

An Infrastructure to Communicate
with Wireless Devices

By

© Sharon Koubi

A thesis submitted to the School of Graduate Studies in

partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Memorial University

Submitted on March 2008

St. John's Newfoundland

Infrastructure to Communicate\ Sharon Koubi

Abstract

Contemporary and future network protocols allow wireless devices to send and

receive information with reasonable reliability and at reasonable sp ed. Yet, for an

application to take advantage of the full networking capabilities of modern devices

much overhead is needed. Although the physical networking capabilities are embedded

in the w ireless device, an accepted standardized software protocol for utilizing these

capabilities is not fully in place yet. There is a need for an infrastructure and a protocol

for data communication with wireless devices. Such an infrastructure could serve as a

middleware tool for wireless application developers that will decrease the amount of

overhead for wireless application development. This work proposes the function and

structure for that infrastructure, the details of the protocol that can be used and

discusses issues of selfishness and cooperation when such middleware is used

cooperatively by uncoordinated parties.

2

Infrastructure to Communicate\ Sharon Koubi

Acknowledgments

I would like to thank the faculty and staff of the computer cience department at

Memorial University for their help and support through the years I have been a student

here, in particular my supervisor Dr. Banzhaf and my Honours upervisor Dr. Mata

Montero. 1 would also like to acknowledge the great help I received from Dr. Shalaby

from the Math Department. My Masters thesis would not be in the interesting area of

wireless networks if not for the initiative and ideas of the people at Consilient,

particularly Mr. Trevor Adey, Mr. Rod White and Mr. Dwayne Bennett. In addition to

great ideas, this work was generously supported financially by onsilient. Finally I

would like to thank my wife, Inbal Bahar, for her support and for her help with editing

this work.

3

Infrastructure to Communicate\ Sharon Koubi

Abstract 2

Acknowledgments 3

1. Introduction and Roadmap 9

2. The Need for an Infrastructure II

2.1. Middleware Concepts 11

2.1.1. Middleware Systems 12

2.1 .2. Differences between Fixed and Mobile Distributed Systems 13

2.1.3. Middleware for Fixed Distributed Systems 15

2.1.4. Middleware for Mobile Systems 16

2.2. Middleware for Mobile Distributed Systems l7

2.2.1. Asynchronous communication using JMS 18

2.2.2. Mobiware- Using Traditional Middleware for Mobile Computing 19

2.2.3. UIC - Context Awareness Based Middleware 2 1

2.2.4. Xmiddle - Data Sharing Oriented Middleware 23

2.2.5 . Jini - Service Discovery in Mobile Computing Middleware 25

2.2.6. JCAF - Context Awareness 26

2.3 . Sumrnary 27

3. Inducing Cooperation 28

3.1 . Cooperation in Wireless Ad-Hoc Networks 29

3.1 .1. Problem Description 29

3. 1.2. Classifying Node Behaviours 30

3.1 .3. Modeling the Network as a Market... 33

4

Infrastructure to Communicate\ Sharon Koubi

3.1.4. The Backbone Method 34

3.1.5. A More Formal Approach 35

3.2. Surnrnary 37

4. Introducing AIM: Advanced Infrastructure for Mobile Devices 38

4.1. Infrastructure Features 39

4.1.1. Pushing Data to Mobile Devices 39

4.1.2. Connect Mobile Devices to Corporate Networks 39

4.1.3. Handle Intermittent Connectivity40

4.1.4. Filter Unwanted Information 40

4.1.5. AIM as a Connection Point to Protocols and Applications40

4.2. Infrastructure concepts 41

4.2 .1. A Scalable Service 41

4.2.2. Security Policy 42

4.2.3. Dependability and Decentralization 42

4.2.4. Reduce Processing Time and Network Time for the Mobile Device 42

4.2.5. AIM as a Private or Shared Infrastructure42

4.3 . The Structure of AIM 43

4.3.1 .

4.3.2.

4.3.3.

4.3.4.

4 .3.5.

4.3.6.

An Overview of the Structure43

AIM Services 45

AIM Client Applications 46

AIM Device Directory Service46

AfM Devices Support Servers46

AIM Components Identification 48

5

Infrastructure to Communicate\ Sharon Koubi

4 .4. Summary 48

5. The AIM Network 49

5.l. AIM Network Topology and lnteractions 49

5.1.1. A Device Registers to a Service 49

5.1.2. The Relation Between a Service and the ADSS and ADDS49

5 .1.3 . A Device "Knows" of an ADSS 50

5.1.4. A Device is Registered to an ADSS 5 1

5.1.5. An ADDS "Knows" of a Device 5 1

5.1.6. An ADDS " Knows" About Another ADDS 5 1

5.2. Summary , 52

6. The ArM Protoco1 53

6.1 . Protocol Overview 53

6.2. Protocol Operations 54

6.2.1. Searching for an ADSS 54

6.2.2. A Device Reg isters to an ADSS 57

6.2.3. A Device Registering to an AIM Service 63

6.2.4. Pushing data to a device 63

6.2.5. Sending data to a Service 63

6.3. Summary 64

7. Modeling Cooperation 65

7.1. Problem Description 65

7.1.1. Attacks and Misbehaviours that Should be Prevented 65

7.1.2. Algorithm Requirements 66

6

Infrastructure to Communicate\ Sharon Koubi

7.2. Systern Model 67

7.2.1. Basic Definitions 67

7.2.2. Utility Function 69

7.3. Algorithm Description 70

7.3 .1. A Simplified Scenario .. 70

7.3.2. Rational and Pareto Optimal Operating Point ... 70

7.3.3. The Distributed Tit for Tat Algorithm 71

7.3.4. Algorithm Simulation ... 74

7.4. Handling Irrationality 76

7.5. Summary 77

8. The Implementation of AIM .. 78

8. I . The A I M API 7 8

8.1.1 . Common APT ... 78

8.1.2. Server API 79

8.1.3. Client API .. 80

8.2. Cornrnon Module 80

8.3. AIM Server 80

8.4. AIM Client 81

8.5. AIM Simulation System .. 81

8.6. Sumrnary 81

9. urnmary 83

9.1. Key Points ofThis Work 83

9.2. The Benefits of a System like AIM ... 83

7

--- - ---

Infrastructure to Commun icate\ Sharon Koubi

9.3. Proposals fo r Future Work 84

About the Author 85

References 86

8

Infrastructure to Communicate\ Sharon Koubi

1. Introduction and Roadmap

The Internet offers access to information sources worldwide. With the advance of

wireless networking we expect to benefit from that access everywhere, not only when we

arrive at familiar places such our homes or offices [II]. Contemporary wireless

technology offers an increasing variety of wireless devices that allow Internet

connectivity (22) and leads us to the vision of nomadic computing in which technology

allows anyone to leave their office and still have seamless access to the same set of

network services as they had at their office [12). Enterprises are looking for mobile

solutions that empower their employees to work more productively while on the road . In

many areas there is a growing need for advanced applications that will decrease the gap

between the level of productivity that can be achieved on a mobile device and on a

desktop workstation [20).

However, while the availability of wireless networks and capable mobile devices are a

necessary condition for mobile enabled applications, it is not a sufficient one. A

significant trend is the requirement of ever-faster service development and deployment.

An immediate conclusion is the requirement for various services and application

frameworks and platforms; i.e. , middleware that supports the rapid development of

applications that will support mobile devices (24). Typical middleware services include

directory, trading and brokerage services for transactions, persistent repositories and most

important different transparencies such as location and failure transparency (4).

This work lays a design and analysis for a middleware infrastructure that supports

mobile devices. The presented infrastructure is named AIM: Advanced Infrastructure for

Mobile devices and it is focused on allowing developers to create applications for mobile

devices that will seamlessly combine with existing distributed enterprise applications.

This work is organized as follows. Chapter I is this short introduction. The 2 nd and J rd

chapters review related work. Chapter 2 is reviews mobile oriented middleware. Chapter

3 reviews inducing cooperation. The algorithm that controls the infra tructure is designed

to induce cooperation among the participants.

9

Infrastructure to Communicate\ Sharon Koubi

The chapters that follow describe the proposed infrastructure. Chapter 4 is an

introduction to the AIM infrastructure. Chapter 5 has a more formal description of the

AIM network components, and Chapter 6 includes a detailed description of the proposed

infrastructure protocol. Chapter 7 is dedicated to the investigation of inducing cooperation

among the participants of the infrastructure. The chapter presents the algorithm that is

used to induce cooperation. Chapter 8 describes the implementation of the AIM

infrastructure. Finally Chapter 9 summarizes the work and presents ideas for future

related work.

10

lnfrastructure to Communicate\ Sharon Koubi

2. The Need for an Infrastructure

This chapter reviews related work in the field of middleware for mobile application .

Applications for mobile devices present challenging problems to designers and

developers. Devices face temporary and unannounced loss of network connectivity when

they move, and connection sessions can be short and they need to discover other hosts in

an ad-hoc manner. Handheld devices are likely to have limited resources compared to

desktop workstations, such as low battery power, slow CPUs, little memory and a limited

display. Changes in the working environment are likely to occur frequent ly, such as

change of location or context conditions and variability of network bandwidth [16].

The development of distributed applications for mobile devices can be a complex

process. The application designers should not have to deal explicitly with problems

related to distribution, such as heterogeneity, scalability, and resource sharing. The role of

middleware in this case would be to supply designers and developers with a higher level

of abstraction, hiding the complexity introduced by distribution and the unique mobile

environment. This chapter describes the characteristics for middleware that support

mobile devices and reviews existing solutions.

AIM is designed as a middleware application. fn this chapter the concepts of

middleware applications are reviewed. Several examples of other middleware

applications for mobile devices are discussed.

2. 1. Middleware Concepts

Building distributed applications, either mobile or stationary, on top of the network

layer is extremely tedious and error-prone. Application developers would have to deal

explicitly with all the non-functional requirements such as heterogeneity and fault

tolerance, and this complicates considerably the development and maintenance of an

application. Middleware that takes care of these issues simplifies the process greatly. This

chapter describes general concepts related to the design of middleware sy tems and more

11

Infrastructure to Communicate\ Sharon Koubi

specific concepts that deal with middleware for systems that support mobile devices.

2.1.1. Middleware Systems

A distributed system consists of a collection of components, distributed over various

computers (also called hosts) connected via a computer network. These components need

to interact with each other, in order, for example, to exchange data or to access each

other's services. Although th is interaction may be built directly on top of network

operating system primitives, this would be too complex for many application developers.

Instead, midd leware is positioned between distributed system components and network

operating system components. The task of the middleware system is to facilitate

component interactions. Figure 2. 1 illustrates an example of a distributed system.

