia de la cooperación en escenarios hostiles, donde la acción egóısta es ḿas

beneficiosa en primera instancia, constituye un objeto de estudio en diferentes campos de la

ciencia. Por ejemplo, la aparición de organismos multicelulares, el comportamiento gregario

en animales o la formación de sociedades humanas son estudiados mediante este enfoque. En

primera aproximación la cooperación no se ve favorecida: Un organismo, animal o persona

al cooperar gasta unos recursos que puede necesitar para subsistir, mientras que el agente

egóısta sale beneficiado arriesgando menos su superviviencia. De acuerdo con este argumento,

la evolucíon conllevaŕıa una progresiva disminución de los individuos cooperadores, para

terminar con poblaciones formadas exclusivamente por agentes egoı́stas.

Como respuesta a este interrogante evolutivo (ya planteado por Charles Darwin) se han

ido introduciendo diferentes mecanismos. La selección de parentesco, introducida por William

Hamilton, consiste en una estrategia que permite conservar el genoma medianteel sacrificio de

un individuo en favor de la supervivencia de seres con los que comparte una alta proporción

de genes. No obstante, este mecanismo no explica la cooperación entre individuos sin relación

de parentesco, para la que se han ido postulando diferentes mecanismos en los ultimos treinta

años.

Por un lado, la reciprocidad directa, propuesta por Robert Trivers,se basa en el beneficio

que obtienen al cooperar dos agentes cuando interaccionan entre ellosrepetidas veces, pese a

que en unáunica interaccíon un agente egoı́sta se viera favorecido frente a un cooperador.

Por otro lado, seǵun el mecanismo de reciprocidad de red propuesta por Robert Alxerod

en 1983 y formalizada posteriormente por Martin A. Nowak y Lord Robert May, cuando la

poblacíon est́a dotada de una estructura subyacente, de manera que un individuo interacciona

sólo con ciertos agentes, la cooperación puede verse favorecida en agrupaciones (clusters) de

elementos cooperadores que se ayuden mutuamente, consiguiendo una ventaja evolutiva frente

a los egóıstas.

La metodoloǵıa seguida en los trabajos presentados consiste en implementar en diferentes

topoloǵıas de red los procesos de toma de decisiones de la teorı́a evolutiva de juegos.

Este ḿetodo ha resultado ser muy fructı́fero en lasúltimas d́ecadas para abordar diferentes

problemas. Los resultados muestran cómo, para algunas dinámicas evolutivas, la estructura

subyacente favorece la cooperación a trav́es de la reciprocidad de red. En particular, en el

modelo dipolo introducido en el capı́tulo 2, la formulacíon termodińamica permite interpretar

x



los indicadores sociales macroscópicos como observables fı́sicos, para posteriormente poder

inferir resultados analı́ticos. Este modelo permite, a través de la distribución de Boltzmann,

un ańalisis riguroso de un sistema consistente en una población influenciada por dos conjuntos

opuestos. La interpretación del modelo en términos sociales dota de significado matemático

al concepto de temperatura social. Llevando más lejos este paralelismo, se estudia como se

comportan dos poblaciones en contacto desde la perspectiva de la transmisión de calor entre

dos sistemas termodinámicos bajo la influencia de respectivos baños t́ermicos. A pesar de que,

al igual que la mayorı́a de los modelos sociales, el modelo no es conservativo, se muestra como

la entroṕıa en t́erminos de información es un punto de inicio sólido para el estudio de dichos

modelos.

En en el caṕıtulo 3 se profundiza en el estudio de la teorı́a evolutiva de juegos en redes

complejas: Partiendo de investigaciones previas sobre la robustez a las condiciones iniciales,

se toma un modelo caracterı́stico (dilema del prisionero en diferentes redes aleatorias) con

el fin de estudiar la reversibilidad del proceso. Una vez que el sistema alcanza el equilibrio,

se vaŕıa adiab́aticamente un parámetro de la matriz de pagos. Los resultados muestran un

comportamiento reversible del modelo dentro de un amplio rango de valores del paŕametro.

No obstante, se demuestra le existencia de un punto de no retorno a partir del cual el sistema

exhibe un comportamiento no reversible, dando lugar a un ciclo de histéresis. Esto es,

existe un estado lı́mite tal que, una vez sobrepasado, la población no recupera los valores

anteriores de cooperación al reestablecer el estı́mulo. Este resultado puede ser de utilidad en

diferenteśambitos como el ecológico (punto ĺımite de degradación de un habitat, por ejemplo),

ecońomico (situaciones desesperadas), etcétera.

A pesar de los diferentes mecanismos para explicar la persistencia de la cooperacíon en

entornos hostiles, un problema de difı́cil solución es aquel en el que la población est́a bien

mezclada, esto es, cuando todos los agentes están relacionados entre sı́. En el caṕıtulo 4

se estudia una dinámica evolutiva de la teorı́a de juegos, la dińamica replicador aplicada al

dilema del prisionero, implementada en dos redes totalmente conectadas acopladas entre śı.

El modelo consiste en dos poblaciones que interaccionan internamente mediante el dilema del

prisionero evolutivo, acopladas -no evolutivamente- a través de un incentivo menos gravoso

para la cooperación (halćon-paloma). En el caso de poblaciones bien mezcladas, en el lı́mite

termodińamico, los resultados analı́ticos obtenidos muestran que, para determinados valores de

los paŕametros, la cooperación no decae a cero; de hecho, evoluciona a estados polarizados y

casi-polarizados. Adeḿas del caso anterior con solución anaĺıtica, se estudia nuḿericamente el
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0. RESUMEN

comportamiento del modelo en redes finitas aleatorias, donde se reproducen cualitativamente

los resultados anteriores. En el caso de las redes aleatorias, la cooperación est́a inflúıda por dos

mecanismos superpuestos: la polarización y la reciprocidad de red. Por un lado, para valores

pequẽnos del paŕametro que penaliza la cooperación, la polarizacíon se opone a la reciprocidad

de red. Por otro lado, para valores mayores del parámetro los dos mecanismos promocionan la

cooperacíon, viéndoséesta doblemente potenciada. Los resultados del estudio aportan nuevos

mecanismos de control aplicables a diferentes campos.

En cualquier caso, las soluciones al problema general de la emergencia de la cooperación

dependen deĺambito espećıfico considerado. En lo concerniente a las interacciones humanas,

durante lośultimos veinte ãnos ha habido una gran controversia sobre la dependencia del nivel

de cooperación respecto a la estructura de la red de contactos. Pese a los múltiples estudios

teóricos realizados, los resultados no son concluyentes, puesto que unade las hiṕotesis de

partida es la manera en la que las personas actualizan su acción, esto es, sus estrategias.

Estas estrategias habitualmente dependen del beneficio obtenido por los agentes del entorno

y sus respectivas acciones. No obstante, recientes experimentos indican que las estrategias en

las interacciones entre personas no tienen en cuenta el beneficio de los agentes con los que

interaccionan, sino el nivel de cooperación en la vecindad. Estos trabajos experimentales están

realizados sobre conjuntos de pequeño o mediano tamãno. En el estudio presentado en el

caṕıtulo 5, se introducen las estrategias propuestas en estos trabajos y se estudia teóricamente

el comportamiento bajo diferentes redes subyacentes de creciente complejidad: totalmente

conectadas, regulares y heterogéneas, siendo estaśultimas las que se encuentran en los

sistemas sociales. Aunque el primer supuesto se puede resolver analı́ticamente, los restantes

se resuelven mediante simulaciones numéricas. Los resultados muestran que, cuando las

estrategias son independientes de la matriz de pagos, el nivel de cooperación es independiente

de la topoloǵıa de la red.

Las consecuencias del resultado suponen que, en elámbito de las interacciones humanas

y ante un problema que pueda ser descrito mediante el dilema del prisionero,el mecanismo

de reciprocidad de red no juega un papel determinante en la emergencia dela cooperacíon.

Verificar esta predicción implica la realizacíon de experimentos a gran escala, requisito

necesario para reproducir las redes de conectividad heterogéneas presentes en las sociedades.

En el caṕıtulo 6 se muestra el ensayo realizado para confirmar la anterior hipótesis: En primer

lugar, se realiza un experimento con una red regular de 625 individuos.Por otro lado, se

realiza simult́aneamente otro experimento en una red heterogénea, en la que la conectividad

xii



vaŕıa para cada individuo. Cada uno de estos experimentos consta a su vez de dos fases: el

experimento propiamente dicho y una fase de control en la que se elimina el efecto de la red

mediante una reconexión aleatoria de los contactos en cada ronda. La interacción se realiza

a trav́es del dilema del prisionero, donde el mayor beneficio colectivo se obtiene mediante la

mutua colaboración, pero la accíon egóısta frente a un cooperador proporciona mayor ganancia

individual. Los resultados del experimento confirman las predicciones teóricas del caṕıtulo 5,

no apareciendo diferencia en los niveles de cooperación para las dos redes estudiadas dentro

del margen de error del experimento.

Segunda parte: La tolerancia como variable en la dińamica cultural.

Mientras la dińamica de opiníon estudia las probabilidades que tiene un grupo social de

alcanzar consenso respecto a una materia, la dinámica cultural surge como una generalización

en la que la cultura se modela a través de un vector de opiniones. El modelo más representativo

de dińamica cultural es el propuesto por Robert Axelrod en 1997, donde se explora la idea de

homofilia, esto es, la tendencia de las personas a relacionarse con similares. Esta similitud

puede referirse a diferentes atributos (como idioma, clase social, religión, poĺıtica, etćetera)

que constituyen las componentes del vector cultural. El número de posibles valores que pueden

tomar estos atributos es una variable independiente que representa la diversidad cultural inicial.

El sistema proporciona dos fases diferenciadas: una multicultural caracterizada por la falta

de consenso y otra de globablización en la que los individuos comparten opinión sobre los

diferentes atributos. Desde entonces, se han estudiado múltiples modificaciones al modelo

original, aśı como otros nuevos, siendo un campo multidisciplinar muy activo actualmente.

En esta segunda parte de la tesis se aborda el concepto de tolerancia, esto es, el grado de

aceptacíon frente a un elemento de diferente opinión, introducíendolo como una variable de

la dinámica cultural. En el capı́tulo 7, partiendo de los modelos de segregación urbana de

Schelling y cultural de Axelrod, diseñamos un nuevo modelo (Axelrod-Schelling) en el que los

agentes se mueven en función de la desavenencia con los nodos de su entorno, caracterizada por

un umbral de intolerancia. Al dotar de movilidad al modelo de Axelrod, por unlado se favorece

la fase de globalización cultural, hasta el punto de que, incluso para pequeñas densidades de

huecos, el parámetro de orden escala con el número total de agentes. Por otro lado, cuando los

huecos superan el umbral de percolación, adeḿas de las dos fases caracterı́sticas del modelo

de Axelrod aparece una nueva fase fragmentada multicultural para valores pequẽnos de la
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diversidad cultural inicial. Junto con el estudio de los estados de equilibrio, la movilidad

introducida proporciona interesantes procesos de clusterización, erosíon y adhesíon.

¿Puede la intolerancia considerarse una caracterı́stica cultural susceptible de imitación y

difusión? De ser ası́: ¿En qúe circustancias tiene una cultura tolerante más posibilidades de

difundirse respecto a una intolerante? A diferencia del modelo anterior, donde la tolerancia

es una constante del sistema, en la modificación introducida en el capı́tulo 8 se considera

la intolerancia como un carácter cultural del individuo y, al igual que a los otros caracteres

propios del modelo Axelrod original, se le permite variar por imitación cultural. El desarrollo

de este refinamiento permite estudiar los casos en los que hay, o no, ventaja selectiva de las

culturas respecto a la tolerancia.

Mientras en los capı́tulos [7,8] se introduce la tolerancia en el modelo original de Axelrod

a trav́es de la movilidad, en el capı́tulo 9 introducimos una probabilidad de reconexión,

permitiendo a los agentes eliminar los enlaces con sus vecinos dispares si susimilaridad

cultural es inferior a un parámetro de tolerancia. La principal diferencia de este modelo con

el Axelrod-Schelling anterior es que, ademas de estar dispuestos los agentes en una red no

regular,ésta es dińamica, con una evolución dada por la propia dinámica cultural, lo que le

confiere mayor representatividad. Tal y como muestran los resultados, en sociedades tolerantes

el mecanismo de reconexión promueve el consenso cultural respecto a las redes estáticas. No

obstante, valores intermedios de la tolerancia evitan la reconexión una vez que la red está

fragmentada, lo que determina una sociedad multicultural para valores de la diversidad inicial

que en el modelo original de Axelrod implican globalización. Por último, en sociedades

intolerantes, aunque transitoriamente se forman grupos culturales aislados, la reconexíon

inducida por la baja tolerancia facilita la transmisión cultural entre los diferentes grupos,

resultando sociedades globalizadas incluso para valores muy altos de la diversidad cultural

inicial. En definitiva, valores intermedios de la tolerancia favorecen el multiculturalismo,

mientras que valores extremos favorecen la globalización.
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C. Gracia-Ĺazaro, L. M. Floŕıa and Y. Moreno.Selective advantage of tolerant cultural traits

in the Axelrod-Schelling model. Phys. Rev. E83, 056103 (2011).
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Chapter 1

Introduction.

1.1 Game theory.

In 1944, mathematician John von Neumann and economist Oskar Morgenstern established a

definition of game and its components (1):

“First, one must distinguish between the abstract concept of a game, and the individual plays of that

game. The game is simply the totality of the rules which describe it. Every particular instance at which

the game is played in a particular way from beginning to end, is a play. Second, the corresponding

distinction should be made for the moves, which are the component elements of the game. A move is the

occasion of a choice between various alternatives, to be made either by one of the players, or by some

device subject to chance, under conditions precisely prescribed by the rules of the game. The move is

nothing but this abstract occasion, with the attendant details of description, i.e. a component of the

game. The specific alternative chosen in a concrete instancei.e. in a concrete play is the choice. Thus

the moves are related to the choices in the same way as the gameis to the play. The game consists

of a sequence of moves, and the play of a sequence of choices. Finally, the rules of the game should

not be confused with the strategies of the players.[...] Each player selects his strategy i.e. the general

principles governing his choices freely. [...] The rules ofthe game, however, are absolute commands.

If they are ever infringed, then the whole transaction by definition ceases to be the game described by

those rules.”(von Neumann and Morgenstern. Theory of Games and Economic Behavior (1944)).

Game theory (GT) is an area of applied mathematics that uses models to study interactions

with formalized incentive structures (i.e. games), and is therefore a field closely related to

decision theory. The origins of game theory go far back in time: In 1713, James Waldegrave

proposed a solution for a two player game (2). Nevertheless, GT as a specific field did not
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1. INTRODUCTION.

appear until 1928 through a series of papers published by John von Neumann (3). Modern game

theory was comprehensively formalized in 1962 by John von Neumann andOskar Morgenstern

(1), and experienced a very important step forward with John Nash’s contribution of strategic

equilibrium: the Nash equilibrium (4). GT was firstly developed as a tool for understanding

economic behavior, but now is applied in many fields such as biology, physics, sociology, traffic

control, etcetera; in fact, it applies to a wide variety of agents including humans, microorganism

and nonhuman animals. Further refinements to game theory include evolving populations and

underlying topologies, among others.

1.1.1 Definitions.

In this section is a brief introduction to game theory related to the focus of this thesis, a deeper

study can be found in (5; 6; 7).

A game is a mathematical representation of a conflict situation. The outcome (pay-off) results

from mutual interaction between different agents or players. A player is defined as a decision

maker: a person, a people group, an animal or whatever kind of element. Based on the number

of playersN ≥ 2, games are classified as two-person games, three-person games, and ingen-

eral as N-person games. The interactions between the players are governed by rules that state

the actions each player can take, the information each player has available and the outcomes of

the actions. A strategy defines the actions that a player will follow in every scenario.

There is a distinction between games withperfect, completeand incompleteinformation.

Perfectinformation describes the situation when each player has available the information to

determine all of the possible scenarios, strategies, actions and outcomes allgame long: so,

players have full information about the actions that have already taken place. In games with

completeinformation, each player knows the rules of the game and the payoff functions of all

the players, but players may not see all of the actions chosen by other players. Inincomplete

information games, players may not know some information about the other players (actions,

strategies, payoffs) or about the rules (e.g.game’s length).

According to the updating, games can be classified assimultaneousandsequentialgames.

In simultaneousgames, players choose their actions simultaneously, therefore, players may

predict other players’ action but don’t know it. By extension, a game canbe classified as

simultaneousif decisions are not taken simultaneously but players’ actions are in ignorance

of others players’ actions. On the contrary, insequentialgames players make decisions in
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1.1 Game theory.

sequential order and later players have some knowledge on actions already taken by earlier

players.

Based on the total outcome, there arezero-sumgames andnon-zero-sumgames. In azero-

sumgame, a player’s gain (or loss) is balanced by the losses (or gains) of theother players(s),

i.e. the total pay-offs for the players, for every combination of the available actions, sum

to zero. Otherwise, innon-zero-sumgames, total payoff is different from zero. Attending the

indiscernibility of players, games can be classified betweensymmetricor asymmetricgames. In

symmetricgames, payoffs depend only on the actions, not on who is chosen them. Otherwise,

the game isasymmetric.

1.1.2 Normal form.

A game can be can be represented through different forms, such as extensive and normal form.

Normal form is a description of a game by way of a matrix that relates players’actions to payoff

functions. In order to have a normal form description of a game, we take inconsideration the

following data:

i) A setN of players,N = {1, 2, . . . , n}.

ii) Each playeru has a finite number of actions, represented by the actions setAu = {1, 2, . . . ,mu}.

iii) Each playeru has a payoff function associated (Pu : A1 × A2 × . . . × An → R) that

provides the payoff of playeru.

Definition: A game in normal form is a structureG = 〈N,A,F〉, whereN = {1, 2, . . . , n} is

a set of players,A = {A1, A2, . . . , An} is an n-tuple of actions sets, one for each player, and

F = {F1, F2, . . . , Fn} is an n-tuple of payoff functions.

The normal form of a two-person symmetric game is given by a pair(A,P ), whereA is

a nonempty set, the set of actions, andP is a real-valued function defined onA × A, (i.e.,

P (ij) ∈ R, ∀ i, j ∈ A.). Thepayoff matrixP, defined asPij = P (i, j), represents the payoff

of player I, given the actions chosen by players I and II arei andj respectively. Note thatP is a

m×m matrix, wherem is the number of possible actions. Inasmuch as the game is symmetric,

player II’s payoff is given byP (j, i). In particular, a two-player m-action symmetric game is

defined by the matrix:

3
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P =











P11 P12 . . . P1m

P21 P22 . . . P2m
...

...
. . .

...
Pm1 Pm2 . . . Pmm











=











P (1, 1) P (1, 2) . . . P (1,m)
P (2, 1) P (2, 2) . . . P (2,m)

...
...

.. .
...

P (m, 1) P (m, 1) . . . P (m,m)











(1.1)

1.1.3 Pure and mixed strategies.

A player’s strategy determine the action the player will take at any stage of thegame. A strategy

profile or strategy combination is a set of strategies for each player which fully specifies all

actions in a game. A strategy profile consists of one and only one strategy for every player.

Then, strategy and move are different concepts: A move is an action takenby a player at

some point of the game. On the other hand, a strategy is a player’s algorithm that relates

every scenario to the player’s actions (8; 9). Although the terms action and strategy represent

different concepts, sometimes have been used interchangeably, especially for the last twenty

years. This is due to the use of repeated one-round games in evolutionarydynamics, where the

players action change is sometimes studied according to updating rules. In thisthesis we try

to recover the original meaning of such terms; nevertheless, in chapter2 we use the notation

strategy, updating rule. Note that original notation provides more levels:move, action, strategy,

updating rule.

A pure strategyR determines the move a player will make for any scenario. A player’s

strategy set{R1, R2, . . . , Rm} is the set of pure strategies available to that player. The convex

linear combination setS of pure strategies

S = {p = (p1, . . . , pm) ∈ R
m : pi ≥ 0,

m
∑

i=1

pi = 1} (1.2)

is the set of mixed strategies. Therefore, a mixed strategyp is an assignment of a probability

pi to each pure strategyRi.

1.1.4 Minimax rule.

Minimax is a decision algorithm for minimize losses under the maximum loss scenario;sim-

ilarly, maximin rule consists in maximizing the minimum payoff. John von Neumann proved

the minimax theorem in 1928 (3): He stated that in every two-person zero-sum game with

finitely many pure strategies, there exists a valueV and a mixed strategypppj for each playerj,

such that:
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1.1 Game theory.

i) Given player 2’s strategyppp2, the best payoff possible for player 1 isV , and

ii) Given player 1’s strategyppp1, the best payoff possible for player 2 isV .

Subsequently, it has been extended to other types of games. A generalization of Neumann’s

minimax theorem is the Sion’s minimax theorem that states (10):

Let X be a compact convex subset of a linear topological space andY a convex subset

of a linear topological space. Letf be a real-valued function onX × Y such thatf(x, ·) is

upper semicontinuous and quasiconcave onY , ∀x ∈ X, andf(·, y) is lower semicontinuous

and quasi-convex onX, ∀y ∈ Y . Then:

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y). (1.3)

In two-person zero-sum games, the minimax algorithm can be summarized as choosing

the best move for yourself (higher payoff) assuming that your opponent will choose the worse

for you (lower payoff). In an iterated game, minimax method implies consideringall possible

moves for all players and rounds.

1.1.5 Dominant strategy. Nash equilibrium. Stability.

A strategy is a strict(resp. weak)dominant strategy if it provides greater(resp. greater or

equal)payoff to a given player than any other strategy, no matter other players’strategies. Let

B be the set of strategies for which the functionv → vPw gets its maximum value; thenB is

called set of best responses tow.

A set of strategies is aNash equilibriumif no player can get greater payoff by unilaterally

changing its strategy. LetSi be the strategy set for playeri, S = S1 × S2 × ...× Sn be the set

of strategy profiles andfi(x) be theplayer-i’s payoff function forx ∈ S. Let xi be a strategy

profile of playeri andx−i be a strategy profile of all players except for playeri. A strategy

profilex∗ ∈ S is a weak Nash equilibrium if:

fi(x
∗
i , x
∗
−i) ≥ fi(xi, x

∗
−i), ∀i, xi ∈ Si, xi 6= x∗i . (1.4)

In the same way, a strategy profilex∗ ∈ S is a strict Nash equilibrium if:

fi(x
∗
i , x
∗
−i) > fi(xi, x

∗
−i), ∀i, xi ∈ Si, xi 6= x∗i . (1.5)
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A game is finite if the number of players and the number of pure strategies eachplayer

has are both finite. Nash proved that, taking into account mixed strategies, at least one Nash

equilibrium exists for all finite games (4).

There is a intermediate equilibrium between strict and weak Nash equilibria. A Nash equi-

librium is stableif an infinitesimal change in probabilities for any playeru implies: i) Any

other playerv 6= u do not gets a higher payoff,ii) Playeru gets a lower payoff.

1.1.6 Evolutionary game theory.

Evolutionary game theory(EGT) is defined as the application of game theory to evolving pop-

ulations, providing a useful framework to model Darwinian competition. The origins of EGT

can be found in John Maynard Smith and George R. Price’s study about the way in which ani-

mal conflict can be modeled through survival strategies in hostile scenarios (11). Evolutionary

game theory has been successfully used not only in many aspects of biology (e.g. the basis

of altruistic behaviors, the emergence of multicellular organisms, group selection, sexual se-

lection, parental care, coevolution or ecological dynamics), but also in other sciences such as

economics or sociology (12; 13; 14; 15; 16).

1.1.6.1 Replicator equations.

The usual method for studying evolutionary dynamics in GT is through replicator equations.

These replicator equations establish a relation between the growth rate of theproportion of

players using a certain strategy (that can be interpreted, for example, asa specie’s population

growth or a behavior evolution) and the difference between the averagepayoff of that strategy

and the average payoff of the whole population (respectively the specie’s fitness or the behavior

reward) (12; 13). Replicator equation assume infinite and well-mixed populations and continu-

ous time. Usually, the interest is not in the transient but in the steady-state solutions: the stable

states.

The replicator equation can be obtained from Darwinian arguments. Once postulated that

expected offspring of a kind (mutation, race, specie, ...) is proportional tothe fitness (that

provides food, welfare, safety, ...), the growth ratioẋi/xi of that kindi can be assumed as the

difference between kind’s fitness and mean population fitness, that is,ẋi/xi = fi(x) − f̄(x).

Assuming continuous time, the evolution of a population distributed inn (finite) kinds is given

by:

6
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ẋi = xi[fi(x)− µ(x)], µ(x) =
n
∑

i=1

xifi(x) , (1.6)

wherexi (i = 1, 2, . . . , n) is the ratio of kindi in the population,fi(x) is the fitness of type

i, andµ(x) is the average population fitness. Since
∑

i xi = 1, the population vectorx =

(x1, . . . , xn) evolves in the (n-1)-simplex defined by then verticesxi = δij , j = 1, . . . , n.

Eq. 1.6 is the most general form of replicator equation.

Under the assumption that kind’s fitness is a linear function of population ratio, the repli-

cator equation can be written as:

ẋi = xi
(

(Px)i − x
T
Px

)

, (1.7)

whereP is the payoff matrix and contain the fitness information,(Px)i represents the expected

payoff of i-kind andxT
Px stands for the whole population’s mean payoff.

1.1.6.2 Replicator dynamics.

An alternative way to get the replicator equation, often used in social sciences, is based on the

concept of imitation, rather than offspring, most related to biology (15; 17; 18). Consider a

iterated two-player n-action symmetric game and a population ofN players. Let bet the round

number,i = 1, 2, . . . , n the actions,xti the proportion of population choosing actioni and

P t
i = Pi(x

t) is the expected payoff of a player choosingi at time (round)t. The evolutionary

dynamics can be model in the following way (replicator dynamics): assume thateach time

lapsedt, a randomly and equiprobably playeru (the past action ofu wasi) chooses a random

playerv (the past action ofv was j) andu changes its action toj, if the payoffP t
j of v is

greater than his payoffP t
i , with a probability proportional to the payoff differenceP t

j − P t
i .

That is, once two players with past actionsi andj have been chosen, the first player’s change

probability is given by:

Πt
i→j = β(P t

j − P t
i )Θ(P t

j − P t
i ) , (1.8)

whereΘ(y) is the Heaviside function (Θ(y) = 1 if y > 0 and0 otherwise).

7
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If the actions are ordered (without loss of generality), such thatP t
1 ≤ P t

2 ≤ . . . ≤ P t
n, the

expected ratio of players choosing actioni at timet+ dt will be given by:

x̄t+dt
i = xti −

1

N
xti(dt)

n
∑

j=i+1

xtjβ(P
t
j − P t

i ) +
i

∑

j=1

1

N
xtix

t
j(dt)β(P

t
i − P t

j )

= xti +
xtiβ(dt)

N
(P t

i − P̄ t) , (1.9)

whereP̄ t =
∑

j P
t
jx

t
j is the whole population mean payoff. Under the assumption of large

population size, we can replacex̄t+dt
i by xt+dt

i , getting:

ẋti =
β

N
xti(P

t
i − P̄ t) . (1.10)

and makingβ = N (time rescaling), we get the replicator equation:

ẋi = xi(Pi − P̄ ) . (1.11)

The strategy above described,replicator dynamics, has been used extensively to describe

a large variety of problems. The main advantage is that it can be applied in finiteand non-

well-mixed populations but, unfortunately, the mean-field description is not valid anymore and

those problems must be numerically solved, usually through extensive numerical simulations.

In fact, the first part of this thesis is focused in such kind of problems.

1.1.6.3 Other update rules.

A necessary ingredient of evolutionary game models is the way in which agents choose their

actions. In order to frame the thesis’ subject of study, this description is focused on repeated

two-player symmetric games. In simultaneous games (i.e., players choose their actions simul-

taneously), at a given time step, every player plays the game with all her neighbors, usually

using the same strategy in all pairings. If there is an underlying topology, theneighbors of

each player are given by the network(s) of the model (16). Once all the games are played each

agent collects the total payoff. Subsequently, players decide the action they will take in the

next round: This decision constitutes the strategy (update rule). Besidesthe aforementioned

replicator dynamics, some of the most used strategies are:
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Unconditional imitation : A randomly chosen playeri compares its payoffPi with its neighbor

with the largest payoff, say playerj. If Pj > Pj playeri will imitate in the next round the last

action taken byj. Otherwise, playeri will repeat action (19).

Moran rule : A randomly chosen playeri chooses one of its neighborsj proportionally to its

payoffPj . In the next round agenti will chose the last action taken byj (20).

Fermi rule : A randomly chosen playeri compares its payoffPi with a random neighborj. If

Pj > Pi player i will imitate in the next round the last action taken byj with a probability

proportional to:

Πi→j =
1

1 + e−β(Pj − Pi)
. (1.12)

Otherwise, playeri will repeat action (21).

Best-response: The best response is the strategy consisting on choosing, for the nextround,

the action which would have produced the higher payoff in the past round, once each player

knows the chosen action by its neighbors. (22).

In some kind of problems, instead of considering that the strategies dependdirectly on

the payoff, it is more realistic to consider the fitness as a function of payoff. For instance,

weak selectiondescribes situations in which the effects of payoff differences are small.Weak

selection has been extensively studied in evolutionary biology, and recently in evolutionary

game dynamics (24). Nevertheless, not all the usual strategies take into consideration the

payoffs:Majority rule consists on the imitation of most common action in the neighborhood,

andanalysis players’ strategies, described in chapters5 and6, consists on the imitation of

neighborhood actions with a probability proportional to their frequency (23).

1.2 Complex networks.

The study of the relations among elements of different systems unveil underlying networks:

Regardless of its origins, many networks of different areas can be characterized through com-

mon schemes, showing similar properties (25; 26; 27; 28). Examples of this can be found in

biology (e.g., regulatory, metabolic, signaling or neuronal networks), sociology (e.g., scientific

colaborations, coworking relations or information exchange networks) and technology (e.g.,

internet). The topology of the interaction network may provide the key to understanding many

9
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A) B) C)

Figure 1.1: Examples of graphs.Although the three graphs have a similar number of nodes, only

the one on the right can be considered a complex network. A) Regular lattice of 25x25 (625 nodes).

B) Regular lattice of 25x25 (625 nodes) with periodical boundary conditions. C) Complex network

consisting of 700 nodes and a heterogeneous connectivity according to a binomial distribution.

Different colors and diameters represent different connectivities.

complex systems and, in fact, complex networks have become a new paradigmfor complexity

(29).

1.2.1 Definitions.

A graphG = {N,L} consists of two setsN andL, such thatN is not empty andL is a set of

couples of elements ofN . If L is ordered (unordered), then the graph is directed (undirected).

The elementsni of N are called vertices or nodes and the elementsli of L are the links or

edges. Let N and K be the number of elements inN andL, respectively. We can refer to a

node by its order number i, then a linkl consisting of couple(i, j) can be referred bylij or by

lk, wherek is the order number of the linkl in setL. The link lij is said to be incident in nodes

i and j, or to join i and j. Two nodes (i,j) are adjacent, connected or neighbors if there exists

a link lij incident in nodes i and j.G′ = {N ′, L′} is a subgraph ofG = {N,L} if N ′ ⊂ N

andL′ ⊂ L. In order to get a matricial representation of graphG, we consider the adjacency

matrix A: a NxN square matrix with componentsaij such thataij = 1 if and only ifthe link lij

exists, otherwiseaij = 0. The componentsaii of the diagonal of the adjacency matrix satisfy

aii = 0 and it is a symmetric matrixaij = aji for undirected graphs. An alternative matricial

representation is given by the incidence matrix B: a NxK matrix with componentsbik such that

bik = 1 if and only iflk = lij for a nodej, otherwisebik = 0.

10
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1.2 Complex networks.

1.2.2 Properties.

Let G = {N,L} be an undirected graph. The connectivityki or degree of a nodei ∈ G is

defined as:

ki =
∑

j∈L

aij , (1.13)

and represents the number of incident links in i. In the same way, ifG′ = {N ′, L′} is a directed

graph, the out-degree and in-degree of a nodei ∈ G′ are defined as:

kouti =
∑

j∈L′

aij ,

kini =
∑

j∈L′

aji ,

(1.14)

and represent the number of outgoing and ingoing links respectively, and the total degree of the

nodei in a directed graph iski = kouti + kini . In order to characterize the topology of an undi-

rected graph, the degree distributionP (k) = Pk is defined fork = 0, 1, 2, . . . as the fraction

of nodes with connectivity k in the graph. Likewise, for directed graphsP out(k), P in(k) are

defined in the same way. As well, the n-moments ofP (k), defined as〈kn〉 = ∑

k k
nP (k), give

us information about networks’ topology and therefore about their behavior under the dynam-

ical processes that we study in this work. To deal the degree correlations,P (k′|k) is defined

as the likelihood that a given link connecting a degreek node i is connected to a node j of

degreek′, and satisfies the normalization equation
∑

k′ P (k′|k) = 1 and the detailed balance

conditionkP (k′|k)P (k) = k′P (k|k′)P (k′). Nevertheless, in finite size real networks we can

obtain clearer results computingknn(k), that is, the average degree of the neighbors of degree

k nodes:

knn(k) ≡
N
∑

i=1

N
∑

j=1

aij
kj
ki

=
∑

k′

k′P (k′|k) . (1.15)

Depending onknn(k), the networks can be uncorrelated, assortatives (knn(k) increases with

k) or dissortatives (knn(k) decreases with k).

The shortest pathdij or geodesic between two nodes (i,j) is the minimum number of links

required to connect i and j. In order to characterize the size of a network G, beside the values

11



1. INTRODUCTION.

of N (number of nodes) and L (number of links), the diameter Diam(G) of G is defined as the

maximum value of the shortest paths inG. For fully connected graphs, the characteristic path

length L is defined as:

L =
1

N(N − i)

N
∑

i=1

N
∑

j=1, j 6=i

dij , (1.16)

as it diverges for disconnected graphs, can be useful the efficiency:

E =
1

N(N − i)

N
∑

i=1

N
∑

j=1, j 6=i

1

dij
. (1.17)

With the purpose of characterizing the connectedness of a nodei, together with the degree,

the closenessci of i is defined as the inverse of the average distance fromi to all nodesci =

N(
∑N

j=1,j 6=i dij)
−1. Besides, the betweenness ofi is defined as the average fraction of shortest

paths passing throughi (njk(i)) over total the shortest paths (njk) for every pair of nodes:

bi =
N
∑

j=1

N
∑

k=1, k 6=j

njk(i)

njk
. (1.18)

Another typical property of complex networks is clustering, it characterizes the likelihood

that two nodes with a common neighbor are connected. One of the many measures of clustering

is transitivity T, which is defined as the normalized ratio of the number of transitive (fully-

connected) triples divided by the amount of connected (fully or simply-connected) triples.

T = 3(transitive triples in G)
connected triples in G . (1.19)

When a subgraphG′ = {N ′, L′} of G = {N,L} has higher connectivity thanG, i.e. the

nodes ofG′ are tightly connected,G′ is called a cluster. More precise definitions of cluster are

the n-clique and the k-plex. A clique or 1-clique is a fully-connected subgraphG′ of G. More

generally, a n-clique is a subgraphG′ such that the largest geodesicdij between two nodes (i,j)

of G′ is n. On the other hand, a subgraphG′ = {N ′, L′} is a k-plex if it is a maximal subgraph

such thatk′i ≥ N ′ − k, ∀i ∈ N ′, that is, each node ofG′ has at leastN ′ − k neighbors inG′

and there is not another graph inG containingG′ that satisfy this property.

12



1.2 Complex networks.

1.2.3 Weighted networks.

So far, we have considered unweighted networks, which means that the links between nodes

are either present or not, without an assigned value. However, many real networks exhibit

heterogeneity in the links. This feature has been studied in many fields such as social networks

(33; 34; 35; 36; 37), metabolic networks (38; 39), predator-prey interactions (40; 41), neural

networks (35; 44), traffic of the passengers in airline networks (42; 43), internet traffic (60),

etcetera. Weighted networks (i.e. networks in which each link is characterized by a value)

provide a very useful tool to describe these systems.

A weighted networkGW = {N,L,W} consists of three setsN , L andW , such that

N = {n1, n2, ..., nN} is a not empty set ofN nodes,L = {l1, l2, ..., lK} is a set ofK couples

of elements ofN (the links) andW = {w1, w2, ..., wK} is a set of real numbers (weights)

associated to the links. A Weighted networkGW can be described by aN × N matrix W ,

the weights matrix , such that its componentwij is the weight of the link from nodei to node

j, assumed thatwij = 0 if such connection does not exist. The network is symmetric if

wij = wji, ∀i, j .

In a weighted networkGW , the weight distributionQ(w) is defined as the probability for

a given edge to have weightw. The node weight (or strength, or weighted connectivity) is

defined assi =
∑

j∈N wij . If there are not correlations between weights and connectivity, one

obtainss|k ∼ 〈w〉k. In the same way, measure coefficients of unweighted networks (such as

shortest paths, clustering coefficient, etcetera) can be generalized to weighted networks (28).

1.2.4 Real networks: distributions and topologies.

Complex networks can represent a huge range of real systems consisting on many highly con-

nected elements that can be found in different fields, such as sociology, biology or technology.

Although the use of complex network theory makes up an approximation that implies loss of

information, it provides a holistic approach and details about emergent phenomena. Different

sorts of systems are characterized by different kinds of networks, withdissimilar properties as

degree distributions, path lengths, clustering, degree correlations, etc.

1.2.4.1 Regular graphs.

In graph theory, a regular graph (RG) is a graph where each vertex has the same degree con-

nectivity. In addition, in a regular directed graph the indegree and outdegree of each vertex are

13
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Example of real network.Partial map of the Internet: Each node represents an IP address

while each line symbolizes a link between two nodes, the length of the lines indicatethe delay.

This graph represents less than 30% of the Class C networks reachable by the data collection

program. Different colors represent different allocations.The Opte Project (2005).