Application

Middleware

OS

Hardware
Application

Middleware

OS

Hardware

Application

Middleware

OS

Hardware

Figure 2. 1 A distributed system (adapted from [16])

To support designers building distributed applications, middleware system positioned

between the network operating system and the distributed application is put into place.

middleware implements the Session and Presentation Layer of the ISO/OS! Reference

Model as seen in figure 2.2. Its main goal is to enable communication between distributed

12

Infrastructure to Communicate\ Sharon Koubi

components. To do so, it provides application developers with a higher level of

abstraction built using the primitives of the network operating system. Middleware a lso

offers solutions to resource sharing and fau lt tolerance requirements.

Application

Presentation r-

Session H Middleware I
Transport -

Network

Data Link

Physical

Figu•·e 2.2 Middleware and the ISO/OS! model

2.1.2. Differences between Fixed and Mobile Distributed
Systems

This definition of a distributed system applies to both fixed and mobile systems. The

differences between the two systems are explained in terms of the great influence of the

type of midd leware system: the concept of device, of network connection, and of

execution context. These concepts are described in Figure 2.3.

Figure 2.3 Characterization of concepts of middleware systems

Type of Device: as a first basic distinction, devices in a fixed distributed system are

fixed, whi le they are mobi le in a mobile distributed system. This is a key point: fixed

devices vary from home PCs, to Unix workstations, to IBM mainframes; mobile devices

vary from personal digital assistants, to mobile phones and cameras. While the former are

13

Infrastructure to Communicate\ Sharon Koubi

generally powerful machines, with large amounts of memory and very fast processors, the

latter have limited capabilities, like slower CPU speed, less memory, limited battery

power and smaller screen resolution.

Type of Network Connection: fixed hosts are usually permanently connected to the

network through continuous high-bandwidth links. Disconnections are either explicitly

performed for administrative reasons or are caused by unpredictable failures. The e

failures are treated as exceptions to the normal behaviour of the system. Such

assumptions do not hold for mobile devices that connect to the Internet via wireless links.

The performance of wireless networks, as was demonstrated in Chapter 2 , may vary

depending on the protocols and technologies being used. Reasonable bandwidth may be

achieved in some cases, for instance in the case of 3G networks. However, for some of

the technologies, all different hosts in a cell share the bandwidth, and if they grow, the

bandwidth drops. Moreover, if a device moves to an area with no coverage or with high

interference, bandwidth may suddenly drop to zero and the connection may be lost. Also,

while moving the network address might change, depending on the protocol.

Unpredictable disconnections cannot be considered as an exception, but they rather

become part of normal wireless communication. Some network protocols have a broader

coverage in some areas but provide bandwidth that is smaller by orders of magnitude than

the one provided by fixed network protocols. Also, cellular networks sometimes charge

the users for the period of time they are connected; this pushes users to patterns of short

time connections. Either because of failures or explicit disconnections, the network

connection of mobile distributed systems is typically intermittent. With more networks

available, mobile devices sometimes have the possibility to choose between several

available networks. One type of network might be better for one task than another.

Type of Execution Context: by context, we mean everything that can influence the

behaviour of an application. This includes resources internal to the device, such as

amount of memory or screen size, and external resources, such as bandwidth, quality of

the network connection, location or hosts (or services) in the proximity. In a fixed

distributed environment, context is more or less static: bandwidth is high and continuous,

location almost never changes, hosts can be added, deleted or moved, but the frequency at

14

Infrastructure to Communicate\ Sharon Koubi

which this happens is by orders of magnitude lower than in mobi le settings. Services may

change as well , but the discovery of avai lable services is easily performed by forcing

service providers to register with a well-known location service. Context is extremely

dynamic in mobile systems. Hosts may come and leave generally much more rapidly.

Service lookup is more complex in the mobile scenario, especially in case the fixed

infrastructure is completely missing. Broadcasting, transmitting information that wi ll be

received (conceptually) by every node on the network, is the usual way of implementing

serv ice advertisement; however, this has to be carefu ll y engineered in order to save the

limited resources (e.g., sending and receiving is power consuming), and to avoid flooding

the network with messages. Location is no longer fixed: the size of wireless devices ha

shrunk so much that most of them can be carried in a pocket and moved around easily.

Depending on location and mobility, bandwidth and quality of the network connection

may vary greatly. For example, if a PDA is equipped with both a WiFi network card and

a GPRS module, connection may drop from I OMbs bandwidth, when close to an acces

point (e.g., in a conference room) to less than 48 Kpbs when we are outdoor in a GPR

cell (e.g., in a car on our way home).

2.1.3. Middleware for Fixed Distributed Systems

Middleware for fixed distributed systems can be mainly described as resource

consuming systems that hide most of the details of distribution from application

designers. With the exception of message-oriented middleware, they main ly support

synchronous communication between components as the basic interaction paradigm. We

now discuss in more details the relationship between the physical structure of fixed

distributed systems and the characteristics of associated middleware, in the context of the

concepts mentioned in the previous chapter.

Fixed Devices ~ Heavy Computational Load: Wired di stributed systems consi t of

resource-rich fixed devices. When building distributed applications on top of this

infrastructure, it is worthwhile exploiting all the resources available (e.g. , fast processors

large amounts of memory, etc.) in order to deliver better service to the application. The

15

Infrastructure to Communicate\ Sharon Koubi

higher the robustness of the service, the heavier the middleware running underneath the

application. This is due to the set of non-functional requirements that the middleware

achieves, like fault tolerance, security or resource sharing.

Permanent Connection -7 Synchronous Communication: Fixed distributed systems are

often permanently connected to the network through high bandwidth and stable links.

This means that the sender of a request and its receiver (i.e., the component asking for a

service and the component delivering that service) are usually connected at the same time.

A permanent connection allows therefore a synchronous form of communication, as the

s ituations when client and server are not connected at the same time are considered only

exceptions due to failures of the system (e.g., disconnection due to network overload).

Asynchronous communication mechanisms are however also provided by message

oriented middleware and by the CORBA specification. Although asynchronous

communication is used also in fixed networks, the bulk of middleware applications have

been developed us ing synchronous communication.

Static Context -7 Transparency: The execution context of a fixed distributed system is

generally static: the location of a device seldom changes, the topology of the system is

preserved over time, bandwidth remains stable, etc. The abundance of resources allows

the disregard of application specific behaviours in favor of a transparent and still efficient

approach. For example, to achieve fault tolerance, the middleware can transparently

decide on which hosts to create replicas of data and where to redirect requests to access

that data in case a network failure inhibits direct access to the master copy, in a

completely transparent manner. Hiding context information inside the middleware eases

the burden of application programmers that do not have to deal with the achievement of

non-functional requirements (e.g., fault tolerance) explicitly, concentrating, instead, on

the real problems of the application they are building.

2.1.4. Middleware for Mobile Systems

Middleware systems for mobile devices differ in some aspects. However, they pre ent a

set of similar characteristics that influence the way middleware should behave.

16

Infrastructure to Communicate\ Sharon Koubi

Mobile Devices -7 Light Computational Load: Mobile applications run on resource

scarce devices, with less memory, slower CPU, and limited battery power. Due to these

resources limitations, heavy-weight middleware systems optimized for powerful

machines do not suit mobile scenarios. Therefore, a trade-off between computational load

and nonfunctional requirements achieved by the middleware needs to be established. An

example of this might be to relax the assumption of keeping replicas a lways

synchronized, and allow the existence of diverging replicas that will eventually reconcile,

in favor of a lighter-weight middleware.

Intermittent Connection -7 Asynchronous Communication: Mobile devices connect to

the network opportunistically for short periods of time, mainly to access some data or to

request a service. Even during these periods, the available bandwidth is lower than in

fi xed distributed systems, and it may also suddenly drop to zero in areas w ith no network

coverage. It is often the case that the client asking for a service, and the server delivering

that service, are not connected at the same time. In order to allow interaction between

components that are not executing along the same time line, an asynchronous form of

communication is necessary. For example, it might be possible for a client to ask for a

service, disconnect from the network, and collect the result of the request at some point

later when able to reconnect.

Dynamic Context -7 Awareness: Unlike fixed distributed systems, mobile systems run

in an extremely dynamic context. Bandwidth may not be stable, services that are available

now may not be there a second later, because, for example, while moving the hand-held

device loses connection with the service provider. The high variabil ity (along w ith the

constrained resources) influences the way middleware makes decisions. The optimization

of the application and middleware behaviour using application and context aware

techniques becomes then more important, a lso given the limited resources.

2.2. Midd/eware for Mobile Distributed Systems

In this subsection we sha ll give some examples of middleware system that are oriented

toward servicing mobile devices. Each of the surveyed systems, Mobiware, UIC,

17

Infrastructure to Communicate\ Sharon Koubi

Xmiddle and Jini is used as an example to demonstrate an imp01tant middleware system

feature.

2.2.1. Asynchronous communication using JMS

Message-oriented middleware systems support communication between distributed

components via message-passing: the sender sends a message to identified queues, which

usually reside on a server. A receiver retrieves the message from the queue at a different

time and may acknowledge the reply. Therefore, message-oriented middleware support

asynchronous communication by achieving de-coupling of senders and receivers. In most

cases, given the way they are implemented, these middleware systems usually require

resource-rich devices, especially in terms of memory and disk space, where persistent

queues of messages that have been received but not yet processed, are stored.

As discussed in [17], The Java Messaging Service (JMS) is a widely used interface

than can be adapted to a mobile environment. However we shall discuss some of the

adaptations needed for JMS in order to be truly adequate in a mobile setting. JMS is a

collection of interfaces for asynchronous communication between distributed

components. It provides a common way for Java programs to create, send and receive

messages. JMS users are usually referred to as clients. The JM specification further

defines providers as the components in charge of implementing the messaging system and

providing the administrative and control functionality (i.e. , persistence and reliability)

required by the system. Clients can send and receive messages, a ynchronously, through

the JMS provider, which is in charge of the delivery and, possibly, of the persistence of

the messages.

Whilst the JMS specification has been extensively implemented and used in traditional

distributed systems, adaptations for mobile environments have been proposed in the last

several years. The challenges of porting JMS to mobile settings are considerable;

however, in view of its widespread acceptance and use, there are considerable advantages

in allowing the adaptation of existing applications to mobile environments and in

al lowing the interoperation of applications in the wired and wireless regions of a network.

18

Infrastructure to Communicate\ Sharon Koubi

If JMS is to be adapted to completely ad hoc environments, where no fixed

infrastructure is avai lable, and where nodes change location and status very dynamically,

some issues must be taken into consideration. Firstly, discovery need to use a resilient

but distributed model: in this extremely dynamic environment, static solutions are

unacceptable. A JMS admin istrator defines queues and topics on the provider. C lients can

then learn about them using the Java Naming and Directory Interface (JNDJ). However,

due to the way JNDT is designed, a JNDI node (or more than one) needs to be in reach in

order to obtain a binding of a name to an address (i.e. , knowing where a specific

queue/topic is). In mobile ad hoc environments, the discovery process cannot assume the

existence of a fixed set of discovery servers that are always reachable, as this would not

match the dynamicity of ad hoc networks. Secondly, a JMS Provider, as suggested by the

JMS specification, a lso needs to be reachable by each node in the network, in order to

communicate. T his assumes a very centralized architecture, which again does not match

the requirements of a mobile ad hoc setting, in which nodes may be moving and sparse: a

more distributed and dynamic solution is needed. Persistence is, however, essential

funct ionality in asynchronous communication environments as hosts are, by defi nition,

connected at different times.