14
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1.2 Complex networks.

equal to each other. A RG with vertices of degreek is called a k-regular graph. A network is a

regular graphif and only if the vectoru = (1, . . . , 1) is an eigenvector of its adjacency matrix

Aij . In addition, the eigenvalue of u is the constant degreek of the graph. Eigenvectorsv cor-

responding to other eigenvalues are orthogonal tou, for such eigenvectorsv = (v1, . . . , vn),

we have
∑n

i=1 vi = 0 (see,e.g.(78)).

RG of degreesk = 0, 1, 2 are trivial, but higher degree RG can be complex networks. In

some parts of this work (e.g. chapter2) we use a kind of RG, called random regular graph

(RRG), characterized by a random distribution of links. Starting from a regular lattice, a RRG

can be generated by randomization of links through a rewiring process.

1.2.4.2 Random graphs.

Erdös and Ŕenyi initiated in 1959 the study of graphs that grow through random procedures

(76). The original Erd̈os-Ŕenyi graphGER
N,K consists of a set of N nodes, firstly disconnected,

and later linked by connecting K pairs of nodes at random. In the same way,GER
N,p represents

a graph generated though a set of N nodes, firstly disconnected, and later linked by connecting

each pair of nodes with probability p (figure1.2). Although both processes generate different

(but similar) kinds of network, for large values of N they provide the same distribution. The

graphGER
N,p has on average

(

n
2

)

p edges. The degree distribution of a nodei is binomial:

P (ki = k) =

(

n− 1

k

)

pk(1− p)n−1−k . (1.20)

In (77), Erdös and Ŕenyi showed that the topology ofGER
N,p depends mainly onp, in fact:

ze

If p < 1/N , then the sizeSmax of the greatest connected component of graphGER
N,p will be

Smax . lnN , with a probability increasing with N.

If p = 1/N , then almost surelySmax ≃ N2/3.

If p > 1/N , thenGER
N,p will almost surely have a giant component and no other component will

contain more thanO(lnN) nodes.
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Figure 1.2: Random network according to a Poisson distribution of the connectivity. Red (blue)

colored circles represent the high (low) connectivity nodes. Network sizeN = 800, averaged

degree〈k〉 = 4

1.2.4.3 Small-world networks

Many real networks, such as social networks (62; 63; 64), show the property that, although

the mean connectivity is much low that the system size, most nodes can be reached from

every other by a small number of steps. A small-world (SW) network is a network where

the characteristic path length grows proportionally to the logarithm of the network size:

L ∝ logN . (1.21)

The Watts and Strogatz model consists of an algorithm to make graphs that provides small-

world networks with a high clustering coefficient (25). Starting from a ring ofN nodes (that is,

a circle of nodes in which each node is connected to its2m nearest nodes), a rewiring process

is performed, so that with probabilityp each node is disconnected from its clockwise neighbor

and connected to a random node. On one extreme, forp = 0 the ring remains unchanged and

we have a regular lattice; at the other extreme, forp = 1 the procedure provides a random

graph with minimum connectivitykmin = m.
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Figure 1.3: Random network generated through Erdös-Ŕenyi mechanism (left) and its connectivity

histogram (right). Different colors represent different connectivities. In the same way, the diameter

of each node is proportional to its number of neighbors. Network sizeN = 1000, averaged degree

〈k〉 = 2
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1. INTRODUCTION.

According to the SW definition, most pairs of nodes will be connected by at least one short

path. Furthermore, from the high clustering coefficient property followsthat SW networks

contain a high number of cliques and many highly connected subgraphs. Real SW networks

usually have high degree nodes that serve as hubs of short paths, and the degree distribution

are fat-tailed. Anyway, very different graphs (both real and artificial networks) can be defined

as small-world networks as long as they satisfy the property1.21.

1.2.4.4 Scale-free networks

The degree distribution of many real networks follows a power-law, at least asymptotically.

That is, P(k) goes for large values of k as

P (k) ∼ k−γ , (1.22)

where the value of the constantγ is usually2 < γ < 3. Power-laws are the only functions

f(x) that presents scale invariance: do not change if independent variablex is multiplied by

a common factor, apart from a dilatation. In reference to this property, such networks are

called scale-free networks. Many networks belonging to a wide range ofsubjects appear to

be scale-free: Social networks (by example the collaboration networks,as the collaboration

of movie actors in films or the coauthors relationships), biological networks as the protein-

protein interaction networks, sexual relations in humans (related with the diffusion of sexually

transmitted diseases), semantic networks, many technological networks as the World Wide

Web, etcetera. Although the average degree〈k〉 is bounded, the variance

σ2 = < k2 > − < k >2 , (1.23)

diverges as the second moment< k2 >:

< k2 > =

∫ kmax

kmin

k2P (k) ∼ k3−γmax = kamax , (1.24)

where the exponenta > 0.

The Barabási-Albert (BA) model:

In 1999, A. L. Barab́asi and R. Albert mapped of a portion of the Web, and show that some

nodes (hubs), had a connectivity degree very higher than the rest ones, and that the degree

distribution of the whole network follows a power-law distribution (45). They found that other

social and biological networks also had similar properties. Barabási and Albert proposed a
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mechanism, the preferential attachment, to explain the emergence of the power-law distribu-

tion. However, this mechanism only produces a specific kind of scale-free networks, and many

other mechanisms have been discovered since (and earlier). The preferential attachment mech-

anism generate a graphGBA
N,K according to the next rules: starting fromm0 isolated nodes, a

new node j withm < m0 links is added. The likelihood that j will connect to a given node i is

proportional to the i-degree:

P (j → i) =
ki

∑

l kl
. (1.25)

The operation of addition a node is repeatedN − m0 times. At the end, the graph obtained,

known as Barab́asi-Albert (BA) network, will haveN nodes andK ≃ mN links, with< k >=

2m (figure1.4).

The BA model has been solved in the mean-field approximation (45): In the thermody-

namic limit t → ∞, the degree distribution obtained isP (k) ∼ k−γ , with γ = 3. For the

same value ofN andK, BA graphs have smaller average distance than ER graphs, resulting

L ∼ logN/log(logN) (46). Furthermore, the clustering coefficient decreases with respect to

the size of the system asC ∼ N0.75, that is, slower than that observed for ER graphsC ∼ 1/N .

Several variations of the model have been studied, such as directed graphs (47) or alternative

mechanisms for preferential attachment (48), among many others.

1.2.4.5 Configuration model

Starting from a set ofN nodes and a given connectivity vectorV (that is,V is the connectivi-

ties sequencek1, k2, . . . , kN , andki the connectivity of linki), the configuration model (CM)

provides an algorithm to build up a network (49; 50). The CM takes the setGconf
N,D of all graphs

with N nodes and connectivity vectorV , and consider all the elements ofGconf
N,D with equal

probability. The algorithm consists of the following steps: firstly assignski half-edges to each

nodei, after this connects by pairs the half-edges in an equiprobable way. A giant component

emerges almost surely whenQ =
∑

k k(k − 2)P (k) > 0 and the maximum degreekmax is

not too large (49) (figure1.5).

The configuration model proposed by Molloy and Reed provides networks with degree

correlations, in the sense that the expected degree of the neighbors of agiven nodei is not

independent ofki. Starting from the CM,Catanzaro, Bogũna, and Pastor-Satorrasproposed
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Figure 1.4: SF network generated through Barabási-Albert mechanism. Red (blue) colored circles

represent the high (low) connectivity nodes. Network sizeN = 2000, averaged degree〈k〉 = 2.

The subgraph (detail) highlights the scale invariance property of power-law distributions.

the uncorrelated configuration model (UCM), capable to generate random uncorrelated scale-

free networks (51). The model adds a restriction on the maximum possible degree of the

vertices, governed by the structural cutoffkmax ≃
√
kN .

1.3 Sociophysics.

The use of methods of probability theory and statistics for dealing with large populations in

solving physical problems constitutes Statistical Physics as a branch of physics, and its proce-

dures are successfully used in a wide variety of fields of physics involving many interacting

entities. In the light of its usefulness, this successful framework has recently been extended to

other sciences including chemistry, biology, neurology, and even some social sciences, such as

economics and sociology.

Sociophysics is a multidisciplinary research field that applies theories and methods origi-

nally developed by physicists in order to study social topics, usually those including uncertainty

or stochastic processes and nonlinear dynamics (142). In Statistical Physics, the elementary

components of studied systems usually are simple objects whose behavior is conditioned by

some well-know laws: the statistical study focuses on collective effects dueto the interactions
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A) B)

Figure 1.5: Examples of configuration model graphs:The C.M. algorithm allows to make a

network according to a given connectivity vector. Both graphs above consist ofN nodes and

a heterogeneous connectivity conforming to a truncated power-law distributionP (k) = k−2.7.

A)N = 600, kmin = 2, kmax = 15. B)N = 2000, kmin = 2, kmax = 44. Different colors

and diameters represent different connectivities..

of a large number of elements. In contrast, the basic constituents of social phenomena are

humans, and each individual interacts with a variable number of individualsthat, for most indi-

viduals and problems, is negligible compared to the system size. People are not single objects

following simple behavior rules, and modeling of social topics involves a great simplification

of reality. Clearly, this approach does not try to model the complexity of individuals, but focus

on the nature of interactions, seeking an holistic approach and drawing conclusions about the

overall system. These conclusions include transitions from order to disorder phase, transient

and stationary states, scaling properties, and so on. Obviously, the limitationsin the modeling

of agents (people) condition the validity of the results, and should be taken with caution. How-

ever, in most collective systems, global properties do not depend on microscopic configuration

but on global features as symmetries, conservation laws, temperature, external fields, noise, etc.

Following this holistic view, the modeling of social systems includes only the most important

characteristics of individuals, nevertheless criterion common to all scientificmodeling process.

A high number of scientists and multidisciplinary work teams are involved in this branch

of knowledge and the topics have been dealt in recent years with this approach are so varied as

opinion dynamics, ethnic segregation, cultural dynamics, crowd behavior, social hierarchies,
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language dynamics and spreading phenomena among others.

1.3.1 Agent based models.

An agent-based model (ABM) is a class of numerical models for simulating the interactions

of autonomous agents with the purpose of studying their effects on the system as a whole.

Usually ABMs rely Monte Carlo methods to introduce randomness and the high numbers of

interactions is performed trough specific computer programs. The origin ofagent based (AB)

modeling dates back to the late 1940s when the mathematician John von Neumann (starting

from the Alan Turing idea) designed the von Neumann machine, a theoreticalsystem based

on self replication. The concept was then improved by Stanislaw Ulam: Ulam suggested to

build the machine as a set of cells on a grid (30). The concept was taken up by von Neumann,

who created the first of the devices later termed cellular automata (31). The development of

computers led to AB modeling widespread since the 1990s. ABMs have been used to deal with

a wide range of problems in several fields as biology (ase.g., spread of epidemics, population

dynamics), biomedical applications, economics, dynamics of ancient civilizations, logistics,

traffic control, workforce management, distributed computing, people’s migrations, language

dynamics and social network effects.

One of the firsts ABM designed to explore a social issue was developed byThomas Schelling

in 1971 (52; 53). The Schelling’s residential segregation model studies the effects of a prefer-

ence for people to be in a similar neighborhood and consists of a regular lattice, with a density

of empty sites, whose nodes mimic agents of different ethnicities. After an initialdistribution

of the agents, at each elementary dynamical step an agent is randomly chosen and it moves to

a empty site chosen at random if its ratio of other ethnic neighbors is higher than a tolerance

threshold T. After a long enough transition time, he found that the agents remain in a mixed

distribution only for very high values of the tolerance threshold, but agents form segregated

neighborhoods for other values of tolerance (Figure1.6).

Opinion Dynamics is a social topic very dealt with AB modeling, it studies the chance for

a social group to reach agreement or disagreement about a question. Outside this framework,

in the early 70’s Clifford an Sudbury defined a model for population dynamics (54), the latter

named Voter Model has been used in fields so varied such as social dynamics, population ge-

netics, chemistry and probability theory. The description of Voter Model is not at all complex:

each agent is provided of a variable that take two possible values, and ateach time step a ran-

domly chosen agent selects at random a neighbor and imitates its variable’s value. Although
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Figure 1.6: Dynamics of the Schelling model.The Schelling’s model of residential segregation

studies the effects of intolerance in the population distribution. People move if their neighborhood

is unfriendly according to a tolerance parameter. The modelshows segregation in neighborhoods

for intermediate and high values of intolerance (52; 53). Colors represent ethnicities and opposite

sides are connected.

its extremely simple design and the fact that can be solved exactly in any finite dimension (55),

the model has been and is still studied in many sciences and according to different variants

(as e.g., different topologies, noise and external fields). Other opiniondynamics model, the

majority rule model (56), explores a similar topic through a different procedure: Starting from

a complete graph whose nodes (agents) are provided of a variable (opinion) that can take two

possible values (-1, +1), at each time step a random group of r agents is selected and they share

the majority opinion inside the group. The group size r is taken at each interaction from a given

distribution. The model includes an asymmetry: when r is even, a value of opinion (e.g. +1)

can be promoted in case of a tie. Under the mean field assumption, Krapivskyand Redner (57)

solved the model for a fixed value of r. They found three fixed points: one unstable fixed point

that corresponds to a situation in which the population is evenly distributed in both values of

opinion variable, and two stable fixed points that correspond to one-opinion frozen states. The

majority rule model has been studied under different network topologies, multi-state opinion

and plurality rule (58), as well as modifications that include mobility, external fields, variable

connectivity, etcetera ...

Other context of social research corresponds to the cases in which opinion is modeled as

a vector of variables. These models are usually grouped under the name of cultural dynamics.

The most representative and studied model in cultural dynamics was introduced by Robert Ax-

elrod in 1997 (59). The well-known Axelrod’s model for culture dissemination explores the

principle of homophily, developing the idea that a social agent will convincesimilar people

easily than dissimilar ones, and therefore similar people tend to become even more alike. It

consists of a regular lattice, whose nodes mimic cultural agents. Each one ofthese nodes is

23

1_introduction/figures/intro_schelling.eps


1. INTRODUCTION.

Figure 1.7: Dynamics of the Axelrod model.Top panels: For low values of the initial cultural

diversity (q), the system converges to a frozen monocultural state, characterized by a cultural group

shared by all the agents. Bottom panels: Otherwise, for highvalues ofq the system remains in a

multicultural state in which agents do not share many traitswith their neighborhood (59). Colors

represent different cultures and periodic boundary conditions are applied.

provided with a set ofF cultural features that can assumeq possible integer values. The pa-

rameterq represents the possible traits that each feature can assume. Thus a culture is modeled

as a vector ofF integer variables. After assigning the traits at random, the system evolves as

follow: at each elementary dynamical step, an individuali randomly chosen imitates a feature’s

trait of a random neighborj with a probability equal to the cultural overlapωi,j between both

agents, defined asωij = (
∑F

f=1 δσf (i),σf (j))/F , whereδx,y is the Kronecker’s delta which

is 1 if x = y and 0 otherwise. After a long enough transient, for a low value of the initial

cultural diversityq, the system reaches a frozen monocultural state, in which all agents share

every trait. On the other hand, for high values of the initial cultural diversity, the system can’t

arrive to cultural convergence but remains at a multicultural state, characterized by agents who

hardly share features with their neighbors (Figure1.7). The usual order parameter is the rel-

ative size of main culture〈Smax〉/N , i.e. the maximum number of agents sharing every trait

divided by the total population. Several others order parameters can beused as the numberg

of different cultural domains in the asymptotic state over the total populationg = 〈Ng〉/N .

Then, the final states above mentioned are characterized by〈Smax〉/N ∼ 1, 0 andg ∼ 0, 1

respectively. Both states are bounded by a phase transition at a critical valueqc depending on

F : this transition is continuous forF = 2, but discontinuous forF > 2. Axelrod model has

been studied with many variants as random noise (147), mass media effects (150) and different
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network topologies (141; 145) among others.

1.3.2 Topology.

The description of interacting relations (who interacts with whom, how often, inwhich way

do agents relate), is a key of the modeling process in social dynamics. The usual tool to

describe the relationship between agents is a network in which agents are represented by the

nodes and links represent the interaction chances. ABMs rely on different network structures,

and outcomes usually strongly depend on the topology chosen. In a society, people are not

usually connected everyone to everyone but in several ways. This fact can be modeled through

different network kinds (directed or indirected, weighted or unweighted, etc) and topologies,

including regular and complex networks (e.g. lattice, small-world, RRN, ER or SF). Although

real networks, and particularly social networks, often differ from artificial networks in many

features, the dependence of model behavior with topology provides a tool to understand in what

way individual relationship influence on society.

A social network is a graph in which the nodes represent individuals or social groups and

the links symbolize the relationships among them (60; 61). In fact, many of the concepts

used in the analysis of complex networks are based in social features, such as small-world

property (62; 63; 64), as well as theoretical tools such as node centrality or clustering index

(65). Graph”ratio of theory has provided a very useful tool for measurement of different social

topics as collaboration networks, friendship or social interdependence. Additionally, new tech-

nologies provide new kinds of social interactions characterized by lowerdependence on the

physical location and higher connectivity of individuals (66). Complex network theory offers a

tool to study the properties of the contacts structure and the dynamics involved in the forming

process. Examples of social networks are scientific colaborations (such as coauthorship net-

works), actors coworking relations, information exchange, online social networks friendship,

etcetera.

The influence of network topology on the behavior of social ABMs mentioned in section

1.3.1has been studied in the last decades, including several areas such as language dynamics,

social behavior, rumors spreading, opinion models, cultural dynamics, etcetera (see,e.g.(67)).

For example, in opinion models, consensus critical values show a strong dependence on the

underlying topology (57). Similarly, Axelrod model for cultural dissemination displays depen-

dence of the phase transition on the network structure (145; 146); beyond this dependence, the
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1. INTRODUCTION.

dynamics of the model can be used to build a network through a rewiring process, which in

turn provides new system behaviors (166; 167).

In strategic games (12; 17), the role of network topology is usually introduced through the

condition that, at every time step, one or more individuals interact with one or more agents

chosen among their network neighbors. The specific model definition depends, among other

parameters, on the kind of synchronization (e.g.synchronous, serial) and on the strategies and

updating rules considered. In particular, the dependence of social observables on the underlying

topology has been widely analyzed through EGT models. For example, prisoner dilemma in

complex networks has been object of several studies for the last twenty years, focusing in the

influence of the structure of interactions among people on the level of cooperation (16; 18; 94;

95; 109). The studies showed a strong dependence of the cooperation level onthe topology,

that is, heterogeneity enhances cooperation. Nevertheless, this dependence is very sensitive to

the type of strategies and updating rules considered (79).
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Part I

The emergence of cooperation.
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Presentation of Part I.

“First, let it be remembered that we have innumerable instances, both in our domestic productions

and in those in a state of nature, of all sorts of differences of inherited structure which are correlated

with certain ages and with either sex. We have differences correlated not only with one sex, but with

that short period when the reproductive system is active, asin the nuptial plumage of many birds, and in

the hooked jaws of the male salmon. We have even slight differences in the horns of different breeds of

cattle in relation to an artificially imperfect state of the male sex; for oxen of certain breeds have longer

horns than the oxen of other breeds, relatively to the lengthof the horns in both the bulls and cows of

these same breeds. Hence, I can see no great difficulty in any character becoming correlated with the

sterile condition of certain members of insect communities; the difficulty lies in understanding how such

correlated modifications of structure could have been slowly accumulated by natural selection. This

difficulty, though appearing insuperable, is lessened, or,as I believe, disappears, when it is remembered

that selection may be applied to the family, as well as to the individual, and may thus gain the desired

end. Breeders of cattle wish the flesh and fat to be well marbled together. An animal thus characterized

has been slaughtered, but the breeder has gone with confidence to the same stock and has succeeded.

Such faith may be placed in the power of selection that a breedof cattle, always yielding oxen with

extraordinarily long horns, could, it is probable, be formed by carefully watching which individual bulls

and cows, when matched, produced oxen with the longest horns; and yet no one ox would ever have

propagated its kind. Here is a better and real illustration:According to M. Verlot, some varieties of the

double annual stock, from having been long and carefully selected to the right degree, always produce a

large proportion of seedlings bearing double and quite sterile flowers, but they likewise yield some single

and fertile plants. These latter, by which alone the varietycan be propagated, may be compared with

the fertile male and female ants, and the double sterile plants with the neuters of the same community.

As with the varieties of the stock, so with social insects, selection has been applied to the family, and

not to the individual, for the sake of gaining a serviceable end. Hence, we may conclude that slight

modifications of structure or of instinct, correlated with the sterile condition of certain members of the

community, have proved advantageous; consequently the fertile males and females have flourished, and

transmitted to their fertile offspring a tendency to produce sterile members with the same modifications.

This process must have been repeated many times, until that prodigious amount of difference between the

fertile and sterile females of the same species has been produced which we see in many social insects.”

(Charles Darwin. The Origin of Species by means of Natural Selection. (1859)).

Understanding how cooperative behavior emerges in different contexts is one of the major

questions of modern science. The presence of cooperation in hostile environments, that is,

when selfish behavior provides higher individual fitness as does cooperation, has been studied

in many areas including microbiology, species evolution, population dynamics,economy and

sociology.

Theory of evolution is based on natural selection, which in turn is based onthesurvival-

of-the-fittestrule. The limited resources available in a habitat promotes competition between
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organisms of the same or different species that have to struggle to survive; the final purpose

of this competition is to provide offspring. In such competition, cooperation is,at least in the

first instance, faced to individual interest of survival and reproductive success. Nevertheless,

cooperation and even altruism have evolved and persist, and evolutionistshave studied this

question extensively for the last 150 years.

Cooperation between biological entities pursuing their own ends is key to understanding

biological issues such as the emergence of multicellular organisms or gregarious behavior,

but also to analyze human societies: people form families, tribes, cities, nations, coworker

networks, companies, research teams, associations, etcetera.

Altruism is defined as a form of cooperation in which there is no direct benefit to the or-

ganism carrying out the behavior, while mutually beneficial relationship refers to cooperative

behavior in which there is a direct benefit to the actor as well as the recipient (68). There are

several proposed mechanisms which help to explain cooperative behavior; they are not neces-

sarily mutually exclusive, so that a combination of some of them may be applied to explaining

a particular case of cooperative behavior. The most widely accepted and studied ones are:

Kin selection refers to evolutionary strategies that favor the persistence and reproductive suc-

cess of an agent’s relatives, even at a cost to the survival or reproduction of the agent. Kin

selection implies cross-generational genetic changes driven by interactions between relatives

and may be applied when relatives influence one another on survival and offspring. William D.

Hamilton established, in 1964, a mathematic condition to explain altruistic behavior through

kin selection (69). According to Hamilton’s rule, an altruistic action from agenti to j may be

justified when:

rB > C , (1.26)

wherer is the genetic relatedness ofi to j, defined as the probability that two genes taken at

random from the same locus in both individuals are identical by descent,B is the reproductive

benefit obtained byj andC is the reproductive cost paid byi.

Group selectionmechanism in biology takes the assumption that genes can spread into a pop-

ulation because of the benefits they provide to the community (70). Although group selection

is not widely accepted by evolutionists in biology for several reasons (e.g., the different time

scales between groups dynamics and reproduction), it is often applied to other areas such as

human behavioral sciences (71).
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Reciprocity refers to situations where cooperation and/or altruism is enhanced by the proba-

bility of future mutual interactions. There are three types of reciprocity that have been deeply

studied:

i) Direct reciprocity mechanism was proposed by Robert Trivers in 1971 (72). If there is

a probability of repeated interactions between the same two players with acooperateaction

available, then a strategy of mutual cooperation may be favored even whennon-cooperate

actions brings larger short-term benefits. Direct reciprocity can enhance cooperation only if

the probabilityw of another encounter between the same two individuals is higher than the

cost-to-benefit ratioc/b of the cooperative actionw > c/b.

ii) Indirect reciprocity mechanism do not requires that the same two individuals interact again.

In a mutual interaction, actions are observed by third party individuals who might inform oth-

ers. Thus, social approval promotes cooperation by indirect reciprocity (73). Indirect reci-

procity can enhance cooperation only if the probabilityp, of knowing a random agent’s repu-

tation is higher than the cost-to-benefit ratioc/b of the cooperative actionp > c/b.

iii) Network reciprocity . Real populations have spatial structures or underlying networks

which imply that some individuals interact more often than others. According tothe so-called

lattice reciprocitymechanism, the cooperative action can take advantage of the topology of the

network, so that cooperators clusters are often resilient to invasion by the defective action (19).

In this part of the thesis, we focus on the emergence of cooperation in complex networks.

In the framework of evolutionary game theory, among other games that provides a satisfactory

description of a wide range of situations (e.g., the Public Goods Game), the Prisoner’s Dilemma

(PD) has become a standard for studying the cooperation. First, in chapters2-3-4 we investigate

in detail the dynamics of PD in different artificial networks under the assumption of a widely

accepted strategy: the replicator dynamics. Later, in chapter5 we take into consideration

observed strategies in human behavior and study the consequences of such rules. Finally, in

chapter6 we test the predictions by a large-scale experiment.
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Chapter 2

The dipole model: Thermodynamic

study of a social system.

In Evolutionary Dynamics the understanding of cooperative phenomena innatural and social

systems has been the subject of intense research during decades. We focus attention here on the

so-called ”Lattice Reciprocity” mechanisms that enhance evolutionary survival of the cooper-

ative phenotype in the Prisoner’s Dilemma game when the population of darwinian replicators

interact through a fixed network of social contacts. Exact results on a ”Dipole Model” are

presented, along with a mean-field analysis as well as results from extensive numerical Monte

Carlo simulations. The theoretical framework used is that of standard Statistical Mechanics

of macroscopic systems, but with no energy considerations. We illustrate thepower of this

perspective on social modelling, by consistently interpreting the onset of lattice reciprocity as

a thermodynamical phase transition that, moreover, cannot be captured bya purely mean-field

approach.

2.1 Introduction.

Is the term ”social temperature” just a rhetoric figure (suggestive metaphor), or on the contrary,

could it be given a precise meaning? By working out in detail the evolutionary dynamics of

the most studied social dilemma (the Prisoner’s Dilemma) on a simple kind of artificialsocial

networks we will show here that the formal framework of equilibrium statistical mechanics is,

to a large extent, applicable to the rigorous description of the asymptotic behavior of strategic

33



2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

evolution, thus providing the key for a formal quantitative meaning of the termsocial ”temper-

ature” in these contexts.

Evolutionary game theory, in contrast with classical game theory that focusses on the de-

cision making process of (rational) agents, is concerned with entire populations of agents pro-

grammed to use some strategy in their interactions with other agents. The agents are replicators,

i.e. entities which have the means of making copies of themselves (by inheritance, learning,

infection, imitation, etc...), whose reproductive success depends on the payoff obtained during

interaction. As the payoff depends on the current composition of strategies among the inter-

acting agents, this yields a feedback loop that drives the evolution of the strategic state of the

population(12)(17)(79)(80).

This darwinian feedback (frequency-dependent fitness) dynamics depends strongly not

only on the particular game, and on the specifics of the way strategies spread, but also on

the (social) structure of connections describing the interactions. Under the assumption of a

well-mixed population (social panmixiaassumption), the temporal evolution of the proportion

of strategies among the population is governed by a differential equation named replicator

equation(see below). Well-known celebrated folk’s theorems (see, e.g. (79)) establish a con-

nection between the asymptotic behavior of this equation and the powerful concepts of classical

game theory based on the notion of best reply (Nash). However, if the social panmixia assump-

tion is abandoned, and individuals only interact with their neighbors in a social network, the

asymptotic of evolutionary dynamics generically differ in a substantial way from this ”well-

mixed population” description. The social structure of strategic interactionsturns out to be of

importance regarding the evolutionary outcome of the strategic competition.

We will consider here the Prisoner’s Dilemma (PD), a two-players-two-strategies game,

where each player chooses one of the two available strategies, cooperation or defection: A

cooperator receivesR when playing with a cooperator, andS when playing with a defector,

while a defector earnsP when playing with a defector, andT (temptation) against a cooperator.

WhenT > R > P > S, the game is a PD (while ifT > R > S > P it is called Snowdrift

game, also ”Chicken” or ”Hawks and Doves”). Given the payoff’s ordering, whatever the value

of the prior assign of probability to the co-player’s strategy is, the expected payoff is higher for

defection, and that is what a rational agent should choose. In the PD game only the defective

strategy is a strict best response to itself and to cooperation, thus it is an easy example of

game with an unbeatable (80) strategy. Still, though there is no difficulty in the making of the
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2.2 Natural strategic selection on graphs.

strategic decision from Nash analysis, two cooperators are better off than two defectors, hence

the social dilemma.

In graph-structured populations, a large body of research (16; 19; 81; 82; 83; 84; 85; 86; 87;

90; 101; 102; 103; 104) (and references therein) on evolutionary dynamics of the PD game has

convincingly show the so-calledlattice reciprocityeffects: The cooperative phenotype can take

advantage of the topology of the social net, so that clusters of cooperators are often resilient to

invasion by the (continuum-unbeatable) defective phenotype. This enhancement of asymptotic

macroscopic levels of cooperation due to the structure and topology of strategic interactions in-

cludes, but it is far more general than, the so-called space reciprocity mechanisms, where social

nets are discretizations (solid state lattices) of the euclidian space, and diffusion approximations

are often useful (105). In this regard, one should stress the accumulated evidence that (i) many

interesting social nets (27; 28; 45) are far away from being regular lattices, and (ii ) freedom of

connectivity scales (scale-free complex networks) enhances (18; 106; 107; 109; 111; 112; 113)

the lattice reciprocity mechanisms up to unexpectedly high values of the temptation parame-

ter T of the dilemma, where cooperation is very expensive (but affordable in an evolutionary

sense).

In this chapter we investigate in detail the lattice reciprocity mechanisms in an artificial

network (Dipole Model) that models the competition for influence on a populationof social

PD-imitators of two antagonist Big Brothers (nodes connected to the whole population, but

with no direct connection between them).

2.2 Natural strategic selection on graphs.

We specify here the evolutionary game dynamics scenario, meaning the game parametrization,

the microscopic strategic dynamics (replication mechanism or strategic updatingrule), and the

social structure of contacts that we will consider along the chapter.

We normalize the PD payoffs to the reward for cooperating,R = 1, and fix the null payoff

at punishmentP = 0. Note that provided the (differential or relative) selective advantage

among two individuals depends on their payoff’s difference (see below), one can arbitrarily fix

the zero payoff level. Then only two parametersT = b > 1 andS = ǫ ≤ 0 are tuned. Note

that the rangeǫ > 0 defines a game named Hawks and Doves (also Chicken and Snowdrift)

where punishment and sucker’s payoff have the reverse order. Wewill occasionally comment

on this range of parameters.
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

Moreover, we do not restrict our computations to2R > T + S. This restriction means that

the total payoff for the two players is higher if both cooperate (2R) than if one cooperates and

the other defects (T + S), and is usually incorporated in iterated games studies of the PD to

prevent agents taking turns at defection and then sharing the payoffs.For the specifics of the

replicator dynamics (memory-less, markovian) in the next paragraph, oneshould not expect

that this restriction qualitatively matters.

Regarding the replication mechanism, we implement the finite population (sizeN ≫ 1)

analogue of replicator dynamics (15; 18). At each time stept, which represents one genera-

tion of the discrete evolutionary time, each agenti plays once with each one of the agents in

its neighborhood and accumulates the obtained payoffs,Pi. Then, the individuals,i, update

synchronously their strategies by picking up at random a neighbor,j, and comparing their re-

spective payoffsPi andPj . If Pi > Pj , nothing happens andi keeps the same strategy for the

next generation. On the contrary, ifPj > Pi, with probabilityΠi→j = η(Pj −Pi), i adopts the

strategy of its neighborj for the next round robin with its neighbors, before which all payoffs

are reset to zero. Hereη is a number small enough to makeΠi→j an acceptable probability;

its physical meaning is related to the characteristic inverse time scale: the largerit is, the faster

evolution takes place.

From a theoretical point of view, this specific choice of the dynamics has thevirtue of

leading directly (see,e.g. (17)), under the hypothesis of a well-mixed population and very

large population size, to the celebrated replicator equation for the frequenciespα of strategies

α(= C or D) in the population:

ṗα = pα(fα − f̄) (2.1)

wherefα is the payoff of anα-strategist and̄f is the average payoff for the whole population.

Note that time unit in equation (2.1) is scaled toη−1.

For the payoffs of the Prisoner’s Dilemma the asymptotic frequency of cooperators, from

the replicator equation, is driven to extinction,pc = 0, while for the Hawks and Doves game,

its asymptotic value isǫ/(b−1+ǫ) . As stated in the introductory section, we will be concerned

here mainly with populations that are not well-mixed, where predictions basedon this nonlinear

differential equation are often of little use.

Regarding the structure of connections between interacting agents, we willconsider here

that it is given by a fixed graph (i.e. connections between players do not change by rewiring)
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where agents are represented by nodes, and a link between nodes indicates that they inter-

act (play). If ki is the number of neighbors of agenti (connectivity or degree), and∆ is

the maximal possible one-shot-payoff difference (∆ = max{b, b − ǫ}), we will assumeη =

(max{ki, kj}∆)−1 for the specification of the probabilityΠi→j of invasion of nodei by the

strategy of neighborj. This simple choice, introduced in (18), assures thatΠi→j < 1; in

heterogeneous networks it has also the effect of slowing down the invasion processes from

or to highly connected nodes, with respect to the rate of invasion processes between poorly

connected nodes, a feature not without consequences (114).

We now introduce some notation, which is familiar to statistical physicists: The configura-

tion (strategic microstatel) of a population ofN agents at timet is specified by the sequence

l = {si(t)} (i = 1, ..., N ), wheresi(t) = 1 (or 0) denotes that nodei is at this time a co-

operator (resp. defector). The set of all possible2N configurations is called the phase space.

Stationary probability densities of microstatesP(l) (l = 1, ...2N ) are then representatives of

strategic macro-states. The average cooperationcl of microstatel is defined as

cl =
1

N

N
∑

i

si (2.2)

We denote byΠl′l the probability that the strategic microstate of the population at time

t + 1 is l′, provided that it isl at timet. Note that
∑

l′ Πl′l = 1. A microstatêl is a frozen

equilibrium configuration if the probability that it changes in one time step is null, and then

Πl̂l̂ = 1 andΠl′ l̂ = 0 if l′ 6= l̂. We will assume generic real values (irrational) of the payoff

parameters, so that if a configuration contains a C-D link it cannot be a frozen configuration.

The only possible frozen equilibrium configurations areall-C andall-D. However, for a very

wide class of graphs, and a wide range of model parameters they are notthe only possible

stationary probability measures.

We now illustrate by means of easy examples the evolution of PD on graphs. Our first

and simplest example is a star-shaped graph consisting of a central node connected toN − 1

peripheral nodes. It is straightforward to check that any initial conditionwith cooperators at

the central node and (at least) at[(b− ǫ(N − 1))/(1− ǫ)] + 1 peripheral nodes has a positive

probability of evolving in one time step to a configuration with a higher number of cooperators,

and a null probability of evolving towards less cooperators. Thus, all those configurations

evolve asymptotically to theall-C equilibrium. The rest of configurations evolve towards the

all-D equilibrium. Therefore, ifN > (b−ǫ+2) both equilibria are attractors (absorbing states),
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in the sense that some configurations different from themselves evolve to them; the phase space

is partitioned into two basins of attraction. IfN < b− ǫ+2, only theall-D frozen equilibrium

is attractor. The stationary probability densitiesP∗(l) of the star are pure point measures (two-

or one- Dirac delta peaks) in the thermodynamic limitN → ∞.

Now take a star and add some arbitrary number of links between its peripheral nodes. We

call this network a crown, whose head is the central node. If the head is occupied att0 by

a defector, it will remain so forever, because the payoff of a peripheral cooperator is strictly

lower than head’s payoff. Sooner or later the head (center) of the crown will be imitated by

the whole crown, and the evolution will stop when everybody be defecting.But, what happens

to a cooperator on the head? The answer is dependent on both, the net topology of the crown

periphery and the cooperators disposition there: To ensure fixation of cooperation at the head

node, it suffices that a subsetC of peripheral nodes occupied by cooperators, and with no direct

links to the rest of the periphery, have a sizenC > bkmax − ǫ(N −nC − 1), wherekmax is the

maximal degree in the rest of the periphery. Under this proviso all-C is the unique absorbing

microstate of all corresponding initial conditions.

Finally consider the graph schematized in Fig.2.1, composed of the following:

(a) A componentF of nF nodes with arbitrary connections among them.

(b) A node, say node 1, that is connected to all the nodes inF and has no other links.

(c) A componentC of nC nodes with arbitrary connections among them.

(d) A node, say node 2, that is connected to all the nodes inF andC, but not to node 1.

This is what we will call a Dipole Model network. It is a two-headed (nodes1 and 2) crown

(with peripheryF) plus a tailC hanging on head 2. To strength the special status of the head

nodes, let us nickname them as ”Big Brothers”. They certainly enjoy a sort of omnipresence

that fits well with the character of Orwell’s famous social sci-fiction novel1984. In the follow-

ing section we prove that for this simple network there exists a non-trivial stationary probability

density of microstatesP∗(l) for the strategic evolution of the PD game.

2.3 The Dipole Model.

The analysis of evolutionary dynamics of the PD on the Dipole network showsthat there is

a non-trivial invariant measure in phase space. Let us consider the set I of initial conditions
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C

F

2 1

Figure 2.1: Structure of the Dipole Network. Two nodes (1 and2) are connected to all nodes in

F, whose elements can be arbitrarily linked to each other. Moreover, node2 is also linked to a set

C (with arbitrary internal connections as well). Initial conditions are indicated by colors: red for

cooperators (node2 and setC), blue for defectors (node1), and green means arbitrary (setF). See

the text for further details.

defined by: (i) Big Brother 1 is a defector, (ii ) Big Brother 2 is a cooperator, and (iii ) all nodes

in componentC are cooperators. Note that this set contains2nF different configurations. We

now prove that, provided some sufficient conditions, this is a minimally invariantset of the

evolutionary dynamics.

First, one realizes that Big Brother 1 cannot be invaded by the cooperative strategy: The

payoff of a cooperator nodei in F is P c
i = kci + 1 + ǫ(ki − kci + 1), whereki is the number

of its neighbors inF andkci ≤ ki is the number of those that are cooperators. The payoff of

Big Brother 1 (BB1) is thenP1 ≥ (kci + 1)b. For the PD game, whereǫ ≤ 0, the inequality

P1 > P c
i always holds, so that BB1 will always be a defector. (Note also that forthe Hawks

and Doves game, a sufficient condition forP1 > P c
i is b > 1+ ǫ(kF +1), wherekF (< nF ) is

the maximal degree in componentF, i.e. the maximal number of links that a node inF shares

within F.) We thus conclude that defection is fixed at BB1.

Second, thanks to its interaction with setC, Big Brother 2 resists invasion, provided its

sizenC is above a threshold: The payoff of a defector nodei in F is P d
i = (kci + 1)b, where

kci is the number of its cooperator neighbors inF, while the payoff of Big Brother 2 (BB2) is

P2 = nC + nF ǫ + nc
F (1 − ǫ), wherenc

F ≤ nF is the number of cooperators inF. Thus, a

sufficient condition forP2 > P d
i isnC > b(kF +1)−nF ǫ. With this proviso, BB2 will always

be a cooperator, which in turn implies that all the nodes in the componentC will remain always

cooperators. Note that forǫ ≤ 0 andb > 1, the absence of the componentC could imply

invasion of node2, that would lead to fixation of the defective strategy on the whole network.
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The previous argument proves that provided the sufficient conditionsnC > b(kF+1)−ǫnF

andb > 1+ǫ(kF+1) hold, the subsetI of phase space defined by (i), (ii ), and (iii ) is an invariant

set. As this set does not contain equilibria, no stochastic trajectory evolvesfrom it to a frozen

equilibrium configuration.

Finally, one realizes thatI is indeed minimal, because at any time, a defector inF has a pos-

itive probability to be invaded by the cooperation strategy (at least from BB2), and a cooperator

in F has a positive probability of being invaded by the defection strategy (at least from BB1).

Therefore, any strategic configuration of the setI is reachable in one time step from any other,

i.e. for all pairs (l, l′) of microstates inI, the transition probabilityΠl′l > 0. Consequently,

I does not contain proper invariant subsets: it is minimally invariant. Moreover, following

Perron-Frobenius theorem, there exists a unique stationary macro-stateP∗(l). This provides

a rigorous framework for the interpretation of results from numerical Monte Carlo simulation

studies in evolutionary dynamics on dipole models, provided the sufficient conditions above.

While nodes inC and Big Brother 2 are permanent cooperators, and Big Brother 1 is a

permanent defector, nodes inF are forced to fluctuate. This partition of the network into sets

of nodes where each particular strategy is fixed forever, and a set offluctuating nodes, turns

out to be a generic feature of the discrete replicator dynamics (neighbor imitation proportional

to payoffs difference) on many network settings (109; 112). The simplicity of the Dipole Net-

work model allows on it an easy formal proof of existence of this partition, so providing an

illustration of both, its origins and generic character. It also shows the formal applicability of

equilibrium statistical physics formalism to characterize the asymptotic behaviorof evolution-

ary dynamics on these graphs. This will be made in the next section for specific choices of

structural traits for the subgraphF.

Let us note that if a direct link between BB1 and BB2 is added, then (see appendix2.4.3)

asymptotic fixation in the whole network of either cooperation or defection will occur, depend-

ing on the relative sizenC/nF of componentsC andF.

The name dipole for this structure of connections is suggested by the strategic polar (C −
F−D) aspect of the whole graph. Note also that the number ofC−F andF−D connections

scales linearly with the sizenF of the fluctuating interior, that is to say that the poles (C and

D) act as an externally imposed (AC) field onF, whose strength is proportional to the internal

levels of cooperation. As the cooperation (and then the fitness) levels areself-sustained (as

proved by the previous theorem), this is a closed macroscopic system with a non-trivial self-

sustained social activity of cooperation at evolutionary equilibrium.
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2.3 The Dipole Model.

The interest of the Dipole Model is by no means restricted to a mere academic illustra-

tion: First of all, we can make a technical use of it in macroscopic stability analysis studies

of PD-evolution on highly heterogeneous complex networks. Indeed, thefluctuations inside

the subsetF are the effect of the competition for invasion among two non-neighboring hubs

(hugely connected nodes), where opposite pure strategies have reached fixation, in their com-

mon neighborhood. This is a local strategic configuration that mimics those thatare often

observed in stochastic simulations of evolutionary dynamics in highly heterogeneous (scale-

free) networks (109; 112). Simple multipolar network models can easily be constructed (e.g.

by establishing direct links fromC toF in a way that simple sufficient conditions guarantee that

the theorem still holds), that are indeed indistinguishable from typical strategic patterns found

in the numerical simulations on scale-free networks. This makes the Dipole neta very useful

technical device to analyze the stability mechanisms of the cooperator clusters(109; 112) in

scale-free structured populations, as well as the kind of temporal fluctuations of cooperation

that one should expect in the fluctuating set of nodes.

Regarding potentialities for econo-socio-physics applications of the Dipolemodel, it could

be viewed as a sort of schematic (then simplistic, cartoon-like) model for the competition for

influence of two powerful superstructural institutions (e.g. like ”mass media”, political par-

ties, or lobbies) on a target population, in strongly polarized strategic contexts. The analysis

rigorously provides sufficient conditions for the parameter values where fixation of strategic

traits is proved impossible, so that temporal fluctuations dominate forever the target population

of social imitatorsF. The influence on each individual of the two competing institutions is

simulated here through the omnipresent (”Big Brother” nodes 1 and 2) neighbors, whose own

high appeal for imitation (the strength of Big Brother’s influence) is in turn conditioned by the

strategic composition of the target population. Here the interest could well bethe study of the

influence that metric and topological network characteristics of the social structure have on the

strategic macro-state, and thus on the quantitative values ofsocial indicators. We address some

aspects of this issue in the next section.

At a more general level, the design of experiments in social sciences as well as theoretical

studies of artificial societies could greatly benefit from having at hand simple but non-trivial

”exactly soluble statistical-mechanical models” that may provide safe guides todevelop further

intuitions on social phenomena that demands more comprehension.
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2.4 The role of social structure in Big Brothers competition.

In this section we present some analytical and numerical results on the evolutionary dynamics

of games in the Dipole Model for different choices of topologies of the fluctuating setF. The

sufficient conditions stated in the previous section are assumed hereafter. We are interested in

the situation wherenF ≫ 1, i.e. large size of the fluctuating population.

First we will briefly comment on the straightforward limiting case when the macroscopic

setF is a fully connected set, so thatkF = nF −1. This is the well-mixed population limit, for

which it is easy to show that the replicator equation (2.1) is an exact description. The payoffs

of polar nodes BB1 and BB2 are given byP1 = bcnF andP2 = nC + cnF + ǫ(1− c)nF , while

the payoffs of a cooperator node and a defector node inF arePc = cnF + ǫ(nF − cnF + 1)

andPd = (cnF + 1)b. One easily realizes thatPc < Pd, provided the sufficient condition

(b > 1 + ǫnF ) for fixation of defection at node 1. Thus the (one time step) probabilitiesQDC

(invasion of a cooperator node inF) andQCD (invasion of a defector node inF) are

QDC =
1

(nF + 1)

P1 − Pc

∆(nF + 1)
+

(1− c)nF

(nF + 1)

Pd − Pc

∆(nF + 1)

QCD =
1

(nF + 1)

P2 − Pd

∆(nF + nC)
. (2.3)

Assuming that the size ofF is macroscopic,nF ≫ 1, the fraction of cooperatorsc in F

evolves according to

ċ = (1− c)QCD − cQDC . (2.4)

Now, if nF ≫ 1, andnC/(nF )
2 → 0, then bothQCD and the first term in the right-hand

side ofQDC vanish, and we arrive to the differential equation

ċ =
c(1− c)

∆
(ǫ(1− c)− (b− 1)c) . (2.5)

This is, with a simple re-scaling of time, the replicator equation (2.1): note that in the limit

nF ≫ 1 that we have considered, the probability that a node inF picks up a Big Brother

when updating its strategy is negligible, and then the evolution inside the complete graphF is

overwhelmingly determined by the internal connections, and thus by the replicator equation.

In other words, in this limit of maximal possible connectivity, BB1 and BB2 are no longer
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2.4 The role of social structure in Big Brothers competition.

bigger than the nodes inF and their influence on the fluctuating set is negligibly small in the

thermodynamic limit.

We now turn attention to situations wherekF ≪ nF , far from the social panmixia. In sub-

section2.4.1we will explicitly solve the opposite trivial case of disconnectedF set (kF = 0),

which turns out to reduce to the standard textbook ideal two-states model ofStatistical Physics.

After that, in subsection2.4.2, the ”random regular” network structure forF is seen to be

amenable to a plausible mean-field approach, but insufficient to explain the phenomenology

shown by Monte Carlo numerical results. These show beyond any doubta critical behavior, a

transition point separating two qualitatively different types of social macro-states. This transi-

tion is sensibly interpreted as the onset of lattice reciprocity. In other words, lattice reciprocity

is a true critical social phenomenon.

2.4.1 F is a disconnected graph (ideal-gas).

Let us now obtain some explicit results for one of the simplest choices for thetopology of

connections inside the fluctuating set, namelykF = 0. In this case each node inF is only

connected to Big Brothers. This is in fact an effective single node problem, where homogeneity

(i.e., mean field assumption) inF is exact; in other words, the absence of internal interactions

in the setF is a sort of ideal-gas condition easy to exactly deal with in the large size limit.

Note that the sufficient conditions for fixation of defection at BB1 and of cooperation at

BB2 are respectively,b > 1 + ǫ, andnC > b − ǫnF . Denoting byc(t) the instantaneous

fraction of cooperators inF, one finds for the (one time step) probabilityQDC of invasion of a

cooperator node inF

QDC =
cb− (1 + ǫ)/nF

2∆
, (2.6)

and using the notationA = ǫ+ (nC − b)/nF andB = 1 + nC/nF

QCD =
A+ c(1− ǫ)

2∆B
, (2.7)

for the probability of invasion of a defector node inF. Note thatA > 0 due to the non-invasion

of BB2 (sufficient) condition.

ProvidednF ≫ 1, the fraction of cooperatorsc in F evolves according to the differential

equation (2.4), which after insertion of expressions (2.6) and (2.7), and re-scaling of time,

becomes

ċ = f(c) ≡ A0 +A1c+A2c
2 , (2.8)
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where the coefficients are

A0 = A , (2.9)

A1 = 1− ǫ−A+B(1 + ǫ)/nF , (2.10)

A2 = −(1− ǫ+ bB) , (2.11)

One can easily check (A0 > 0 andA2 < 0) that there is always one positive rootc∗ of

f(c), which is the asymptotic value for any initial condition0 ≤ c(0) ≤ 1 of equation (2.8).

Forǫ = 0, in the so called weak PD game (i.e. at the border between the PD and the Hawks

and Doves game), if one further assumes that the relative sizeµ(F ) of the component F is

large enough,i.e. µ(F ) → 1, andµ(C) → 0, one easily obtains that the stationary solution of

equation (2.8) behaves asc∗ ≃ (b+ 1)−1 near the limitµ(F ) → 1.

From the point of view of the setF, whennF ≫ 1, the model corresponds to a non-

interacting (ideal) set of independent phenotypic strategists that fluctuatedue to a polar field

(Big Brothers influence) whose strength is self-consistently determined bythe average cooper-

ationc. This problem is equivalent to the equilibrium of an ideal paramagnetic salt ina noisy

(telegraphic) magnetic AC field of intensity proportional to the average magnetization.

A typical and correct statistical-physicists approach ”from scratch” to this two-states model

is the familiar micro-canonical setting: At (dynamical) macroscopic equilibrium, the probabil-

ity of each strategic micro-statel = {si} of fixed value ofcl = c is uniform

Pl = Ω−1 , (2.12)

whereΩ = nF !/((cnF )!(nF − cnF )!)) is their number. The lack of informationS = lnΩ

of the macro-state as a function of global cooperationnF c, i.e. the relationS(nF c), can be

regarded as the analogue of the micro-canonical fundamental ”thermodynamical” relation, and

its first derivative is the intensive parameterβ (thus the analogue of the inverse thermodynam-

ical temperature), that after using Stirling’s approximation is easily obtained as

β = ln

(

1− c

c

)

. (2.13)

This relation is the analogue of a thermodynamical equation of state, which simplyex-

presses the connection of the equilibrium value of the macroscopic cooperation levelc to the

”entropic” intensive parameterβ. Note thatc is determined by the balance condition (ċ = 0):

1− c

c
=

QDC

QCD
, (2.14)
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2.4 The role of social structure in Big Brothers competition.

from where the equation of state (2.13) determinesβ as a function of model parameters (i.e. b,

ǫ, andnC/nF ). For example, whenǫ = 0, β = ln b > 0, indicating that the disorder of the

activity increases with increasing cooperation. The maximal value ofβ → ∞ corresponds to

zero disorder (b → ∞), while its minimal zero value corresponds to highest possible value (at

b = 1) of cooperation (c = (1/2)). Note that values ofb < 1 correspond to negativeβ values,

where entropy decreases with increasing values of cooperation, outside the PD domain.1

An alternative (and equivalent in the thermodynamic limit) setting is to consider the whole

space of2nF configurationsl = {si}nF

i=1, of unrestrictedcl, but under the condition that the

average valuec =
∑

l Plcl is fixed. This is the analogue of the canonical setting. The normal-

ization factorZ =
∑

l exp(−βcl) is the analogue of the familiar canonical partition function

(Boltzmann’s Zustandsumme), that due to the agents independence (k = 0) is easily factorized

asZ = (1 + exp(−β))nF .

In the canonical setting a most informative macroscopic quantity is the ”heat capacity” ana-

logue: The fluctuations ofcl along representative (typical) stochastic trajectories at equilibrium

under the evolutionary dynamics of the game are, following the standard thermodynamical for-

malism, given by∂c/∂(β−1), so that this quantitative social indicator detects very precisely

sudden variations of the macroscopic cooperation with payoff’s parameters. In this ideal-gas

kind of case there are no critical points and fluctuations do not diverge.For example, forǫ = 0

they are given by the (Bernouillian) binomial variancenF c(1− c) = nF b/(b+ 1)2.

2.4.2 F is a random regular graph.

Random regular networks are random networks of fixed degreek. All nodes being thus equiv-

alent, a sensible approach is to assume (mean-field like, seee.g. (117)) that the fraction of

instantaneous cooperators in the neighborhood of a node is the fractionc of the whole setF. In

other words, one neglects local fluctuations ofc. The contribution of the internal interactions to

the variation ofc is then of the ”replicator equation” type, as discussed above for the complete

graph case. The difference here is that ifkF ≪ nF the contribution of the interactions with

Big Brothers cannot be longer neglected.

1Note: The Stag Hunt game corresponds tob < 1 andǫ ≤ 0, and it is the archetype of coordination games. A

clear case for the deep importance of this game in Social Studies can be found in (116).
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Figure 2.2: Macroscopic cooperation in a random regular graph structure for the setF, with k = 4,

andnF = 4000, andǫ = 0. A decreasing sequence ofnC/nF , as indicated in figure, has been used.

Symbols represent numerical Monte Carlo results, and the different lines represent the mean-field

predictions as given by the solution (ċ = 0) of Eq. (2.17).

2.4.2.1 Mean-field approximation.

The payoffs of Big Brothers BB1 and BB2 are given byP1 = bcnF andP2 = nC+cnF+ǫ(1−
c)nF , while the payoffs of a cooperator node and a defector node atF under the mean-field

assumption are:

Pc = ck + 1 + ǫ(k(1− c) + 1) , Pd = (ck + 1)b . (2.15)

The differential equation forc is then

ċ =
(1− c)(P2 − Pd)

(k + 2)BnF∆
− c(P1 − Pc)

(k + 2)nF∆

+
(1− c)ck(Pc − Pd)

(k + 2)2∆
, (2.16)

which under the assumptionkb ≪ nF , takes the form

ċ = f(c) ≡ 1

(k + 2)2B∆
(A′0 +A′1c+A′2c

2 +A′3c
3) , (2.17)

where the coefficients are
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2.4 The role of social structure in Big Brothers competition.

A′0 = (k + 2)(B − 1 + ǫ) , (2.18)

A′1 = 2(2(1− ǫ)−B) + k(2(1− ǫ)−B(b− ǫ))

+k2Bǫ , (2.19)

A′2 = 2(ǫ− 1−Bb) + k(ǫ− 1−B(1 + ǫ))

+k2B(1− b− 2ǫ) , (2.20)

A′3 = k2B(b− 1 + ǫ) , (2.21)

Note that the assumptionnC > b − nF ǫ (i.e. the condition for Big Brother 2 to be a

permanent cooperator) implies thatA′0 > 0, so thatċ(0) > 0 and one positive root, sayc∗, of

f(c) is then ensured, in agreement with the theorem of section2.3. In Fig. 2.2 we show the

asymptotic value of the average cooperationc versus the temptation parameterb, as obtained

from (2.17), for several different values ofnC/nF , ǫ = 0, andk = 4.

Within the mean field approximation, it is possible to obtain explicitly the equilibrium

macro-state,i.e. the stationary probability distribution densityP∗l , which as expected from

section2.3 turns out to be of the Boltzmann type. Let us consider two different (arbitrary)

strategic microstatesl = {si} (i = 1, ..., nF ), andl′ = {s′i}, of the fluctuating set. For any pair

of microstates(l, l′) we define the following numbers:

n11 =
∑

i

δsi,s′iδs′i,1 , (2.22)

n10 =
∑

i

(1− δsi,s′i)δs′i,0 , (2.23)

n00 =
∑

i

δsi,s′iδs′i,0 , (2.24)

n01 =
∑

i

(1− δsi,s′i)δs′i,1 , (2.25)

i.e., n11 is the number of nodes that are cooperators in both microstates,n10 that of the nodes

that are cooperators inl but defectors inl′, etc... Using equation (2.2) it is straightforward to

obtain

cl − cl′ =
1

nF
(n10 − n01) . (2.26)
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Now, let us assume that the probabilities that a nodei changes strategy are independent

of nodei (homogeneity assumption, mean-field), and denote them byQCD (transition from

defector to cooperator) andQDC (for the transition from cooperator to defector). Then we can

easily see that the transition probabilities between the microstatesl andl′ are given by

Πl,l′ = (1−QDC)
n11(1−QCD)

n00Qn01

DCQ
n10

CD, (2.27)

Πl′,l = (1−QDC)
n11(1−QCD)

n00Qn10

DCQ
n01

CD, (2.28)

Henceforth, denotingexp(−β) = QCD/QDC , one easily obtains the expression:

Πl,l′ exp(−βcl′nF ) = Πl′,l exp(−βclnF ) , (2.29)

from where the unique solution to the fixed point equation

Πl,l′P
∗
l′ = P

∗
l , (2.30)

is easily found to be:

P
∗
l = Z−1 exp(−βclnF ) , (2.31)

whereZ is the analogue of the canonical partition function

Z =

[

QCD +QDC

QDC

]nF

. (2.32)

Note that Eq. (2.29) expresses the ”detailed balance” condition, which is thus proved to

be satisfied. As it is well-known (118), the canonical probability distribution density (2.31)

is the unique density that maximizes the lack of information (entropy),S = −
∑

l Pl lnPl,

among those (compatible) densities that share a common value for the macroscopic average

of cooperationc =
∑

l Plcl. This provides a ”generalized thermodynamic” meaning to the

parameterβ: it is no other than the intensive entropic parameter associated to cooperation,

that is, the Lagrange multiplier (119; 120) associated to the restrictionc =
∑

l Plcl on the

compatible measures (canonical restricted maximization of entropy), that is:

β =
∂S

nF∂c
. (2.33)

The parameterβ simply measures how fast the entropy of the equilibrium macro-state in-

creases versus global cooperation variations. Its formal role is that ofan analogue of inverse
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thermodynamical temperature. Let us note that, at variance with many works inevolutionary

game dynamics (see (16) and references therein) where an analogue of temperature is intro-

duced”ad hoc” as a parameter entering into the definition of the (stochastic) strategic updating

rules, the parameterβ (2.33) is a kind of emergent property that characterizes the equilibrium

macro-state, and thus is a function of the model parameters (not a model parameter itself).

The fluctuations of the micro-states cooperationcl, namely(nF )
2(
∑

l(Plc
2
l )−(

∑

l Plcl)
2)

are given bynF c(1 − c). This is the analogue of the heat capacity. The dependence on the

game and network parametersb, ǫ, nC/nF , k of the fluctuations of cooperation is obtained by

solving for the cooperation equilibrium valueċ = 0 in (2.17), and plotted in Fig.2.3(panel b)

for k = 4, ǫ = 0, and decreasing values of the rationC/nF .

2.4.2.2 Numerical results, and the mean-field failure.

In this subsection we compare the mean-field results with those obtained from Monte Carlo

simulations implementing the updating rules on the dipole model with a random regularnet-

work structure for the fluctuating setF.

In order to illustrate the Boltzmannian character of the stationary probability densityP∗(l),

we plot in Fig.2.4 the numerical estimates ofln
(

P (c)
g(c)

)

, whereP (c) is the probability that

a microstate has an average cooperationc (2.2), as inferred from the simulation results, and

g(c) = nF !/((cnF )!(nF − cnF )!) is the degeneracy ofc (i.e., the number of microstatesl such

thatcl = c). The data correspond to a random regular network structure for the componentF

with degreek = 4, and parameter valuesb = 1.1, nF = 5000, nC = 500, andǫ = 0. As one

can see from the perfect straight line shape of the plot, the data are fully consistent with the

Boltzmann’s density (2.31).

Though the system evolution is governed by dynamical rules (strategic updating) which ”a

priori” could be thought to lead to non-equilibrium behaviors, one finds that the asymptotic

regime of the PD evolutionary dynamics in the dipole model is a true macroscopic equilibrium

regime, where the formalism of generalized thermodynamics (120) applies.

The results of the asymptotic value of the average cooperationc versus the temptation to

defectb are presented in Fig.2.2 for (relatively small) values ofnC/nF ranging from0.025

down to4 × 10−3, but still satisfying the sufficient condition for the fixation of cooperation

at BB2. The comparison with the mean-field predictions show that the mean-field approxima-

tion overestimates the cooperation value. Most notably, for very small values of nC/nF , the

numerical results show, at aboutb ≃ 1.4, a fast decay of cooperation to values close to zero
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Figure 2.3: Fluctuations of cooperation in a random regular graph structure for the setF. The

upper panel (a) shows, fork = 4, ǫ = 0, nF = 4000, and a decreasing sequence ofnC/nF values

as indicated, the fluctuations of cooperation observed in Monte Carlo simulations. The lower panel

(b) shows the mean-field predictions. The mean-field approach is shown in text to be unable to

predict the observed phase transition. This qualifies network reciprocity as a true ”critical” social

phenomenon.
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Figure 2.4: Plot of ln
(

P (c)
g(c)

)

versus cooperationc, showing the Boltzmannian character of the

stationary probability density of microstates, for a random regular network structure for the setF.

The parameter values areb = 1.1, nF = 5000, k = 4, nC = 500, andǫ = 0. The results shown

here correspond to5 × 104 Monte Carlo steps (after a long enough transient), for each one of the

1.5× 103 different network realizations and/or initial conditions.
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

(thus suggesting the existence of a phase transition), while the corresponding decay for the

mean-field prediction is smooth in the whole range.

To which extent the mean-field approximation fails for low values of the parameternC/nF ,

can be appreciated by confronting its prediction,nF c(1 − c), for the fluctuations of coopera-

tion with the results from Monte Carlo simulations. In Fig.2.3 (panel a) we see how a peak

in cooperation fluctuations is revealed, whennC/nF → 0, signaling the occurrence of a phase

transition between two qualitatively different equilibrium macroscopic behaviors, that corre-

spond to low and high temptation regimes. The mean-field assumption is thus qualitatively

wrong if the payoff received fromC by Big Brother 2 becomes negligible versus the sizenF .

The reasons for this qualitative failure of the mean-field approximation rely on the lattice

reciprocity of internal interactions, which is totally absent in the mean field approximation. Let

us remind here our remark above on the replicator-equation-type of effect of internal interac-

tions in equation (2.8) because of the mean-field assumption. The transition signaled by the

divergence of fluctuations atb∗ reveals the onset of internal lattice reciprocity, a conclusion that

we now substantiate (see also appendix2.4.4below).

For b > b∗, say in the low-temperature (high temptation) phase, the macro-state is domi-

nated by fast defection invasions on the relatively few nodes that are instantaneous cooperators

due to sporadic interactions with Big Brother 2. In the appendix2.4.4we show that, in the low

c and lownC/nF regime, the BB-imitation events in a given node are typically separated by

intervals of time of aboutc−1 time units large. In those large intervals when Big Brother 2’s in-

fluence is null, the very few and mostly isolated instantaneous cooperators are quickly invaded

by defector internal neighbors. In this regime lattice reciprocity has no chance to develop, and

cooperation is only weakly sustained by the sporadic influence of BB2.

On the contrary, forb < b∗ (high temperature, or low temptation phase) the local fluc-

tuations of the neighbors strategic field favor the building up of clusters of cooperators that

resist invasions during time intervals that are comparable to the characteristictime intervals

between BB-imitation events. Under these circumstances the ”extra payoff”that BB2 receives

from C does not anymore need to be high in order to sustain high levels of cooperation. In-

ternal lattice reciprocity enhances the probability of highly cooperative micro-states, so that

the macro-states below transition differs substantially from those of the high-temptation phase.

This was not captured by the mean-field approximation, for these effects require a sizable like-

lihood of occurrence for the local fluctuations of the strategic field, and the neglect of them is

all a mean-field approach is based upon.
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To summarize the discussion of the results shown in figure, a random regular structure

of interactions insideF is enough to support lattice reciprocity mechanisms that cannot be

captured by a simple mean-field approach. The onset of lattice reciprocity inthe dipole model

is furthermore interpreted as a ”thermodynamical” phase transition, in a rigorous formal sense

(divergence of the fluctuations of an equilibrium extensive parameter, the cooperationc). One is

then lead to a sensible and precise formal framework where such a term as”social temperature”

is not a vague metaphor, but it denotes a truly quantitative parameter, a legitimate (measurable,

observable) social indicator.

2.4.3 What if BB1 and BB2 are directly connected?

If a direct connection between Big Brothers is added (for the set of initialconditions specified in

section2.3, and the conditions on parameters given ibidem), one must compare their respective

payoffs to see who can invade the other. One easily finds that the payoffof the defector BB1 is

higher than that of the cooperator BB2 provided the following condition holds:

nC

nF
< c(b+ ǫ− 1)− ǫ+

b− ǫ

nF
, (2.34)

wherec is the (instantaneous) average cooperation inF. In this case, BB2 will be invaded

with a non-zero probability. Once this eventuality occurs, no cooperator (in F or in C) can

later invade BB2 because all of them have lower payoffs, and fixation ofdefection in the whole

network will occur. Note that as the average cooperation inF fluctuates, the condition above

must be satisfied at the precise time when BB2 has chosen (by chance) to compare its payoff

with BB1, and that due to the high connectivity of BB2 (which is nownC + nF + 1) the

later event occurs with a very low probability for macroscopic values ofnF . In other words,

the eventual invasion of BB2 from BB1 and the subsequent fixation of defection in the whole

network can take on a very long time.

If the opposite condition holds, say if

nC

nF
> c(b+ ǫ− 1)− ǫ+

b− ǫ

nF
, (2.35)

when BB1 has chosen to compare its payoff with BB2, then invasion of BB1 will occur with a

non-zero probability. After this has occurred, BB1 becomes a fluctuatingnode (for it could be

eventually invaded by an instantaneous defector inF), but in the long term fixation of cooper-

ation in the whole network will occur.
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The introduction of a direct connection between Big Brothers in the Dipole Model makes

fixation of opposite strategies on them impossible, and then asymptotic fixation onthe whole

network of either defection or cooperation will occur, depending on the relative sizenC/nF of

componentsC andF.

2.4.4 Lowc approximation.

In order to simplify expressions we assume hereafterǫ = 0 andk = 4, and denoteδ = nC/nF .

For the case of a random regular graph structure of the fluctuating setF, the probabilityΠBB
C←D

that an instantaneous defector node chooses to imitate Big Brother 2 (invasion event from BB2)

is, to first order inn−1F ,

ΠBB
C←D =

1

(k + 2)

c+ δ

(1 + δ)b
(2.36)

while the probabilityΠBB
D←C of an invasion event from BB1 to an instantaneous cooperator

node inF is, to first order inn−1F ,

ΠBB
D←C =

c

(k + 2)
(2.37)

Thus, forδ ≤ c, typical intervals between invasion events from Big Brothers in a node are

(of the order of)c−1 time units large. For large values of the temptation, where the value ofc

is expected to be very small, the dynamics is consequently dominated, for typically very large

intervals of time, by internal strategic interactions. Let us analyze them.

The internal neighbors of a cooperatori are overwhelmingly likely instantaneous defectors

in this ”low c” regime, so thati will be quickly invaded by them. The only chance for it to resist

invasion would be that its instantaneous neighborhood microstate had at least two cooperator

neighbors and thatb < (3/2) (note that in this strategic configuration, the payoff ofi isPi = 3

and that of its typical defector neighbors is2b). These neighborhood microstates (cooperative

clusters) are so rare fluctuations that low values of the temptationb are necessary for their

non-negligible occurrence. Providedb is below the transition value, the resilience to invasion

(lattice reciprocity) of cooperative clusters enhances the likelihood of these fluctuations, which

in turn reinforces the clusters resilience, and so on. This positive feedback mechanism of

cooperative fluctuations enhancement is thus what triggers the transition tohighly cooperative

macro-states, and qualifies lattice reciprocity as a critical social phenomenon.
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Figure 2.5: Fraction of cooperators as a function of the temptation to defect b in a ER (BA)

topology for the setF, with nF = 4000, nC = 3804 andǫ = 0, −0.2. Each point is averaged over

1600 realizations (40 networks, 40 initial conditions).

2.4.5 General case:F is a general random graph.

Let us pay attention to the behavior of the model whenF is a graph characterized by a given

degree distributionP (k). While the random regular network (RRN) considered in the previous

section corresponds to the distributionP (k) = δ(k − kF ), now we consider two cases: when

F is a Erd̈os-Ŕenyi (ER) or Barab́asi-Albert (BA) network. While in homogeneous ER graphs,

P (k) follows a Poisson distribution centered atkµ, in BA networks the degree distribution

follows a power-law, and the different connectivity distribution determinesthe system behavior;

as will be detailed below, the hubs of the setF in the BA case are a deciding factor.

With regard to the roots of cooperation, highly connected nodes are critical elements in the

intensity of lattice reciprocity mechanism. This is mainly due to the effect that the network

topology has on the distribution of strategies: the formation of clusters of cooperators prevents

the invasion of the strategy D in them. If the connectivity distribution is such thatthere are

very connected vertices, the hubs having an initial strategy C are likely to form cooperative

clusters, and the change of strategy of these hubs is very unlikely. According to this argument,

BA networks will promote cooperation more than ER ones.

We have numerically studied the system by performing Monte Carlo simulations after im-

plementing in the fluctuating setF a network topology generated by a routine taken from (140).

This algorithm provides a random network such thatP (k) depends on a continuous parameter
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Figure 2.6: The main panel shows the probability for a fluctuating node toremain as a cooperator

for a periodτ , for ǫ = −0.2 (PD), b = 2 and a BA structure for the setF. The permanence

probability follows a power law. The inside panel shows the slopes of the main panel, for all

connectivity classes. Nodes with higher connectivity are more resilient to strategy change, which

provides a microscopic basis for lattice reciprocity. See the text for further details.

α: α = 0 (resp., 1) generates a Scale-Free (resp., Poisson distribution) graph. We have scanned

the parameter space{α, ǫ, b}, with 0 ≤ α ≤ 1 (SF to ER). The conditionb > 1 + ǫ(kF + 1),

in practiceǫ ≥ 0, involves PD. In the same way, the constraintnC > b(kF + 1)− ǫnF implies

a large number of BB2 stabilizer agents (setC) for a high connectivity, as in the BA case.

Regarding macroscopic cooperation, the numerical results obtained do not show any abrupt

transition when the parameterα varies: the gradual change fromα = 0 (SF) to 1 (ER) implies

a gradual change inc. The results of the asymptotic value of the average cooperationc can be

seen in figure2.5. The figure shows greater cooperationc in BA graphs than in ER ones, as we

argued above. Moreover, the dependence ofc on ǫ (always forǫ < 0, i.e., PD game) turns out

to be approximately linear for all values ofb, depending very little on the type of network:

c(ǫ) = c(ǫ = 0)(1 + κǫ), (ǫ < 0), κ ≈ 1.

This relation is valid for all values ofb, as verified by low variance of

φǫ(b) =
c(b)|ǫ′
c(b)|ǫ=0

, (e.g.σ2(φǫ) = 0.004 for ǫ′ = −0.2).

2.4.5.1 Fluctuations.

Given that the elements of the setF always have a non-zero probability of strategy change, we

have studied the distribution of thecharacteristic cooperation timeτc, which is defined as the

average period that a node remains as cooperator. The simulations showed thatτc is indepen-
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Figure 2.7: Fluctuations of cooperation in a ER (BA) topology for the setF, with nF = 4000,

nC = 3804 andǫ = −0.2, 0.2.

dent ofα, that is, the characteristic cooperation time for a given connectivity is independent

of the network topology. Figure2.6shows the probabilityP (τ)that a node of the setF keeps

strategy C during a periodτ , in a BA graph, forǫ = 0, b = 2 and different connectivity classes.

The probability of permanence decreases exponentially over time and, as expected, nodes with

higher connectivity have higher characteristic cooperation time, whichconstitutes a manifes-

tation of the microscopics roots of lattice reciprocity, and explains why BA networks show

higher cooperation rates than ER ones. The inset of figure2.6shows the slopes of main figure,

and represents the coefficientλ of the relation:

P (τ) ∝ e−λτ (2.38)

As shown,λ(k) is monotonically decreasing, which highlights the relationship between

connectivity and network reciprocity.

As in the previous sections, we study the fluctuations of cooperation along stochastic tra-

jectories. Nevertheless, for a ER or BA structure for the setF, the analogy between the coop-

eration rate variance and the heat capacity is not as justified as in the random regular structure

and, therefore, the study is restricted to Monte Carlo simulations. As shown infigure2.7, BA

structures presents more fluctuations than ER ones.
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

2.5 Heat transfer: Two dipoles in contact.

The system shown so far constitutes a Markov process. We have seen insection (2.4.2) that, in

the scope of applicability of mean field approximation (as whenF is a RRN), the model satisfies

detailed balance condition (2.29). Therefore, in the stationary state we deal with a reversible

Markov process described by the Boltzmann distribution (2.30). However, the analogy of the

model with a real particle system has a drawback: the equivalent of energy is the total number

of cooperatorscnF , which means that the model is not conservative. Despite that, it’s hard

not to wonder how two dipoles behave when they come into contact. The interest of this

extension of the original model is wide: On one hand, we can study the validityof the social

temperature concept and evaluate its relation to the physical temperature. Furthermore, the

expanded model allows to study the interaction between two evolutionary dynamics, both with

two pure strategies.

2.5.1 The double dipole model.

In order to simulate the heat transfer, we consider two dipolesD1 andD2, composed by respec-

tive fluctuating setsFi, the hubsBB1i andBB2i and the cooperating setsCi. The subscript

i indicates the dipole subsystem to which it belongs,i = 1, 2. Both dipole subsystems have

the same size:nC1
= nC2

= nC , nF1
= nF2

= nF . Therefore, from now on, these sizes

will be denoted bynC andnF . The parameterǫ is common for both dipoles, and the differ-

ence in payoffs is determined by the respective parametersbi. The definition of temperature,

β−1 = −(lnQCD

QCD
)−1 = f(b), leading to the Boltzmann distribution (2.30), takes us to useb as

an independent variable. This procedure allows to control the temperature of each of the two

dipoles when they reach their respective stationary states.

Let I’ be the set of initial conditions: the Big BrothersBB1i are defectors, Big Brothers

BB2i are cooperators, and all nodes in setsCi are also cooperators. There is not constraint to

initial strategies for elements in setsFi. To ensure that I’ is a invariant set of the evolutionary

dynamics, we maintain the restrictions of section2.3, now take the form:nC > bmax(kF +

1)− ǫnF andbi > 1 + ǫ(kF + 1), wherebmax = sup{bi}.

2.5.2 Dynamics.

The subsystemsD1 andD2, after setting their parameters, are left to evolve according to the

usual dynamic to reach equilibrium. Once reached their respective stationary states(t = 0), we
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2.5 Heat transfer: Two dipoles in contact.

Figure 2.8: Structure of the Double Dipole Network. On the left side is represented the model

before thermal contact: Without any link between the setsF1 andF2. On the right, after the

thermal contact: With links connecting nodes ofF1 to nodes ofF2. Nodes1i and2i (Big Brothers)

are linked to all nodes inFi. Furthermore, nodes2i are also connected to all nodes inCi. Nodes in

setsFi, Ci are internally connected, forming a defined network. Initial conditions (on left side) are

indicated by colors: red for cooperators (nodes2i and setCi), blue for defectors (nodes1i), and

green means arbitrary (setsFi). See the text for further details.

connect both fluctuating sets as follow: We choose at random a nodei1 of F1 and a neighbor

j1, in the same way, we choose another nodei2 of F2 and his neighborj2. Subsequently,

we remove links connecting those nodes, and connecti1 to i2, andj1 to j2. We repeat this

processkκnF /2 times, whereκ is a coupling parameter. After that, the system will evolve

again according to the habitual dynamics. When a nodei of dipolen choose a neighborj of

dipolem to play, both agents taken’s pay-off matrix, i.e. the temptation to defect isbn. We

have studied the evolution of the system, the observables and stationary states.

2.5.3 Effective temperature.

The intrinsic observables of the extended model areci. However, it is possible to study the

final temperature of each subsystem by introducing the concept of effective temperature.