2.2.2. Mobiware- Using Traditional Middleware for Mobile

Computing

In the fo llowing example traditional midd leware is used for a mobile applicat ion. The

focus is on provis ion of services from a back-bone network to a set of mobile devices.

The main concerns in this example are connectivity and message exchange. In case of a

less structured network or in case services must be provided by mobile devices,

traditional middleware paradigms seems to be less suitable and a new set of strategies

needs to be used. Therefore, communication of context information to the upper layers in

order to monitor the condition of the environment and to adapt to application needs

becomes v ita l to achieve reasonable quality of service.

Mobiware [2] is an example middleware that uses traditional middleware such as

CORBA, IIOP and Java to al low service quality adaptation in a mobile setting. As shown

19

Infrastructure to Communicate\ Sharon Koubi

in Figure 3.4, in Mobiware mobile devices are seen as terminal nodes of the network and

the main operations and services are developed on a core programmable network of

routers and switches. Mobile devices are connected to access points and can roam from

an access point to another.

Internet

.......... ~

Figur·e 2.4 Mobiware architecture (from [2])

~-
' ··

\
\

\
\

\

i
I

I
I ..

The main idea in Mobiware is that mobile devices will have to probe and adapt to the

constantly changing resources over the wireless link. The experimental network used by

Mobiware is composed of A TM switches, wireless access points, and broadband cellular

connected mobile devices. The toolkit focuses on the delivery of multimedia application

to devices with adaptation to the different quality of service and seamless mobility.

Mobiware mostly assumes a service provision scenario where mobile devices are roaming

20

Infrastructure to Communicate\ Sharon Koubi

but permanently connected, with fluctuating bandwidth. Even in the case of the ad-hoc

broadband link, the device is supposed to receive the service provision from the core

network through, first the cellular links and then some ad-hoc hops.

In more extreme scenarios, where links are all ad-hoc, these assumptions cannot be

made and different middleware technologies need to be applied. One of the strength of

Mobiware is the adaptation component to customize quality of service results. It is clear

that middleware for mobile devices should not ignore context and that adaptation is a key

point, given the limited resources and changing conditions.

2.2.3. UIC- Context Awareness Based Middleware

To enable applications to adapt to heterogeneity of ho ts and networks as well a

variations in the user's environment, systems must provide mobile applications the

capability to be aware of the context in which they are being used [I]. Furthermore,

context information can be used to optimize application behaviour counter balancing the

scarce resource availability.

User's context includes but is not limited to:

Location: with varying accuracy depending on the positioning system used.

Relative: location, such as proximity to printers and databases.

Device characteristics: such as processing power and input devices.

Physical environment: such as noise level and bandwidth.

User's activity:, such as driving a car or sitting in a lecture theatre.

The Principle of Reflection has often been used to al low dynamic reconfiguration of

middleware and has proven useful to offer context-awareness. The concept of reflection

allows a program to access, reason about and alter its own interpretation. The role of

reflection in distributed systems has to do with the introduction of more openness and

flexibility into middleware platforms. In standard middleware, the complexity introduced

through distribution is handled by means of abstraction. Implementations details are

hidden from both users and application designers and encapsulated inside the middleware

itself. Although having proved to be successful in building traditional distributed systems,

21

Infrastructure to Communicate\ Sharon Koubi

this approach suffers from severe limitations when applied to the mobile setting. Hiding

implementation details means that all the complexity is managed internally by the

middleware layer. The middleware is in charge of making decisions on behalf of the

application, without letting the application influence this choice. This may lead to

computationally heavy middleware systems, characterized by large amounts of code and

data they use in order to transparently deal with any kind of problems and find the

solution that guarantees the best quality of service to the application. Heavyweight

systems cannot however run efficiently on a mobile device as it cannot afford such a

computational load. Moreover, in a mobile setting it is neither always possible, nor

desirable, to hide all the implementation details from the user. The fundamental problem

is that by hiding implementation details the middleware has to take decisions on behalf of

the application. The application may, however, have vital information that could lead to

more efficient or suitable decisions. Both these limitations can be overcome by reflection.

A reflective system may bring modifications to itself by means of inspection and/or

adaptation. Through inspection, the internal behaviour of a system is exposed, so that it

becomes straightforward to insert additional behaviour to monitor the middleware

implementation. Through adaptation, the internal behaviour of a system can be

dynamically changed, by modification of existing features or by adding new ones. This

means that a middleware core with only a minimal set of functionalities, can be installed

on a mobile device, and then it is the application which is in charge of monitoring and

adapting the behaviour of the middleware according to its own needs.

Universally lnteroperable Core (UlC) [26) is a minimal middleware for mobile devices

that is based on the concept of reflection . UIC is composed of a pluggable set of

components that allow developers to specialize the middleware targeting at different

devices and environments, thus solving heterogeneity issues. The configuration can al o

be automatically updated both at compile and run time. Personalities can be defined to

have a client-side, server-side or both behaviours. Personalities can also define with

which server type to interact (i .e., CORBA or Java RMI) as depicted in Figure 4.5: single

personalities allow the interaction with only one type, while multiple personalities allow

interaction with more than one type. In the case of multiple personalities, the middleware

22

Infrastructure to Communicate\ Sharon Koubi

dynamically chooses the right interaction paradigm. The size of the core goes, for

instance, from 16KB for a client-side CORBA personality running on a Palm OS device

to 37KB for a client/server CORBA personality running on a Windows CE device.

Figu•·e 2.5 UIC Interaction (from [26])

2.2.4. Xmiddle - Data Sharing Oriented Middleware

One of the major issues targeted is the support for disconnected operations and data

sharing. Systems like Xmiddle [15] try to maximize availability of data, g iving users

access to replicas. Xm iddle allows mobile hosts to share data when they are connected, or

replicate the data and perform operations on them off-line when they are disconnected.

Reconciliation of data takes place once the hosts reconnect.

Xmiddle allows each device to store its data in a tree structure. Trees allow

sophisticated manipulations due to the different node levels, hierarchy among the nodes,

and the relationships among the different e lements which cou ld be defined.

When hosts get in touch with each other, they need to be able to interact. Xmiddle

23

Infrastructure to Communicate\ Sharon Koubi

allows communication through sharing of trees. On each device, a set of possible access

points for the private tree is defined ; they essentially address branches of the tree that can

be modified and read by peers. The size of these branches can vary from a single node to

a complete tree. The unit of replication can be easily tuned to accommodate different

needs. For example, replication of a full tree can be performed on a laptop, but only of a

small branch on a PDA, as the memory capabilities ofthese devices differ.

In order to share data, a host needs to explicitly link to another host's tree. The concept

of linking to a tree is similar to the mounting of network file systems in distributed

operating systems to access and update information on a remote disk. As long as two

hosts are connected, they can share and modify the information on each other's linked

data trees. When disconnections occurs, both explicit (e.g., to save battery power or to

perform changes in isolation from other hosts) and implicit (e.g. , due to movement of a

host into an out of reach area), the disconnected hosts retain replicas of the trees they

were sharing while connected, and continue to be able to access and modify the data.

When the two hosts reconnect, the two different, possibly conflicting, replicas need to

be reconciled. Xmiddle exploits uses tree differencing to detect differences between the

rep I icas which hosts use to concurrently and off-I ine modify the shared data. However, it

may happen that the reconciliation task cannot be completed by the Xmiddle layer alone,

because, for example, different updates have been performed on the same node of the

tree. In order to solve these conflicts, Xmiddle enables the mobile application engineer to

associate application-specific conflict resolution policies to each node of the tree.

Whenever a conflict is detected, the reconciliation process finds out which policy the

application wants the middleware to apply, in order to successfully complete the merging

procedure.

Xmiddle implements the tree data structure using XML and related technologies. In

particular, application data are stored as XML documents, which can be semantically

associated to trees. Related technologies, such as the Document Object Model (DOM),

XPath and XLink [16], are then exploited to manipulate nodes, address branches, and

manage references between different parts of an XML document. Reconciliation policies

are specified as part of the XML Schema definition of the data structures that are handled

24

Infrastructure to Communicate\ Sharon Koubi

by Xmiddle itself.

2.2.5. Jini- Service Discovery in Mobile Computing

Middleware

In traditional middleware systems, service discovery is provided usmg fixed name

services, which every host knows of its existence. The more dynamic the network

becomes, the more difficult service and host discovery becomes. Already in distributed

peer-to-peer network service discovery is more complex as hosts join and leave the

network very frequently. In mobile systems service discovery can be quite simple: if we

refer to nomadic systems where a fixed infrastructure containing all the information and

the services is present. However, in terms of more ad-hoc or mixed systems, where

serv1ces can be run on roaming hosts, discovery may become very complex and/or

expensive.

Jini [3] is a distributed system middleware based on the idea of uniting groups of users

and resources required by those users. Its main goal is to turn the network into a flexible,

easily administered framework on which resources (both hardware devices and software

programs) and services can be found, added and deleted by its users.

An important concept within the Jini architecture is the service. A service is an entity

that can be used by a person, a program or another service. Members of a Jini system

federate in order to share access to services. Services can be found and resolved using a

lookup service that maps interfaces indicating the functionality provided by a service to

sets of objects that implement that service. The lookup service acts as the central

marketplace for offering and finding services by members of the federation. A service is

added to a lookup service by a pair of protocols called discovery and join: the new service

provider locates an appropriate lookup service by using the first protocol, and then it joins

it, using the second one, as seen in Figure 2.6. A distributed security model is put in place

in order to give access to resources only to authorized users.

Jini assumes the existence of a fixed infrastructure which provides mechanisms for

devices, services and users to join and detach from a network in an easy, natural , often

automatic, manner. It relies on the existence of a network of reasonable speed connecting

25

Infrastructure to Communicate\ Sharon Koubi

Jini technology-enabled devices.

Lookup Service

Service Object

S.rk• Attrlbul••
- ,-- - 1) Disoovery

Client 3) Lockup ~
Servico Provider

2)Join I Servic~ Object l I Service O~ecl I Servbe AttributBe I
4) Service lrtYOCaJico

Figu•·e 2.6 Discovery, join and lookup in Jini (from [3])

2.2.6. JCAF - Context Awareness

JCAF [21] is a ubiquitous programming environment, it is based on the high-level

policy description language, a context-based access-control manager (CACM) for

context-aware access control is described, and an adaptation engine which is integrated

for context adaptation in dynamically changing environments.

The policy specification language consists of three parts: the entity relation definitions

access control rules, and adaptation rules. The language specifies the relations between

the context entities to be used in the specification, the access control rules, and the

adaptation rules. A context entity in a ubiquitous environment is either a physical or a

logical space, a fixed object, or a moving object. An entity relation consists of two parts:

context-relation and space-relation. A context-relation expresses a general relationship

between entities, and a space relation expresses a space-containment relationship between

a general entity and a space entity. An access control rule specifies that the g iven set of

entities has the given right to the given object when the given condition is met. An

adaptation rule specifies how to respond to events in a given context.

Access control rules are managed by CACM (Context-aware Access Control Manager).

Before executing any method which is under access control, ubiquitous applications

check the privilege of the calling entity to call the called entity. CACM manages a table

which maps the related entities and a method name to a list of context conditions for the

26

Infrastructure to Communicate\ Sharon Koubi

method call. Since there can be multiple sufficient conditions for a method call , each

condition becomes an element of the list. CACM examines whether there exi ts any

condition that is satisfied under the current dynamic context. If CACM finds one, it

allows the requested access. Otherwise, CACM refuses the access by raising an

exception.

Ubiquitous applications react to dynamically changing contexts. This is implemented

by an adaptation engine. A user specifies the adaptation rules in a policy file , which

describes how to respond when an event occurs in a given context. The adaptation engine

is operated based on adaptation rules. For example, assume the setting of a hospital

management system where there is an adaptation rule that specifies when a doctor and a

patient are in the same consulting room and the doctor owns a PDA, then, in this

situation, the information about the patient is displayed on the doctor' s PDA

automatically. Then, given any related event occurrence, such as the entrance of a patient

or a doctor to a consulting room, the adaptation engine examines if all the context

conditions are satisfied. If all the conditions of this rule are satisfied, the adaptation

engine executes a method automatically, which displays information about the patient on

the doctor' s PDA.

2.3. Summary

The growing demand for mobile oriented software solutions have called for research

and investigation of new middleware that will deal with those new computing challenge .

In the last years we have seen active research in the field of middleware for wireless

systems and a large number of new applications in that area. AIM, the system presented

in this work, is designed to help solve some of the challenges facin g mobile applications

developers.

27

Infrastructure to Communicate\ Sharon Koubi

3. Inducing Cooperation

This chapter reviews related work regarding inducing cooperation. Inducing

cooperation among participants is part of the AIM infrastructure. The way AIM induces

cooperation is described in Chapter 7.

As described later in Chapter 4, AlM can operate in a public or in a private

configuration. In the public configuration, Device Support Servers (DSS) are shared

between different services. In this chapter we present the dilemma of a DSS whether to

service requests from devices, and discuss relevant work for this topic. In the public

configuration, a device can attempt to register to any DSS that is participating in that

configuration. Un like the private configuration, where the service provides enough DSS

for a ll supported devices this is not a lways necessary in the public one. The public

configuration allows devices to register to multiple services, therefore, services can share

the resources they provide to support devices. The problem is how many device requests,

and from whom, should DSS accept? When and why, if at all , should a DSS deny service

from a device?

On the one hand, services would want to be serviced by a DSS as fast as possible; on

the other hand, supplying DSS has a cost that services wou ld prefer to minimize. Ideally,

a service wou ld not supply any DSS and have it devices supported by foreign DSS. Yet, if

a ll services behave in this way no DSS will be supplied at all! It seems fair that every

service should supply its fair share of DSS slots. The questions of what is the fair share of

s lots and how can it be calculated arise. In the pub lic configuration, there is no central

authority that can be assumed to assure that every serv ice provides its fare share.

Therefore, there is a need for a different strategy that will assure cooperation among the

part icipating services. Our approach uses game theory to search for a strategy that could

be deployed by each individual service and lead to cooperation among services that

express rational behaviour.

Before modeling cooperation 111 AIM using we researched relevant work regarding

similar cooperation problems and present the methods they suggest to induce cooperation.

28

Infrastructure to Communicate\ Sharon Koubi

We discuss a simi lar problem; this problem deals with cooperation 111 a network of

participants where each node (or participant) wants to minimize the resources it uses

while maximizing the level of service. The discussed problem is cooperation among

mobile nodes in a mobile ad-hoc network [28].

3. 1. Cooperation in Wireless Ad-Hoc Networks

3.1 .1. Problem Description

A mobi le ad-hoc network is a collection of mobile wireless nodes. It has no authority

and is dynamic in nature. Ad-hoc networks have a wide array of military and commercial

applications. Ad-hoc networks are ideal in situation where installing an infrastructure is

not possible, the network is too trans ient or the infrastructure was destroyed. For example,

nodes may be spread over an area that is too large for a single base station and a second

base station is too expensive. Another example could be networks for wilderness

expeditions and conferences that may be too transient if they exist only for a short period

of time before dispersing or moving. Finally, if network infrastructure has been

destroyed in a disaster, an ad-hoc network could be used to coord inate relief efforts.

Ad-hoc networks maximize total network throughput by using available nodes for

routing and forwarding. Therefore, the more nodes that participate in packet routing, the

greater the aggregate bandwidth, the shorter the possible routing paths, and the smaller

the possibility of a network partition. However, a node may misbehave by agreeing to

forward packets and then failing to do so, because it is over-loaded, selfish, malicious, or

broken. An overloaded node lacks the resources to forward packets. A selfish node is

unwilling to spend resources, particularly battery life to forward packets that are not of

direct interest to it, even though it expects others to forward packets on its behalf. A

malicious node launches a denial of service attack by dropping packets. A broken node

might have a software fault that prevents it from forwarding packets.

Misbehaving nodes can be a significant problem. ln addition to reducing the average

throughput, nodes that are in proximity to misbehaving nodes mi ght be affected severely,

29

Infrastructure to Communicate\ Sharon Koubi

much more than the average. Different strategies where devised in order to overcome the

problems caused by misbehaving nodes. The following chapters review some the

approaches taken .

3.1.2. Classifying Node Behaviours

The first approach reviewed is classifying nodes by their behaviour and adjusting

routing accordingly. The work [1 4] presents extensions to the Dynamic Source Algorithm

(DSR) that attempt to detect and mitigate routing misbehaviour. ln DSR every packet has

a route path consisting of the addresses of nodes that have agreed to participate in routing

the packet. It is an "on-demand" protocol because route paths are discovered when a

source tries to sends packets to a destination for which the source has no path to. DSR

contains two main functions: route discovery and route maintenance. Route discovery is

done by sending a ROUTE REQUEST, as is illustrated by figure 3.1. Route maintenance

handles link breaks. A link break occurs when two nodes on a path are no longer in

transmission range. Jfthis happens the source must try a different route or perform a route

discovery.

(a)

(b)

0 0

0

(c)

0 0
0

0

0 0

Figure 3. t ROUTE REQUEST (a) nodeS sends a ROUTE REQUEST packet to find a path to node D. (b) The
request is forwarded through the nodes of the network, each node adding its address to the packet. (c) D send back
to Sa ROUTE REPLY using the path in one of the ROUTE REQUEST packets it received.

30

Infrastructure to Communicate\ Sharon Koubi

The work further presents two methods to overcome node misbehaviour, Watchdog and

Pathrater. Both methods assume that the wireless interfaces support promiscuous mode

operation. This means that if node A is within the range of node B, then node A can

overhear communications to and from B, even if those communications do not directly

involve A.

The Watchdog method detects misbehaving nodes. By listening to the outgoing traffic

from neighbouring nodes the Watchdog determines which of its neighbouring nodes is

forwarding packets and which is misbehaving. There are a few problems w ith the

Watchdog method. It might not detect m isbehaviour due to collisions or limited

transmission power or malic ious nodes can collude in order to execute a more

sophisticated attack. For example, node B might be receiving packets from node A to

forward ; it forwards them to C that drops them without B reporting to A that the packets

are being dropped.

The Watchdog method comes to use when employed by the Pathrater. The Pathrater,

run by each node in the network, combines knowledge of misbehaving nodes with link

reliability data to pick the route most likely to be reliable. This differs from DSR, which

chooses the shortest path. The Pathrater assigns rating to nodes accord ing to the following

algorithm. A node assigns itself the value of 1.0. A node previous ly unknown is assigned

the neutral value of 0.5. The Pathrater increments the ratings of nodes on all actively used

paths by 0 .0 I at periodic intervals. An actively used path is one which the node has sent a

packet through. When a link break is detected and the node is unreachable its rating is

decreased by 0.05. The maximum value a neutral node can attain is 0.8 and the minimum

is 0. A misbehaving node is assigned a special high negative value, -I 00. When a

Pathrater learns that a node in a path misbehaves and that no alternative paths is free of

misbehavi ng nodes then it sends a RO UTE REQUEST. The extension that enables the

additional request is called Send Route Request (SRR).

The Watchdog, Pathrater and SRR methods were tested using s imulations. The

simulations also included the simulation of misbehaving nodes. Different method

combinations were tested : a network with no defenses, a network using Pathrater only, a

network using Pathrater and Watchdog and a network using all three methods. The results

31

Infrastructure to Communicate\ Sharon Koubi

showed a significant mcrease m network throughput for a network that employed the

three methods.

Another work by Buchegger and Boudec [6] presents the CONFIDANT protocol.

Similarly to the work by Marti et al. [14] CONFIDANT is an extension to DSR that aims

at mitigating the effect of node misbehaviour by identifying misbehaving nodes. The

CONFIDANT protocol defines the following components: The Monitor, the Reputation

System, the Path Manager, and the Trust Manager. Theses components collect

information on misbehaving nodes and distribute it to a list of "friendly" nodes. It is not

specified how friendships are determined. Since promiscuous mode operation is assumed

then nodes can also detect misbehaviour between their neighbours to other nodes.

Misbehaviour is propagated through ALARM messages and a list of misbehaving nodes

is maintained independently on each node.

In order to evaluate the protocol, several metrics where defined. One metric is the

resulting total network throughput, or goodput by there definition. The goodput of a

network of n nodes is the data forwarded to the correct destination for each node i:

11

I Packets Recieved
G = _:.::i=.:..._l _____ _

n

I Packetsoriginated
i=l

Another metric calculated is the overhead resulting from ALARM messages. The total

overhead in a network of n nodes is defined as follows :

0 =----------~i~=.:..._l _ ___________ __
n

I ROUTE - REQUEST tx +ROUTE- REPL Ytx +ERROR tx.

i=l

In order to evaluate the CONFIDANT protocol simulations were carried . The simulated

network contained a third of misbehaving nodes. The simulations resulted in a higher

network goodput for a network that was fortified by CONFIDANT while the total

overhead of ALARM messages never exceeded 3%.