By exp(−β) = QCD/QDC , we know that stationary state temperature in an isolated

dipole, whenF is a RRN, is a functionf(b, ǫ, nC , nF ). Besides, if all other parameters keep

fixed, the cooperation is given by a monotonically decreasing functionc(b). Therefore, if we

keep constant all other parameters, each value ofc corresponds to a value ofb.
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2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

We define the effective temperature of a subsystemDi(bi, ǫ, nC , nF ) as the value ofβ−1

that would fall to his levelci of cooperation in an isolated dipoleD(bi, ǫ, nC , nF ) in stationary

state. The effective temperature is applicable to each subsystem, once putin thermal contact

and reached a new stationary state.

We can study now the temperatures of the subsystems before and after putting them in

contact. The problem is that, knowing the asymptotic value ofci, we can not inferβ for any

topology in setF, unless we use an approximation as MF. Therefore, we use the observed

value of c as relatives of the temperature. The Big Brothers’ influence onfluctuating setsFi is

determined by its payoffs, which in turn are a function ofci, bi, nC , nF andǫ. An interpretation

of the influence of BBs onFi is that the setsFi are thermodynamic systems in contact with

respective heat baths. The influence of the heat baths remains after putting the dipoles in

contact, therefore the effective temperature of both subsystems need not be equal once it has

reached the new stationary state, unless the coupling parameter isκ ≥ 0.5.

In the model, there are only two strategies or accessible levels by element, andthere exists

a extern source of cooperation: The setsCi. It is therefore possible to have configurations in

which there are more elements adopting cooperating strategy than defect one and the system

can be characterized by a negative effective temperature. This is only possible if the external

field (heat bath) has enough influence, that is, for high values ofnC . Negative temperatures are

possible in both dipole, before and after heat contact, for high enough values ofnC .

2.5.4 Mean-field approximation.

For an isolated dipole, in subsection2.4.2we assumed that the fraction of instantaneous co-

operatorsc[i] in the neighborhood of a node i, is the fractionc of the whole setF. In or-

der to generalize MF approximation, now we makec[i] to correspond to the weighted aver-

age of the cooperation: We assume that for a fluctuant nodei1 in the dipoleD1, in thermal

contactκ with another dipoleD2, the fraction of cooperators in the neighborhood ofi1 is

c[i1] = (1 − κ)c1 + κc2. In the same way, we takec[i2] = κc1 + (1 − κ)c2. In the model,

according to2.5.2, when a node of dipole n chooses a neighbor to play, they takebn, in this

approximation we assume the average temptation to defectb̄ = (b1+b2)/2 for heat interactions

(between two fluctuating sets).

Under these assumption, the payoffs of Big BrothersBB1i andBB2i are given byP1i =

bicinF andP2i = nC + cinF + ǫ(1 − ci)nF , while the payoffs of a cooperator node and a

defector node atFi are:
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2.5 Heat transfer: Two dipoles in contact.

Pc1 = k(λc1 + κc2) + 1 + ǫ(k(λ(1− c1) + κ(1− c2)) + 1) ,

Pc2 = k(κc1 + λc2) + 1 + ǫ(k(κ(1− c1) + λ(1− c2)) + 1) ,

Pd1 = (kλc1 + 1)b1 + kκc2b̄ ,

Pd2 = kκc1b̄+ (kλc2 + 1)b2 ,

(2.39)

whereλ = 1− κ.

bi > 1 impliesPdi > Pci. Without loss of generality, we assume thatb2 > b1. If there is

not constraint toκ, can not ensure thatPci > Pcj norPdi > Pdj for any i 6= j. For nodes in

Fi, each time step, the probabilitiesQDCi (a cooperator changes its strategy to defector) and

QCDi (a defector changes its strategy to cooperator) are:

QDC1 =
P11 − Pc1

(k + 2)nF∆

+k
λ(1− c1)(Pd1 − Pc1) + κ(1− c2)(Pd2 − Pc1)H(Pd2 − Pc1)

(k + 2)2∆
,

QCD1 =
P21 − Pd1

(k + 2)BnF∆
+ k

κc2(Pc2 − Pd1)H(Pc2 − Pd1)

(k + 2)2∆
,

QDC2 =
P12 − Pc2

(k + 2)nF∆

+k
κ(1− c1)(Pd1 − Pc2)H(Pd1 − Pc2) + λ(1− c2)(Pd2 − Pc2)

(k + 2)2∆
,

QCD2 =
P22 − Pd2

(k + 2)BnF∆
+ k

κc1(Pc1 − Pd2)H(Pc1 − Pd2)

(k + 2)2∆
,

(2.40)

whereH(x) represents Heaviside’s step function, that takes value 1 ifx > 0, 0 otherwise.

After a time step, the fraction of cooperators in setFi is given by:

ci(t+ 1) = ci(t) + (1− ci(t))QCDi − ci(t)QDCi . (2.41)

Now, we can replace (2.39) and (2.40) in (2.41) to achieve two coupled finite difference

equations forci. These equations provide the evolution of the system and the stationary state,

according to MF approximation.

61



2. THE DIPOLE MODEL: THERMODYNAMIC STUDY OF A SOCIAL SYSTEM.

0 1e+02 2e+02
0

0.1
0.2
0.3
0.4
0.5

c
0 100 200

0

0.1

0.2

0.3

0.4

0.5

0 100 200
t

0
0.1
0.2
0.3
0.4
0.5

c

0 100 200
t

0
0.1
0.2
0.3
0.4
0.5

(A)

(C) (D)

(B)

Figure 2.9: Evolution of macroscopic cooperation after putting in contact two dipoles (t = 0),

with k = 4, nF = 4000, ǫ = 0, nC = 100, b1 = 1.1, and for different values ofb2 = 1.5 (A,B),

b2 = 1.8 (C,D) and coupling parameter:κ = 0.25 (A,C), κ = 0.5 (B,D). Solid lines represent the

results of the simulations, while dotted lines represent the MF approximation. Black lines represent

to dipoleD1 and red lines to dipoleD2. Time unit corresponds to a Monte Carlo step. See the text

for further details.
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Figure 2.10: Macroscopic cooperation levelsc for both subsystems, versus the sizenC of pure

cooperators sets, withk = 4, nF = 4000, ǫ = 0, κ = 0.5 and RRN structures in fluctuating setsFi.

Upper panelsshow the results of Monte Carlo simulations, after a long enough transient, averaged

over5 × 104 steps and5 × 103 different network realizations. The temptation parameters of both

sybsystems are fixed atb1 = 1.1 (blue, +) andb2 = 1.5 (red, x). The upper-left panel corresponds

to the stationary state before putting in contact the dipoles, and the upper-right panel corresponds

to the stationary state after exchanging1.5nF links. Lower panels: Mean field estimate for the

same values of parameters.
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Figure 2.11: Upper panels: Cooperation levels in dipolesD1 (blue, +) andD2 (red, x) versus the

differenceb2 − b1 of temptation parameters. The rest of parameters have been fixed tob1 = 1.1,

k = 4, nF = 4000, nC = 100, ǫ = 0 andκ = 0.5. SetsFi are endowed with a random regular

graph structure. Symbols correspond to the value of c once reached stationary state, averaged over

5×104 Monte Carlo steps and for5×103 different networks, before (left) and after (right) putting

in contact the dipoles.Middle panels: Mean-field estimation of cooperation levels in dipolesD1

(solid blue lines) andD2 (dashed red lines), before (left) and after (right) contact, for the same

values of parameters.Lower panels: Mean-field estimation of effective temperaturesTeff of

dipolesD1 (solid blue lines) andD2 (dashed red lines), before (left) and after (right) contact, for

the same values of parameters.

In all panels, the temptation parameterb1 of dipoleD1 remains constant (blue), while varying the

respective parameterb2 of dipoleD2 (red).
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2.5.5 Numerical results.

We compare the mean-field results, obtained by evaluating the expression (2.41) iteratively,

with experimental ones obtained from Monte Carlo simulations. The values ofci, once station-

ary state is reached, are related to the effective temperatures accordingto 2.5.3.

In order to study transition phenomena, we measure the cooperation evolution from the sta-

tionary states for the isolated dipolesDi to the stationary state after thermal contact. Fig.2.9

shows the evolution of cooperation, by comparing simulations results with MF estimate, for

different values of coupling parameterκ andb2 − b1 (in monotone bijection to initial temper-

ature difference). One can observe that the mean-field predictions provide higher cooperation

values. This failure of MF approximation, as in the section2.4.2.2, highlights the importance

of lattice reciprocity, which is ignored in MF approximation. As expected, this MF estimate,

provided by the finite difference equations (2.41), is coherent att = 0 with the MF estimate of

the section2.4.2.2, provided by the fixed point of the differential equation (2.16).

The results for the asymptotic values of the average cooperation, that is, the values ofci at

the stationary states before and after the thermal contact, versus the size of fluctuating setsCi

are represented in figure (2.10). As shown, for low values ofnC the difference in cooperation

between the dipoles is smaller than for high values ofnC . This is a consequence of the BB’s

influence, which grows as do the size of the set of cooperating nodes. Put another way, the

influence of heat bath increases withnC/nF . This has a direct explanation because the size of

nC does not affect the payoff of fluctuating nodes, but it does increasethe payoff of cooperator

hubsBB2i.

The upper panel of figure2.11shows the average cooperation c versus the difference in the

temptation to defectb2 − b1, once fixednC = 100, nF = 4000, ǫ = 0, κ = 0.5, b1 = 1.1

and takingb2 as independent variable. For high values ofb2, the proportion of cooperators of

both subsystems after heat transfer and once reached the new stationary state tend to equate:

The heat bath effect decreases withbmax, and cooperation final ratios tend to be equal when

b2 increases. When we use the MF approximation, the same results can be analyzed from

the perspective of effective temperature, as shown in the lower panel of figure 2.11. Effective

temperature decreases asci increases, and then it increases whenbi increases. The final tem-

perature difference depends on the value of the coupling parameterκ, a higherκ implies lower

difference. However,κ > 0.5 means that in average, nodes have more links to the other fluctu-

ating set than to his. Therefore, for small enoughnc size andκ > 0.5, the final temperature of
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initially hotter dipole will be lower than the opposite dipole final temperature.

2.6 Prospective remarks

The plausibility of a thermodynamical perspective on evolutionary game dynamics studies is

not a new issue, for it is somehow implicit (or at least connatural) to a body of research lit-

erature on statistical mechanics of strategic interactions (16; 121). What our simple analysis

here shows is that it can sometimes be strengthened up to a formal interpretation of quantitative

macroscopic social indicators as thermodynamic quantities. In the extent thatit helps to under-

stand and to quantitatively characterize the phenomenology of social and economical models,

it should be recognized as a powerful theoretical perspective. Whatis even more important,

this perspective emphasizes the central role of quantitative (experimental,observational) stud-

ies in social sciences, and could provide, in those contexts, alternate valuable meanings to

quantitative social indicators and even suggestions for new and better ones.

Any ”general-physics” trained scientist recognizes that entropy reasoning is an extraordi-

nary powerful tool for the analysis of macroscopic behavior in (material)traditional-physics

systems. It turns out that some of the models (at least a bunch of interestingones) of social

phenomena are to a large extent amenable to a macroscopic description where thermodynam-

ical concepts have proved to be essential. Of course, some notions likee.g. ”First Law of

Thermodynamics” could be often absent in these new contexts. However we emphasize that

the absence of energy as a variable in social models is not a shortcoming for the applicability

mutatis mutandiof many aspects of the thermodynamical formalism to these models. A word

of caution is nevertheless worth here regarding typical system sizes in controlled social ex-

periments, where finite size effects could be hugely determinant. Also, one should not expect

always social processes to be amenable to equilibrium descriptions, whatmakes them even

more interesting from the physicists point of view.

Nowadays, it is somewhat generally accepted that physics in general, and statistical physics

in particular, offers a powerful tool-box for problem solving in social sciences and many other

areas. Recent trends in cognitive science (122) have correctly emphasized the power of the ”di-

versity of perspectives” in problem solving, so it does not come as a surprise that adding phys-

ical perspectives to social models may sometimes pave the way to the needed breakthrough.

Perhaps one should also wonder about the possibility of reverse flow in these interdisciplinary

approaches to social sciences. After all, the proper use of a tool helpsto its reshaping, and
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one could perhaps expect some kind of feedback. In other words, is there any new physics that

we can learn from the study of social and economic complex systems? Only therecourse to

empirical and quantitative methods in the study of social phenomena may likely give clues for

sensible answers to this question.

—————————————————————————
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Chapter 3

Cooperation in changing

environments: Irreversibility in the

transition to cooperation in complex

networks.

In this chapter, we study the evolutionary dynamics of the prisoner’s dilemma game in differ-

ents complex networks, focusing on its reversibility under adiabatic variations of the payoff

matrix parameterb (temptation to defect). We find that, for the networks considered, the pro-

cess is reversible provided it is kept away from the absorbing states. Nevertheless, irreversibil-

ity appears when the level of cooperation reaches a tipping point, emerginga hysteresis cycle

whose shape depends on the underlying topology.

3.1 Introduction.

Evolutionary dynamics has been widely used to describe the evolution of biological, economic

and social systems (12). The replicator dynamics ofevolutionary game theory(EGT) pro-

vides a powerful tool to study the progress of strategies through the lensof evolution (17; 79).

In this respect, one of the hot topics of the evolutionary game dynamics is the understand-

ing of the observed evolutionary survival of cooperative behavior among individuals despite

selfish actions provide higher fitness (reproductive success). Possibly, the most used EGT

model to formalize the emergence of cooperation is iteratedPrisoner’s Dilemma(PD), a sym-
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TRANSITION TO COOPERATION IN COMPLEX NETWORKS.

metric two-player two-actions game where each player choose one of the twoavailable ac-

tions: cooperation or defection: A cooperator receivesR from another cooperator andS

from a defector; a defector receivesT from a cooperator andP from another defector; pay-

offs satisfyT > R > P > S. Several studies on the iterated PD on complex networks

(16; 19; 81; 82; 83; 84; 85; 86; 87; 90; 101; 102; 103; 104) show that the cooperation level

depends strongly on the topology of the network. The existence of cooperation enhancing

mechanisms based on the interaction structure now is widely accepted: The clustering of coop-

erators could provide high enough payoff to the cooperator nodes to resist invasion of defectors,

even when defection is favored by the one-round two-players game analysis. For small values

of PS (i.e., PS ≪ TR), cooperation decreases slowly whenTR increases from zero, and

becomes zero at a value ofT/R > 1 that depends on the network considered.

Recent studies of replicator dynamics (109) on graphs show that fixation of cooperation on

certain nodes occurs after transients, in which the trajectories are characterized by a partition

of the network into three sets: the setC of pure cooperators (nodes where cooperation is fixed),

the setD of pure defectors (nodes where defection is fixed), and the setF of fluctuating nodes

(nodes that never reach an unchanging action). Furthermore, robustness of cooperation in the

evolutionary PD on complex networks has been recently studied (112), showing that the level of

cooperation under different network structures is robust against variation of initial conditions.

The aim of the present study is to investigate evolutionary PD on complex networks in changing

environments, in particular its reversibility under variations of temptation to defect T , and to

determine how topology affects reversibility.

3.2 The model.

We consider a two-players two-actions game, where each player chooses one of the two avail-

able actions, cooperation or defection: A cooperator earns R when playing with a cooperator,

and S when playing with a defector, while a defector earnsP when playing with a defector, and

T (temptation to defect) against a cooperator. WhenT > R > P > S, the game is called Pris-

oner’s Dilemma (PD), while ifT > R > S > P it is called Snowdrift Game (SG). In this work

we study a variant of PD called weak Prisoner’s Dilemma, placed in its boundary respect to

SG, that isT > R > P = S. In PD (including weak variant), whatever the opponent’s action,

the payoff is never higher for cooperation, and a rational agent should choose defection. Still,

two cooperator agents receive higher payoff (2R) than two defector ones (2P ), which leads to
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the dilemma. Provided the relative selective advantage among two individuals depends on their

payoff’s difference (see below), we can normalize without loss of generality the pay-off matrix

takingR = 1 and fix the punishmentP = 0. Then only a parameterT = b > 1 is a system

variable.

In this study we implement the following replication mechanism: At each time step, each

agenti plays once with each one of its neighbors (i.e. agents connected toi) and accumulates

the obtained payoffs,Pi. After that, the individuals,i, update synchronously their actions

choosing a neighborj at random, and comparing their respective payoffsPi andPj . If Pi ≥ Pj ,

nothing happens andi preserves its action. Otherwise, ifPj > Pi, i adopts the action of its

neighborj with probabilityΠji = η(Pj − Pi). Next, all payoffs are reset to zero. Here,η

is a positive real number, related to the characteristic inverse time scale: the larger it is, the

faster evolution takes place. We consider that players and connections between them are given

by a fixed graph where agents are represented by nodes, and a link between nodes indicates

that they interact. We choose here the maximum value ofη that preserves the probabilistic

character ofΠji, that is,η = (max{ki, kj}b)−1, whereki is the number of neighbors of agent

i (connectivity or degree). This choice, introduced in (18), slows down the invasion processes

from or to highly connected nodes (hubs), with respect to the rate of invasion processes between

poorly connected nodes.

Our aim is the study of the reversible (or irreversible) character of cooperation levelc

under the variation of the temptation to defect parameterb, wherec is defined as the number

of cooperator nodes divided by the total populationc = Nc/N . In order to study the system’s

behavior, we choose an initial value ofb = b0 such that the asymptotic cooperation valuec is

close to a half:c(b0) ≃ 0.5. Once the system has reached stationary state, we decreaseb in a

quasi-static way, that is, in steps∆b < 0 small enough to ensure that the system remains very

close to equilibrium. Along this process, we compute the stationary value of cooperationc(b)

for each value ofb. To avoid getting stuck in the absorbing states we deal with large enough

networks sizes (N > 105), considering that fluctuations decrease according to the square root

of the system size. Once the system has almost reached the absorbing statec = 0, we reverse

the sign of the increase inb, i.e. ∆b > 0, to almost reach the other absorbing statec = 1, and

then again decreaseb to complete the cycle.
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3.3 Results.

To study the influence of network topology in the reversibility of the process, we consider

three different network models: Random Regular Graphs (RRG), Erdös-Ŕenyi and Scale-free

networks. In the case of RRG (i.e., random networks of fixed degreek, which means that every

node has the same number of neighbors), adiabatic cycles are identical; that is, the behavior

observed in the numerical simulations with RRG corresponds to a reversible process.

3.3.1 Erdös-Ŕenyi networks.

Erdös-Ŕenyi (ER) networks are random graphs characterized by a binomial degree distribution

of any particular node, this distribution is Poisson for large numberN of nodes. To study the

processes reversibility, we have performed numerical simulations in103 independent networks

of sizeN = 1.2 × 105 generated through Erdös-Ŕenyi algorithm. As outcome, for reduced

cycles, that is, when the return points are far from absorbing states (1 − Nc(bmin) ≫ 1,

Nc(bmax) ≫ 1) the processes are reversible and the level of cooperation is independent of the

sign of the increase inb. Nevertheless, when return points are close enough to the absorbing

states (c(bmin) ≈ 1, c(bmax) ≈ 0), ER networks show a dramatic irreversibility. In fact, once

the level of cooperation reaches a tipping point, all processes are irreversible. In particular,

there is a strong resilience of cooperation (defection) when increasing (decreasing) the value of

b. However, the backward and forward transition curves are identical for intermediate values

of cooperation. The proximityǫ of the tipping pointsc(bmin), c(bmax) to the absorbent states

in both ends of cycle turns out to be similar:1− c(bmin) = ǫ ≈ c(bmax) and, for the networks

size used, it takes on the valueǫ ≈ 2× 10−3.

As a result, once the population has reached a cooperation level above (below) a tipping

point, the system shows a reticence to retrieve the past level of cooperation when the parameter

b increases (decreases). This phenomenon is independent of the particular ER network, being

observed in all network realizations. Figure3.1 shows the level of cooperation〈c〉 versus

the temptation to defectb, averaged over103 realizations in distinct ER networks. Different

realizations show differentb-increasing andb-decreasing curves, whose envelopes are depicted

as dotted lines in Figure3.1. Remarkably, the dispersion of the different curves is much larger

for theb-decreasing direction.
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Figure 3.1: Cooperation level〈c〉 versus the temptation to defectb averaged over103 ER networks

(solid lines) and envelopes (pointed lines). Red lines represent semicycles with increasingb and

blue lines represent semicycles with decreasingb. The network size isN = 1.2× 105. See the text

for further details.

3.3.2 Scale-free networks.

Scale-free (SF) networks are random graphs whose degree distribution P (k) follows a power

law, that is,P (k) ∼ ck−γ . We ran simulations in5 × 103 independent networks of size

N = 1.2 × 105 generated through the Barabási-Albert algorithm. Although most of the SF

networks show nearly reversible behavior, around5% of networks show a strong hysteresis.

Nevertheless, irreversibility in SF networks should not be considered asa rare event: Increas-

ing the network size increases the proportion of networks that show irreversible behavior. The

explanation for this fact is that the use of larger networks allows to approach closer the absorb-

ing statesc = 0, 1 without getting stuck in them. Based on this argument, we have separated

realizations showing a reversible behavior from irreversible ones. In these latter cases, hys-

teresis shows up only for low values ofb; in other words, when cooperation is very small,

backward and forwardc(b) curves are almost identical. Moreover, the behavior of the system

in b-increasing semicycles is always similar, the cooperation levelc(b) taking approximately

the same value in all realizations, regardless they are reversible or irreversible. On the contrary,

c(b) curves are different for different (irreversible) realizations inb-decreasing semicycles, and

show a substantially larger dispersion that those of ER networks.

The results of the average cooperation level〈c〉 as a function of the temptation to defectb,

for SF networks showing irreversible behavior, are presented in figure3.2. The return points

bmin, bmax were chosen such thatc(bmax) = 1 − c(bmin) = ǫ, for a value ofǫ = 10−3. Note
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Figure 3.2: Cooperation level〈c〉 versus the temptation to defectb averaged over100 SF networks

(solid lines) and envelopes (dotted lines). Red lines represent semicycles with increasingb and

blue lines represent semicycles with decreasingb. Only irreversible realizations are shown. The

network size isN = 1.2× 105. See the text for further details.

that, despite the small value ofǫ, the network sizeN is large enough to asses that we are not

dealing with pathological cases, since a valuec = 0.001 involves a number of cooperators

Nc = 120. In the same way,c = 0.999 implies 120 defector nodes. As shown in envelopes

(dotted lines), the degree of irreversibility varies greatly from each realization. Specifically,

irreversibility depends on the particular network, since for a given network repeated cycles

share approximately the samec(b) curves for a given (forward or backward) direction. A

most remarkable feature of the irreversibility in SF networks is that, for irreversible network

realizations, the value of the temptation to defect needed to reach a cooperation level of c =

10−3 is bmin < 1, that is to say, outside the PD game range.

3.4 Microscopic roots.

Previous studies (109; 112; 113) have shown that, in the asymptotic states of the evolutionary

dynamics of the PD game, under the updating of the actions explained above,the network is

generically partitioned into three sets of nodes: Pure cooperators (nodes where cooperation has

reached fixation), pure defectors, and fluctuating strategists (nodes where fixation is impossi-

ble so that defection and cooperation alternate forever). Pure cooperators resist invasion by

grouping together in cooperator clusters, each of these connected subgraphs keeping around it

a cloud of fluctuating strategists. The basis for an understanding of the irreversible behavior

72

hysteresis/figures/cyclesSF.eps


3.4 Microscopic roots.

1.2 1.4 1.6 1.8
b

0

0.2

0.4

0.6

0.8

1

G
c / 

N

0

20

40

60

80

100

120

140

160

180

200

n cc

n
cc

;  δ<0
n

cc
;  δ>0

G
c
/N;  δ<0

G
c
/N;  δ>0

Figure 3.3: Numberncc of cooperator clusters (blue, thick lines) and relative size of main cooper-

ator clusterGc/N (red, thin lines) in ER networks. Solid lines representb-decreasing half-cycles

and dashed lines representb-increasing half-cycles. The system size isN = 1.2 × 105. We have

averaged over 50 simulations.

in ER networks is found by looking along both (b-increasing andb-decreasing) branches at the

details of this microscopic organization of cooperation. In particular, in what follows we pay

attention to the number and size of pure cooperator clusters as a function ofb. Figure3.3shows

the averaged relative size〈Gc/N〉 of the largest cooperator cluster, and the average〈ncc〉 of

the number of cooperator clusters versus the temptation to defectb, in both semicycles for ER

networks.

Let us first analyze theb-increasing semicycle. In typical configurations near the absorbent

statec = 1, the pure cooperators percolate the network conforming a giant cooperator cluster

whose averaged relative size〈Gc/N〉 ≃ 1. As the temptation to defectb increases, starting

from such configurations, the existence of a single very large cluster ofpure cooperators al-

lows initially for a very efficient resilience to invasion by defectors until a value of b ≃ 1.16

is reached. From there on, invasion processes are dramatically enhanced so inducing the frag-

mentation of the large cluster:〈Gc/N〉 decreases quickly, the large cluster giving birth to an

increasing numberncc of small clusters of pure cooperators, that atb ≃ 1.23 reaches its maxi-

mum valuencc ≃ 160 when the large cluster size has been reduced to〈Gc/N〉 ≃ 0.15. Further

increase ofb reduces both the number of pure cooperator clusters and the size of the largest

one: Atb ≃ 1.8 basically only the largest cluster remains with a very small size which keeps

decreasing further beyond the tipping point (typically found atb ≥ 2).

Now we analyze theb-decreasing semicycle. Back from the typical configuration reached

past the tipping point near the absorbing statec = 0, when decreasing the temptation value
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Figure 3.4: Relative size of the main cooperator clusterGc/N for reversible processes (dashed

line, red) and irreversible ones (solid line, black) in theb-decreasing semicycle (∆b < 0) on SF

networks. Averaged over the100 different networks studied that show irreversible behavior. The

system size isN = 1.2× 105.

b the very small size of the remaining pure cooperator cluster cannot benefit (i.e., enlarge its

size) enough from cooperative fluctuations nearby; correspondingly the level of cooperation〈c〉
remains well below the values observed for theb-increasing branch. It is not until a value of

b ≃ 1.6 is reached, that〈Gc/N〉 starts a significant increase. Simultaneously, some cooperative

fluctuations in the cloud of fluctuating agents form separated small cooperator clusters, so that

ncc also starts to significantly detach from zero. At aroundb ≃ 1.5 both 〈Gc/N〉 andncc (as

well as the average level of cooperation〈c〉) show already values that are very close to those

exhibited by theb-increasing branch. However, once reached the valueb ≃ 1.23, wherencc

has its maximum value (and, as explained in previous paragraph, the fragmentation of the large

cluster of pure cooperators reached an end in theb-increasing branch), though further decrease

in b leads to an increase of〈Gc/N〉, and a concomitant decrease ofncc due to the connection

of small cooperator clusters to the largest one, these processes take place at a slower pace

than the corresponding fragmentation occurring for theb-increasing branch. The consequence

is that the cooperation level values in this range ofb values for theb-decreasing branch are

significantly lower than those for theb-increasing semicycle. Note that though the values of

〈Gc/N〉, ncc, and〈c〉 in the range of intermediate1.23 ≤ b ≤ 1.5 values are very similar in

both branches, the system keeps memory of the path followed, demonstratingthe importance

of the particular topological details of the organization of cooperator clusters.

A significant difference, regarding the microscopic organization of cooperation, between
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ER and SF networks, is the observation first reported in (109) that for SF networks pure co-

operators group together in a single cluster, while in ER networks they are disaggregated into

several cooperator clusters for generic values ofb. In our simulations here we are using net-

work sizes that are larger than those used in (109) by a factor of30, and for SF networks we

have observed nodes that, though being isolated from the main cooperatorcluster, remain co-

operators during observational time scales. Strictly speaking they are notpure cooperators, for

the probability of invasion by the defective strategy is not strictly zero (in allthe cases ana-

lyzed), though it turns out to be exceedingly small, due to the large connectivity (degree) of

these nodes. These quasi-pure cooperators appear in both, reversible and irreversible network

realizations. For a network size ofN = 1.2 × 105 its number is never larger than8 for re-

versible realizations andb-increasing branches of irreversible ones, and not larger than14 for

b-decreasing branches of the latter. Their contribution both direct and indirect (through the

cloud of fluctuating strategists each one keeps nearby) to the levelc of cooperation can be con-

sidered as negligible. Still one cannot discarda priori an eventual role they might play in the

reshaping of the main cooperator cluster during the hysteresis cycle of particular irreversible

realizations.

In figure3.4we plot the relative size of the cooperator cluster〈Gc/N〉 averaged over100

irreversible realizations for both forward and backward branches ofthe cycle. Contrary to

what happens for ER networks at high values of the temptation to defect, when starting to

decrease it frombmin, the size of the cooperator cluster in SF networks initially follows very

closely the values of the forward branch untilb ≃ 2.5. However, significant differences in the

average cooperation value〈c〉 (see figure3.2) are already noticeable fromb ≃ 3, indicating

that the contribution from the cloud of fluctuating strategies is lower for the backward branch.

When further decreasingb down from b ≃ 2.5, the averaged size of the cooperator cluster

takes on values progressively lower than in theb-increasing branch. This agrees nicely with

the observation just made in the previous sentence on the cloud of fluctuatingstrategies, for

the growth of the cooperator cluster originates from the cooperative fluctuations in its frontier,

and thus the strength of these fluctuations determines the pace of the cluster size growth. The

difference between forward and backward branches persists downto the tipping point, which

somewhat surprisingly occurs for values ofb outside the PD game range.

—————————————————————————
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Chapter 4

Evolutionary dynamics on

interdependent populations.

Although several mechanisms can promote cooperative behavior, there isno general consensus

about why cooperation survives when the most profitable action for an individual is to defect,

specially when the population is well mixed. Here we show that when a replicator like evolu-

tionary game dynamics takes place on interdependent networks, cooperative behavior is fixed

on the system. Remarkably, we analytically and numerically show that this is eventhe case for

well mixed populations. Our results open the path to new mechanisms able to sustain cooper-

ation and can provide hints for controlling its raise and fall in a variety of biological and social

systems.

4.1 Introduction

The onset of global cooperation in large populations of unrelated agentswhen defective ac-

tions provide the largest short-term benefits at the individual level constitutes one of the most

amazing puzzles for evolutionary dynamics (14; 124; 171; 172). During the last decade, the

structure of the interactions among individuals seems to have provided a wayout for coop-

eration to survive in those scenarios, such as the Prisoner’s Dilemma (PD)game, in which

defective behaviors are evolutionary favored under the well-mixed assumption (16; 88). Al-

though recent results have shown that network reciprocity is not always a viable mechanism to

explain cooperation among humans (see,e.g., chapter6), larger cooperative levels are achieved

if an evolutionary game dynamics takes place on top of structured populationsand networks, in
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which nodes account for players and links represent the existence ofgame interactions. More-

over, further including real structural patterns of large systems (28) (scale-free distribution for

the number of contacts a player has (108; 109), the small-world properties (81), nonzero density

of triads (173), etc) provides also high cooperative outputs.

On the other hand, in most cases, a real population− be it a biological or a social system

− is not isolated and interactions take place at and between different levels (or layers) follow-

ing different rules (174; 175). Think of for instance in an economical system, where different

levels account for different competitive markets and their interdependencies (developers, man-

ufactures, providers). The rules governing the interactions at one layer are not necessarily the

same that those driving the dynamics at another layer− admittedly, within each layer com-

petition should exist while this is not necessarily the case for inter-layer interactions. Thus, a

natural question arises as to whether the observed degree of interdependency in real systems is

a relevant factor for the emergence and survival of cooperative behavior.

The previous interdependency, which is also referred to as multiplexity, can be easily incor-

porated into the framework of any dynamical process by coupling two or more networked popu-

lations in which links between individuals of the same population involve a different dynamical

relationship to those stablished between members of different populations (176; 177; 178). In

this chapter, we focus on the case in which an evolutionary PD game drivesthe interactions

between agents of the same population. On its turn, the existence of links between agents of

different populations allow the two networks to interact. We will assume that thelatter inter-

actions are ruled by the Snowdrift (SD) game. In this way, defection is punished when facing

other defectors outside the original population, thus balancing the evolutionary advantage that

defectors find by exploiting cooperators in their respective populations.

We henceforth analyze what new emergent behavior results from the multilevel nature of a

system made up by two populations that interact through a number of links connecting nodes

located at each subsystem. Exact analytical calculations can be carried out for the case in

which the population of each layer is well mixed, through the nonlinear analysis of the two-

coupled-variable replicator equation for the strategic densities in both layers. Our results show

the emergence of a newpolarizedstate in which all the individuals in one of the populations

cooperate while all in the other population defect. In addition we findquasi-polarizedstates,

so that all the agents in one population are defectors, while most of the otherone cooperate.

Moreover, we also numerically show that the previous results hold for the case of networked
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Figure 4.1: Phase portrait of replicator equation (4.1) for the symmetric case (β = 1) and weak PD

(r = 0) intra-population game, for different values of the temptation b, with p = 0.3, andǫ = −0.4.

The direction of velocity field is indicated by the arrows, and its modulus by the colors. We also

plot the interior nullclines. For low values ofb (a), the polarized states A and B are attractors.

They lose stability atb = bup (b), in favor of the quasi-polarized states A’ and B’. These in turn

destabilize atb = bc (c) when the nullclines coincide in a line of marginally stable equilibria. From

there on, the interior equilibrium E becomes the global attractor(d).

populations. As we will discuss later on, our findings provide new mechanisms for the rise and

survival of cooperation and for its control.

4.2 The model: Evolutionary dynamics on two interacting popu-

lations.

Let us first describe the evolutionary dynamics of two interacting populations of sizeN1 and

N2. Two agents belonging to the same populationα (= 1, 2) play a PD game so that a coopera-

tor facing a cooperator (defector) in populationα obtains a payoffR = 1 (S = 0). On the other

hand, a defector facing a cooperator (defector) obtains a benefit ofT = b > 1 (P = r ≥ 0).

The games played between agents of different populations follow the same parameterization

except for the situation in which two defectors meet. In this case, the associated punishment is

negative,P = ǫ < 0 − thus, inter-populations games follow the SD formulation. Importantly,

the strategists’ competition for replication only occurs among own-population players. That is

to say that there is no ”interbreeding” (as it happens for different species, in biological con-

texts) or ”strategic diffusion” (as for functionally heterogeneous layers in social or economical

contexts) among the individuals of different populations. In terms of imperfect (or/and irrel-

evant) knowledge, the strategists from a population are unaware of the replicating success of

strategies in the other population (or/and this information is irrelevant for its replication).
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4.3 Well-mixed populations: Analytical formulation.

To start with, consider the case in which agents of the same population (layer) are well-mixed.

Let us also assume that bothN1 andN2 are large enough,i.e., N1, N2 ≫ 1. Under these

simple assumptions, an exact analytical description via the analysis of the phase portrait of

the two-dimensional replicator equation for two-by-two matrix games is possible. In our well-

mixed population approximation an individual in populationα hasNα − 1 neighbors inside

this population. Moreover, for interactions between the two layers, we suppose that any pair of

nodes (each one of a different population) is present with probabilityp. Thus, the number of

inter-population links is equal top ·N1 ·N2.

Let us callxα the fraction of cooperators in the populationα. The replicator equations for

the evolutionary game dynamics are

ẋ1 = x1(1− x1)[(N1 − 1)(x1(1− b+ r)− r) +

N2p(x2(1− b+ ǫ)− ǫ)]

ẋ2 = x2(1− x2)[(N2 − 1)(x2(1− b+ r)− r) +

N1p(x1(1− b+ ǫ)− ǫ)] . (4.1)

The results of the theoretical analysis (see section4.4for details) of these coupled deterministic

equations are illustrated in Fig.4.1for the symmetric (thus non-generic) caseN1 = N2, and the

simple weak (r = 0) PD game for those intra-population encounters. Below we will comment

on the main qualitative changes for the generic case,i.e., whenever both the size proportion

β = N1/N2 6= 1 and general PD (r > 0) game for intra-population interactions apply.

The analysis of Fig.4.1 shows a rather natural non-linear resolution of the conflict intro-

duced by fitness-punishment (ǫ) to inter-populations defective encounters. Briefly said, even-

symmetric (x1 = x2) states D (both populations are fully defective) and C (fully cooperative

populations) are both, for anyb > 1+, unstable against perturbations in all directions, and sta-

bility resides instead on odd-symmetric polarized states [A (all-D in population1 and all-C in

population2) and its symmetric transformed B (all-C in population1 and all-D in population

2)] for strictly positive temptationb less than a boundbup(ǫ; p) = 1−pǫ (see Fig.4.1.a). At this

critical (bifurcation) value ofb the interior nullclineṡx1 = 0 andẋ2 = 0 (see Fig.4.1.b) touch

states A and B respectively. Increasing the value of the temptationb abovebup the polarized

states lose their stability in favor of the quasi-polarized states [A’ (all-D in1 and mostly C in2)

and its symmetric B’ ], which detach from A and B and become attractors. Atb = bc = 1− pǫ
1−p
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the interior nullclines coincide (see Fig.4.1.c) becoming a line (A’B’) of marginally stable

equilibria. Finally, forb > bc (see Fig.4.1.d) the global attractor is the interior even-symmetric

state E, the intersection of the interior nullclines, which keeps approaching,asb increases, the

neighborhood of the highb limit attractor, say the state D of fully defective populations.