32

-- - ---

Infrastructure to Communicate\ Sharon Koubi

3.1.3. Modeling the Network as a Market

In this subsection we review the approach of modeling a mobile ad-hoc network as a

market. Services are exchanged and through a virtual economy based on a virtual

currency. Nodes are forced to pay to have their packets forwarded , and are being paid

when they forward some data for other nodes. Selfishness is avoided with a rewarding

technique: a node is free to be selfish, but behaving in this way it will soon leave it

without the ability to pay and it will not be able to send any packet. Unfortunately, this

solution requires a tamper-proof hardware module, since it is not possible to avoid

forging or stealing.

The work presented in [8, 9] attempts to present a solution for service availability in ad

hoc networks. Services are defined as al l networking services (e.g. packet forwardin g,

mobility management, etc.) and should be provided by the other nodes that are

participating in the network. The problem is that nodes do not benefit directly from

providing services to other nodes and thus selfishness is profitable. Another problem that

is presented is the overloading. Services can be unavailable because the network is

overloaded and can no longer carry useful information. The network can become

overloaded because of a malicious denial-of-service attack or simply because users want

to send to much information. The goal of the work in [8, 9] is to stimulate co-operation

and prevent overloading in such ad-hoc networks.

The approach that is taken to stimulate a co-operative behaviour and prevent

congestion is to introduce the concept of money and service charges. The idea is that

nodes that use a service should be charged and that nodes that provide a service should be

paid. The work introduces a node currency that is called nuggets. Nodes need to "pay"

nuggets for services and the only way to earn nuggets is by providing services to other

nodes. The paper presents two approaches, the Packet Purse Model (PPM) and the Packet

Trade Model (PTM).

In the Packet Purse Model the originator of the packet pays the packet forwarding

service. The service charge is distributed among the forwarding nodes in the following

way: when sending a packet, the originator loads it with a number of nuggets sufficient to

reach the destination. Each forwarding node acquires one or several nuggets from the

33

Infrastructure to Communicate\ Sharon Koubi

packet and thus increases the stock of its nuggets. The problem with this approach is that

it might be difficult to estimate the number of nuggets that are required to reach a given

destination. lfthe originator underestimates this number, then the packet will be discarded

and the originator loses its investment in this packet. If the originator overestimates, then

the packet wi ll arrive but the originator loses the remaining nuggets. The PTM model

overcomes this problem.

In the Packet Trade Model , the packet does not carry nuggets, nut it is traded for

nuggets by intermediate nodes. Each intermediary "buys" it from the previous one for

some nuggets, and "sells" it to the next one for more nuggets. In this way, each

intermediary that provided a service by forwarding the packet increases its number of

nuggets, and the total cost of forward ing the packet is covered by the destination of the

packet. An advantage of this approach is that the originator does not have to know in

advance the number of nuggets required to deliver a packet. Furthermore, letting the

destination pay for the packet forwarding makes this approach applicab le in multicast

packets as well. A disadvantage is that this approach for charging does not directly deter

users from flooding the network. However, allowing each node to decide if it buys a

packet or not can provide a mechanism which may deter a user from generating too much

traffic, by ensuring that eventua lly nobody wi ll buy packets from users who try to

overload the network.

As mentioned the main problem with the market approach is the requirement for a

tamper resistant security module that wi ll manage the nugget exchange. Such a module

must be implemented in hardware and makes it unlikely that such a solution will be

practical.

3.1.4. The Backbone Method

In [13] the routing backbone method is described to mitigate cooperation in selfish

wireless networks. The algorithm is based on the following social dilemma: a group of

rational individuals want a single person from the group to volunteer to offer some

service. This service expends some of the volunteer' s resources, but al l the individuals,

including the volunteer, benefit from the service if it is provided. In other words, this

34

Infrastructure to Communicate\ Sharon Koubi

serv1ce 1s a public good. Each participant in the network needs some of the nodes to

volunteer to provide the public good, but no one wants to be one of the volunteers.

The algorithm presented in [I 3) is based on the model Volunteer's Timing Dilemma

(VTD). Jn this model, each player's strategy is no longer to "volunteer or not," but rather

a timeT 2: 0 that denotes "when to volunteer." If no one volunteers until time t, then the

public good is not available until then. To capture the loss in utility from waiting, each

player's utility decreases by a standard exponential discount factor. The authors elaborate

on the VTD model and developed the Generalized Volunteer's Timing Dilemma (GVTD)

model. The VTD model assume that all players can observe and benefit from any

volunteer. In multihop networks, however, this assumption does not hold; each node

needs a volunteer within its one-hop neighborhood, and therefore does not directly benefit

from a volunteer two or more hops away. The input to GVTD is an arbitrary, undirected

graph G. Note that the original VTD game is a special case where G is a complete graph.

The backbone construction protocol consists of two logical steps: leader selection and

the connection of the leaders. In the first phase, nodes play the GVTD game. Based on the

information about the cost distribution and its two-hop neighborhood, each node

independently computes its optimal waiting time before volunteering. When there is no

volunteer neighbor for a long (enough) time, it volunteers as a leader to speed up the

backbone construction, and thus minimizes loss of its own messages. In the second phase,

bridge nodes are chosen to connect the leaders and obtain a connected backbone

(specifically, a connected dominating set).

3.1.5. A More Formal Approach

The work done by Srinivasan et al. [28] uses a more formal game theoretic approach to

address the issue of user cooperation in ad-hoc networks. The work deals with solving the

forwarding problem in ad-hoc wireless networks. They propose a distributed and scalable

acceptance algorithm called Generous TIT -FOR-TAT (GTFT). The acceptance algorithm

is used by the nodes of the network to decide whether to accept or reject a relay request.

The work demonstrates that GTFT results in a Nash equilibrium and proves that the

system converges to the rational and optimal operating point. A Nash equilibrium is a

35

Infrastructure to Communicate\ Sharon Koubi

solution concept of a game involving two or more players, in which no player ha

anything to gain by changing only her own strategy unilaterally.

It is assumed that the nodes are rational, i.e., their actions are strictly determined

by self interest, and that each node is associated with a minimum lifetime constraint.

However, the assumption fails to recognize malicious intent by certain nodes as self

interest. Given the lifetime constraints and the assumption of rational behaviour, it is

determined what is the optimal throughput that each node should receive. This point is

defined to be the rational Pareto optimal operating point. Therefore, resource allocation is

optimized in such a way that no shifting of resources can be made without making at least

one node worse off.

The paper gives a formal system model. The system consists of a population of N

nodes distributed among K classes. The nodes are distributed to the different classes

according to a power constraint. The power constraint determines how many packets can

a node forward for how long. This helps define a Normalized Acceptance Rate (NAR) a

the ratio of the number of successful relay requests generated by the node, to the number

of relay requests made by the node. This quantity is an indication of the throughput

experienced by the node.

Then, the work studies the optimal trade-off between the lifetime (based on the

power constraint) and the NARs of the nodes. Given the power constraints, a feasible set

of NARs is identified. This provides a set of Pareto optimal values. That is, values of

NAR such that a node cannot improve its NAR without decreasing some other node ' s

NAR. As mentioned, the nodes are assumed to be rational, that is that their actions are

determined strictly by self interest and that self interest is strictly to increase the node ' s

throughput. Using this assumption, a unique set of rational and Pareto optimal NARs a

identified for each user.

Since users are self-interested and rational, there is no guarantee that they will follow a

particular strategy unless they are convinced that they cannot do better by following some

other strategy. In game theoretic terms, a set of strategies which constitute a Nash

equilibrium needs to be identified. Ideally, a Nash Equilibrium would result in the

rational and Pareto optimal operating point. This is achieved by proposing a distribute and

36

Infrastructure to Communicate\ Sharon Koubi

scalable acceptance algorithm, called Generous TIT-FOR-TAT (GTFT). The paper

proves that GTFT is a Nash Equilibrium which converges to the rational and Pareto

optimal NARs. The paper concludes with simulations that show that the algorithm results

in a Nash Equilibrium after a reasonable amount of time. The algorithm seems practical

to implement in order to enhance a real life network. The weakness point of the algorithm

is that it does not consider how to deal with malicious nodes whose self interest to not to

increase their throughput but to decrease the throughput of the other nodes.

3.2. Summary

In this part we reviewed the problem of cooperation m a shared system. Since the

cooperation among middleware participants was not investigated previously we used ad

hoc networks as a similar model. In the next chapter we shall apply these concepts on the

AIM system.

37

Infrastructure to Communicate\ Sharon Koubi

4. Introducing AIM:
Advanced Infrastructure for Mobile Devices

The main focus of this work is the design and imp lementation of an infrastructure that

will help develop applications for a wide range of mobile device and help connect

between these devices to a variety of services and applications. I chose the name AIM for

this infrastructure, which stands for Advanced Infrastructure for Mobile devices. Figure

4. J shows a schema of the infrastructure. It is notable from the figure that AIM is situated

between the mobile client application and a fixed service. This chapter wi ll describe the

features that this infrastructure offers to application developers, the principles upon which

the infrastructure is based and the structure of the infrastructure.

,...--

Iii
3;
!!! Corporate u: Application

Client Device AIM Q)

"§
0 e-
0
()

L__

Figure 4.1 A schema of the AIM infrastructure. AIM will be a middleware layer that enables mobile applications
to connect to corporate applications.

38

Infrastructure to Communicate\ Sharon Koubi

4. 1. Infrastructure Features

AIM will provide several services that will make developing and adapting applications

and services for mobile devices easier. The infrastructure makes unique mobile

characteristics such as connection details, network identification and network problems

transparent to the appl ication developer, and allows the application to deal only with the

application logic. In add ition, AIM could serve as a connection point for mobile devices

to various services and protocols. Infrastructure features can be divided into four

categories: pushing data to mobile devices, connect mobile devices to corporate networks,

handle intermittent connectivity and serve as a connection to adapters for protocols and

applications. This chapter gives a brief overview of the features that are offered by AIM.

4.1.1. Pushing Data to Mobile Devices

Existing and new protocols allow data to be pushed to mobile devices that are

connected to a network. The service level that is offered varies. In some cases large

chunks of data can be pushed to an online device, while in other cases only notifications

can be made [7, 25]. Also, the interface and other characteristics of these services can be

very different. For example, pushing data to a mobile device through an SMS message is

different mechanism and interface than using a listening socket in a java enabled device

using MIDP 2.0. This adds much development effort to the extension of a push service to

mobile devices; in particular, ifthe service is intended for a range of different devices [5].

A main feature of AIM is to make the pushing of data to mobile devices transparent to the

application developer. The infrastructure supplies a standard API on both the client s ide

and the server side in order to push data to the mobile device through the network or

mechanism of choice.

4.1.2. Connect Mobile Devices to Corporate Networks

Security is a major concern for corporate network administrators [27] . Therefore,

39

Infrastructure to Communicate\ Sharon Koubi

collaborative corporate applications are usually protected behind a firewall and reside

only in the corporate internal network, except possibly for some limited interfaces. In an

increasingly mobile environment corporate applications will be extended to mobile

devices. However, the security configuration of such extensions is not necessarily trivial

[10, 23]. AIM will provide controlled and safe tunneling for mobile applications to access

information in the corporate intranet.

4.1.3. Handle Intermittent Connectivity

Connectivity in a mobile environment is likely to be interrupted in various situations.

Problems can occur due to being out of coverage, low batteries, etc. [18). AIM makes the

hand ling of out-of-coverage situations easier by caching requests and responses and by

taking care of potential data loss situations.

4.1.4. Filter Unwanted Information

Mobile devices, naturally, are more limited than desktop workstations. Less

information can be displayed and processes, and in many cases the fees that incur are in

proportion to the amount of data transmitted back and forth . AIM intends to allow a

mobile user to filter the information she is receiving and thus still allows synchronization

with services that a re designed to serve desktops, but according to the ru les that the

mobile user is comfortable with. The protocol for this feature of AIM is not yet developed

and it is not a part of the prototype.

4.1.5. AIM as a Connection Point to Protocols and

Applications

Another feature of the AIM architecture is to serve as a connection point to various

protocols and applications. For common application such as email protocols, there will be

generic adapters that wi ll allow quick and simple registration of corporate and private

40

Infrastructure to Communicate\ Sharon Koubi

users. For proprietary services, AIM adapters could be created. These adapters should be

customized per service. An adapter will be a software library that will mediate between

the proprietary service and the AIM infrastructure. Through AIM adapters the

infrastructure will supply an easy access point for mobile devices. In addition, the

infrastructure provides a unique, randomly generated device id to identify a user on a

device. The unique identification process of AIM will make provisioning services to new

users easier. The protocol for this feature of AIM is not yet developed and it is not a part

of the prototype.

4.2. Infrastructure concepts

There are several key issues that arise when designing an infrastructure. The AIM

infrastructure is deigned to be used in private small settings, as a mobile service platform

for solutions for large enterprises, and as a public platform that is shared by different

enterprises or individual users. In the next few paragraphs the design concepts of the

architecture are being described.

4.2.1. A Scalable Service

The platform must be able to handle a large number of service requests, which are

coming from various wireless networks, concurrently. AIM is deigned as a distributed

and scalable service without a central point that could serve as a bottle-neck. In order to

transform from a small configuration that can handle several hundreds of users to a

configuration that can handle hundreds ofthousands or even millions of users, the number

of participating servers needs to be increased, not requiring and complex configuration

changes. More than that, there is no reasonable limit to the number of users that the

infrastructure can handle in an efficient way. The scalability of AIM will be evident in

later in Section 4.3 that describes the server and client structure of the infrastructure.

41

Infrastructure to Communicate\ Sharon Koubi

4.2.2. Security Policy

Since the infrastructure will act on behalf of the mobile user to access corporate

resources, the infrastructure must obtain authorization based on user identity, channel

security and corporate policy before accessing corporate databases, directories and email

servers, etc.

4.2.3. Dependability and Decentralization

The infrastructure must be able to reconfigure itself dynamically when certain

machines fail or become overloaded and continue to deliver services satisfying

appropriate performance guarantees. The dependability of AIM is further discussed m

chapter 5 dealing with the server structure and in chapter 6 in the protocol description.

4.2.4. Reduce Processing Time and Network Time for the

Mobile Device

Mobile devices are usually limited in processmg and network capabilities. Also

excessive network usage can be very expensive. The infrastructure is designed to allow as

much as possible processing on the infrastructure backend and to have network

transmissions on the fastest and cheapest network available.

4.2.5. AIM as a Private or Shared Infrastructure

There are two modes in which AIM can be configured, private mode and shared mode.

In the private mode the infrastructure is used by one organization and does not serve any

external requests. The shared mode allows the infrastructure to be shared among many

organizations, each contributing resources. There are advantages and disadvantages for

both modes and each should be used according to the specific situation. Jn both cases

however, corporate security is not compromised. The advantage of the private mode is a

complete control over the avai lable resources. The advantage of the shared configuration

is that resources can be shared. This is advantageous in cases where mobile devices are

42

Infrastructure to Communicate\ Sharon Koubi

using services and applications operated by several organizations.

4.3. The Structure of AIM

AIM is composed of a server and client components that monitor and control the traffic

between the mobile device and an online service or application. The server components

are used by online A IM enabled applications or AIM adapters to communicate with the

mobile device. The client components are installed on the mobile device and allow AIM

enabled clients to communicate with an online application. Traffic between an application

and a mobile client could possibly, depend on the network situation, pass through an

intermediate AIM server. Figure 4 .2 shows a summary of client and server functions and

properties.

A IM Client Components AIM Server Components

AIM Client Application AIM Service or AIM Adapter

C lient Application Programming Interface Server API

(API)

Device Support Servers (ADSS)

Device Directory Service (ADDS)

Figure 4.2 A summary of client and server components in AIM

4.3.1. An Overview of the Structure

AIM is intended to serve as an intermediate middleware layer between online services

and mobile devices. Therefore, the infrastructure is composed of A IM Services, AIM

Client Applications, and intermediate components. AIM Services are applications that are

created with AIM support or AIM adapters to existing applications that do not support the

AIM infrastructure. An adapter for a corporate emai l service is an example for an AIM

adapter for an existing application. AIM Client App lications are mobile clients for AIM

Services. For example, an email client that connects to an AIM email Service. A typical

AIM setting consists of a network of mobile devices running AIM clients and servers that

run AIM Services. The intermediate components, AIM Device Support Servers and AIM

43

Infrastructure to Communicate\ Sharon Koubi

Device Directory Service run on separate servers that are connected to a fixed network. In

a shared configuration, every AIM service must supply an ADSS and an ADDS. This will

be further explained in section 4.4. Figure 4.2 describes the interaction between the

different components of AIM. Figure 4.3 shows how the components interact within the

AIM network.

Client Client 1----+T
Application API

Server Se rver
API Application

Figure 4.3 The interaction between the components of AIM . As shown, AIM is built as another
software layer between the application and the network.

AIM Clien

AIM Client

Figut·e 4.4 (a) The structure of the AJM network - private mode. Only one service supplier.

44

Infrastructure to Communicate\ Sharon Koubi

AIM Client

Figure 4.4 (b) The structure of the AIM network - shared mode. Devices can use different servers,
private and public.

4.3.2. AIM Services

AIM Services are applications that serve mobile devices and support the AIM

infrastructure. There are two types of possible AIM services. The first is an AIM

Application that is an application that was written using the AIM Server API for an easy

and scalable support for mobile devices. The second type of service is an AIM Adapter,

an adapter that connects to an existing application on one side and uses the AIM Server

API to extend that application to mobile clients. For most parts of this work, the A IM

App lications and AIM Adapters are indistinguishable and will be referred to as AIM

Services.

45

---------·---------------------- - ----------

Infrastructure to Communicate\ Sharon Koubi

4.3.3. AIM Client Applications

An AIM Client Application is an application that is built for a mobile client and uses

the AIM Client API in order to communicate with an AIM Service.

4.3.4. AIM Device Directory Service

The AIM Device Directory Service or ADDS allows AIM Services to locate what

ADSS handles a certain client. The ADDS can run off the same machines that run the

ADSS and are also arranged in a random way. Every mobile is identified by a unique

system device ID. When an AIM Service makes a request to locate a client by its device

ID, a peer-to-peer search is made through the ADDS network.

4.3.5. AIM Devices Support Servers

The heart of the AIM infrastructure lies within the AIM Device Support Servers or

ADSS. The ADSS ro le is to serve a mobile device on different tasks related to

communicating with the AIM Service and to help the AIM Service to push data to the

AIM Client. There are several basic tasks associated with an ADSS: Discovery,

Registration, Tunneling, Pushing, Storing and Filtering.

Before a client attempts to register to an ADSS it must first discover one. Discovery of

an ADSS can be done in several ways. Preliminary ADSS addresses are configured on the

client during the initialization of the AIM Client API or the AIM Client Application. The

AIM Client sends an ADSS configuration request to the AIM Service. The response

contains addresses of ADSS. These addresses should resolve to ADSS that are supported

by the AIM Service. In case of a shared configuration a client can use ADSS that are not

affiliated directly to this client. The ADSS in a shared configuration are connected in an

ad-hoc manner. In case an ADSS rejects a request, it can still reply with the addresses of

other potential servers. In some cases the client is connected to a small closed network

46

Infrastructure to Communicate\ Sharon Koubi

and can only use an ADSS that is part of that network. ln such a case, the client

broadcasts a registration request within the network.

Every client must use one and only one ADSS, even clients that are running several

AIM Client Applications. An ADSS can support many mobile clients, depending on its

resources. In order to receive support from an ADSS, a client needs to register to an

active ADSS. It is possible that a client will have to move to a different ADSS when

moving to a different network. An ADSS can support a limited number of clients, or it

has a certain capacity of client slots. Therefore, a registration request from a client could

be rejected; also, an existing client could be denied further service according to the

priorities programmed to the ADSS and the current available slots. In such cases the

client will have to search for a different available ADSS. In general, the AIM Service is

responsible to supply ADSS slots to its clients. The situation gets more complicated when

a client is registered to several unaffiliated services; this situation is dealt in details in

chapters 7 and 8. After a device is registered with an ADSS, the server will " represent"

the device in front of the AIM Services. When the device moves to a different ADSS the

current ADSS can aid in the registration process in order save network and processing

time from the device.

The infrastructure tunneling refers to tunneling data into a secured network from a

mobile device. A trusted ADSS can serve as a bridge between the secured corporate

network and a mobile device. A mobile device that needs to send data to an AIM Service

that lies inside a corporate network sends the information to the ADSS; the ADSS, in

turn, verifies the device identity and tunnels the information to the AIM Service.

The ADSS also functions in pushing information to the mobile device. It stores and

manages information regarding the current network status of the mobile device. When the

AIM Service wants to push information to the mobile device it sends it to the ADSS that

services that device, and the ADSS determines the best way to push the information to the

device. The ADSS notifies the AIM Service if the information was pushed successfully.

The AIM Service could attempt to send data to the mobile device while the device is

not connected, switching between network or any other situation that will obstruct the

process. In such cases, when the send operation to the device fails, the ADSS stores the

47

Infrastructure to Communicate\ Sharon Koubi

request and makes further attempts. Eventually, if after a certain period of time it still

continues to fail , it consults the A IM Service on what it wou ld like to do next.