This scenario remains qualitatively unchanged for strictly positive values of the parameter

r, provided0 < r < −pǫ, the only change being that the bifurcation valuebc, where the

quasi-polarized states loose stability, becomes:

bc = 1 +
r − pǫ

1− p
. (4.2)

In other words, the weak PD limit (r = 0) for the intra-population game is structurally stable

respect to (small enough) positive parametric variations of the game parameterr. Forr > −pǫ,

the scenario changes drastically: D is now a stable equilibrium, but still, forb < bup (which

doesn’t depend onr), the polarized states are also stable equilibria. Only for largerb > bup

values of the temptation, D becomes the unique global attractor. Summarizing the results for

the symmetric case, the attractor states for increasing values ofb from b = 1+ follow the

sequence:

A, B
bup→ A’, B’

bc→ E . (4.3)

(a) D, A, B
bup
B→ D, A

bup
A→ D

(b) A, B
bup
B→ A

bup
A→ A’

bcA→ E

(c) A, B
bup
B→ A

bup
A→ A’

(d) A, B
bup
B→ A, B’

bcB→ A
bup
A→ A’

(e) A, B
bup
B→ A, B’

bcB→ A
bup
A→ A’

bcA→ E

(f) A, B
bup
B→ A, B’

bup
A→ A’, B’

bcB→ A’

(g) A, B
bup
B→ A, B’

bup
A→ A’, B’

bcB→ A’
bcA→ E

Table 4.1: Sequence of attractors in phase space for equation (4.1), asb increases fromb = 1+.

The arrow indicates a bifurcation at theb value that appears over the arrow. The scenarios (a)-(g)

correspond to different ranges of values of the parametersr, β, p andǫ, that are made explicit in

section4.4. Note that except for the scenario (a), that corresponds tor > −βpǫ, polarized and

quasi-polarized states dominate the asymptotic behavior.
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when0 ≤ r < −pǫ while, whenr > −pǫ, the sequence is:

D, A, B
bup→ D . (4.4)

For the general caseN1 6= N2, the lack of the population interchange symmetry modifies

some of the features seen in the symmetric case. Without loss of generality, weassume that

β = N1/N2 > 1. On one hand, the lower bound ofr for the stability of the fully defective state

D becomes nowr = −βpǫ. On the other hand, the bifurcation values at which the polarized

states lose their stability are now different,

bupB = 1− pǫ

β
< bupA = 1− βpǫ , (4.5)

as well as the bifurcation values (provided they exist) at which quasi-polarized states destabi-

lize, bcB < bcA, where

bcB = 1 +
r2 − (pǫ)2

(r + βpǫ)− p(βr + pǫ)
(4.6)

bcA = 1 +
β(r2 − (pǫ)2)

(βr + pǫ)− p(r + βpǫ)
. (4.7)

Let us note that the polarized state A, where the defective population is of larger size, turns

out to have a wider range of stability, as well as a larger basin of attraction,than the state B.

The results of the complete analysis of the replicator equation (4.1) are summarized in Table

4.1, where we show the sequences of attractors coexisting in phase space.The seven scenarios

(a)-(g) correspond to different ranges of values of the parametersr, β, p andǫ (see section4.4

for further details).

From the previous analysis of well mixed populations, one sees that polarized and quasi-

polarized states appear as generic attractors of the evolutionary dynamicsfor wide ranges of

model parameters, which in turn has the effect of enhancing in a remarkable way the asymptotic

levels of cooperation in the two-populations system.

4.4 Phase portrait analysis of the two-variable replicator equation

The replicator equation that describes the continuum time evolution of the cooperator fractions

x1(t), x2(t) in subpopulations 1 and 2 can be written as:

ẋ1 = F1(x1, x2) , (4.8)

ẋ2 = F2(x1, x2) , (4.9)
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where the velocitiesF1,2, after time rescaling, are explicitly given as:

F1(x1, x2) = x1(1− x1)[β(x1(1− b+ r)− r) + p(x2(1− b+ ǫ)− ǫ)] , (4.10)

F2(x1, x2) = x2(1− x2)[(x2(1− b+ r)− r) + βp(x1(1− b+ ǫ)− ǫ)] . (4.11)

The unit square0 ≤ x1, x2 ≤ 1 is the invariant set of interest here. To follow the phase

portrait variation of a two-degrees of freedom nonlinear system like equation (4.9) is pretty

straightforward for one-parameter variations. We are dealing with a modelwhereb, r, ǫ, β,

andp are free model parameters, each one inside their natural range,i.e., b > 1+, 0 ≤ r ≤ 1,

ǫ < 0−, β ≥ 1, and0 ≤ p ≤ 1. In our systematics below, we will consider continuum

variation of b, from b = 1+ up to infinity, at fixed values of the other parameters and so

we will obtain the ”critical” (bifurcation) pointsb∗(ǫ, r;β, p), where the phase portrait of the

evolution experiencesqualitative changes: Somewhat, the direction of increasing temptationb

is often most considered in recent literature on PD games. But we will pay due attention also to

variations of the parameterr, and find two important critical values that do not depend on the

value of the temptationb, so that different scenarios of phase transitions (inside the well-mixed

population approximation to the thermodynamical limitN1, N2 → ∞) asb varies do appear.

Finally, we choose alsoβ as an interesting (e.g., for control applications) parameter to vary, and

find also two critical values that are temptation independent, that in turns, increase the number

of those scenarios.

The best visualization of the velocity field is a phase portrait where fixed (equilibrium)

points and nullclines are also plotted, as in Fig. 1 in the main text. A nullcline is the locus of

points defined byFi(x1, x2) = 0 for somei. The nullclines that correspond toF1(x1, x2) = 0

are the straight lines

x1 = 0 , (4.12)

x1 = 1 , (4.13)

x2 =
−x1β(b− 1− r)− (βr + pǫ)

p(b− 1− ǫ)
, (4.14)

while those that correspond toF2(x1, x2) = 0 are

x2 = 0 , (4.15)

x2 = 1 , (4.16)
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x2 =
−x1βp(b− 1− ǫ)− (r + βpǫ)

(b− 1− r)
. (4.17)

The possible equilibria are the crossing points of any line from the first group with any

other line from the second one, so there are nine candidates. Moreover, only solutions in the

unit square,0 ≤ x1, x2 ≤ 1, interest us, and this exclude two of the crossing points (see below),

leaving the following seven possibilities, namely the four corners of the unit square:

• A = (0, 1) ,

• B = (1, 0) ,

• C = (1, 1) ,

• D = (0, 0) ,

and those whose location depends on parameter values:

• We call A′ the crossing point of nullclines (4.12) and (4.17), whose coordinates are

x1(A
′) = 0 and

x2(A
′) =

−(r + βpǫ)

(b− 1− r)
. (4.18)

• We callB′ the crossing point of nullclines (4.14) and (4.15), so thatx2(B′) = 0 and

x1(B
′) =

−(βr + pǫ)

β(b− 1− r)
. (4.19)

• Finally, we callE the crossing of (4.14) and (4.17). Its coordinates are obtained as:

x1(E) =
(b− 1− r)(βr + pǫ)− p(b− 1− ǫ)(βr + pǫ)

β[(p(b− 1− ǫ)2 − (b− 1− r)2]
, (4.20)

x2(E) =
(b− 1− r)(r + βpǫ)− p(b− 1− ǫ)(r + βpǫ)

(p(b− 1− ǫ)2 − (b− 1− r)2
. (4.21)

The (missing in the list) crossings of (4.13) - (4.17), and of (4.14) - (4.16), are easily seen

to be always outside the unit square for the range of parameters considered. Also inside this

range, the non-generic event ofnullclines’ coincidenceonly could happen providedβ = 1 and

r > −pǫ, at a valuebc(ǫ, r;β = 1, p) = 1 + r−pǫ
1−p . Only then, the exotic (forced by symmetry)

situation in which there is a segment of marginally stable equilibria occurs.
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To determine the bifurcation points, one uses the spectral analysis of tangent space per-

turbations around equilibria. The linearized evolution of small perturbationsaround the fixed

pointx∗ is given by the matrix:





∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2





x=x∗

(4.22)

In what follows, the presentation of the results from the phase portrait analysis of the non-

linear coupled ODE (4.11) tries to rationalize them in terms of evolutionary game theoretic

concepts, within a thermodynamical limit (statistical physics) perspective.

4.4.1 Symmetric case:N1 = N2(= N).

For simplicity, as well as for illustrate neatly the systematics that we follow, we analyze first

the case of equal population sizes. For this case, where populations areidentical (though

distinguishable), the population interchange symmetry imposes that phase portrait is invariant

under permutation of coordinates (x1 ↔ x2), a non-generic property that limits severely the

possible scenarios. The stability analysis of the equilibria shows that there are two generic

scenarios for the sequence of bifurcations that appear whenb increases from1+ up to infinity:

(s1) If r > rc = −pǫ there is only one bifurcation atbup(r, ǫ, β = 1, p) = 1 − pǫ. For

b < bup, the phase portrait has three stable equilibria with their own basins of attraction:

D, A, and B. The equilibria C, A’ and B’ are unstable, and E is outside the unit square. At

b = bup, A and B destabilize (through collision with A’ and B’ that exit the unit square)

becoming saddle equilibria, and D becomes the unique global attractor forb > bup. This

translates into the following sequence of attractors when temptation increases from1+:

D, A, B
bup→ D . (4.23)

(s2) If r < rc(p, ǫ), however, D is always unstable, and there are two bifurcations atbup

andbc (and note thatbup < bc). For b < bup the equilibria C, D are sources, E is a

saddle, and A and B are attractors, becoming saddle equilibria atbup where A’ and B’

enter into the unit square. Forbup < b < bc A’ and B’ are the only attractors. At

bc the segment A’B’ of marginally stable equilibria is the limit set for all trajectories

(nullcline’s coincidence). Forb > bc E becomes the unique (and even-symmetric) global
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attractor. This last bifurcation restores the symmetry of the asymptotic evolutionthat

was spontaneously broken at lowerb values. The sequence of stationary limiting (point)

densities is:

A, B
bup→ A’, B’

bc→ E . (4.24)

Note that the conditionr = rc(p, ǫ) that separates the regimes where the equilibrium D

is unstable (r < −pǫ) or attractor (r > −pǫ), corresponds to the exact compensation of the

surplusrN of defective intra-population interactions of a defector and the punishment pǫN it

receives from inter-population interactions. Below this critical value, fulldefection is unsta-

ble to cooperative fluctuations. But, as we have just seen, even in case the punishment from

coupling is weaker than surplus, polarized states have their own basins ofattraction, away

from whole defection, at low values ofb > 1+. This can be rationalized from the role that

punishment plays in our -no interbreeding, punishing defective coupling- setting. Populations’

strategic polarization emerges as stable generic asymptotic state of evolution, even when de-

fectors can afford external punishment (D being then fully stable): Theduplex (two coupled

populations) has always the option to become polarized or quasi-polarizedprovided the initial

conditions belong to its basin of attraction.

4.4.2 General case:N1 6= N2.

The parameterp determines the fraction of inter-to-intra-population interactions any agent

plays per unit time in the symmetric (N1 = N2) case. This fraction changes toβp andp/β

(β > 1) for small and large populations respectively, when symmetry of populationinterchange

is absent. This combination of parameters regulates how important to the replicating power

(fitness) of an individual the inter-population coupling is, and we then seethat for the largest

population the effective couplingp/β is smaller. This makes the polarized state A (where pop-

ulation 1 is defective) more robust than the polarized state B, and providedboth are attractors,

the basin of attraction of A is correspondingly larger. This is a major qualitative change in the

phase portrait of the velocity field of evolution in the absence of symmetry. The concomitant

change is the shift, and in more extreme cases the disappearance, of the bifurcations associated

to the quasi-polarized equilibria A’ and B’,i.e., bupA,B andbcA,B:

bupB (r, ǫ;β, p) = 1− (p/β)ǫ , (4.25)
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bupA (r, ǫ;β, p) = 1− βpǫ , (4.26)

bcB(r, ǫ;β, p) = 1 +
r2 − (pǫ)2

(r + βpǫ)− p(βr + pǫ)
, (4.27)

bcA(r, ǫ;β, p) = 1 +
β(r2 − (pǫ)2)

(βr + pǫ)− p(r + βpǫ)
. (4.28)

Note that the minimum of this set of values isbupB , its maximum isbcA, and that the relative order

of the other two values is parameter dependent. Several new generic scenarios of phase portrait

variations naturally follows from these major effects, when the ”population interchange” sym-

metry is absent. Still, let us remark that the evolutionary attractiveness of the odd-symmetric

polarized (A and B) and quasi-polarized (A’ and B’) asymptotic densities still dominates ample

regions of parameter space.

A first scenario, similar to the first one seen above for the symmetric case, isfound when

r > rAc (ǫ; β, p) = −βpǫ. In this scenario, the fully defective state D is stable for allb > 1

values. For very low values ofb, A and B are also stable. Due to asymmetry, the instabilities of

A and B occur at different bifurcation values,bupB < bupA , so that state B destabilizes first when

b increases fromb = 1+, as expected,i.e.,

(i) If rAc < r there are only two bifurcations atbupB < bupA . For all b > 1+, C is unstable

and E is outside the unit square. Forb < bupB , the states D, A and B are attractors. At

bupB , B collides with the unstable B’ that exits the unit square, then becoming a saddle

with unstable direction corresponding to defective fluctuations in cooperative population

1. The same happensmutatis mutandi(1 ↔ 2 interchange) to A atbupA , leaving finally D

(for b > bupA ) as the global attractor.

D, A, B
bup
B→ D, A

bup
A→ D (4.29)

At r = rAc , for a defective individual in population 2, and state D, the ”internal surplus -

coupling punishment” balance exactly compensates. This means that changing to cooperator

makes no difference to its replicating power, and thus a zero eigenvalue appears in the spectrum

of the Jacobian (linear stability) matrix of the fully defective state D. Inside theranger < rAc ,

D is always unstable face to cooperative fluctuations in the smaller population. Further down

in surplus (r) values, atr = rBc = −(p/β)ǫ, D becomes also unstable face to cooperative

fluctuations in the large population. In other words, when decreasingr from large (compared
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to rAc ) positive values of intra-population surplus, to0+ (weak PDlimit), there are two critical

values, where qualitative changes of the phase portrait occur, that coincide with the change of

stability of D from stable (r > rAc ) to saddle (rBc < r < rAc ), to source (r < rBc ).

Providedr < rAc , if one consider the highb (→ ∞) limit, one easily finds that it can be

either ”mixed type” (state E, interior to the unit square) or ”quasi-polarized” (state A’, on the

verticalx1 = 0) regarding its convergence to virtually full defection. The transition between

these two qualitatively different ”high temptation limit behaviors”, for given values ofǫ, p, and

r, is controlled by the value of the population ratioβ and it occurs at the critical value:

βA
c (ǫ, r; p) =

p(r − ǫ)

r − p2ǫ
. (4.30)

At this value of the population ratio, the bifurcation valuebcA (where A’ collides with state

E, this one entering into the unit square) formally diverges, so that the collision occurs (or

doesn’t), depending on the value of the population ratioβ, for fixed value ofp, r, andǫ.

On the other side, the bifurcation value atbcB only occurs providedr < rBc , but its relative

order with respect tobupA depends also on the value ofβ with a critical value at:

βB
c (ǫ, r; p) =

−pǫ(p2ǫ− r)−
√

p2ǫ2(p2ǫ− r)2 − 4p2ǫ(r − ǫ)(p2ǫ2 − r2)

2p2ǫ(r − ǫ)
. (4.31)

The different possible combinations of all the previous possibilities give thefollowing sce-

narios:

(ii ) If rBc < r < rAc , then the stable linear manifold of the saddle point D (x2 = 0) does not

allow B’ to be a stable equilibrium, while its unstable direction (x1 = 0) pushes evolution

to polarized A or quasi-polarized A’ states; C is a always a source for allb > 1. Two

different scenarios are realized depending on the inter-population ratiovalue,β:

(ii1) If β > βA
c (see Eq. 4.30), bifurcations only occur atbupB < bupA . At bupB , the

collision of B and the unstable exitingB’ occurs, while atbupA , it takes place the

collision of A with the enteringstate A’. The corresponding sequence of attracting

equilibria is given by:

A, B
bup
B→ A

bup
A→ A’ (4.32)
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(ii2) If βA
c > β, besides the bifurcations described in (ii1), there is an additional bifur-

cation atbcA, where A’ collides with state E that enters into the unit square. The

corresponding sequence of attracting equilibria is given by:

A, B
bup
B→ A

bup
A→ A’

bcA→ E (4.33)

The presence or absence of the bifurcationbcA determines whether the approach to the

high temptation limit is via ”mixed interior type” E state, or ”edge quasi-polarized type”

A’ state, so that for values ofβ below critical (βA
c ), virtually full defection (1−, 1−) is

approached with non-zero cooperation levels in both populations asb diverges.

(iii ) If r < rBc , both quasi-polarized states A’ and B’ enter into the unit square atbupB andbupA ,

respectively. B’ always destabilizes atbcB (> bupB always) to become a saddle through

collision with the exiting unstable interior equilibrium E. This may happens before[as in

(iii1) and (iii2) below] or after [as in (iii3) and (iii4)] the entrance of A’ atbupA depending

on β value (relative toβB
c ). And finally note that the bifurcation atbcA only occurs for

β < βA
c , as analyzed above, to arrive to the following possible four scenarios:

(iii1) If max(βA
c , β

B
c ) < β, thenbcB < bupA , andbcA is absent:

A, B
bup
B→ A, B’

bcB→ A
bup
A→ A’ (4.34)

(iii2) If βB
c < β < βA

c , thenbcB < bupA , andbcA occurs:

A, B
bup
B→ A, B’

bcB→ A
bup
A→ A’

bcA→ E (4.35)

(iii3) If βA
c < β < βB

c , thenbupA < bcB, andbcA is absent:

A, B
bup
B→ A, B’

bup
A→ A’, B’

bcB→ A’ (4.36)

(iii4) If β < min(βA
c , β

B
c ), thenbupA < bcB, andbcA occurs:

A, B
bup
B→ A, B’

bup
A→ A’, B’

bcB→ A’
bcA→ E (4.37)
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This analysis provides the three-dimensional phase diagram (r, β, b) for fixed, though ar-

bitrary, ǫ andp. It exhibits a wealthy of different macroscopic phases separated by critical

lines and surfaces. It shows that polarized and quasi-polarized phases dominate wide regions

in parameter space. This illustrates the effects of inter-population trade of fitness (even under

the simplest possible structure of inter and intra population contacts) on the evolution of PD

replicators.

A, B
bup→ A’, B’

bc→ E . (4.38)

when0 ≤ r < −pǫ while, whenr > −pǫ, the sequence is:

D, A, B
bup→ D . (4.39)

4.5 Random networks.

On the other hand, for structured populations, where individuals interact with their neighbors as

dictated by a given network of contacts, it is known that under some assumptions cooperation

is enhanced, a phenomenon called network reciprocity.

While for well mixed populations, the stability of polarized states extends down tob = 1+,

one should expect that at smallb > 1 values, the enhancement of cooperative fluctuations

due to network reciprocity in the defective population 1 destabilizes the polarized states below

some critical valueblow. Moreover, one should also expectblow to decrease with the parameter

p, because higher values ofp increase the payoff that a (defector) individual in population

1 obtains from encounters with (cooperator) individuals of population 2,thus decreasing the

resilience of cooperative fluctuations (”network reciprocity”) in population 1. In other words,

for low values ofb, the interaction between populations acts against network reciprocity. These

expectations are fully confirmed by the results from simulations of the evolutionary dynamics

in populations with a random network structure of intra-population contacts,using the discrete

version of replicator dynamics.

In Fig. 4.2 we show the average cooperation〈c〉 level (over a sample of200 different

realizations) on the two-population system as a function ofb for different values ofp, and

parameters as indicated. The two populations have a random (Erdös-Ŕenyi (28)) network of

contacts with average degree〈k〉 = 6. In the initial conditions, the individuals of both popu-

lations were chosen cooperators with probability1/2. The plateau at〈c〉 = 1/2 points out the
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Figure 4.2: Average level of cooperation in the two-population system as a function ofb, for

different values of the fractionp of inter-population contacts. Other parameters arer = 0, ǫ =

−0.4, N1 = N2 = 103. The two populations have a random (Erdös-Ŕenyi) network of contacts

with average degree〈k〉 = 6. See the text for further details.

asymptotic polarized state. Moreover, the states with〈c〉 < 1/2 correspond to quasi-polarized

regimes where all the individuals in one population are defectors, while those with 〈c〉 > 1/2,

at values ofb < blow, results from states where all the individuals in one population are coop-

erators. This represent a new type of quasi-polarized states that werenot found to be attractors

of the dynamics for well mixed populations. The comparison with the average cooperation

level for non-interacting populations (p = 0 in Fig. 4.2) confirms that for low values ofb the

inter-population interaction acts against network reciprocity.

From a complementary perspective, the networked populations show new attractors, im-

possible to be such for coupled well-mixed populations, because they are the effect of network

reciprocity. On the other hand, for larger values ofb, the populations’ coupling favors the

achievement of substantial levels of cooperation, well beyond the typicalvalues ofb for which

network reciprocity ceases to be effective, being an effect already present in the well-mixed

case. This clarify farther the confluent effects of these two differentmechanisms of coopera-

tion enhancement.

Finally, the robustness of polarized and quasi-polarized states suggeststo use the coupling

to a defective population as an engineered (control) procedure to induce high levels of cooper-

ation in a target population. To check for this possibility, we have coupled a large population

1 with random (equiprobable in strategies) initial conditions to a smaller defective population

2. In Fig. 4.3 we show the asymptotic average level of cooperation in a target population of

sizeN1 = 103 for different values of the average number,N2 · p, of inter-population contacts
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Figure 4.3: Average level of cooperation in the population 1 as a function of b, for different

values of the fractionp of inter-population contacts. The population 1 (of sizeN1 = 103) has

been coupled to a smaller population 2 (N2 = 102). While initial strategies in population 1 are

equiprobables (random initial conditions), the population 2 starts from the absorbent state of fully

defection. Other parameters arer = 0, ǫ = −0.4. Both populations have a random (Erdös-Ŕenyi)

network of contacts with average degree〈k〉 = 6.

per individual of the target population. The results suggest that such arrangements can provide

new mechanisms to control and/or sustain cooperation in different kind of systems.

Summarizing, two PD populations SD-coupled in conditions of strict inbreeding(no inter-

population strategic diffusion) evolve easily to polarized and quasi-polarized strategic probabil-

ity densities in the well-mixed thermodynamical limit of the evolutionary replicator dynamics.

This happens also when population structure is a complex network of contacts, where other

mechanisms (known as network reciprocity) of enhanced cooperation also operate. The con-

fluence of both mechanisms has been analyzed in depth showing that polarization opposes net-

work reciprocity at small values of the temptation parameter, while both act (synergy) together

enhancing cooperation in one of the layers for higher temptation values. This phenomenon, that

could be rationalized as the effect of incorporating a punishment to defective inter-population

encounters, illustrate the remarkable effects that structural multiplexity introduces in evolution-

ary dynamics.
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Chapter 5

Human behavior in Prisoner’s

Dilemma experiments suppresses

network reciprocity.

During the last few years, much research has been devoted to strategic interactions on complex

networks. In this context, the Prisoner’s Dilemma has become a paradigmatic model, and

it has been established that imitative evolutionary dynamics lead to very different outcomes

depending on the details of the network. We here report that when one takes into account the

real behavior of people observed in the experiments, both at the mean-field level and on utterly

different networks the observed level of cooperation is the same. We thus show that when

human subjects interact in an heterogeneous mix including cooperators, defectors and moody

conditional cooperators, the structure of the population does not promoteor inhibit cooperation

with respect to a well mixed population.

5.1 Introduction

In recent years, the physics of complex systems has widened its scope byconsidering interact-

ing many-particle models where the interaction goes beyond the usual concept of force. One

such line of research that has proven particularly interesting is evolutionary game theory on

graphs (16; 88), in which interaction between agents is given by a game while their own state

is described by a strategy subject to an evolutionary process (12; 91). A game that has attracted

a lot of attention in this respect is the Prisoner’s Dilemma (PD) (92; 93), a model of a situation
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in which cooperative actions lead to the best outcome in social terms, but where free riders or

non-cooperative individuals can benefit the most individually. In mathematical terms, this is

described by a payoff matrix (entries correspond to the row player’s payoffs and C and D are

respectively the cooperative and non-cooperative actions)

C D
C 1 S
D T 0

(5.1)

with T > 1 (temptation to free-ride) andS < 0 (detriment in cooperating when the other does

not).

In a pioneering work, Nowak and May (19) showed that the behavior observed in a repeated

Prisoner’s Dilemma was dramatically different on a lattice than in a mean-field approach: In-

deed, on a lattice the cooperative strategy was able to prevail by forming clusters of alike agents

who outcompeted defection. Subsequently, the problem was considered inliterally hundreds

of papers (16; 18; 94; 95; 109), and very many differences between structured and well-mixed

(mean-field) populations were identified, although by no means they were always in favor of

cooperation (96; 97). In fact, it has been recently realized that this problem is very sensitive

to the details of the system (88; 115), in particular to the type of evolutionary dynamics (79)

considered. For this reason experimental input is needed in order to reach a sound conclusion

about what has been referred to as ‘network reciprocity’.

Here, we show that using the outcome from the experimental evidence to inform theoretical

models, the behavior of agents playing a PD is the same at the mean field level and in very

different networks. To this end, instead of considering somead hocimitative dynamics (19;

21; 98), our players will play according to the strategy recently uncovered by Grujić et al. (23)

in the largest experiment reported to date about the repeated spatial PD, carried out on a lattice

as in Nowak and May’s paper (19) with parametersT = 1.43 andS = 0.

The results of the experiment were novel in several respects. First, thepopulation of players

exhibited a rather low level of cooperation (fraction of cooperative actions in every round of

the game in the steady state), hereafter denoted by〈c〉. Most important, however, was the

unraveling of the structure of the strategies. The analysis of the actions taken by the players

showed a heterogeneous population consisting of “mostly defectors” (defected with probability

larger than 0.8), a few “mostly cooperators” (cooperated with probability larger than 0.8), and

a majority of so-called moody conditional cooperators. This last group consisted of players

that switched from cooperation to defection with probabilityPDC
i = 1− d− γci = 1− PCC

i
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and from defection to cooperation with probabilityPCD
i = a+ βci = 1− PDD

i , ci being the

fraction of cooperative actions in playeri’s neighborhood in the previous iteration. Conditional

cooperation, i.e., the dependency of the chosen strategy on the amount ofcooperation received,

had been reported earlier in related experiments (99) and observed also for the spatial repeated

PD at a smaller scale (100). The new ingredient revealed in Grujić et al.’s experiment (23) was

the dependence of the behavior on the own player’s previous action, hence the reason to call

them “moody”.

5.2 Results

To study how the newly unveiled rules influence the emergence of cooperation in an structured

population of individuals, we first report results from numerical simulations of a system made

up of N = 104 individuals who play a repeated PD game according to the experimental ob-

servations. To this end, we explored the average level of cooperation infour different network

configurations: a well-mixed population in which the probability that a player interacts with

any other one is the same for all players, a square lattice, an Erdös-Ŕenyi (ER) graph and a

Barab́asi-Albert (BA) scale-free (SF) network. It is worth mentioning that the dependence on

the payoff matrix only enters through the parameters describing the players’ behavior (d, γ, a,

β and the fractions of the three types of players). Once these parameters are fixed the payoffs

do not enter anywhere in the evolution, as this is only determined by the variablesci, the local

fractions of cooperative actions within each player’s neighborhood. Thus there is no possibility

to explore the dependence on the payoffs because we lack a connectionbetween them and the

behavioral parameters.

In Figure5.1 we present our most striking result. The figure represents, in a color-coded

scale, the average level of cooperation as a function of the fraction of mostly cooperators,ρC ,

and mostly defectors,ρD, for a BA network of contacts. The same plots but for the rest of

topologies explored (lattice and ER graphs) produce indistinguishable results with respect to

those shown in the figure. We therefore conclude that the average levelof cooperation in the

systemdoes notdepend on the underlying structure. This means that, under the assumption

that the players follow the behavior of the experiment in (23), there is no network reciprocity,

i.e., no matter what the network of contacts looks like, the observed level of cooperation is

the same. This latter finding is in stark contrast to most previous results coming out from
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Figure 5.1: Dependency of the average level of cooperation on the density of strategists.Den-

sity plot of 〈c〉, as a function of the fractions of the three strategies -mostly cooperators,C, mostly

defectors,D, and moody conditional cooperators,X-. Pannels A), B) and C) correspond to a reg-

ular lattice (k = 8), Erdös-Ŕenyi(〈k〉 = 6) and Barab́asi-Albert (〈k〉 = 6) network of contacts

respectively, but independence of cooperation level on thetopology make them indistinguishable.

The system is made up ofN = 104 players and the rest of parameters, taken from (23), are:

d = 0.38, a = 0.15, γ = 0.62, β = −0.1. The thin lines represent the mean-field estimations

[c.f. Eq. (5.5)] for 〈c〉 = 0.32, 0.44, 0.56, 0.68. They very accurately match the contour lines of the

density plot corresponding to those values of〈c〉, thus proving that the same outcome is obtained

in a complete graph (mean-field). Simulation results have been averaged over 200 realizations.

numerical simulations of models in which many different updating rules —all of them based

upon the relative payoffs obtained by the players— have been explored.

Mean-field Approach. The previous numerical findings can be recovered using a simple

mean-field approach to the problem. Let the fractions of the three types of players beρC ,

ρD and ρX , for mostly cooperators, mostly defectors, and moody conditional cooperators,

respectively, with the obvious constraintρX = 1−ρD−ρC . Denoting byPt(A) the cooperation

probability at timet for strategyA(= C,D,X) of the repeated PD we have

〈c〉t = ρCP (C) + ρDP (D) + ρXPt(X), (5.2)

wherePt(C) = P (C) andPt(D) = P (D) are known constants [in our caseP (C) = 0.8,

P (D) = 0.2]. The probability of cooperation for conditional players in the next time stepcan

be obtained as

Pt+1(X) = (d+ γ〈c〉t)Pt(X) + (a+ β〈c〉t)[1− Pt(X)], (5.3)

where the first term in the right hand side considers the probability that a conditional cooperator

keeps playing as a cooperator, whereas the second terms stands for thesituation in which a
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Figure 5.2: Absence of Network Reciprocity.Average cooperation level in the stationary state,

〈c〉, as a function of the densityρC of mostly cooperators and two different values of the density

ρD of mostly defectors, for two different kinds of networks: regular lattice (k = 8), and Barab́asi-

Albert network (〈k〉 = 8). The network size isN = 104 and the rest of parameters are as in Figure

5.1. Lines represent the mean-field estimations. Results are averages over 200 realizations. The

inset is a zoom that highlights how the different curves compare.

moody conditional cooperator switched from defection to cooperation. Asymptotically

lim
t→∞

Pt(X) = P (X), lim
t→∞

〈c〉t = 〈c〉.

From Eq. (5.3),

P (X) =
a+ β〈c〉

1 + a− d+ (β − γ)〈c〉 , (5.4)

thus (5.2) implies (with the replacementρX = 1− ρC − ρD)

AρC +BρD = 1, (5.5)

where

A ≡ P (C)− P (X)

〈c〉 − P (X)
, B ≡ P (D)− P (X)

〈c〉 − P (X)
, (5.6)

are functions of〈c〉. From Eq. (5.5) it follows that the curves of constant〈c〉 are straight lines in

the simplex. Figure5.1clearly demonstrates this fact: The straight lines are plots of Eq. (5.5)

for different values of〈c〉. It can be seen that they are parallel to the color stripes, and that the

values of〈c〉 they correspond to accurately fit those of the simulations.
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Figure 5.3: Asymptotic level of Cooperation. Time evolution of the cooperation level until the

stationary state is reached. The results have been obtainedfrom numerical simulations on different

networks with different sizes. The Mean-Field curve is the solution of Eq. (5.3). P (C) = 2/3,

P (D) = 1/3, P (X; t = 0) = 1, 〈k〉 = 8, ρD = 0.586, ρC = 0.053, d = 0.345, a = 0.224,

γ = 0.64, β = −0.072. Averages have been taken over103 realizations.

Figure5.2 depicts the curve〈c〉 vs. ρC for two different values ofρD, as obtained from

Eq. (5.5) and compared to simulations. This figure illustrates the excellent quantitative agree-

ment between the mean-field result and the simulation results. The match betweenthe analyt-

ical and numerical results is remarkable, as it is the fact that the result does not depend on the

underlying topology. This is the ultimate consequence of the lack of network reciprocity: the

cooperation level on any network can be accurately modeled as if individuals were playing in

a well-mixed population.

The steady state is reached after a rather short transient, as illustrated in Figure5.3. This

figure compares the approach of the cooperation level to its stationary stateas obtained iterating

Eq. (5.3) and from numerical simulations on different networks with different sizes. The initial

cooperation level has been set to〈c〉0 = 0.592, close to the value observed in the experiment

of Ref. (23). The transient does exhibit a weak dependence on the underlying topology and

specially on the network size, but for the largest simulated size (N = 104) the curves are all

very close to the mean-field prediction.

Distribution of Payoffs. The only observable on which the topology does have a strong

effect is the payoff distribution among players. Figure5.4 shows these distributions for the

three studied topologies, and at two different times —short and long. Smoothat short times,

this distribution peaks around certain values at long times. This reflects the fact that payoffs
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depend on the number of neighbors of different types around a givenplayer, which yields

a finite set of values for the payoffs (the centers of the peaks). Thesenumbers occur with

different probabilities (determining the height of the peaks), according tothe distribution

Q(k) =
∑

k≥1

(

k

kC kD

)

ρkCC ρkDD ρkXX p(k), (5.7)

wherep(k) is the degree distribution of the network andk = (kC , kD, kX), but it is understood

thatkX = k − kC − kD. The standard convention is assumed that the multinomial coefficient
(

k
kC kD

)

= 0 wheneverkC < 0, kD < 0 or kX < 0.

The approach to a stationary distribution of payoffs exhibits a much longer transient. This

is due to the fluctuations in the payoffs arising from the specific actions (cooperate or defect)

taken by the players. These fluctuations damp out as the accumulated payoffs approach their

asymptotic values. Thus, the peak widths shrink proportionally tot−1/2. In fact, one can show

that the probability density for the distribution of payoffsΠ for strategyZ can be approximated

as

WZ(Π) =
∑

k≥1

G
(

Π− ak(Z)µ(k),
√
tak(Z)σ(k)

)

Q(k), (5.8)

whereG(x, γ) ≡ (2πγ2)−1/2e−x
2/2γ2

, the mean payoff per neighbor received by aZ strategist

against a cooperator is

ak(Z) ≡ 1

k
{P (Z) + T [1− P (Z)]},

with k = kC + kD + kX , and the average cooperation level in the neighborhood of the focal

player and its variance are

µ(k) ≡ kCP (C) + kDP (D) + kXP (X),

σ(k)2 ≡ kCP (C)[1− P (C)] + kDP (D)[1− P (D)]

+kXP (X)[1− P (X)].

The approximate total payoff distribution,W (Π) = ρCWC(Π) + ρDWD(Π) + ρXWX(Π), is

compared in Figure5.4with the results of the simulations for the longest time.

5.3 Discussion

In this work we have shown both analytically and through numerical simulationsthat if we

take into account the way in which humans are experimentally found to behavewhen facing
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Figure 5.4: Payoffs Distribution. Distribution of the pay-off per neighbor in the stationarystate

for different network topologies: regular lattice (k = 8), Erdös Ŕenyi (〈k〉 = 8) and Barab́asi-

Albert network (〈k〉 = 8). Black and blue lines represent the results of numerical simulations for

two values of time:t = 10 (black shallow curves) andt = 104 (blue, thick line curves) while red

lines represent the theoretical estimations for the density probabilities att = 104, as obtained from

Eq. (5.8). N = 104, ρD = 0.586, ρC = 0.053, and other parameters are as in Figure5.1. The

simulation results are averages over103 realizations.

social dilemmas on lattices, no evidence of network reciprocity is obtained. In particular,

we have argued that if the players of a Prisoners’ Dilemma adopt an updaterule that only

depends on what they see from their neighborhood, then cooperation drops to a low level —

albeit nonzero— irrespective of the underlying network. Moreover, we have shown that the

average level of cooperation obtained from simulations is very well predicted by a mean-field

model, and it is found to depend only on the fractions of different strategists. Additionally, we

have also shown that the underlying network of contacts does manifest itself in the distribution

of payoffs obtained by the players, and has a slight influence on the transient behavior.

To conclude, it is worth mentioning that our results only make sense when applied to evo-

lutionary game models aimed at mimicking human behavior in social dilemmas. The indepen-

dence on the topology seems to reflect the fact that humans update their actions according to

a rule that ignores relative payoffs. Interestingly, absence of network reciprocity has also been

observed in numerical simulations using best response dynamics (89), an update rule widely

used in economics that does not take into account the neighbors’s payoffs. This suggests that

the result that networks do not play any role in the repeated PD may be general for any dynam-
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ics that does not take neighbors’ payoffs into account. We want to stress that the same kind of

models thought of in a strict biological context are ruled by completely different mechanisms

which do take into account payoff (fitness) differences. Therefore, in such contexts lattice reci-

procity does play its role. In any case, our results call for further experiments that uncover what

rules are actually governing the behavior of players engaged in this and other social dilemmas.

101



5. HUMAN BEHAVIOR IN PRISONER’S DILEMMA EXPERIMENTS SUPPRESSES
NETWORK RECIPROCITY.

102



Chapter 6

Heterogeneous networks do not

promote cooperation when humans

play a Prisoner’s Dilemma.

It is not fully understood yet why we cooperate with strangers on a daily basis. In an in-

creasingly global world, where interaction networks and relationships between individuals are

becoming more complex, different hypotheses have been put forward toexplain the founda-

tions of human cooperation on a large scale and to account for the true motivations that are

behind this phenomenon. In this context, population structure has been suggested to foster

cooperation in social dilemmas,but theoretical studies of this mechanism have yielded contra-

dictory results so far, and the issue lacks a proper experimental test in large enough systems.

We have performed the largest experiments to datewith humans playing a spatial Prisoner’s

Dilemma on a lattice and on a scale-free network (1229 subjects). We observed that the level

of cooperation reached in both networks is the same, comparable to that of smaller networks

or unstructured populations.We have also found that subjects respond to the cooperation they

observe in a reciprocal manner, being more likely to cooperate if in the previous round many

of their neighbors and themselves did so. This implies that humans do not consider neighbors’

payoffs when making their decisions in this dilemma, but only their actions. Our results, that

are in agreement with recent theoretical predictions based on this behavioral rule, suggest that

population structure has little relevance as a cooperation-promoter or inhibitor among humans.
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6.1 Introduction

The strong cooperative attitude of humans defies the paradigm ofhomo economicusand poses

an evolutionary conundrum (123; 124). This is so because many of our interactions can be

framed as Prisoner’s Dilemmas (93; 125; 126) or Public Goods Games (127), famous for

bringing about a “tragedy of the commons” (128). Several mechanisms have been suggested

as putative explanations of cooperative behavior (129), among which the existence of an un-

derlying network of contacts constraining who one can interact with has received very much

attention. This mechanism was first proposed by Nowak and May (19), whose simulations on

a square lattice with agents that imitate the behavior of their neighbor with the highest payoff

showed high levels of cooperation in the Prisoner’s Dilemma. The ensuing twodecades have

witnessed a wealth of theoretical studies that have concluded that this so-called “network reci-

procity” (129) is indeed possible under a variety of circumstances, but in many other contexts

networks do not promote−or even inhibit− cooperation (16; 88). The effect of regular and ho-

mogeneous networks on cooperation is very sensitive to the details of the model (e.g., dynam-

ics, clustering),while theoretical results and simulations indicate that heterogeneous networks

should be particularly efficient in fostering cooperation in social dilemmas (88; 108; 109). A

natural way to shed some light on these partially contradictory results would be to test exper-

imentally the predictions of the different models. Such tests are currently lacking (130), as

the few available experimental works only deal—with some exception (23)— with very small

networks (100; 131; 132). Interestingly, the only theoretical result (133) that takes into account

the behavioral information extracted from experiments predicts that neitherhomogeneous nor

heterogeneous networks would influence the cooperative behavior in the Prisoner’s Dilemma,

i.e., the observed cooperation level should be the same as if every player interacted with every

other one.

6.2 The experiments.

Here, we close the cycle by testing the above theoretical predictions (133) and contributing

to the current debate on the existence and effects of network reciprocityby performing ex-

periments on large samples of structured populations of individuals who interact through a

Prisoner’s Dilemma (PD) game. Specifically, we have designed a setup in which 1229 human

subjects were placed either in a square lattice or in a scale-free network, and for more than
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Figure 6.1: Players in the experiment were sitting in different physical locations, but played
in two virtual networks. Panel A is a snapshot at round 10 of a graphic animation illustrating

the activity during the experiment. On a map of Aragón the image displays small buildings repre-

senting the schools. Arrows (green for cooperate and red fordefect) represent actual actions taken

by players. They travel towards the school where their randomly assigned neighbors were sitting.

Buildings are colored green and red, proportional to the respective number of cooperative and de-

fective actions taken by the subjects in that school. The height of the yellow column on top of each

building is proportional to the school’s accumulated payoffs. Panels B and C show snapshots of

the two networks at that same round, along with their degree distributions (in the case of the het-

erogeneous network, both the theoretical distribution andthe actual realization corresponding to

the network of the experiment are represented). Colors indicate the corresponding player’s action

(green for cooperate, red for defect). The size of a node is proportional to its degree.

50 rounds they played a2 × 2 multiplayer PD gamewith each of theirk neighbors, taking

only one action, either to cooperate (C) or to defect (D)—the action being the same against all

opponents. The experiment was simultaneously carried out on two different virtual networks:

a25×25 regular lattice withk = 4 and periodic boundary conditions (625 subjects), and a het-

erogeneous network with a fat-tailed degree distribution (604 subjects, thenumber of neighbors

varied betweenk = 2 andk = 16). Figure6.1depicts a snapshot of a visual representation of

the experiment as well as of the two networks. Subjects played a repeated (weak) Prisoner’s

Dilemma (PD) with all their neighbors for an initially undetermined number of rounds. Pay-

offs of the PD were set to be 7 ECUs for mutual cooperation, 10 ECUs fora defector facing

a cooperator, and 0 ECUs for any player facing a defector (weak PD (19)). We note that this

choice of payoffsis as in Grujíc et al.’s experiment on a smaller regular lattice (23) (see Figure

6.1) and such that cooperation should reach a high level according to the available simulations

(19; 88; 108; 109). The size of each network was large enough so that clusters of cooperators

could form (the underlying mechanism by which cooperators may thrive (115; 134)).
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On this general setup, we carried out two treatments, which we willrefer to asexperiment

and control. In the experiment, subjects remained at the same positions in the network with the

same neighbors throughout all the rounds played. In the controltreatmentwe removed the ef-

fect of the network by shuffling the neighbors of each subject in everyround. Therefore, in this

phase, the players were always connected to the same number of neighbors, butthese neighbors

changed from round to round.On the screen, subjects saw the actions and normalized payoffs

of their neighbors from the previous round, who in the controltreatmentwere different from

their current neighbors with high probability. Alltreatmentsof the experiment were carried out

in sequence with the same subjects. Players were also fully informed of the different setups

they were going to run through. The number of rounds in eachtreatmentwas randomly chosen

between 50 and 70 in order to avoid subjects knowing in advance when it was going to finish,

resulting in 51 and 59 rounds for the experimental and controltreatments, respectively.

6.3 Results and Discussions.

Figures6.2A and6.2B show the fraction of cooperative actions,c, in each round for the two

networks and for bothtreatments. The first feature worth noticing in this figure is that, in

the experiment phase, the level of cooperation in either network quickly drops from initial

values around 60% to values around 40% and finally settles at a slower pace around 30%,

much lower than theoretical models predict (16; 19; 88). This is especially remarkable for

the heterogeneous network, on which no previous results are available,and is in stark contrast

with the predictions that this kind of networks should be particularly efficientin promoting

cooperation (88; 108; 109). In the control, the initial level of cooperation is already at these

low values. This behavior is consistent with previous findings in experimentswith smaller

lattices (23; 100) as well as with unstructured populations (135; 136). Regarding the slow decay

undergone by these curves after the first quick drop in the level of cooperation, we believe that

this is associated to a process of learning (see below). However, the mostremarkable result

that this figure provides is that, quite unexpectedly, the network does not have any influence in

the evolution of the level of cooperation. In fact, both curves are nearlyidentical—the slightly

lower values obtained for the lattice are likely to arise from the small difference in the initial

level of cooperation—despite the very different nature of the networksof contacts between the

players.
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6.3 Results and Discussions.

The experimental result we have just reported is in very good agreementwith the theoretical

prediction in (133). This prompts us to investigate in detail what is the players’ behavior, as

the reason why this prediction was different from earlier ones is the use of the update rule

observed in (23). The distributions of subjects by their individual cooperation levels (averaged

over the whole experiment) depicted in Figures6.2C and6.2D show quite some heterogeneity

of behavior: a few subjects have a high level of cooperation (above 70%), a sizable fraction

cooperated less than 20% of the rounds, whereas the bulk of subjects have intermediate levels of

cooperation.Importantly, the comparison of these distributions of actions, which turn out tobe

statistically indistinguishable (see Kolmogorov-Smirnov test data on Table6.1of the appendix

6.5), provides additional evidence that the behavior observed in the two networks is the same.

This finding, along with the identical behavior of the cooperation level, suggests that subjects

use the same strategies in the lattice and in the heterogeneous network, regardless of the fact

that in the latter the number of neighbors of each individual is heterogeneously distributed.

After considering the aggregate distribution of actions, let us now look fordeeper insights

on the individual behaviors. As in previous experiments on smaller lattices (23; 100) or un-

structured populations (135; 136), our results are compatible with a coexistence of at least three

basic strategies: cooperators (players who cooperate with a high probability regardless of the

context), defectors (players who defect with a high probability regardless of the context) and

“moody” conditional cooperators (23) (players whose action depends on their previous action

as well as the level of cooperation in their neighborhood). A search formoody conditional

cooperation shows the results depicted in Figure6.3. Panels A and B show the fraction of

cooperative actions occurred after a cooperation/defection, as a function of the level of coop-

eration in the neighborhood. The plots are the fingerprint of moody conditional cooperation:

players are more prone to cooperate the more their neighbors cooperate ifthey cooperated than

if they defected. Furthermore, Figure6.3also supports the striking finding that the strategic be-

havior of subjects is remarkably similar whether they are playing on the lattice (Figure6.3A) or

on the heterogeneous network (Figure6.3B). On the other hand, panels C and D show that the

next action of a subject cannot be predicted knowing the largest payoff difference he/she sees

in the neighborhood, thus confirming that subjects did not use payoff differences as a guidance

to update their actions.

Figure6.4 provides further evidence of the significance of the moody conditional coop-

eration by means of a nonparametric bootstrap check. The series of actions taken by every
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individual are randomly reassigned to other positions in the lattice or the network and the prob-

ability of cooperation is recomputed. This is done 106 times and the results show that the two

probabilities become independent of the context. Of course, such a reshuffling will not change

the dependence on the player’s own previous action, as the order of theactions is not altered,

and consequently there are still two distinct lines corresponding to the probability of cooper-

ation following cooperation or defection, but thedependence on the number of cooperators in

the previous round is fully removed.

The existence of(almost pure)cooperators and defectors aside from moody conditional

cooperators can be further supported through a comparison with the samehistograms but for

the control condition (see Figure6.6 of the appendix), since for the latter a larger number

of subjects are in the region that would correspond to defectors. This can be interpreted as an

indication that a fraction of—probably—moody conditional cooperators changed to a defective

strategy, given that retaliation is ineffective in the control condition. Furthermore, performing

running averages of the levels of cooperation during the experiment condition (see Figures

6.7 and6.8 of the appendix) shows that the number of subjects whose level of cooperation is

below a given threshold increases with time—irrespective of the precise value of the threshold.

Not only this gives support to the existence of this kind of players, but it isconsistent with a

continuous(albeit small)flow of players who change from moody conditional cooperation to

defection—a behavior that could be understood as a generalized form of a grim strategy. Notice

that this flow can account for the slow decay observed all along the run of the experiment and

control observed in Figures6.2A and6.2B.

Finally, another important point that our experiment allows to address to someextent is

the dependence of the actions on the connectivity of the participants for theheterogeneous

network. The results are displayed in Figure6.5, where we represent the average cooperation

level c as a function of the connectivity of the players,k, for both treatments: experiment

and control. As can be seen from the plots, there might be some trend towards lower levels

of cooperation with increasing degree for small connectivities, particularly in the control (the

levels for the first three values of the degree in the experiment are not statistically different).

However, looking at the figure as a whole it becomes clear that there doesnot seem to be

any statistically significant trend. It has to be borne in mind that in this type of networks the

number of hubs or large-degree nodes is intrinsically small, and thereforethe statistics for them

is not very accurate (notice the size of the error bars). Going beyond this results would require

much larger networks (which would still have the same problem for their higher degree nodes).
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Additionally, the bottom panels of Figure6.5 show the frequency of cooperative actions of

nodes with degreek after playing as C or D with respect to the fraction of their neighbors

that cooperated in the previous round. The results are a clear evidencethat moody conditional

cooperation is indeed the general behavior even if one disaggregates the data in terms of their

degree. As we have already stated above for the total level of cooperation, for higher degrees

the statistics is poorer and the analysis does not lead to such clear-cut results.

6.4 Conclusions

To sum up,we have performed a large-scale experimental test of the hypothesis ofnetwork

reciprocity, i.e., that the existence of a structure in the population may affectcooperation in so-

cial dilemmas. Our experiment shows that, when it comes to human behavior, theexistence of

an underlying network of contacts does not seem to have any influence inthe global outcome.

We want to stress that this conclusion applies only to human cooperation, andnetwork reci-

procity may still be relevant in other contexts, e.g., in microbiology (137). Players seem to act

by responding to the level of cooperation in their neighborhood, and this renders the network

irrelevant. In addition, players behave in a ‘moody’ manner, being significantly less likely to

cooperate following a defection of their own.The levels of cooperation attained in a regular

lattice and in a highly heterogeneous network (hitherto thought to be a cooperation enhancer)

are indistinguishable, and the responsive behavior of subjects appears to be independent of the

number of neighbors they have or on the payoff differences they observe. The results are in

full agreement with the theoretical prediction in (133); the fact that the key hypothesis in that

model is that people behave in the way we have just described, provides further support to our

finding of moody conditional cooperation in networked Prisoner’s Dilemmas.

Our results have implications for policy making when cooperation is a desired behavior.

Although further experiments with other social dilemmas still need to assess the range of appli-

cability of our conclusions, the present study suggests that imposing a network structure might

be a sterile effort.It should be noted, however, that this caveatdoes not imply that networking

is useless to achieve cooperation—results would probably be very different if the network is

allowed to be formed by the subjects as part of the game. Recent experimentson groups of up

to 20 people (138; 139) strongly suggest this, but to the best of our knowledge no large-scale

experiments have been carried out to test this issue.On the other hand, the theoretical work

in (133) does not predict the slow decay of the cooperation level observed in the experiments,
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Figure 6.2: The level of cooperation declines and is independent of the network of contacts.
Fraction of cooperative actions (level of cooperation) perround during the experiment (panel A)

and the control (panel B) for both networks, and histograms of cooperative actions in the lattice

(panel C) and in the heterogeneous network (panel D). The histograms (panels C and D) show the

number of subjects ranked according to the fraction of cooperative actions they perform along the

experiment in the two networks. A Kolmogorov-Smirnov test shows that the distributions are sta-

tistically indistinguishable (see appendix6.5). They illustrate the high heterogeneity in subjects’

behavior, their levels of cooperation ranging from nearly zero to almost one in a practically contin-

uous distribution. The corresponding histograms for the control (Figureexp.figS4 of the appendix)

show that a sizable group of subjects lowered their levels ofcooperation hence becoming mostly

defectors. Actually, the decline in the level of cooperation observed in the experiment (panelsA
and B) can be explained as a constant flow of subjects to more defective strategies (for evidence

supporting this hypothesis see Figures6.7and6.8of the appendix).
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Figure 6.3: Players’ behaviour depends both on the level of cooperation in the neighborhood
and on their previous action. Frequency of cooperative actions after a cooperative/defective ac-

tion, conditioned to the context (fraction of cooperative actions in the neighborhood in the previous

round) observed in the lattice (A) and in the heterogeneous network (B). Details of the linear fits

and comparison with randomizations to prove statistical significance can be found in the appendix.

The plots demonstrate that there is a relevant dependence onthe context for subjects that cooperated

in the previous round (i.e., were in a “cooperative mood”), the cooperation probability increasing

with the fraction of cooperative neighbors much as for the conditional cooperators found by Fis-

chbacheret al.(99). However, after having defected, this dependence is less clear, and if anything,

it suggest an exploiting behavior—subjects who defected areless prone to cooperate the more co-

operation they find around. Panels C and D show how subjects who cooperated or defected are

distributed according to the largest payoff-per-link difference in their neighborhoods between the

two actions. These plots reveal that a player’s decision to cooperate or defect was independent on

the payoffs-per-link they observed (an information that was explicitly provided during the experi-

ment).
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Figure 6.4: Null hypothesis statistical significance test.Probability of cooperating after playing

C or D, conditioned to the context (fraction of cooperative actions in the neighborhood in the

previous round), averaged over106 random shuffling of players. Panel A) corresponds to the

experimentaltreatmentin the lattice, panel B) to the sametreatmentbut for the heterogeneous

network, panel C) to the control phase in the lattice and panel D) to the same controltreatmentfor

the heterogeneous network. The results show that there is nodependence on the context and hence

that the results of panels A and B of Figure 3 are statistically relevant. The anomalous variance (or

even absence of data) observed at a fraction of C’s in the neighborhood close to0.9 is not a relevant

feature of the experimental results but a consequence of thevery low probability of having events

contributing to that bin of the histogram in the heterogeneous network. This anomaly can also be

noticed in Figure 3.
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Figure 6.5: Dependence of the strategies on the connectivity. The upper panels show the co-

operation levelc as a function of the connectivityki in the heterogeneous network, averaged over

all rounds of the experiment (upper left panel) and the control (upper right) of the experiment. In

the lower panels, we plot the frequency of cooperative actions of players with degree as indicated,

after they have cooperated or defected, as a function of the fraction of cooperative actions in their

neighborhood during the previous round, along the experiment treatment in the heterogeneous net-

work. Statistics is restricted to nodes of connectivityk = 2 (lower left panel),k = 3 (lower center)

andk = 4 (lower right).
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which we have conjectured that arises from moody conditional cooperators becoming defec-

tors in a generalized grim behavior. Such a change in the percentage of players using different

strategies is not included in the theoretical model, and therefore a next stepwould require to

account for such changes and, if possible, to justify them within an evolutionary framework.

Finally, given that in our setup players have to play the same action with all theirneighbors,

it is clear that our results should be related to those of public goods experiments. In fact,

conditional cooperation was first observed in that context (99). Our findings suggest that the

“moody” version we have found can also arise in public goods games. If that is the case, it is

likely that network reciprocity does not apply to public goods games on networks. Hopefully

our experiment will encourage further research in all these directions.

6.5 Appendix 1: Additional material about the experimental re-

sults

Here we present further results aimed at supporting the findings shown inthe previous sections.

As there, we will refer to the basic types of individuals found in the experiment as mostly

cooperators (players who cooperate with a high probability regardless of the context), mostly

defectors (players who defect with a high probability regardless of the context) and moody

conditional cooperators (players whose action depends on their previous action as well as the

level of cooperation in their neighbourhood, see Fig.6.3A and B).

Figure6.6shows the histograms of the number of players ranked according to the fraction

of cooperative actions they performed along the control phase, in the lattice (panelA) and in

the heterogeneous network (panelB). The same results but for the experimental phase can be

found in panelsC andD of Figureexp.fig:2. The comparison between the plots shows a large

increase in the fraction of individuals that never or almost never cooperated in the control with

respect to the experiment. This is likely to be a consequence of the fact thatin the experiment

there is an initial amount of cooperation well above 50%, which is not the case in the control.

At the other extreme of the plots, the (small) amount of highly cooperative players remains

approximately the same, indicating that their motivation has nothing to do with havingor not a

fixed environment for their interactions. The general picture thus arisingfrom the control part

is that there is not much cooperation, and the majority of players do not cooperate other than

occasionally.
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Figure 6.6: Distribution of cooperative actions in the control. We represent the number of

players that cooperated during the given number of rounds (normalized by the total number of

rounds played). The results correspond to the control phase. Similar results were presented Fig.6.2.

On the other hand, Figure6.7displays the time evolution of the distribution of cooperative

actions in the experimental part. The histograms show the players’ frequency as a function of

the fraction of cooperative actions along successive 10-round periods corresponding to the ex-

perimental phase in the lattice (left column) and in the heterogeneous network(right column).

The results show evidence of some degree of learning as the experiment progresses: Indeed, the

number of people who cooperate never or rarely increases with time. This would be consistent

with the decay of cooperation shown in Fig.6.2 A; while the first, quick drop in cooperation

would be explicable within a computer model with a fixed proportion of defectors, cooperators

and moody conditional cooperators, the second part of the evolution, a much slower decay,

is inconsistent with such a model and must then come from changes in the proportion of the

different types of players.

The phenomenon we have just described can also be shown in a different manner, namely

by monitoring the evolution of mostly defectors both during the experimental andcontrol parts

of the experiment. Figure6.8 represents the fraction of agents whose probability to cooperate

is below a given threshold (indicated in the rightmost legend) at every round (time t). To

calculate this quantity, we have taken into account the actions of the players during the previous

10 rounds. The results obtained show an increasing trend (more evidentfor the experimental

phase, top panels) for both the square lattice and the heterogeneous network, which confirms

the tendency of the players to learn that they should defect as time goes on.

We also report on the statistical analysis we carried out about the experimental data. First,

in order to determine whether or not the likelihood to cooperate differs significantly in the two
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Figure 6.7: Time evolution of the distribution of cooperative actions. The different panels

show how frequently players cooperated in different time periods. The results correspond to the

first treatment (experiment). Rows represent periods 1-10(t0 = 0, top), 11-20(t0 = 10), 21-

30(t0 = 20), 31-40(t0 = 30) and 41-50(t0 = 40, bottom) as indicated.

studied networks, we use the Kolmogorov-Smirnov (KS) test for the two datasets. We take

as a first sample the distribution of the probability to cooperate in the lattice, cumulated over

all rounds of the experimental phase. The second sample used as input for the KS test corre-

sponds to the same distribution but for the heterogeneous network. Theseare the distributions

represented on Figure6.2. The maximum difference between the cumulative distributions for

the experimental phase is0.1071 with a corresponding value forPKS = 0.995. The statis-

tics of both samples, together with the ones corresponding to the control phase Fig.6.6 are

summarized in Table6.1.

Finally, Table6.2 summarizes the statistical fits (obtained from a weighted least squares

regression) of the conditional probabilityP to cooperate, conditioned on the player’s action in

the previous round (X=afterC, afterD) and on the densityρ of cooperators in the players’

neighborhoods during the previous round. Fits are defined byP (C|X, ρ) = a + bρ. The data

fitted correspond to the results shown in Figure6.3A,B.
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Figure 6.8: Evolution of the fraction of mostly defectors. Fraction of agents with a coop-

eration probability lower than a giventhreshold as a function oft(=round), according to their

cooperative actions through the previous 10 rounds, for different values of thethreshold =

0, 0.1, 0.2, 0.3, 0.4. Columns represent results for the lattice (left) and the heterogeneous network

(right), while rows correspond to the two treatments: experiment (top) and control (bottom).

6.6 Appendix 2: Experimental setup.

6.6.1 Volunteer recruitment and treatment

The experiment was carried out with1229 volunteers chosen among last year high-school stu-

dents (17-18 years old) of42 different High Schools located throughout the geography of the

Autonomous Region of Araǵon, Spain, whose capital is Zaragoza, where the University of

Zaragoza is. 34 High Schools were in the province of Zaragoza, 5 in the province Huesca, and

3 in the province of Teruel. For the recruitment of the students, we contacted the coordina-

tors of a program (Ciencia Viva, ”Living Science”) of the local government that supports the

dissemination of Science among public high schools of Aragón. Moreover, we also contacted

many of the private schools of Zaragoza City also offering them the possibility of taking part

in the experiment. In all cases, the experiment was referred to as ”a social experiment” and no-

body (including the high-school teachers in charge of the coordination)knew in advance what

the experiment was about (see below).

Following the call for participation, we selected 1300 volunteers. In orderto satisfy ethical
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experiment control

lattice heterogeneous lattice heterogeneous

mean 0.03703 0.03703 0.03226 0.03226

95% confidence (0.02434,0.04974) (0.02335,0.05072) (0.02549,0.04858) (0.02607,0.04800)

standard deviation 0.03210 0.03459 0.02918 0.02772

high 0.0976 0.104 0.106 0.0878

low 0 0 0 0

third quartile 0.06560 0.06126 0.05440 0.05795

first quartile 0.006400 0.006623 0.006400 0.01159

median 0.04000 0.03146 0.0448 0.03808

Median absolute deviation 0.02844 0.02937 0.02495 0.02275

Table 6.1: Statistics of the distribution of the probability to cooperate cumulated over all rounds of the experimental and

control phases in both networks. See the text for further details.

lattice heterogeneous

a b a b

afterC 0.457± 0.015 0.122± 0.034 0.475± 0.016 0.126± 0.039

afterD 0.350± 0.021 −0.149± 0.050 0.309± 0.069 −0.0269± 0.035

Table 6.2: Values of the fitting parameters for the results shown in Figure 6.3 A,B. Fits are defined byP (C|X, ρ) =

a+ bρ, beingX=afterC, or afterD. See the text for more details.

procedures, all personal data about the participants were anonymizedand treated as confiden-

tial. Moreover, the Ethical Committee of the University of Zaragoza approved all procedures.

On the day of the experiment, the aforementioned 1229 volunteers showed up, with 541 males

and 688 females representing the 44.02% and 55.98% of the total number of players, respec-

tively. Out of the 1229 students, 625 played the game on a square lattice (274 males and

351 females keeping the male to female ratio) and 604 on an heterogeneous network. In the

first topology, every player hadk = 4 neighbors while in the second, the connectivity varied

between 2 and 16 following a distributionN(k)
N = P (k) = Ak−2.7, with A = (

∑

k P (k))−1.

All the students played via a web interface specifically created for the experiment (see

below) that was accessible through the computers available in the computer rooms of their

respective schools. At least one teacher supervised the experiment ineach computer room

(which at most had a maximum capacity of 20 students), preventing any interaction among the

students. To further guarantee that potential interactions among students seating next to each

other in the class do not influence the results of the experiment, the assignment of players to

the different topologies was completely random. Hence, the odds of havingtwo participants

geographically close (i.e., of the same school and seating next to each other) who were also

118



6.6 Appendix 2: Experimental setup.

neighbors in the virtual topology was quite small. In addition, as described below, the col-

ors used to code the two available actions of the game were also selected randomly, further

decreasing the likelihood that neighboring participants could influence each other.

We describe in the following section the steps followed by each participant during the

experiments. In short, all participants went through a tutorial on the screen, including questions

to check their understanding of the game. When everybody had gone through the tutorial, the

experiment began, lasting for approximately an hour. At the end of the experiments volunteers

were presented a small questionnaire to fill in. Immediately after, all participants received their

earnings and their show-up fee. Total earnings in the experiment ranged from 2.49 to 40.48

euros.

6.6.2 Experimental platform and interface

The experiment was run using a fairly sophisticated web application specifically developed to

this purpose. The application was made entirely using free software. It was developed in Ruby

On Rails, a technology used by other popular websites like Twitter, and has aMySQL database

that stores all data needed to carry out the experiment and the subsequent analysis. MySQL is a

freely available open source relational database management system based on Structured Query

Language (SQL), the most popular language for adding, accessing and managing content in a

database.

The application was designed to be used by three different user profiles. First of all, we

have the players, who were shown at the beginning a detailed tutorial for abetter understanding

of the interface and basis of the experiment. Secondly, there are teachers who were responsi-

ble for supervising students through their dedicated web monitors, facilitatingthe work of the

central administrator work and contributing to the success of the experiment.Finally, the ad-

ministrators were responsible for controlling the game and everything that was happening in

real time. The application, which was designed using technologies compatible with all plat-

forms, was managed from a standard web browser. There was a last participant, a daemon or

process running in the background whose function was to update the results and play instead

of players who do not play within the specified time frame for each action.

Considering that the experiment required that around1300 students could play online si-

multaneously, we used a server with enough power, and many optimizations were performed in

terms of connections to the server, access to database, client-server data exchange, lightness of
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the interface, control logic, etc. The experiment started on December 20,2011 at 10:00 CET.

The steps followed during the development of the experiment were:

1. Administrators opened the registration process.

2. Players (students) gradually registered.

3. Once all students had registered, teachers informed the administrators via their screen.

4. As soon as the required number of participants have registered (this took around 20

minutes), administrators blocked further registrations and initiated the readingof the

tutorial.

5. Students and teachers read the tutorial.

6. Teachers informed (also via their screens) administrators that the reading was completed.

7. The experiment treatment began, which lasted 51 rounds.

8. Students played according to some predefined times (a maximum of 20 seconds per

round to choose an action). During these steps, teachers controlled forany potential

problem using a chat channel that connected them to the administrators. Asmentioned

above, if one student did not play within the 20 seconds given for each action, the daemon

played automatically (see below). The administrators were able to identify who was not

playing and to contact the teachers if the situation persisted. However, the experiment

went smoothly and no feedback to the professors for misbehavior was needed.

9. The experiment treatment finished and a brief tutorial on the second one(control) was

shown.

10. Once teachers and students had read the tutorial, the former notified theadministrators.

11. Administrators started the control treatment, which lasted 59 rounds.

12. Students played as in the previous treatment.

13. Once the control treatment finished, volunteers were presented a short questionnaire to

fill in.

14. All participants checked their earnings and were given their show-up fee.
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6.6.3 Synchronous play and automatic actions

The experiment assumes synchronous play, thus we had to make sure thatevery round ended in

a certain amount of time. This playing time was set to 20 seconds, which was checked during

the testing phase of the programs to be enough to make a decision, while at the same time not

too long to make the experiment boring to fast players. If a player did not choose an action

within these 20 seconds, the computer made the decision instead. This automatic decision was

randomly chosen to be the player’s previous action 90% of the times and the opposite action

10% of the times. We chose this protocol following previous testings performed by the authors

of a similar experiment (see (23)). Volunteers were informed that the computer would play

for them if their decision took more than the prescribed time-out. However, they were not

informed of the precise strategy used by the computer in order to avoid any bias in their own

choices of strategy. In any case, for the reliability of the experiment it is important that a huge

majority of actions were actually played by humans, not by the computer. This quantity, when

averaged over all rounds, yields that the 90% of the actions were chosen by humans, regardless

of the underlying network of contacts.

6.6.4 Questionnaires

At the end of the experiments volunteers were presented a small questionnaire to fill in. The

list of questions (translated into English) was the following:

1. Describe briefly how you made your decisions in part I (Experiment).

2. Describe briefly how you made your decisions in part II (Control).

3. Did you take into account your neighbors’ actions?

4. Is something in the experiment familiar to you? (yes/no).

5. If so, please point out what it reminds you of.

6. If you want to make any comment, please do so below.

The first three questions have a clear motivation, namely to see whether (possibly some) players

did have a strategy to decide on their actions. Question 3 was intended to check whether players

decided on their own or did look at their environment, because only in this lastcase imitative

or conditionally cooperative strategies make any sense. Questions 4 and 5 focused on the
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6. HETEROGENEOUS NETWORKS DO NOT PROMOTE COOPERATION WHEN
HUMANS PLAY A PRISONER’S DILEMMA.

possibility that some of the players recognized the game as a Prisoner’s Dilemmabecause they

had a prior knowledge of the basics of game theory. The final question just allowed them to

enter any additional comment they would like to make. We did not carry out a more detailed

questionnaire to avoid the risk of many players’ leaving it blank (the whole experiment was

already very long).
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Part II

An evolutionary dynamics approach to

tolerance.
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Presentation of Part II.

In this part of the thesis, we address the second research theme: the tolerance under the

framework of social dynamics. The concepts of tolerance and intolerance have been ap-

proached from many perspectives including biology, sociology and philosophy (74). For the

purposes of this thesis, we consider tolerance as “a permissive and indulgent attitude in relation

to those subjects whose characters, opinions or behaviors differ from one’s own” and, comple-

mentarily, intolerance or bigotry as “the refusal to accept subjects with different characters,

opinions or behaviors from ones own”.

Despite antecedents in classical greek (as well as from the hellenistic, androman period)

philosophers (e.g. Socrates, Epictetus, Marc Aurellius), toleration does not become a serious

subject of philosophical and political concern in Europe until the 16th and17th Centuries. Mo-

tivated by the Religion’s Wars which followed Reformation and Counter-Reformation, thinkers

as Milton, Bayle, Spinoza and Locke defended religious tolerance. Amongthe Enlightenment’s

philosophers, perhaps Voltaire was the one that most vividly expressedhis views in defense of

religious tolerance, and surely Kant was the most rigorous one.

At the end of the 18th Century one can see tolerant ideas embodied in practicein the USA

Constitution’s Bill of Rights. In the 19th Century at the formulation of political liberalism, J.S.

Mill argues that the only proper limit of liberty is harm (to others), and that political power

should have no authority to regulate those activities and interests of individuals that are purely

private and have no secondary effects on others.

Already in the 20th Century, toleration became an important component of what is known

as liberal theory. It has been defended by liberal philosophers and political theorists such as

Dewey, Berlin, Popper, Dworkin and Rawls, but also criticized by Marcuse and other modern

marxist thinkers who worry that toleration and its ideal of state neutrality is merely another

hegemonic Western ideology, a useful ”superstructural mask”. After all, some politically neo-

liberal practices in Europe politics are indeed quite far from being tolerantin any ample sense

of the term. Nowadays, a concern for racial equality, gender neutrality,an end of prejudice,

respect for cultural and ethnic difference, and a general commitment to multiculturalism has

fueled ongoing debates about the nature of toleration in our age of globalization and homo-

geneization.

To a 21st Century social sciences theorist that might worry about theseissues, a basic

methodological question is wether or not social tolerance can be measured, or at least semi-
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quantitatively inferred from observations. What about consider it as aparameter in an ABM

investigation? The accepted meaning of the ”tolerance” parameter of the Schelling model is but

a possible operational use of the concept of toleration. So we see there isalready a half-century

old tradition of using tolerance as a social parameter in social modeling of somephenomena.

Moreover, given that intolerance is the main cause of conflicts at all levels, from two-person

disputes to multipart struggle and wars, and considering that, unfortunately, social rejection

and self-exclusion based on real or perceived characteristics is inherent in the human condition

and has always been present in every culture and time period (74; 75), the cultural diffusion

enhanced by development of mass media and new technologies leads to an increasing need to

address tolerance under the perspectives of social and cultural dynamics.

Tolerance and intolerance are issues that can be properly addressedthrough ABMs, as

shown, for example, the fact that one of the first social ABM was the residential segregation

model developed by Thomas C. Schelling in 1971 (52; 53). The Schelling’s model shows how

a preference to have similar neighbors can lead to segregation for relatively small values of

intolerance (see Introduction1.3.1). Nevertheless, ABM have not paid much attention to the

study of tolerance, in contrast to other related topics such as homophily (59), opinion formation

(153) or rumor spreading (155).

In the Axelrod model (see Introduction1.3.1 for a basic presentation) thesocial influ-

enceon the ”cultural” individual characteristics defining the cultural state, appears itself as

homophile satisfaction, the driving force of cultural change (or cultural evolution). One might

say that the ”incentive” to modify a cultural trait (e.g. conversion to a new, non-inborn faith,

changing of musical taste, or going into bio-organic food consumption) is theaspiration to a

greater share of cultural features with nearby agents. Simple and of general appealing, ho-

mophile satisfaction is the ”benefit function” in an economic framework formulation of the

model. Economic language is well-fitted to permeate Political Sciences modeling, andhu-

man social behavior, though not always, can sometimes be understood in terms of economy of

”moral feelings” and/or other categories.

Importantly, the Axelrod’s dynamics assumption, namely ”the more similar two cultural

agents are, the more similar they’ll likely become in the future”, seems also be rooted on a sen-

sible theorist’s inference from social experiences and observations.Note that this assumption

leads naturally, for a dimer of cultural automata, to a self-sustained increase of cultural similar-

ity. Though this may suggest that the dynamics is just a trivial accelerated tendency to cultural

consensus, when passing from the cultural dimer analysis to the neighborhood’s state analysis
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of a focal agent, one realizes that the (ensemble averaged) mean similarity of the focal isn’t

forcefully an increasing function of time dynamics: it could decrease in time, so dynamics is

not that trivial. Despite that, the tension between the two extreme macroscopic states, global-

ization and multiculturalism, is regulated by the (initial) degreeq of cultural diversity, as in the

dimer analysis: Providedq is so large as to render negligible the probability of sharing some

cultural feature, no option other that multiculturalism prevails for the dimer, aswell as for the

whole macroscopic population, where frozen multicultural patterns dominate the asymptotic

states for large initial cultural diversity.

Another basic feature of this modeling framework of cultural dynamics is its highly non-

biasedsetting respect to trait values: There is no advantage of particular traits regarding ”socio-

cultural ineffectiveness” power. A physicists’ term for this basic feature istrait symmetry. The

complete invariance under interchangeability of traits imposes that the homogeneously cul-

tural macroscopic state containsqF microscopic states, that are equally likely provided traits

are uniformly distributed in the initial conditions. Along any particular stochastictrajectory, the

macroscopic consensus reaches fixation (thus irreversibly breaking trait’s symmetry) through

an unbiased random walk, as it occurs in Evolutionary Genetics where neutral characters are

fixed in some populations. The same occurs regarding traits frequencies inmulticultural macro-

scopic states.

Our daily experience would easily sanction as too simplistic both (homophily and exact

symmetry) basic features of this cultural dynamics: to put it crudely, duringthe early eighties

of last century, when I became more a reggae than heavy metal rocker tasted young Spaniard,

is a different socio-economic situation from the coetaneous conversion of a young Mexican

”catholic”-born to the ”Jehovah’s witnesses ” faith, that are treated as indistinguishable pro-

cesses inside this framework. The model, however, is not aimed to addressindividuals’ cultural

issues. Also, for a field anthropologist interested, say, in the cultural decline of Patagonia pop-

ulations, such a bareness of details in the description of cultural dynamics could seem useless,

likely a mere kidding exercise. However, no particular cases of important cultural processes

(as culture extinction) motivate this model.

Our kind of theorists’ social modeling is (no more and no less than) an educated (scien-

tific) attempt to gain insight into basic fundamental mechanisms that operate, in some sense

universally, in the emergence of collective social behaviors. We know that the Ising model is

invaluably useful, far away its strict applicability toe.g.magnetic materials experiments. This

important message is well-understood inside our physicists’ culture, and, hopefully, will be
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increasingly so across other scientific cultures. It is amply heard, at least in some branches of

social and economical sciences research, in connection to the Schelling model, where residen-

tial segregation based on ethnic (racial, unchangeable agent features) differentiation of individ-

uals, is modeled through a very simple homophile satisfaction driven mobility dynamics (see

Introduction for a basic presentation).

Although intolerance and homophily are close ideas, the relation between bothconcepts

is not trivial: while homophily refers to the preference to not interact with dissimilar people,

this preference does not implies social rejection. Nevertheless, the Axelrod and the Schelling

model share the samesocial force, the homophile satisfaction. In the first one it fuels the

cultural change (under conditions given by a cultural diversity parameter), while in the second

it determines moving decisions (conditioned by a tolerance parameter) in a ”geography” of

residential neighborhoods. Each model addresses a different specific social issue, and inside

own domain, each one is a basic archetype model ultimately based on homophile satisfaction

as a social force.