A mobile user can filter the information that it wants to receive from AIM Services. In

some cases a user will want to block a service from sending it messages to the mobi le

device. The ADSS stores filtering information in each device profile and forwards data

based on that information.

4.3.6. AIM Components Identification

The components of the AIM infrastructure were introduced in this chapter. A unique

identification is necessary in order to govern the interactions between the components.

Therefore, each installation of an AIM Client API on a mobile device contains a unique

n-bit device 10. Also, every type of A IM Server identifies itself by a unique n-bit server

ID. Thus every A IM Service, ADSS and ADDS have ann-bit identifier.

Then-bit identifier is accompanied by an m-bit private key. Then-bit component ID is

used as a public key that corresponds to that private key. The provisioning of a unique

10/private key pair is part of the installation process of an AIM component. It is

important to ensure that this process wi ll guarantee a unique ID and a secured private key.

4.4. Summary

This part introduced the AIM Infrastructure which is the main focus of this work. An

overview of the features and of the structure of A IM was given. The rest of this work will

deal with different aspects of the infrastructure. Refer back to the road map that is given

in the introduction of this work in order to follow the next chapters.

48

Infrastructure to Communicate\ Sharon Koubi

5. The AIM Network

5.1. AIM Network Topology and Interactions

The AIM network is defined by all the AIM servers and mobile clients that are part of

the infrastructure. There are certain rules that determine the interactions between the

components of the network, and thus define the topology of the AIM network. The AIM

network contains four types of entities: mobile devices (with an AIM client installed),

AIM Services, ADSS and ADDS. Denote D as the set of mobile devices, S for AIM

Services, Sl for the ADSS set and S2 for the ADDS set. In this chapter we describe the

rules and interactions that are part of the AIM network that determine the topology and

structure of the network. The formal notation that is described in this chapter will also be

used in Chapter 6 in the description of the protocol.

5.1.1. A Device Registers to a Service

This relation is created by a user of a mobile device that registers a device to an AIM

Service. This relation is denoted by the set REGs-d· Therefore (s,d) E REG,_d if s E S

and dE D and device d is registered to service s. Also, REG device (d) denotes all the

services that device d is registered to and REG service (s) represents all the devices that are

registered to services.

5.1.2. The Relation Between a Service and the ADSS and

ADDS

In Chapter 4 the necessity of the ADSS and ADDS is explained. It is required that AIM

services wi ll supply the ADSS and ADDS servers for the mobile devices. In the private

configuration there is only one organization that operates the infrastructure and this issue

is trivial. The AIM infrastructure requires that each AIM service will supply one ADSS

49

Infrastructure to Communicate\ Sharon Koubi

and one ADDS (one and only one). Note that in the implementation one ADSS/ADDS

can correspond to more than one physical server by using a load-balancing scheme, e.g.

Figure 4.4. Also the implementation allows that an ADSS/ADDS server can run several

ADSS/ADDS instances with different IDs. However, there is a one-to-one

correspondence between an AIM Service ID and an ADSS ID and similarly between an

AIM Service ID and an ADDS ID.

For s E S and a E Sl let ASSOC ad\s (s) =a denote that AIM Service s is associated

with ADSS a. As explained A is a one-to-one correspondence and ASSOCads.,-1 (a)= s.

Similarly, for sES and bES2 let ASSOCadd,. (s)=b denote that AIM Services is

associated with ADDS a. In the same fashion, 8 is also a one-to-one correspondence.

AIM Client

Figure 5.1 More than one physical server corresponds to a single ADSS address.

5.1.3. A Device "Knows" of an ADSS

This relation describes the available ADSS addresses that a device can use when

attempting to register to an ADSS. Since ADSS are supplied by the AIM Services, the

infrastructure is deigned to allow a device to attempt to register to ADSS that are

associated with the A IM Services that the device is registered to. The device is supplied

with an ADSS address when it registers to an AIM Service. The AIM Service is then

responsible for sending updates to the device if the information changes. An ADSS will

not accept a registration request from a device that is not registered to it associated

50

Infrastructure to Communicate\ Sharon Koubi

service. For dE D let KNOWS"d's (d) denote the set of ADSS addresses that d has their

address. Therefore, for a E SI , then a E KNOWS udss (d) if and on ly if there exists s E S,

such that s E REGAd) and ASSOCadvs (s) = a.

5.1.4. A Device is Registered to an ADSS

As explained, an AIM Service uses an ADSS to communicate with a device, and a device

needs to be registered to an ADSS. The relation REGadss defines what devices are

registered to what ADSS. (a, d) E REG ad's if a E Sl and dE D and device dis currently

registered to ADSS a. Also, REG adss (a) denotes all the devices that are registered to

ADSS a. Note that for dE D, l{a I (a,d) E REG ads.,~~ I. Thus, a device should be

registered to at most one ADSS.

5.1.5. An ADDS "Knows" of a Device

The ADDS are used in order to allow AIM Services to find the ADSS that a certain

device is registered to . When searching for an ADSS address the AIM Services initiates a

search in the ADDS network. Since the AJM network has no central focal point, there

isn ' t any server that could serve as an authority that will contain all the registration

information of all the registered devices. It is guaranteed that on ly the ADDS server that

is associated with the ADSS that the device is registered to stores the needed information

for that device. However, it is possible that other ADDS servers will cache this

information. Therefore, for d E D and bE S2 , let KNOWS dewce (b) be the set of devices

that ADDS b knows the guaranteed current ADSS registration address. Therefore,

KNOWS device (b) = REG ad's (a) if the case when there exists s E S such that

AS SOC ads., (s) = a and ASSOC add' (s) = b .

5.1.6. An ADDS "Knows" About Another ADDS

Since there is no centralized authority for a shared AIM infrastructure, then there is no

51

------- ----------------------

Infrastructure to Communicate\ Sharon Koubi

authority that wi II construct and maintain the connections from which a peer-to-peer

search of the ADDS network can be performed. Instead, these connections will be created

by the interactions between the devices and the services. When a device registers to an

AIM service, then by default it notifies it about the other services it is registered to. The

AIM Service uses his information in order to establish connections between its associated

ADDS and the ADDS associated with the other services it was notified of. Therefore,

ideally all services that support a certain device will be interconnected. Define

KNOWS adds as the set that contains the direct relations between the ADDS. For

bl,b2 E S2 then (bl,b2) E KNOWS adds if and only if there exists a device d E D such

bE S2 let KNOWSadd, (b) be the set of all other ADDS that b "knows". Therefore,

KNOWSudd,.(b) = ~ [jASS?Cadd,(REGdevice(d)).
de!ILG,,, ," Ci'Ssoc .. k£, (h))

5.2. Summary

This chapter gave a formal description of the AIM network topology. Laying out the

objects that participate in the AIM network and the relations between them is important

for the understanding the AIM protocol (Chapter 6) and for the discussion about

cooperation in AIM (Chapter 7).

52

Infrastructure to Communicate\ Sharon Koubi

6. The AIM Protocol

The essence of AIM is defined in its protocol. The protocol defines the data structures

that are exchanged between the different components and the behaviour of each

component in each situation. However, it does not define what network mechanisms are

used. The AIM protocol is composed of the different operations that are performed by

interactions between AIM components. The details of these operations are described in

the following subsections.

6. 1. Protocol Overview

Before describing the operations of the AIM protocol, device and service identification

need to be explained. Every device and each AIM Service is identified by a unique AIM

ID. The AIM ID has a length of 128 bits and serves two purposes. The first as mentioned

to uniquely identify an AIM Device or AIM Service. In addition, the AIM ID serves also

as a public key. Therefore, each AIM Device and AIM Service has a public/private key

pair that is used for identification and validation throughout the protocol.

As mentioned in Chapter 4, the infrastructure can operate in two modes, private and

shared. In the private mode all infrastructure components are serving one organization.

Therefore, all ADSS and ADDS are managed by that organization. In the shared

configuration, each organization supplies its own AIM Services and the participating

organizations share the ADSS/ADDS network. In such cases, it is intended that each

organization supplies ADSS/ADDS according to the amount of users and traffic that its

servers generate. There are some differences in the protocol when operating in a private

or shared configuration.

The AIM protocol is implemented as part of the AIM Server and Client APls and the

AIM Servers: ADSS and ADDS. Therefore, when developing an application that uses

AIM there is no need to implement the protocol details but only to use the AIM APis.

XML is used for the formatting of the AIM protocol requests. Although it does cause

53

Infrastructure to Communicate\ Sharon Koubi

some parsing overhead, it greatly increases the readability of the requests and simpl ifies

the implementation and the development process.

6.2. Protocol Operations

This chapter describes the details of the protocol operations usmg a pseudo-code

notation.

6.2.1. Searching for an ADSS

In order to push data to a device, an AIM Service needs to communicate with the

ADSS that is taking care of that device. If the device has communicated before with that

service, then it is possible that the AIM Server API has cached the address of the ADSS.

Usually that is the case since a device will contact a service at least once before the

service wi ll push data to the device. However, even if there is a cached address it could be

invalid if the device has changed to a different ADSS. This operation describes the steps

that are being taken in order to find the current ADSS.

II This method dascribes tha Sarver API function for

I I saarching an ADSS for a uni.qua davica ID .

d = Device TO to search

s = The AIM Service that is searching

C(s) = cached device ids and addresses

SearchForADSS(d)

II Check if an ADSS address is cached for the device

If exists (d' ' address) E c(s) such that d = d'

Return address

II Get the associated ADDS

b = ASSOC addr (s)

address = SendADDSRequest({b}, d, 0)

54

End

Infrastructure to Communicate\ Sharon Koubi

if address not null

Else

C(s) = C(s) u {address}

Return address

Return "failed"

I I This method prepares and sends an XML request to

II an ADDS

B = ADDS that the request is sent to

d = Device ID to search

depth = Request depth, starts at 0 and increased every resend

SendADDSRequest(B, d, depth)

End

II Prepare XML and send to the ADDS

requestXML = PrepareXML()

II Send request to peers

For each bE B

SendAsyncronousRequest(b, requestXML)

I I When the first valid response arrives / return

II after pa r sing the XML response

address = null

while (address = null) and CountPendingRequests() <> 0

responseXML = WaitForResponse()

response = ParseResponse(responseXML)

address = response. address

Return address

Figure 6.l(a) Algorithm used by the AIM Service API to look for a device ADSS

II This method describes how the ADDS process search

55

Infrastructure to Communicate\ Sharon Koubi

II requests

b = The ADDS that is performing the search

C(b) = The collection of ADSS addresses stored on this server

requestXML = The XML of the request

ProcessADDSRequest(requestXML)

II Parse the input XML

request= ParseRequest(requestXML)

II Read device ID

d = request. deviceid

I I Check .if an ADSS address is stored locally

If exists (d' ' address) E c (s) such that d = d'

Return address

I I Usually M.4X_DEPTH is set on 1 since all service

II that share a certain device are interconnected

I I It could be set to 2 to overcome broken connect_ions

address = null

End

If depth < MAX_DEPTH

address = SendADDSRequest(.KNOWSadd,.(b) , b, depth+ I)

Return address

Figure 6.l(b) Algorithm for searching for an ADSS, used in the ADDS.