Our goal in this part of the thesis is to incorporate intolerance into the culturaldynamics

through different mechanisms. Starting from the Axelrod’s model, in chapter 7 we introduce

intolerance allowing agents to move from a culturally dissimilar environment to other available

places according to a intolerance thresholdT . This is possible thanks to the introduction of

a density of empty sitesh in the lattice of the original model. We show that, when the den-

sity h of empty sites is low enough and the agents percolates the lattice, mobility enhances

the convergence to monocultural state. Moreover, the transition valueqc depends linearly with

the system size. On the other hand, for large enough values ofh, when1 − h is below the

site percolation threshold, a new multicultural fragmented phase appears atlow values of the

initial cultural diversityq; however, the monocultural phase of the original Axelrod’s model is

recovered for intermediate values ofq, triggered by mobility, as well as the disordered (multi-

cultural) phase for large values ofq. In chapter8, we extend the previously described model

by considering intoleranceT as an individual cultural feature susceptible of imitation through

the cultural dynamics. This asymmetry introduced in the traits of Axelrod dynamics allows to

study the preference of tolerant traits to be present or not in dominant cultures. We consider

two options in order to introduce individual intolerance:social rejection(i.e., the agents move

according to their neighbors’ intolerance) andself-exclusion(agents move incited by its own

intolerance to their neighbors). In both cases we show that tolerant traits are more likely to be

present in dominant cultures. Moreover, the advantage of tolerance increases with the density
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h of empty sites, being higher in thesocial rejectionscheme. In order to obtain a more realistic

model, given that social networks are heterogeneous, in Chapter9 we introduce tolerance into

cultural dynamics throughnetwork plasticity, allowing agents to remove links to its dissimilar

neighbors and reconnecting them to other individuals chosen at random.This method allows

to consider heterogeneous and dynamic networks, with a network dynamicsdriven by the cul-

tural dynamics. Starting from the dynamics designed by Vazquezet al. (166), we introduced

tolerance through a parameterZ that modulates the intensity of rewiring mechanism. We show

that rewiring mechanism induces opposite effects. As expected, for large values of toleranceZ,

rewiring promotes the convergence to globalization. Nevertheless, for intermediate values of

Z, the rewiring mechanism enhances the formation of disconnected cultural clusters for values

of the initial cultural diversityq which present globalization in non-evolving networks. Fur-

ther, for low values ofZ, although clusters are present in transitory states, rewiring promotes

cultural spreading between clusters for large enough values ofq, and monocultural phase is

recovered.
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Chapter 7

Residential segregation and cultural

dissemination: An Axelrod-Schelling

model.

In the Axelrod’s model of cultural dissemination, we consider mobility of cultural agents

through the introduction of a density of empty sites and the possibility that agents ina dis-

similar neighborhood can move to them if their mean cultural similarity with the neighborhood

is below some threshold. While for low values of the density of empty sites the mobilityen-

hances the convergence to a global culture, for high enough values ofit the dynamics can lead

to the coexistence of disconnected domains of different cultures. In this regime, the increase

of initial cultural diversity paradoxically increases the convergence to adominant culture. Fur-

ther increase of diversity leads to fragmentation of the dominant culture into domains, forever

changing in shape and number, as an effect of the never ending eroding activity of cultural

minorities.

7.1 Introduction

The use of agent-based models (ABM) (156) in the study of social phenomena provides useful

insights about the fundamental causal mechanisms at work in social systems. The large-scale

(macroscopic) effects of simple forms of (microscopic) social interaction are very often surpris-

ing and generally hard to anticipate, as vividly demonstrated by one of the earliest examples

of ABM, the Schelling (52; 53) model of urban segregation, that shows how residential seg-
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regation can emerge from individual choices, even if people have fairlytolerant preferences

regarding the share of like persons in a residential neighborhood.

To gain insights on the question of why cultural differences between individuals and groups

persist despite tendencies to become more alike as a consequence of social interactions, Ax-

elrod (59) proposed an ABM for the dissemination of culture, that has subsequentlyplayed

a prominent role in the investigation of cultural dynamics. Questions concerning the estab-

lishment, spread and sustainability of cultures, as well as on the ”pros and cons” of cultural

globalization versus the preservation and coexistence of cultural diversity, are of central impor-

tance both from a fundamental and practical point of view in today’s world.

The Axelrod model implements the idea that social influence is ”homophilic”,i.e. the

likelihood that a cultural feature will spread from an individual to another depends on how

many other features they may have already in common(59). The resulting dynamics converges

to a global monocultural macroscopic state when the initial cultural diversity isbelow a critical

value, while above it homophilic social influence is unable to inforce culturalhomogeneity,

and multicultural patterns persist asymptotically. This change of macroscopicbehavior has

been characterized (141; 142; 143; 144) as a non-equilibrium phase transition. Subsequent

studies have analyzed the effects on this transition of different lattice or network structures

(145; 146), the presence of different types of noise (”cultural drift”) (147; 148), as well as

the consideration of external fields (influential media, or information feedback) (149; 150) and

global or local non-uniform couplings (151). Along with other models of social dynamics (as

e.g., models of opinion formation (153; 154), rumor spreading (155), etc) cultural dynamics are

of interest in the field of non-equilibrium phase transitions in lattice models, as other stochastic

spatial models motivated by population dynamics or evolutionary biology (80). Up to now, no

investigation of the effects of agent mobility on cultural transmission has beencarried out, with

the exception of (157), where individuals move following the gradient of a ”sugar” landscape

(that they consume) and interact culturally with agents in their neighborhood,i.e., mobility is

not culturally driven.

In this chapter we incorporate into the Axelrod dynamics of cultural transmission the pos-

sibility that agents living in a culturally dissimilar environment can move to other available

places, much in the spirit of the Schelling model of residential segregation. This requires the

introduction of a density of empty sitesh in the discrete space (lattice) where agents live. As

anticipated by (157) the expectations are that the agents mobility should enhance the conver-

gence to cultural globalization, in the extent that it acts as a sort of global coupling between
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agents. It turns out that these expectations are clearly confirmed when the densityh of empty

sites is low enough so that the set of occupied sites percolates the lattice: Thetransition value

depends linearly with the number of agents, so that in an infinite system (thermodynamical

limit) only global cultural states are possible. However, for large enough values ofh, new phe-

nomena appear associated to this mixed Axelrod-Schelling social dynamics, including a new

multicultural fragmented phase at very low values of the initial cultural diversity, a (seemingly

first order) transition to cultural globalization that is triggered by mobility, and the fragmenta-

tion of the dominant culture into separated domains that change continuously as the result of

erosive processes caused by the mobility of cultural minorities.

7.2 The model

In the Axelrod model of cultural dissemination, a culture is modelled as a vectorof F inte-

ger variables{σf} (f = 1, ..., F ), called culturalfeatures, that can assumeq values,σf =

0, 1, ...q − 1, the possibletraits allowed per feature. At each elementary dynamical step, the

culture{σf (i)} of an individuali randomly chosen is allowed to change (social influence) by

imitation of an uncommon feature’s trait of a randomly chosen neighborj, with a probabil-

ity proportional to the cultural overlapωij between both agents, defined as the proportion of

shared cultural features,

ωij =
1

F

F
∑

f=1

δσf (i),σf (j), (7.1)

whereδx,y stands for the Kronecker’s delta which is 1 ifx = y and 0 otherwise. Note that in

the Axelrod dynamics the mean cultural overlapω̄i of an agenti with its ki neighbors, defined

as

ω̄i =
1

ki

ki
∑

j=1

ωij , (7.2)

not always increases after an interaction takes place with a neighboring agent: indeed, it will

decrease if the feature whose trait has been changed was previously shared with at least two

other neighbors.

To incorporate the mobility of cultural agents into the Axelrod model, two new parameters

are introduced, say the density of empty sitesh, and a thresholdT (0 ≤ T ≤ 1), that can

be calledintolerance. After each elementary step of the Axelrod dynamics, we perform the
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following action: If imitation has not occurred andωij 6= 1, we compute the mean overlap

(7.2) and if ω̄i < T , then the agenti moves to an empty site that is randomly chosen. Finally,

in the event that the agenti randomly chosen is isolated (only empty sites in its neighborhood),

then it moves directly to an empty site. Note, additionally, that in the presence of adensity of

empty sites, the sum in equation (7.2) runs over neighboring agents, and not on neighboring

sites, so thatki can take on the values0, 1, . . .4 for a square lattice geometry.

We define the mobilitymi of an agenti as the probability that it moves in one elementary

dynamical step (provided it has been chosen):

mi = (1− ω̄i) Θ(T − ω̄i) , (7.3)

whereΘ(x) is the Heaviside step function, that takes the value 1 ifx > 0, and 0 ifx ≤ 0. For

an isolated agent, that moves with certainty, one may convene that its mean cultural overlap is

zero, so that expression (7.3) applies as well. The average mobilitym of a configuration is the

average of the mobility of the agents:

m =
1

N

N
∑

i=1

mi , (7.4)

whereN is the total number of cultural agents. We will consider below two-dimensional

square lattices of linear sizeL, so thatN = (1− h)L2, periodic boundary conditions, and von

Neumann neighborhoods, so that the numberki of neighbors of an agenti is 0 ≤ ki ≤ 4. We

fix the number of cultural features toF = 10, and vary the parametersq, h andT , as well as the

linear sizeL of the lattice. As it happens also for the genuine (i.e., without mobility) Axelrod

model, no qualitative differences appear for different values ofF ≥ 3, the only difference

being that larger values ofF make it easier the convergence to cultural globalization. One can

easily realize that the probability that the overlap between two randomly chosen cultures, sayi

andj, is positiveP (ωij > 0) = 1 − ((q − 1)/q)F , is an increasing function of the parameter

F .

Note that forF = 1, no matter how largeq ≥ 2 is, the overlapωij is either0 or 1 so

that there is no chance for cultural interaction (imitation). In this limit case eachagent keeps

forever its own initial culture, and the size of each culture is fixed by the initialconditions

(no cultural evolution). In this case the model effectively reduces to a version (one among the

many possible variants) of the Schelling model of urban segregation. Specifically, it becomes

a Schelling model with myopic long range move. Some recent papers in the physics literature

134



7.3 Results and Discussion

0 1 2 3 4 5 6
q/N

0

0.2

0.4

0.6

0.8

1

<
S m

ax
 >

/N

L=20  T=0.3
L=20  T=0.7
L=30  T=0.3
L=30  T=0.7
L=40  T=0.3
L=40  T=0.7

Figure 7.1: Order parameter〈Smax〉/N versus scaled initial cultural diversityq/N for a very

small density of empty sitesh = 0.05 and different values of the intoleranceT = 0.3, 0.7, and of

the lattice linear sizeL = 20, 30, 40, as indicated in the inset.

on the Schelling model are (158; 159; 160; 161). See also (162) for some critical comments on

the physical perspective of the Schelling model.

7.3 Results and Discussion

For the initial conditions for the cultural dynamics,N cultural agents are randomly distributed

in theL × L sites of the square lattice, and randomly assigned a culture. The simulation is

stopped when the numberna of active links (i.e., links such that0 < ωij < 1) vanishes. The

results shown below are obtained by averaging over a large number (typically 5 · 102 − 104)

of different initial conditions.

The usual order parameter for the Axelrod model is〈Smax〉/N , where〈Smax〉 is the average

number of agents of the dominant (most abundant) culture. Large values (close to unity) of

the order parameter are the signature of cultural globalization. In Fig.7.1, we plot the order

parameter versus the initial cultural diversity scaled to the population size,q/N , for a small

value of the density of empty sitesh = 0.05, and different values of the intoleranceT and

of the linear sizeL. We observe the collapse in a single curve of the graphs corresponding

to different lattice sizes and, moreover, that the results are rather insensitive to the intolerance

values. Figure7.2 represents the cultural distribution in both states: ordered phase for low

values ofq/N , and disordered phase for high values ofq/N .

For a fixed value of the initial cultural diversityq, the larger the sizeN of the population

is, the more likely an agent can share a cultural feature with someone else in the population.
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Figure 7.2: Cultural distribution when the density of empty sites is below their percolation thresh-

old: The system is characterized by two phases as in the original Axelrod Model: A monocultural

phase for low values of initial cultural diversity q/N (leftchart, q/N=0.1) and a multicultural phase

for high values of q/N (right chart, q/N=5). The center chart(q/N=1) represents an anomalous state

that is present only in some realizations. Each color represents the cultural group that owns the

node. Empty cells are represented in black. Here has been taken L=30, h=0.05 and T=0.8.

Hence, as mobility allows contacts with virtually anybody, the increase of the population size

enhances the tendency towards cultural globalization, and the monocultural (ordered) phase

extends up to higher values of the parameterq. The critical valueqc of the transition between

consensus and a disordered multicultural phase diverges with the systemsizeqc ∼ N , so that

in the thermodynamical limit only global cultural states are possible for a small density h of

empty sites.

We will focuss hereafter on larger values of the densityh of empty sites, a regime where

the cultural dynamics shows strikingly different features. At very low values of the initial

cultural diversityq (so that cultural convergence is strongly favored), the asymptotic statesare

characterized by low values of the order parameter〈Smax〉/N . The reason for the absence of

cultural globalization in this regime is the existence of disconnected monocultural domains,

a fact that requires values of the density1 − h of cultural agents at least close to (or below)

the site percolation threshold value for the square lattice (0.593). In Fig.7.4we plot the order

parameter versus the densityh of empty sites, for three different values ofq/N , intolerance

T = 0.7, and linear lattice sizeL = 30. For the largest value ofq/N = 4.0 corresponding

to the culturally disordered regime, the order parameter is rather insensitiveto theh values.

This is also the case forq/N = 1.1, a value representative of the cultural globalization regime.

However, for the lowest value ofq/N = 0.5, we observe the decrease of the order parameter

when1− h takes on values close to the site percolation threshold, signaling the appearance of
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Figure 7.3: Order parameter〈Smax〉/N versus scaled initial cultural diversityq/N for an inter-

mediate value of the density of empty sitesh = 0.5. Panel (a) corresponds to a high value of the

intoleranceT = 0.7, and different lattice linear sizesL = 20, 30, 40, 50, while in panel (b)

L = 40, and different values of the intoleranceT = 0.2, 0.4, 0.7, 0.9 are used. See the text for

further details.
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Figure 7.4: Order parameter〈Smax〉/N versus densityh of empty sites, for three different values

of the scaled initial cultural diversityq/N = 0.5, 1.1, 4.0, T = 0.7, and linear lattice sizeL = 30.

the fragmented multicultural regime. This new kind of macroscopic multicultural state is thus

of a very different nature from the ”genuine” multicultural phase of the original Axelrod model

(h = 0). Though cultural convergence is locally achieved inside each geometrical cluster, the

absence of contacts between clusters makes impossible the existence of globalization. The

values of the order parameter in thisfragmentedphase, represented in Fig.7.3a as a function

of q/N with h = 0.5 andT = 0.7 and for several values ofL, decrease with increasing lattice

size, and the expectation is that the order parameter vanishes in the thermodynamical limit,

because the largest cluster size below percolation should be independent of the lattice size.

Left chart of figure7.5 shows the cultural distribution of this new multicultural fragmented

phase, next to the phases of original Axelrod Model.

The increase inq from the very small values that correspond to the fragmented multicultural

phase has the seemingly paradoxical effect of increasing the order parameter〈Smax〉/N values,

i.e., the increase of the initial cultural disorder promotes cultural globalization.To understand

this peculiar behavior, one must consider the effect of the increase ofq in the initial mobility

of the agents. One expects that the higher the value ofq is, the lower the initial values of

the cultural overlapωij among agents are, and then the higher the initial mobility of agents

should be. Under conditions of high mobility, the processes of local cultural convergence are

slower than the typical time scales for mobility, so that the agents can easily move before full

local consensus can be achieved, propagating their common features, and enhancing the social

influence among different clusters. In other words, the attainment of different local consensus

in disconnected domains is much less likely to occur, and one should expect the coarsening of

a dominant culture domain that reaches a higher size.
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Figure 7.5: Cultural distribution for a empty sites density above theirpercolation threshold. A

new multicultural fragmented phase appears for very low values of the initial cultural diversity

(left chart, q/N=0.1), in adition to the two phases of original Axelrod Model (the ordered phase

of center chart for q/N=1 and the disordered phase of right chart for q/N=5). Here has been taken

L=30, h=0.45 and T=0.8. Colors represent the cultural groups and black sites the empty cells.

A straightforward prediction of this argument is that one should observe higher values

of 〈Smax〉/N for higher values of the intoleranceT , because agents mobility is an increasing

function of this parameter (see eq. (7.3)). The numerical results shown in Fig.7.3b for different

values ofT andh = 0.5 nicely confirm this prediction, in support of the consistency of the

previous argument. Interestingly, for very low values ofT when mobility is not enhanced,

multiculturalism prevails for the whole range ofq values. On the contrary, for high values of

the intoleranceT , an almost full degree of cultural globalization is reached, as indicated by

the values〈Smax〉/N ≃ 1 of the order parameter. In those final states almost all agents belong

to a single connected monocultural cluster. One should also note that, for fixed values of the

intoleranceT and the densityh of empty sites, the previous argument indicates that the relevant

variable for this transition is the initial cultural diversityq, and notq/N , so that the interval of

values ofq/N that corresponds to the multicultural fragmented phase shrinks for increasingN

values.

To characterize the passage from the multicultural fragmented phase to global consensus

with increasing initial cultural diversity, we have computed the histograms of the values of

Smax/N at values ofq where the order parameter increases, see Fig.7.6. The histograms

display the bimodal characteristics of a first-order transition. In a fractionof realizations, the

transient mobility is able to spread social influence among the clusters so that global consensus

is finally reached. This fraction increases withq, to the expense of the fraction of realizations

where fragmented multiculturality is reached. Note that no significant changeof shape and
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Figure 7.6: Histograms of the values ofSmax/N , nearby the transition from the fragmented mul-

ticultural phase to globalization, for9. × 103 realizations at (from left to right and top to bottom)

q = 100, 150, 250, 400, for L = 30, h = 0.5, andT = 0.7. The histograms display the

characteristic behavior of a discontinuous (first order) phase transition.

position of the corresponding part of the histogram is noticeable, apart from its progressive

reduction to lower volumes, whenq increases.

Further increase of the initial cultural diversityq enhances the likelihood of agents sharing

no cultural feature with anybody else in the finite population. The presenceof these culturally

”alien” agents decreases the value of the order parameter and the increase of their number

with q is concomitant with the transition to multiculturality in the original Axelrod model (as

well as here, for finite populations). We see in Fig.7.3b that the increase of the intolerance

parameterT shifts this transition to higher values ofq/N , in agreement with the enhancement

of the convergence to globalization thatT produces via mobility, as discussed above. Each

alien agent has, at all times, a mobilitymi = 1, and the average mobility cannot decrease

in time to zero value when they appear. In other words, the asymptotic states ofthe cultural

dynamics are no longer characterized bym = 0. The time evolution of the average mobilitym

for particular realizations ath = 0.5, T = 0.7, L = 30 and different values ofq/N is shown

in Fig 7.7. The value ofq/N beyond which the stationary average mobility is larger than zero

signals the appearance of these alien cultural agents.

In addition, the restless character of the alien agents has an important effect on the geometry

of the dominant culture, namely itserosion. As an illustrative example, let us consider the

situation represented in the inset of Fig.7.8, in which an agenti of the dominant culture is

placed at the frontier of a cluster, having a single neighbor of his kind, and assume that an alien

agentj has moved recently to one of the empty neighboring sites ofi. When agenti is chosen
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Figure 7.7: Average mobilitym versus timet for h = 0.5, L = 30, T = 0.7 and different values

of the scaled initial culture diversityq/N as indicated. Unlike the other figures, in this case each

curve represents the results of a single realization. See the text for further details.

for an elementary dynamical step, there is a probability1/2 of choosing agentj for an imitation

trial. As ωij = 0, and then̄ωi = 1/2, the agenti will move from there to a randomly chosen

empty site whenever the intolerance parameter isT > 1/2. We see that, for this particular

situation, the erosion of the dominant culture cluster will occur with probability one half.

Note that the erosion of the dominant culture cluster does not change the sizeSmax of the

dominant culture. It simply breaks it up into separate domains, some of them consisting of

single (isolated) individuals. These isolated members of the dominant culture will eventually

adhere to domains, to be at a later time again exposed to erosion, and so on. Therefore the

shape and number of domains of the dominant culture (as well as that of the other ones),

fluctuate forever. The numbernD
0 of isolated dominant culture agents reaches a stationary

value that results from the balance between erosive and adhesive processes. To quantify the

strength of the eroding activity of cultural minorities we show in Fig.7.8 the stationary value

of the averaged fraction〈 nD
0

Smax
〉 of isolated individuals of the dominant culture versus the scaled

initial cultural diversity, forh = 0.5, T = 0.7, andL = 30. Soon after the transition from the

fragmented multicultural phase to globalization occurs, erosion increases dramatically, largely

contributing to the large values of the stationary mobilitym that characterize the multicultural

states in the model here introduced.

Figure7.9shows the order parameterSmax/N versus intolerance T, for a scaled diversity

initial q/N = 1.1 and different densities of empty sites h. This value ofq/N is high enough

to avoid cultural globalization in the Axelrod limit, but low enough to allow the overlap. There

exists a threshold of intoleranceTc, below which the order parameter isSmax/N ≈ 0. If
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Figure 7.8: Cultural minorities continuously erode the dominant culture domain, that breaks into

separate domains and isolated individuals. As a quantitative measure of this erosion phenomenon

we plot here the stationary value of the averaged fractionnD
0 /Smax of isolated individuals of the

dominant culture versusq/N , for h = 0.5, T = 0.7, andL = 30. The inset shows an illustrative

configuration where erosion can take place.

T < Tc the mobility is low and can not promote cultural convergence. Although empty sites

enhance mobility, paradoxically it is found thatTc increases with h. The explanation for this

phenomenon is that the influence of h on the mobility is small, but the increase of himplies

a decrease of N, therefore also a decrease of q ifq/N had been fixed. This in turn implies

a increase of mean overlapωi, a decrease of mobilitymi and finally the incerase ofTc as

observed. For low values of h, ifT > Tc the order parameter is foundSmax/N ≈ 1, that is,

above a critical value of mobility the system reaches monocultural state. By contrast, when h

is high enough to allow the formation of site clusters, it can be seen a discontinuous behavior:

Now a node can havem = 0, 1, 2, 3 or 4 neighbors, andSmax(T ) presents steps for T=n/m.

7.4 Theorical analysis

Let i be a node of dominant culture D, andκ its number of links to his cultural domain. If i has

an allien neighbor of culture O, every time step the probabilityPsu for i to stay unchanged, ie,

to preserve his features and rest in D-group is:

Psu =
k + (1− ωDO)H(k+ωDO

k+1 − T )

k + 1
, (7.5)
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Figure 7.9: Order parameterSmax/N versus intolerance T, for differents values of h, q/N=1.1 and

L=30. The shape corresponds to discrete and continuous aspects of the algorithm. Results have

been averaged for103 different initial conditions. See the text for further details.

where H represents the Heaviside function. The probabilityPsc for i to change, that is, to leave

the group D is:

Psc =
ωDO

k + 1
, (7.6)

and the probabilityPsu for i to move is:

Pm =
1− ωDO

k + 1
H(T − k − ωDO

k + 1
) , (7.7)

From now on, we deal with stationary state, and therefore we takeωDO = 0.

In order to calculate an estimate ofnD
0 , we consider:

nu: number of D-agents exposed to real erosion, ie, having an allien-neighbour they belong

to a D-cluster with at least three elements.nu is the sum of nodes like that, withκ links to

D-agents:

nu =
∑3

κ=1 n
u(κ).

nu
2 : D-agents exposed to erosion that belong to a 2-agents domain.

nE : number of empty sites adjacent to a D-domain.

HD
0 : number of empty sites adjacent to isolated D-agents.

We take into account the useful time step, ie, we only consider a step when a event occurs.

That only implies a time translation and does not affect fixed points. We study the most likely

events of erosion and adhesion:

• a1: Simple adhesion event:nD
0 → nD

0 − 1 , ∆Nu ≥ 0 ,
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• e1: Simple erosion event:nD
0 → nD

0 + 1 , ∆Nu = −1 ,

• a2: Double adhesion event:nD
0 → nD

0 − 2 ,

• e2: Double erosion event:nD
0 → nD

0 + 2 ,

and, their respectives probabilities are:

P (a1) =
nD
0 n

E

hL2(n0 + nD
0 + nu)

,

P (e1) =
(

1− nE

hL2

) 1

n0 + nD
0 + nu

3
∑

κ=1

nU (κ)
1

κ+ 1
H
(

T − κ

κ+ 1

)

,

P (a2) ≃ nD
0

n0 + nD
0 + nu

HD
0

hL2
,

P (e1) =
(

1− nE

hL2

)nU
2

1
2H(T − 1

2)

n0 + nD
0 + nu

.

(7.8)

A necessary condition for equilibrium is:

P (a1) + 2P (a2) = P (e1) + 2P (e2)

(7.9)

Therefore, under this assumptions (we are not taking into account all possible events), we

can replace7.8 in 7.9to estimatenD
0 :

T < 1/2 : nD
0 = 0 ,

1/2 < 2/3 : nD
0 =

(hL2 − ne −HD
0 )(nu(1) + nu

2)

2(nE +HD
0 )

,

2/3 < 3/4 : nD
0 =

(hL2 − ne −HD
0 )(12n

u(1) + 1
3n

u(2) + 1
2n

u
2

nE +HD
0

,

T ≥ 3/4 : nD
0 =

(hL2 − ne −HD
0 )(12n

u(1) + 1
3n

u(2) + 1
4n

u(3) + 1
2n

u
2

nE +HD
0

(7.10)

Figure7.10 shows the comparison between theorical estimate for the isolated dominant

culture agentsnD
0 and experimental results. As one can see, although theory underestimates

the value of isolated agents, adjustment is quite good. The explanation for thisdeviation is
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Figure 7.10: Isolated dominant culture agentsnD
0 versus the scaled initial cultural diversityq/N ,

for T=0.8, h=0.3 and L=30. Circles represent simulation results for 104 realizations, and lines

theorical estimation.

that we have ignored some kinds of events. However,nD
0 estimate is rooted not only in system

parameters, but also in other observables related to the spatial distribution (perimeter, location

of aliens), so that rather than a prediction is a check of the analytical method.

7.5 Conclusions

We have introduced a model of cultural dynamics in which agents can move driven by cultural

dissimilarities with their environments, at the style of the Schelling model of urban segregation.

The introduction of agents mobility through this segregation mechanism into the Axelrod cul-

tural dynamics leads to an enhancement of the convergence to cultural globalization for small

densities of empty sites, so that the behavior of the order parameter (i.e., the relative size of

the dominant culture) scales with the numberN of cultural agents. That is, the transition to

multiculturalism only occurs for finite populations.

Furthermore, for larger densities of empty sites, when cultural agents cannot percolate the

lattice, a new type of multicultural fragmented phase appears at low values ofthe initial cultural

diversity q. Though the initial cultural overlap is enough to trigger the local cultural conver-

gence inside each geometrical cluster of agents, cultural globalization is nolonger possible

due to the lack of cultural transmission between monocultural isolated domains.Provided the

values of the intoleranceT are high enough, this regime is followed by a new transition to

globalization for increasing values ofq, that is triggered by the increase in the initial mobility.

Moreover, in the genuine Axelrod transition from global consensus to polarization, the shape
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and number of cultural domains are here dynamically fluctuating by the competitive balance of

erosive and adhesive processes associated to the agents mobility.
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Chapter 8

Selective advantage of tolerant

cultural traits in the Axelrod-Schelling

model.

In the previous chapter7 we introduced the Axelrod-Schelling model, that incorporates into the

original Axelrod’s model of cultural dissemination the possibility that culturalagents placed

in culturally dissimilar environments move to other places, the strength of this mobility being

controlled by an intolerance parameter. By allowing heterogeneity in the intolerance of cultural

agents, and considering it as a cultural feature,i.e., susceptible of cultural transmission (thus

breaking the original symmetry of Axelrod-Schelling dynamics), we address here the question

of whether tolerant or intolerant traits are more likely to become dominant in the long term

cultural dynamics. Our results show that tolerant traits possess a clear selective advantage in

the framework of the Axelrod-Schelling model. We show that the reason forthis selective

advantage is the development, as time evolves, of a positive correlation between the number of

neighbors that an agent has in its environment and its tolerant character.

8.1 Introduction

In the Axelrod-Schelling model introduced in chapter7, we focused on mobility, considering

the driving force of mobility is the agents’ cultural dissimilarity with their environment, i.e.,

homophile (dis)satisfaction, the same that drives cultural transmission. Starting from the Ax-

elrod model for culture dissemination and the residential segregation model of Schelling, two
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new parameters where introduced, namely the densityh of empty lattice sites (places that are

available to moving agents), and an intolerance parameterT that controls the strength of the

mobility: If an attempt to cultural interaction (imitation) fails, then the agenti moves to a ran-

domly chosen empty lattice site if its mean cultural similarityω̄i < T . T here is a threshold

for tolerance, in such a way that high values ofT characterize intolerant societies.

In this chapter, we extend the Axelrod-Schelling model by considering intoleranceT as

a cultural feature, and then it is no longer a parameter (a property of the whole population)

but an individual property of agents subjected to cultural transmission. Due to its influence on

the dynamics through the rule of mobility, the question of whether or not certaintraits of this

feature are more likely to be present in the dominant culture makes sense, contrary to what

occurs with the rest of cultural features, whose particular traits do not influence the dynamics,

and are thus selectively neutral.

We have performed extensive numerical simulations that implement differentrules for the

mobility of agents, whose results show unambiguously that tolerant traits possess a selective

advantage over intolerant ones,i.e., they are better adapted for survival in the long term dy-

namics. Furthermore, by a stochastic analysis we present arguments showing that the reason

of this cultural evolutionary success of tolerant traits is the establishment in the population of

a negative correlation between the numberki of neighboring agents, and the valueTi of the

agent intolerance. This is presented in section8.3. Before, in section8.2, we reconsider the

transition between fragmented multiculturalism and globalization, first analyzedin chapter7,

by using an alternative scheme for mobility with homogeneous intolerance. Thisnew scheme

corresponds to the homogeneous version of one of the rules of mobility used in section8.3

(mobility by social rejection), so that this helps in the interpretation of some of these results,

and at the same time, it throws a new light on the understanding of the mechanismstriggering

this transition. Finally, we summarize our results in the concluding chapter10.

8.2 The transition from fragmented multiculturalism to globaliza-

tion revisited

One of the new phenomena that appear associated to the mixed Axelrod-Schelling social dy-

namics is the existence, for values of the density(1−h) of agents below the lattice percolation

threshold, of a multicultural macroscopic phase at very low values of the initial cultural diver-

sity q. In this regime, the processes of local cultural convergence are faster that the typical time
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scales at which mobility is able to induce global convergence to a monoculturalstate. In this

multicultural state agents are aggregated into disconnected (monocultural) clusters where dif-

ferent cultural consensus have been achieved. Hence the namefragmentedfor this multicultural

phase.

If the value ofq is increased (see figure 1a), the behavior for the order parameter〈Smax〉/N ,

becomes rather sensitive to the value of the intolerance parameterT : For very low values of

T multiculturalism persists, while for very high values, a first order transition tocomplete

globalization is observed. At intermediate values ofT , the order parameter increases versus

q but complete globalization is not reached. The observation that the increase of the initial

cultural diversity promotes cultural globalization may seem paradoxical ata first sight, but it

is not difficult to rationalize it by noting that an increase inq has also the effect of enhancing

mobility, which is in turn an important driving force towards globalization. Moreover, insofar

as higher values ofT enhance agents’ mobility, the different behaviors that are observed for

different values of the intolerance are consistent with this interpretation.

To deepen further our current understanding of the complex competing effects of different

parameter variations that lead to the transitionfragmented multiculturalism-globalization, we

study here this transition in a different scheme for the mobility of cultural agents. We remind

here that in the original scheme of chapter7, after an elementary step of the Axelrod dynamics,

if imitation has not occurred andωij 6= 1, the agenti moves to a randomly chosen empty site

whenever̄ωi < T . If the agenti turns out to be isolated, then it moves with certainty. We refer

hereafter to this scheme as A. The mobilitymi of an agenti is defined as the probability that it

moves in one elementary dynamical step (provided it has been chosen). Thus in the scheme A:

mA
i = (1− ω̄i) Θ(T − ω̄i) , (8.1)

whereΘ(x) is the Heaviside step function, that takes the value 1 ifx > 0, and 0 ifx ≤ 0.

In the new scheme, hereafter referred to as B, after an elementary step of the Axelrod

dynamics, if imitation has not occurred andωij 6= 1, the agenti moves to a randomly chosen

empty site with probability(1 − ω̄i) T . In the case that agenti is isolated, then it moves with

certainty, as in the previous scheme. The mobility of agenti in the scheme B is thus given by

mB
i = (1− ω̄i)

2 T . (8.2)

As shown in the figure8.2, in both schemes the mobility is a decreasing function ofω̄.

However in the scheme A the mobility vanishes in the intervalω̄ > T (being independent on
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Figure 8.1: Order parameter〈Smax〉/N versus scaled initial cultural diversityq/N for a density

of empty sitesh = 0.5 and lattice linear sizeL = 40. Panel (a) corresponds to scheme A for

different values of the intolerance parameter. Panel (b) corresponds to scheme B. See the text for

further details.
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Figure 8.2: Mobility mi for a nodei as a function of his mean overlap̄ωi in schemes A and B. In

the scheme A the mobility vanishes forω̄ > T . Otherwise, whenever̄ω 6= 1 andT > 0, it does not

vanish in the scheme B.

T for ω̄ < T ), while it does not vanish in the scheme B, providedω̄ 6= 1 (andT > 0), though

it takes lower values than in the scheme A forω̄ < T where it depends linearly onT .

In figure8.1(b) we plot the order parameter versus the scaled initial cultural diversityq/N

for h = 0.5 and different values of the intoleranceT , for the scheme B and a two-dimensional

square lattice geometry. In contrast with the results for the scheme A (shownin figure8.1(a)),

the behavior of the order parameter turns out to be rather insensitive to thevalues of the in-

toleranceT , and the transition from the fragmented multicultural phase to globalization takes

place for all the values ofT that we have used. How to fit these observations into the interpre-

tation framework given in chapter7 (succintly reproduced above in a previous paragraph) for

the transition?

To have a better picture of the speed at which the processes of cultural convergence take

place and what parameters are more influential on them, we have inspected the time evolution

of the histograms of̄ω, namelyP (ω̄, t), at values of the initial cultural diversity close (below

and above) to the transition. In all cases and for both schemes, this probability density evolves

always from being sharply concentrated nearω̄ = 0 at t = 0, to become later widespread,

the centroid shifting to progressively higher values ofω̄ as time goes by, until it concentrates

nearω̄ = 1, finally becoming a Dirac delta functionδ(ω̄ − 1). The time scale at which this

evolution occurs seems not to be influenced by the scheme (A or B) adoptedand the influence

of the value ofT is also minor. The important parameter that mainly determines the time scale

of local cultural convergence is the initial cultural diversityq: The lower its value the faster
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this process takes place. Then, what makes a truly meaningful difference between, on one side,

both scheme A at highT values and scheme B at allT values and, on the other side, scheme

A at low T values (where the transition to globalization is absent), is that agents with high

cultural overlap do not move in the latter.

These results throw a new light over the mechanisms that trigger the transition from the

fragmented multicultural phase to cultural globalization. The increase of the initial cultural

diversity slows down the local cultural convergence, giving then a chance to mobility to induce

global cultural consensus. But it is the mobility of agents with a significant high local cultural

overlap (however small its mobility could be, as it is the case for the scheme B atlow T values),

and not just the amount of overall mobility, what allows the effective culturaltransmission

among the disconnected clusters of the fragmented states so making possible the coalescence

of the giant monocultural cluster characteristic of the globalization state. If mobility is strictly

limited to culturally marginal agents, its power of cultural transmission is unable to overcome

the fragmentation into disconnected cultural clusters.

8.3 Heterogeneous intolerance.

As we have already mentioned in the introductory section, the mobility of cultural agents in the

Axelrod-Schelling model is driven by the same utility (or social driving force) that underlies

the cultural dynamics of the Axelrod model (as well as the dynamics of the Schelling model),

namely ”homophile satisfaction”. In the model, those agents that are placed inside fully ho-

mogeneous cultural environments don’t move. Cultural dissimilarities are the only source of

mobility, and the parameterT , that controls the strength of mobility, quantifies the degree

of (in)tolerance to cultural dissimilarities. Being a model parameter, toleranceis a quantity

characteristic of the whole (artificial) society. In other words, in this context one can speak

of tolerant (low value ofT ) or intolerant societies. However, it seems to us rather natural

to consider (artificial) societies where different agents have differentdegrees of tolerance to

cultural dissimilarities. This certainly opens the possibility of new interesting questions to be

investigated inside the model.

In what follows, we consider that each cultural agenti has assigned a real number0 ≤
Ti ≤ 1, called intolerance. Moreover, we are going to consider the intolerance of agents as

a quantity associated to acultural feature, i.e. a component of the cultural vector, and then

subjected to temporal changes as a result of cultural interactions. Withoutloss of generality,
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one can associate the agents’ intolerance to the first componentσ1 of the cultural vector{σf}.

As this variable takes on integer (0, 1, ..., q − 1) values, one has to choose some functionf(x)

that takes values in the interval[0, 1], and define the intoleranceTi of agenti to be

Ti = f(σ1(i)) . (8.3)

Next we have to specify the particular way in which the agents’ intolerancesenter into the

dynamical rules. Many alternatives can indeed be considered for it, andour first choice will be

the following: After an elementary step of the Axelrod dynamics, if imitation has not occurred

andωij 6= 1, the agenti moves to a randomly chosen empty site with probability

1

ki

ki
∑

j=1

(1− ωij)Tj , (8.4)

where the sum extends to theki neighbors ofi, and if the agenti is isolated (ki = 0) it moves

with certainty. In this choice, the intolerancethetaj of a cultural agentj is seen as its degree of

hostility towards a culturally dissimilar neighbori, and is weighted by the cultural dissimilarity

(1 − ωij). The mobility of an agenti is here the result of thesocial rejectionof its neighbors,

due to cultural dissimilarities.

The Axelrod-Schelling model with homogeneous tolerance, as the original Axelrod’s model

does, assumes an unbiased scenario in the sense that the traits of a cultural feature are com-

pletely interchangeable: Nothing in the dynamical rules distinguishes among different traits,

and then the likelihood that each particular trait is present in the dominant culture of a realiza-

tion is the same for all of them, provided they are uniformly distributed in the initial conditions

for the dynamics. The particular traits that survive in the dominant culture ofa given realization

reach fixation by neutral selection, so that averaging over many independent realizations, one

obtains a uniform distribution of traits in a large enough sample of dominant cultures.

However this symmetry of the model is broken in our current case of heterogeneous intoler-

ance regarding the cultural featureσ1, for its particular values do influence the local dynamics

through the dynamical rule of mobility. Then, the question of how likely are different traits to

prevail and be present in the dominant culture makes now sense in this new symmetry-breaking

scenario. Do tolerant traits possess a cultural selective advantage? or, on the contrary, are intol-

erant traits better adapted to survive? Moreover, by which dynamical mechanisms the ”natural”

selection of particularT values is built up in the time evolution of the populations of cultural

agents?
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Note that if one takes forf(x) in equation (8.3) a constant function, so thatTi = T inde-

pendent ofi, one recovers the scheme B introduced in the previous section8.2. In the extent

that the behavior of the order parameter〈Smax〉/N (for a density of empty sitesh = 0.5) in

scheme B was seen to be rather insensitive to the value ofT , one should expect in the present

case of heterogeneous intolerance, that the order parameter for a density of empty sitesh = 0.5

will be as shown in figure8.1(b). Thus the choice made above in equation (8.4) is technically

convenient for the purpose of investigating the question on the selective advantage of tolerant

traits, just because it is expected that it leads to states of cultural globalization in some ranges

of the initial cultural diversity, when the very term ”dominant culture” is mostmeaningful.

We consider two-dimensional square lattices of linear sizeL, with periodic boundary con-

ditions. The numberF of cultural features is fixed toF = 10, and we have used two values

of the density of empty sites, namelyh = 0.05, representative of the situation in which agents

percolate the lattice, andh = 0.5 as representative of the opposite case. Forf(x) we will

consider a simple linear function:

Ti = q−1σ1(i) . (8.5)

For the initial conditions,N = (1− h)L2 agents are randomly distributed on theL×L lattice

sites and randomly assigned a culture. The simulation of the cultural dynamics isstopped when

the number of links for which0 < ωij < 1, commonly called active links, vanishes. Besides

the order parameter, we compute the intoleranceTD of the dominant culture, the average intol-

erance〈T 〉, and sometimes, the histogram of intolerance values of the final state. The results

that we show below are obtained by averaging over a large number (typically 103 − 104) of

different initial conditions.

In the two panels of Figure8.3we show our numerical results forh = 0.05 (panel a) and

h = 0.5 (panel b). First, we confirm the expectations on the behavior of the order parameter

discussed above: Given the insensitive character of the order parameter in the scheme B to the

value of the intolerance parameterT for both values ofh, no effect on〈Smax〉/N due to the

heterogeneity of agents’ intolerance is observed.

The numerical results for the intolerance valuesTD of the dominant culture for both values

of the density of empty sites clearly show that very tolerant traits are better adapted to survive

and become a part of the dominant culture. This occurs in the whole range of values of the

initial cultural diversity that leads to values of the order parameter much larger thanN−1 (so

as the term dominant possess a meaning). By comparing the graphs ofTD shown in Figs.8.3a
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Figure 8.3: Order parameter〈Smax〉/N (stars), intoleranceTD of the dominant culture (circles),

and average intolerance〈T 〉 (squares) versus scaled initial cultural diversityq/N for a lattice linear

sizeL = 40, for the scheme of mobility corresponding to equation (8.4). Panel (a) corresponds

to a density of empty sitesh = 0.05. Panel (b) corresponds toh = 0.5. See the text for further

details.
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Figure 8.4: Comparison ofTD and〈T 〉 for L = 40 andL = 100, h = 0.5 and the same mobility

rule used in Fig8.3.

and8.3b, we observe that theTD values are significantly lower forh = 0.5 than forh = 0.05,

so that the strength of the selective advantage of tolerant traits increaseswhen the densityh

of empty sites is higher. The fact that the average intolerance〈T 〉 of the final configurations

is higher thanTD, provided the order parameterN−1 ≪ 〈Smax〉/N < 1, indicates that the

non-dominant surviving values of the intolerance are typically larger thanthe dominant one.

We further show in Fig.8.4 that the results regarding the behavior ofTD and〈T 〉 for L = 40,

are essentially unchanged for lattice of size100× 100.

In Fig. 8.5 we show the histogram ofTD values, obtained from2 × 103 realizations, at

fixed value ofq/N = 1.1, for a density of empty sitesh = 0.05. One should note that though

the mean value of the dominant intolerance is atTD = 0.07, the probability density is sharply

peaked atTD = 0 and quickly decays to negligible values asTD increases. In other words,

the lower the value ofTD, the more probable, so that the mean value is only indicative of the

dispersion scale of the density.

In order to explain why tolerant traits are better adapted to prevail in the longterm of the

dynamics, let us consider the subsetA(T, t) of those cultural agentsi for which, at timet,

Ti ≤ T , whereT is an arbitrarily chosen value of the intolerance (e.g., T = 0.3 or more, or

less). Let us denote byn(T, t) the cardinal ofA(T, t), and callL(T, t) the set of lattice links

(i, j), such that the agenti belongs toA(T, t) and the agentj is not in this set (soTj > T ). If

time is measured in elementary step units, the difference

∆n(T, t) = n(T, t+ 1)− n(T, t) (8.6)
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Figure 8.5: Histogram of the values of the intoleranceTD of the dominant culture for2 × 103

realizations, at scaled initial cultural diversityq/N = 1.1, and a densityh = 0.05 of empty sites.

See the text for further details.

can only take on the values0,±1. To compute the probabilityP+ that∆n(T, t) takes on the

value+1, one has to sum over all links(i, j) ∈ L(T, t) the product of the following factors:

a) the probability (N−1) of choosing agentj for a cultural imitation trial,

b) the probability (k−1j ) that its neighbori is chosen,

c) the probability (ωij) that agentj imitates an uncommon feature’s trait ofi, and

d) the probability
(

1
(1−ωij)F

)

that the chosen uncommon feature isσ1.

Note that for a link(i, j) in the setL(T, t), the strict inequalityωij < 1 holds. Then we

obtain

P+ =
1

NF

∑

(i,j)∈L(T,t)

1

kj

ωij

(1− ωij)
. (8.7)

In a similar way, the probabilityP− that∆n(T, t) takes on the value−1 is

P− =
1

NF

∑

(i,j)∈L(T,t)

1

ki

ωij

(1− ωij)
. (8.8)

We see that the number of agents in the setA(T, t) performs a complicated random walk

with left- and right-step probabilities changing in time as dictated by the model dynamics. The

expected value of∆n(T, t) is given by the difference(P+ − P−), then

E[∆n(T, t)] =
1

NF

∑

(i,j)∈L(T,t)

(ki − kj)

kikj

ωij

(1− ωij)
. (8.9)
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This equation is the basis for an understanding of the selective advantageof tolerant traits.

Indeed, following equation (8.4), agents with highTi values promote the mobility of their

neighbors (leaving empty sites in their neighborhoods) more than tolerant agents do, so that one

should expect that a negative correlation between values ofki andTi may be easily developed in

the population, and tolerant agents may likely have larger values ofki than those of intolerant

agents. If this is the case, then equation (8.9) indicates that the random walk performed by

n(T, t) will be biased to the right, and the number of tolerant agents will likely increaseas time

evolves. The cultural selective advantage of tolerant traits has its origin on the bias produced by

the negative correlation degree-intolerance (ki, Ti) that is directly induced by the dynamical

rule of social rejection.

The equation (8.9) allows also to rationalize the observation that the selective advantage of

tolerant traits is strengthened by higher values of the densityh of empty sites, because higher

h values easily allow for higher values of the degree differences (ki − kj) for (i, j) ∈ L(T, t),

and so the bias favoring the increase ofn(T, t) can be stronger.

We have also considered a second way in which agents’ intolerance enterinto the mobility

rule of the dynamics: After an elementary step of the Axelrod dynamics, if imitationhas not

occurred andωij 6= 1, the agenti moves to a randomly chosen empty site provided

ω̄i < Ti . (8.10)

Note that if one takes forf(x) in equation (8.3) a constant function, so thatTi = T indepen-

dent ofi, one recovers the scheme A for homogeneous intolerance, that was used in chapter

7: Intolerance value is a threshold for the cultural overlap. But there is also here an impor-

tant difference with respect to equation (8.4) regarding the interpretation, or meaning, of the

intolerance. In (8.10) what determines whether an agenti moves or not, is its own intolerance

valueTi, instead of that of its neighbors, as in the previous case. Though both dynamical rules

are based on homophile dissatisfaction, they in fact implement different plausible mechanisms

for mobility. Whether the average social rejection (hostility) of my neighbors ismore impor-

tant than my own degree of tolerance with a dissimilar environment or not, in the decision of

moving, may be a question with widely different (as well as context-dependent) individual an-

swers, and it is certainly not inside the scope of this work to enter into such adiscussion. We

regard here both as alternative plausible mechanisms for mobility, which may lead to differ-

ences regarding the selective advantage of tolerant traits in the Axelrod-Schelling model with

heterogeneous intolerance.
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Figure 8.6: Order parameter〈Smax〉/N (stars), intoleranceTD of the dominant culture (circles),

and average intolerance〈T 〉 (squares) versus scaled initial cultural diversityq/N for a lattice linear

sizeL = 40, for the scheme of mobility corresponding to equation (8.10). Panel (a) corresponds

to a density of empty sitesh = 0.05. Panel (b) corresponds toh = 0.5. See the text for further

details.
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Figure 8.7: Time evolution of the average number of neighbors per agent〈k〉 and average intoler-

ance〈T 〉, for q/N = 1, L = 40 andh = 0.5 as obtained from 200 realizations in the scheme of

equation (8.10).

Figure 8.8: Time evolution of the tolerance distribution when the density of empty sites is below

their percolation threshold in a representative realization. Each cell represents a node. The color

code is a quasi-continuum, from blue for tolerant nodes to red for intolerant ones. Left chart

represents the initial conditions, center charts the intermediate states and the right one the stationary

state. Here has been taken L=30, h=0.05.

Figure 8.9: Time evolution of the tolerance distribution when the density of empty sites is above

their percolation threshold in a representative realization. Codes are the same that in figure8.8.

L=30, h=0.5.
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8.4 Summary and concluding remarks.

We show in figure8.6 the results obtained for the dynamical rule associated to equation

(8.10). Though the values ofTD are in this scheme higher than those characteristic of the

scheme analyzed before, certain degree of selective advantage of tolerant traits is unambigu-

ously observed. Also, the selective advantage is stronger for high density h of empty sites,

as before. Now, however, agents move depending on their own intolerance values, and then

it is not (at least) as clear as before that a negative correlation degree-intolerance could be

established, which would in turn explain the selective advantage of toleranttraits.

A possibility for this comes from the fact that intolerant agents move to empty sitesmore

easily than tolerant agents do, so that a negative (ki, Ti) correlation could appear provided

the lattice sites occupied by agents are more likely to have agents in their neighborhood than

empty sites are. To check for this, we have computed the time evolution of the average number

of neighbors〈k〉 of agents. Figure8.7 shows that, after some (long) transient, the average

degree of agents increases above its initial value (that is〈k〉 = 4(1−h), for a square lattice and

von Neumann neighborhood). This increase of〈k〉 corresponds to the coalescence of clusters

that will become monocultural in due (short) time. Interestingly, we also see in figure 8.6

the decrease of the average intolerance〈T 〉 as soon as the average degree increases, so giving

further support to the argument.

Consequently, also in the case that the agents’ mobility is the result of their ownintolerance

to cultural dissimilarity, the tolerant traits possess selective advantage due tothe establishment

of a negative (ki, Ti) correlation which in this case has its origin in the agents’ aggregation

processes concomitant to the increase of local cultural overlaps. The observed fact that the

selective advantage of tolerant traits is now weaker than in the case when mobility is induced by

social rejection, may likely be the effect of two confluent factors; on onehand, the development

of a negative degree-intolerance correlation is not now a direct consequence of the dynamical

rule, and on the other, as analyzed in previous section8.2, agents’ aggregation processes are

much less effective when intolerance enter as a threshold for mobility.

8.4 Summary and concluding remarks.

In the Axelrod-Schelling model for cultural dissemination among mobile agents,we have

considered the intolerance, that was originally (chapter7) a model parameter controlling the

strength of agents’ mobility, as a variable associated to a cultural feature, and thus subjected to
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cultural transmission. We have performed extensive numerical simulations for two different dy-

namical rules for mobility, whose respective homogeneous versions are analyzed with respect

to the transition from topologically fragmented local consensus to global cultural consensus

that occurs at very low values of the initial cultural diversity. In the firstof these dynami-

cal rules (mobility by social rejection) agents move due to the intolerance of their neighbors,

weighted by their cultural dissimilarity, while in the second one the mobility dependson the

agent’s own intolerance to the cultural dissimilarity with its environment. In both cases our

results indicate that tolerant traits are selectively advantageous, so that the intolerance values

present in the dominant culture are preferentially low. One then sees how the breaking of the

original symmetry (indifference of the dynamics respect to particular feature’s trait values, that

leads to purely neutral selection of dominant characters in cultural evolution) effectively allows

for the appearance of natural selection of advantageous traits.

The selective advantage of tolerant traits increases with the densityh of empty lattice sites,

and is also higher for the first scheme, where mobility is the result of the social rejection from

the neighborhood. A stochastic analysis allows the rationalization of all thesenumerical obser-

vations, and points to the dynamical development of a negative correlation between the number

of neighbors of an agent and its intolerance value as the origin of the selective advantage of

tolerant traits. We should emphasize here that regarding the rule of cultural imitation, nothing

privileges tolerant traits over intolerant ones,i.e., Axelrod’s cultural interactions are completely

unbiased, so the bias towards tolerant traits can only come from the influence of the tolerance

cultural feature on the mobility of agents, that shapes the instantaneous network of interac-

tions among cultural agents. One should expect analogous findings for other network updating

dynamics as the one considered (in the symmetric context) by (166; 167), also showing topo-

logically fragmented phases, provided the trait symmetry is broken at the network updating

rule level.

In this regard, the term tolerance -in the context of the Axelrod-Schelling model- has a very

precise and narrow meaning, much more limited than its usual meaning in social science and

political philosophy, where it certainly means much more than just a conditioningfactor of the

mobility of individuals and groups. However, inside the limitations of a simple agent based

model like this one, our findings on the ”adaptive to survival” character of tolerant traits in cul-

tural dynamics, point to basic mechanisms that can be highly influential in cultural evolution.
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Chapter 9

Co-evolutionnary network approach

to cultural dynamics controlled by

intolerance.

Starting from Axelrod’s model of cultural dissemination, we introduce a rewiring probability,

enabling agents to cut the links with their unfriendly neighbors if their culturalsimilarity is

below a tolerance parameter. For low values of tolerance, rewiring promotes the convergence

to a frozen monocultural state. However, intermediate tolerance values prevent rewiring once

the network is fragmented, resulting in a multicultural society even for values of initial cultural

diversity in which the original Axelrod model reaches globalization.

9.1 Introduction

The growing interest in the interdisciplinary physics of complex systems, hasfocussed physi-

cists’ attention on agent-based modeling (32; 156) of social dynamics, as a very attractive

methodological framework for social sciences where concepts and toolsfrom statistical physics

turn out to be very appropriate (142) for the analysis of the collective behaviors emerging from

the social interactions of the agents. The dynamical social phenomena of interest include res-

idential segregation (52; 53), cultural globalization (59; 141), opinion formation (153; 168),

rumor spreading (155; 169) and others.

The question that motivates the formulation of Axelrod’s model for cultural dissemination

(59) is how cultural diversity among groups and individuals could survive despite the tenden-
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cies to become more and more alike as a result of social interactions. The model assumes a

highly non-biased scenario, where the culture of an agent is defined asa set of equally impor-

tant cultural features, whose particular values (traits) can be transmitted (by imitation) among

interacting agents. It also assumes that the driving force of cultural dynamics is the ”homophile

satisfaction”, the agents’ commitment to become more similar to their neighbors. Moreover,

the more cultural features an agent shares with a neighbor, the more likely the agent will imi-

tate an uncommon feature’s trait of the neighbor agent. In other words, thehigher the cultural

similarity, the higher the social influence.

The simulations of the model dynamics show that for low initial cultural diversity, mea-

sured by the numberq of different traits for each cultural feature (see below), the system

converges to a global cultural state, while forq above a critical valueqc the system freezes

in an absorbing state where different cultures persist. The (non-equilibrium) phase transition

(110) between globalization and multiculturalism was first studied for a square planar geom-

etry (141; 143; 144), but soon other network structures of social links (145; 146; 152) were

considered, as well as the effects of different types of noise (”cultural drift”) (147; 148), exter-

nal fields (modelinge.g. influential media, or information feedback) (149; 150; 163; 164), and

global or local non-uniform couplings (151; 165).

In all those extensions of Axelrod’s model mentioned in the above paragraph, the cultural

dynamics occurs on a network of social contacts that is fixed from the outset. However, very

often social networks are dynamical structures that continuously reshape. A simple mechanism

of network reshaping is agents’ mobility, and a scenario (named the Axelrod-Schelling model)

where cultural agents placed in culturally dissimilar environments are allowed tomove has

been analyzed in chapters7 and8. In this model, new interesting features of cultural evolution

appear depending on the values of a parameter, the (in-)tolerance, thatcontrols the strength of

agents’ mobility.

A different mechanism of network reshaping has been considered in (166; 167), where a

cultural agent breaks its link to a completely dissimilar neighbor, redirecting it toa randomly

chosen agent. At variance with the mobility scenario of the Axelrod-Schellingmodel, that lim-

its the scope of network structures to clusters’ configurations on the starting structure (square

planar lattice, or others), the rewiring mechanism allows for a wider set of network structures

to emerge in the co-evolution of culture and social ties (170).

In this chapter we introduce in the scenario of network rewiring a toleranceparameterZ

controlling the likelihood of links rewiring, in such a way that the limitZ = 1− recovers
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the case analyzed in (166; 167), where only links with an associated null cultural overlap are

broken. Lower values ofZ correspond to less tolerant attitudes where social links with progres-

sively higher values of the cultural overlap may be broken with some probability that depends

on these values. The results show a counterintuitive dependence of the toleranceZ on the

critical valueqc. On one hand, as expected from (166; 167), rewiring promotes globalization

for high values of the tolerance, but on the other hand, very low values of Z (which enhance

the rewiring probability) show the higher values ofqc. Indeed, a non monotonous behavior is

observed inqc(Z): Our results unambiguously show that for some intermediate values of the

toleranceZ, cultural globalization is disfavored with respect to the original Axelrod’smodel

where no rewiring of links is allowed. In other words, rewiring does not always promote glob-

alization. On the other hand, the resulting network topology depends onq, changing from a

Poisson connectivity distributionP (k) to a fat tailed distribution forq ∼ qc.

9.2 The model

As in Axelrod’s model, the culture of an agenti is a vector ofF integer variables{σf (i)}
(f = 1, ..., F ), called culturalfeatures, that can take onq values,σf (i) = 0, 1, ..., q − 1,

the culturaltraits that the featuref can assume. TheN cultural agents occupy the nodes

of a network of average degree〈k〉 whose links define the social contacts among them. The

dynamics is defined, at each time step, as follows:

• Each agenti imitates an uncommon feature’s trait of a randomly chosen neighborj with

a probability equal to theircultural overlapωij , defined as the proportion of common

cultural features,

ωij =
1

F

F
∑

f=1

δσf (i),σf (j), (9.1)

whereδx,y denotes the Kronecker’s delta which is 1 ifx = y and 0 otherwise. The whole

set ofN agents perform this step in parallel.

• Each agenti disconnects its link with a randomly chosen neighbor agentj with prob-

ability equal to itsdissimilarity 1 − ωij , provided the dissimilarity1 − ωij exceeds a

threshold (tolerance) Z,

1− ωij > Z , (9.2)
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and rewires it randomly to other non-neighbor agent. The tolerance0 ≤ Z ≤ 1 is a

model parameter.

First we note that the initial total number of links in the network is preserved in the rewiring

process, so the average degree〈k〉 remains constant. However, the rewiring process allows

for substantial modifications of the network topological features,e.g. connectedness, degree

distribution, etc. In that respect, except for the limiting situation of very low initial cultural

diversityq and a very high toleranceZ (where the likelihood of rewiring could be very low),

one should expect that the choices for the initial network of social ties have no influence in the

asymptotic behavior of the dynamics.

When the threshold toleranceZ satisfiesF−1F ≤ Z < 1, only those links among agents

with zero cultural overlap are rewired, so the model becomes the one studied in (166; 167). On

the other hand, when the tolerance takes the valueZ = 1, there is not rewiring likelihood and

the original Axelrod’s model is recovered. WhenZ = 0 rewiring is always possible provided

the cultural similarity is not complete,i.e., ωij 6= 1, so that it corresponds to the highest

intolerance.

The usual order parameter for Axelrod’s model is〈Smax〉/N , where〈Smax〉 is the average

(over a large number of different random initial conditions) of the numberof agents sharing

the most abundant (dominant) culture, andN is the number of agents in the population. Large

values of the order parameter characterize the globalization (cultural consensus) regime. We

also compute the normalized size〈Stop〉/N of the largest network component (i.e., the largest

connected subgraph of the network).

9.3 Results and discussion

We have studied networks of sizesN = 900, 1600; averaging over50 - 2000 replicas. Checks

for robustness of main results with larger size ofN = 2500 were also made. The considered

cultural vectors haveF = 10 cultural features, each one with a variabilityq = 5 - 10000.

We studied different values of the tolerance thresholdZ ∈ (0, 1) and different values of the

average connectivity〈k〉 = 4, 10, 20, 40. Each simulation is performed forN , F , 〈k〉, Z, and

q fixed. For the sake of comparison with previous results (166; 167), we will present results for

〈k〉 = 4.

The behavior of the order parameter for different values ofZ is seen in Fig.9.1. Like in

(166), three different macroscopic phases are observed with increasing values ofq, namely a
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Figure 9.1: Order parameter as a function of the variabilityq for different values of the tolerance

thresholdZ. N = 900, 〈k〉 = 4, average over1000 replicas.

monocultural phase, with a giant cultural cluster, a multicultural one with disconnected mono-

cultural domains, and finally a multicultural phase with continuous rewiring. The nature of the

latter phase has been successfully explained in (166): At very large values of the initial cultural

diversityq, the expected number of pairs of agents sharing at least one cultural trait becomes

smaller than the total number of links in the network, so that rewiring cannot stop. Here we

will focus attention on the first two phases and the transition between them.

In figure9.2 we show the size distribution of the dominant culture over different realiza-

tions, measured for different values ofq, at a particular fixed value of the toleranceZ = 0.5.

In the region ofq values near the transition from globalization to multiculturalism, the distri-

bution is double peaked, indicating that the transition is first order, as in the original Axelrod’s

model. The transition value,qc, may be roughly estimated as theq value where the areas below

the peaks of the size distribution are equal. The estimates of the transition pointsfor different

values of the toleranceZ are shown in Fig.9.3. The non monotonous character of the graph

qc(Z) seen in this figure reveals a highly non trivial influence of the tolerance parameter on the

co-evolution of cultural dynamics and the network of social ties.

Let us first consider the (most tolerant) caseZ = 0.9 that, except for the system size

N , coincides exactly with the situation considered in (167), i.e., only links with zero cultural

overlap are rewired. As discussed in (167), for q values larger than the critical value for a fixed

network (qc(Z = 1) ≃ 60), rewiring allows redirecting links with zero overlap to agents with

some common cultural trait (compatible agents), so reinforcing the power of social influence

to reach cultural globalization. Once all links connect compatible agents, rewiring stops (note:
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Figure 9.2: Histograms ofSmax/N for different values ofq, and for a fixed toleranceZ = 0.5,

N = 900, 〈k〉 = 4. From this figure one getsqc ∼ 20.

the decrease to zero of a positive cultural overlap cannot be strictly excluded, though it may be

considered as a non typical event). From there on, the network structure will remain fixed, and

globalization will be reached with the proviso that the network has so far remained connected.

This is the case for most realizations (forN = 900) up to values ofq ∼ 240. Increasing

further the cultural diversityq, increases the frequency of rewiring events and slows down the

finding of compatible agents, favoring the topological fragmentation into network components

before rewiring stops. Under these conditions, the asymptotic state will consist of disconnected

monocultural components.

On one hand, network plasticity allows to connect compatible agents, so promoting global-

ization; but on the other hand it may produce network fragmentation, so favoring multicultur-

alism. What we have seen in the previous paragraph is that forZ = 0.9 the first effect prevails

over the second one up toqc(Z = 0.9) ≃ 240. Going from there to less tolerant situations

(decreasingZ), increases the likelihood of rewiring, making easier that network fragmentation

occurs before rewiring stops. This has the effect of decreasing the critical valueqc. In fact,

from Fig.9.3we see that forZ = 0.7, 0.6, and0.5 multiculturalism prevails for cultural diver-

sities where the original Axelrod’s model shows cultural globalization. In these cases network

plasticity promotes multiculturalism in a very efficient way: Agents segregate from neighbors

with low cultural similarity and form disconnected social groups where full local cultural con-

sensus is easily achieved, forq values low enough to allow a global culture in fixed connected

networks.

168

AxelrodRewiring/figures/Fig2.eps


9.3 Results and discussion

0 0.2 0.4 0.6 0.8 1
Z

10

100

1000

q c

Figure 9.3: Critical value of the diversityqc versus the tolerance thresholdZ, obtained from the

distribution of sizes of the dominant culture.N = 900, 〈k〉 = 4. See the text for further details.

For very low values of the tolerance parameter, though network fragmentation occurs eas-

ily during the evolution, Fig.9.3 shows that globalization persists up to very high values of

the initial cultural diversityq. To explain this seemingly paradoxical observation, one must

realize that network fragmentation is not an irreversible process, provided links connecting

agents with high cultural overlap have a positive rewiring probability. Under these circum-

stances, transient connections among different components occur so frequently so as to make

it possible a progressive cultural homogenization between components thatotherwise would

have separately reached different local consensuses. Fig.9.4 illustrates the time evolution for

q = 100 and different values ofZ. Panel (a) shows an example of cultural evolution where net-

work fragmentation reverts to a connected monocultural network forZ = 0.2. Panel (b), that

corresponds toZ = 0.6, shows that social fragmentation persists during the whole evolution,

while in panel (c), which corresponds to the most tolerant situation (Z = 0.9), the network

remains connected all the time.

The degree distribution of the network is Poissonian centered about〈k〉 for all q values,

except forq & qc where it becomes fat tailed, with several lowly connected (and disconnected)

sites. For very highq values, in the dynamical phase, the network rewiring is esentially random,

soPq(k) is again Poisson like, centered around〈k〉.
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Figure 9.4: Time evolution of mean overlap and number of topological clusters for diferent values

of toleranceZ = 0.2(a),Z = 0.6(b), Z = 0.9(c). N = 900, q = 100. See the text for further

details.

9.4 Summary

In this chapter we have generalized the scenario for co-evolution of Axelrod’s cultural dynam-

ics and network of social ties that was considered in (166; 167), by introducing a tolerance

parameterZ that controls the strength of network plasticity. Specifically,Z fixes the fraction

of uncommon cultural features above which an agent breaks its tie with a neighbor (with prob-

ability equal to the cultural dissimilarity), so that, the lower theZ value, the higher the social

network plasticity.

Our results show that the network plasticity, when controlled by the toleranceparameter,

has competing effects on the formation of a global culture. When tolerance ishighest, network

plasticity promotes cultural globalization for values of the initial cultural diversity where multi-

culturalism would have been the outcome for fixed networks. On the contrary, for intermediate

values of the tolerance, the network plasticity produces the fragmentation ofthe (artificial) so-

ciety into disconnected cultural groups for values of the initial cultural diversity where global

cultural consensus would have occurred in fixed networks. For verylow values of the toler-

ance, social fragmentation occurs during the system evolution, but the network plasticity is so

high that it allows the final cultural homogenization of the transient groups for very high values

of the cultural diversity. Intermediate tolerances promote multiculturalism, while both extreme

intolerance and extreme tolerance favor the formation of a global culture, being the former
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more efficient than the latter.
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Chapter 10

Conclusions.

Starting from the idea of many interacting entities, we have addressed different social and eco-

nomic issues using procedures and theoretical tools from complex systems physics, in addition

to other fields, such as complex networks and game theory. Although socialsciences obvi-

ously have their own methods to deal with such kind of problems, this methodology yields new

approaches, especially in problems that involve stochastic and/or nonlinear dynamics aspects,

and enhances the study of emergent properties arising from aggregating approaches.

In the first part of the thesis, we address a issue related to different sciences such as biology,

economics or sociology: the evolution of cooperation in hostile environments,that is, when in

the first instance the selfish behavior is more advantageous for the individual that cooperative

action. This problem has been dealt with in a variety of ways. In this context,the Prisoner’s

Dilemma (PD) has become a paradigm for studying the emergence of cooperative behavior.

Besides, the thermodynamical perspective on evolutionary game dynamics studies (used,e.g.,

in chapter2) is not a new issue, as can be found in research literature on game theory(16;

121), and allows us to interpret the social indicators as physical observables and later to infer

analytical results.

In chapter2 we investigate in detail the dynamics of PD in an artificial network (Dipole

Model) that models the influence on a population of two antagonist hubs connected to the

whole population, but with no direct connection between them. Based on previous studies (109;

112; 113) that have shown that the asymptotic states of evolutionary PD in complex networks

are characterized by three kinds of agents (pure cooperators, puredefectors and fluctuating

agents), we designed the model so that the hubs remain as pure strategist; more specifically,

we constrained the initial conditions in order to cancel the probability of strategy change for
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the hubs. The analytical formulation enables a thermodynamic approach of the system, which

provides a description with a range of validity limited by the effects of network topology. The

results, besides providing mathematical meaning to the concept of social temperature, help to

understand the behavior of a population under the influence of two opposite influential elements

(e.g., mass media).

In chapter3, we study the reversibility of the evolutionary dynamics of PD in different

complex networks under adiabatic variations of the temptation to defect. The results show that,

for the topologies analyzed, the process is reversible provided it is keptaway from absorb-

ing states, but when the cooperation reaches a tipping point the system becomes irreversible

showing a hysteresis cycle which is a function of the considered network.The causes of irre-

versibility vary from one topology to another: the centralization of cooperator clusters around

cooperator hubs in scale-free (SF) networks prevents the onset of irreversibility in most SF

networks. However, the multiple clusterization of cooperators in Erdös-Ŕenyi (ER) networks

determines that, once the tipping-point is reached, irreversible transitions always occur, and

irreversibility is more evident around the absorbing states.

In chapter4 we take into consideration a topic that has been deeply studied in the last years:

multiplex networks. Usually, real populations (regardless of their nature) are not isolated, but

interlinked by interactions between different layers (174; 175). In addition, the interactions

that take place within a given layer may be governed by different rules that the interactions

between elements of different layers (176; 177; 178). In this context, we study the influence

of interdependency between different layers on the degree of cooperation in stratified systems.

In particular, we focus on the case in which relations within layers are governed by an evolu-

tionary PD, while elements of different layers interact through the Snowdrift (SD) game. This

scheme models a situation in which defection is punished in interactions withoutsider defec-

tors. Our model consists of two populations, provided with an internal structureof contacts,

that interact through interpopulation links. When the populations are well-mixed, we carry

out analytical calculations that populations that show, in a region of the parameter space, a

polarizedstate consisting of afull-cooperationcommunity connected to afull-defectionpop-

ulation. Other regions of the parameter space showquasi-polarizedstates, characterized by a

population where every agent defects linked to another where most agents cooperate. In order

to deal with networked populations, we solved the system numerically and found that previous

states appear when population structure is a complex network of contacts, where network reci-

procity promote cooperation. The results show that, while for small values ofthe temptation to
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defect parameter polarization opposes network reciprocity, for higher temptation values both

mechanisms have the same sign promoting cooperation in a layer. As an application, we find

that the cooperation level in a target population can be controlled through acoupled defective

population.

However all the above, the statement that underlying network structure enhances coop-

eration in human interactions is based on some assumptions, namely that personal strategies

depends on neighbor’s pay-offs. Althoug network reciprocity mechanism in humans has been

deeply studied in the last twenty years (see,e.g., (16; 18; 94; 95; 96; 97; 109)), the conclusions

are in general contradictory, because the strategies are usually a hypothesis of the models with-

out experimental support (79). In chapter5, instead of assuming that people choose following

one of the usal strategies, we analyzed the problem taken as starting pointthe results of re-

cent experiments (23; 100) on the behavior of small human populations in iterated PD games.

These works shown that people do not take into account the neighbors’ payoffs, but, instead,

they consider the cooperation level in their neighborhood. We have studied mathematically the

implications of such strategies in heterogeneously-connected large populations. Specifically,

we solved analytically the mean-field case and compared the theoretical results with data ob-

tained from numerical simulations made in three network topologies: regular lattice, ER and

SF. This comparison show that cooperation level is exactly the same, regardless of the net-

work structure. The consequences of this prediction are very important,because, if eventually

confirmed by experiments, they will allow to discard the network reciprocity mechanism in

human prisoner’s dilemma-like situations. Experimental confirmation implies experiments in

heterogeneous networks, and therefore, large scale experiments.

In chapter6 we show the results of the large-scale experimental test we have performed

to test the conclusions above mentioned. Our experiment shows that, regarding human be-

havior, the underlying topology does not have influence in the observedcooperation level. In

particular, the cooperation levels observed in a regular lattice and in a heterogeneous network

are indistinguishable, moreover, the behavior of subjects appears to be independent of their

connectivity. This conclusion applies only to human cooperation in static networks, there-

fore network reciprocity may still be relevant in other contexts (e.g., in microbiology (137) or

evolving social networks (179)). Our experiment confirm that most people follow the strategy

shown in previous works (23), consisting of the imitation of neighbor’s actions with a probabil-

ity that depends on their frequency. Accordingly, the results confirm thetheoretical prediction

made in chapter5. These results may be applied to promoting cooperation in real systems, the
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study suggests that improving network structure might be an innefective policy but invites to

incentive individual behavior.

In the second part of the thesis, we study some aspects of social dynamics, focusing our

attention in particular on a issue that has been approached from biological,sociological and

philosophical perspectives: the intolerance (74). Intolerance, defined as “the refusal to accept

subjects with different characters, opinions or behaviors from ones own”, is amenable to be

dealt with agent based models (ABM), in fact, one of the first ABM designed to explore a

social issue was the segregation model of Schelling (52). Despite this, ABM have not paid

much attention to the intolerance in itself, while related issues of social dynamics -such as

homophily (59) , opinion formation (153) or rumor spreading (155)- have been deeply and

widely studied.

In chapter7, we have introduced a model of cultural dynamics allowing agents to move

according to their degree of cultural disagreement with their neighborhood. For small density

of empty sites, the introduction of mobility into the Axelrod cultural dynamics promotes the

convergence to cultural globalization, with the consequence that the order parameter scales

with the system size. Therefore, the transition to multicultural population only occurs for finite

populations (i.e., in the thermodynamic limit there exists only monocultural phase). Further-

more, for larger densities of empty sites (i.e., when population density is below the percolation

threshold), a new phase (that we callmulticultural fragmented phase) appears at low values of

the initial cultural diversityq. The causes of this new phase can be founded in the early stages

of the dynamics: for low values ofq, the initial cultural overlap is enough to promote local

cultural convergence enhancing the formation of isolated clusters of agents, wich isolation pre-

vents cultural diffusion between different domains. For high enough values of the intolerance

thresholdT , the increase ofq has the effect of increasing the initial mobility, and the monocul-

tural phase of the original Axelrod model is recovered, followed by the multicultural phase for

high enough values ofq and finite populations. Moreover, in the last transition from order to

disordered phase, the dynamics showerosion-adhesionprocesses associated to the agents mo-

bility; in fact, the increase inq enhances the probability of agents without a common cultural

feature with anyone else (aliens).

In chapter8, we refined the Axelrod-Schelling model by considering the intoleranceT as

a variable associated to a cultural feature, and thus subjected to cultural transmission. There

are (at least) two natural ways of relating mobility and individual intolerance: agents can move

due to the intolerance of their neighbors (social rejection) or agents can move motivated by its
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own intolerance to the cultural dissimilarity with its environment (self-exclusion). In both cases

our results indicate that tolerant traits are more likely to spread, so that the dominant culture

tends to have low values of intolerance. In addition, the selective advantage of tolerant traits

increases with the densityh of empty sites, and is also higher for thesocial rejectionscheme.

While in chapters7 and 8 we introduced tolerance into the original Axelrod’s model

through mobility, in Chapter9 we consider network plasticity, allowing agents to remove links

to its dissimilar neighbors. Rewiring mechanism into Axelrod dynamics was considered by

Vazquez, Gonźalez-Avella, Egúıluz and San Miguel (166); in their model, an agent was able

to break its link to an antithetical neighbor (i.e., they do not share any trait), redirecting it to

another agent at random. In our research, we have generalized the model proposed in Refs.

(166; 167), by introducing a tolerance parameterZ which modulates the intensity of plastic-

ity. We show that rewiring mechanism can produce opposite effects, depending on the toler-

ance valueZ: while for large values ofZ, rewiring enhances monoculturalism compared to

non-evolving networks, for intermediate values of theZ, rewiring mechanism promotes clus-

terization into disconnected cultural groups for values of the initial culturaldiversityq which

would show monoculturalism in fixed networks. Finally, for low values ofZ, transient states

show clusterization phenomena, but rewiring (encouraged by low tolerance) enhances cultural

transmision between groups for very high values ofq, yielding monocultural states. In conclu-

sion, intermediate tolerance values enhance diversity, high values of tolerance greatly promote

globalization while low values of tolerance weakly promote it. Note that, unlike the Axelrod-

Schelling described in chapters7-8, the networks used are heterogeneous and dynamic, with a

network dynamics given by the cultural dynamics.
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