< addsrequest type=" ADSS Search">

<id>Unique request ID</id>

<info>

</info>

<device>

<id>Device ID< l id >

</device>

<depth>Request depth</depth>

56

Infrastructure to Communicate\ Sharon Koubi

<aim service>

<id>AIM Service lD that originated request<id>

<address> Address of AIM Service that originated request </address>

</ aimservice>

</ addsrequest >

Figure 6.1(c) XML format for the search ADSS request

< addsrequest type="ADSS Address">

<id>Unique request ID of originating request</id>

<info>

</info>

<adds>

<device>

<id>Device ID< lid >

</device>

<adss>

<id>ADSS ID</id>

<address>ADSS address</ address >

</adss>

<id>The ID of the ADDS that replies</id>

<address>The address of the ADDS that replies</ address >

</adds>

</ addsrequest >

Figure 6.l(d) XML format for the search ADSS response

6.2.2. A Device Registers to an ADSS

A device needs to be registered to an ADSS for optimal communication to the AIM

Services it is registered to. Registration is a regular part of the AIM infrastructure activity.

For example, a device might have to switch from the ADSS server it is registered to due

to network limitations. After the device changes to a different network, ADSS can fa il or

57

Infrastructure to Communicate\ Sharon Koubi

cease to exist and a device might have to look for service elsewhere or due to inactivity

device registration might be removed from its current ADSS. This chapter describes the

procedures that are taken in order to register a device to an ADSS.

II This method describes the devi ce API function for

II registerin g an ADSS .

adss = The address of he ADSS that the device tries to register to

RegisterToADSS(adss)

I I Prepare XML for pre-registration request ,

II pre-registration XML contains the device id and

I I device type . Send the pre-regist.ra tion to the ADSS .

requestXML = PrepareXML()

responseXML = SendRequest(adss, requestXML)

II Parse the response . The response XML should contain

I I a status indi cating if the .4DSS is willing to

II accept the request , a request ID that will be

II used for validating the registration request . 1~e

II request id is encrypted by the ADSS using the

II device ID a public key .

response = ParseResponse(responseXML)

if response. status <> "ok"

Return "failed"

II The request ID is decrypted using the device ' s

I I private key . The request i.d is encrypted to

II that the requesting device is using its 0~1 ID

requestid = Decrypt(response.encryptedid)

II Prepare XML for the registration request ,

II regist r ation XML contains the decrypted request

II ID , the current ADSS , an indication whether to

II copy registration data from old ADSS . It can also

58

End

Infrastructure to Communicate\ Sharon Koubi

II contain updates to registration data that include

I I fi.I tering information and adapter specific info .

requestXML = PrepareXML()

responseXML = SendRequest(adss, requestXML)

response = ParseResponse(responseXML)

II If request succeeded then return

if response. status ="ok"

Return "ok"

Else if response. status ="failed to retrieve old registration info"

I I In this case registration succeed but it .is

I I required to complete! registration by sendi.ng

II the full rr2gistration info sincr2 i.t was not

II retrir2ved from the old server . Add the full

II registration info to the XML .

Return UpdateADSSRegistration(adss)

II Otherwise registration failed

Return "fai led"

Figure 6.2(a) Client algorithm for registering to an ADSS

I I This method describes the ADSS process for

II processing pre-registration rr2quests

a = The ADSS

requestXML = The XML of the request

ProcessADSSPreRegistra tion (requestXML)

request = ParseRequest(requestXML)

I I This should be a pre-registration request ,

II read device ID , deny a request that from a device

II that is not registered to the associated servicr2

d = request. device. id

59

End

Infrastructure to Communicate\ Sharon Koubi

s = ASSOCacbs - I (a)

if d ltE REGservice (s)

Deny ADSSRegistration()

II Check that the device type is supported by this

II server .

If not ChecklfDevicelsS upported(request.device.type)

DenyADSSRegistration()

II Use custom algorithm to approve request

If not ApproveRequest(request)

DenyADSSRegistration()

II Request approved / gene1:ate an encrypted request id

II using the device ID as a public key

encryptedrequestid = GenerateEncryptedRequestiD(d)

II Prepare and send an XML back to the client

responseXML = PrepareXML()

SendResponse(requestXML)

II This method describes the ADSS process for

II processing r-egistration requests

a= The ADSS

requestXML = The XML ofthe request

ProcessADSSRegistra tion (requestXML)

request= ParseRequest(requestXML)

II Read the decrypted request id and validate it

If not ValidateRequest(request. id)

DenyADSSRegistration()

II Read the old ADSS address and notify it that the

II device is r-egister-ed with a new ser-ver

d = request.device.id

60

End

Infrastructure to Communicate\ Sharon Koubi

NotifyTermination(request.oldadss.address, d)

I I Check whether to use the old registration data

failedToGetRegistrationlnfo = false

registrationXML = null

If request. useoldregistration = true

II Read old registration info from old ADSS

registrationXML = GetRegistrationlnfo(request. oldadss. address, d)

if registrationXML is null

failedToGetRegistrationlnfo = true

II Update device reg.istration information on ADSS

UpdateDeviceRegistration(request, registrationXML)

II Prepare and send an XML back to the client if

II faileToGetRegistrationinfo = true then the return

II status should be modified accordingly

responseXML = PrepareXML()

SendResponse(requestXML)

Figure 6.2(b) ADSS algorithm for processing client registration requests.

< adssrequest type="Pre-Registration">

<device>

<id>Device ID< lid >

<type>Device type</type>

</device>

</adssrequest >

Figure 6.2(c) Pre-registration XML specification.

< adssrequest type="Pre-Registration Reply">

<encryptedid>Encrypted request ID</encryptedid>

<status>Request status</status>

61

Infrastructure to Communicate\ Sharon Koubi

<reason> If declined, then the decline reason</reason>

</adssrequest >

Figure 6.2(d) Pre-registration XML reply.

< adssrequest type=" Registration">

<id>Decrypted request id</id>

<device>

<id>Device ID< / id >

<type>Device type</type>

</device>

<adss>

<id>Oid ADSS 10</id>

<address>Oid ADSS address</ address >

</adss>

<useoldregistration>Whether to use old registration info</useoldregistration>

<adapteri n fo>

Adapter specific info

</adapterinfo>

<fi lterinfo>

<service>

<id>ID of service that filter info applies to</id>

<rule>Filter rule</rule>

</service>

</fi lterinfo>

</adssrequest >

Figure 6.2(e) Registration XML request

62

Infrastructure to Communicate\ Sharon Koubi

6.2.3. A Device Registering to an AIM Service

Much of the registration process of a device to an AIM Service is application specific.

The AIM infrastructure provides wrapper procedures that take care of validating the

identity of the device, informing the device with the appropriate ADSS information and

updating the associated ADDS with the device information. This operation also contains

the exchange of secret passwords between the service and the device.

6.2.4. Pushing data to a device

An AIM service can push data to a device by forwarding the request to the ADSS that

the device is registered to. The ADSS decides whether to forward the request to the

device based on the filter profile of the device. Using a secret password, the device can

verify that the data that is received did in fact come from the declared service and the

service can get validate that the client received the request. This transaction involves

sending binary data. Therefore, the files will be formatted using multipart/related MIM E

type (RFC 21 12).

6.2.5. Sending data to a Service

A device can send data directly to a service. However, in certain situations, a service

that is behind a firewall cannot have ports open for receiving information. In order to

overcome that without breaching corporate security policies AlM allows the device to

send the data to an ADSS that is outside the corporate network. The AIM service can then

poll the ADSS as often as possible to check if any new requests or notification arrived

from a c lient device.

63

Infrastructure to Communicate\ Sharon Koubi

6.3. Summary

The AIM protocol provides the backbone that is needed in order for an AIM system

implementation. The protocol described was used in a test implementation of AIM used

for this work.

64

-------------- -

Infrastructure to Communicate\ Sharon Koubi

7. Modeling Cooperation

In this chapter we present the algorithms that are used by AIM in order to induce

cooperation in the public configuration. As mentioned earlier, in the public configuration

a device can be registered to several services. Therefore, it is not necessary for a service

to supply ADSS slots to all its devices, but the services should share the burden of

supplying sufficient ADSS s lots. Similar to the works shown in [28, 29] we take a game

theoretic approach in order to induce rational participants to cooperate. However, we also

make the assumption that some participants might behave irrationally or maliciously and

therefore extend the algorithms used in order to avoid the effects of such behaviours. In

the following chapters we first discuss the attacks that should be prevented and we

specify the requirements from the algorithms in order to be practical. Then we present the

system model and the algorithm and investigate where that algorithm results in a Nash

equilibrium. We continue with the simulation results of the algorithm. Finally, we show

an extension to the algorithm to deal with irrational behaviour.

7. 1. Problem Description

7.1.1. Attacks and Misbehaviours that Should be Prevented

The main purpose of the algorithm is to induce cooperation among rational participants

who care for their own best interests. Yet, a rational participant might find it beneficial to

take advantage of other participants ' resources in order to increase its utility. As described

in Chapter 4, a service must supply a device with the address of at least one ADSS that it

is associated with. However, if a service knows that the device can get ADSS support

from a different service, then it might supply it with a dysfunctional address, or that the

service might supply less ADSS slots than is required in order to reduce its costs. On the

other hand, a service that will supply an ADSS slot to any device that requests so, might

end up supplying slots to all its registered devices while the other services that the devices

65

Infrastructure to Communicate\ Sharon Koubi

are registered to do not contribute anything. Therefore, the algorithm should make sure

that all services supply their fair share of ADSS slots. Our assumption is that the fair

number of slots should be based on the number of devices that are registered and the

average number of services that each device is registered to, since each additional

registration generates more traffic. We define the fair amount of ADSS slots to be

supplied by each service should be as follows:

total number of devices registered to the service
fair ADSS allocation =-------------------

average number of services each device is registered to

Therefore the main goal of the algorithm is to induce rationally behaving services to

supply at least the fair amount of ADSS slots and eliminate "free riders".

However, it is not impossible that some participants will not behave m a rational

manner or would have a malicious intent to reduce efficiency and cooperation in the

framework. The algorithm shou ld be able to detect such participants. lf a misbehaving

service is detected then all its traffic shou ld not be processed by ADSS that are associated

with the rationally behaving services.

7.1.2. Algorithm Requirements

There are certain requirements that need to be fulfilled in order to make the algorithm

feasible. It should not be a burden, performance-wise on the ADSS. The number of

devices and other services can be very large. Also, the algorithm will be used extensively

to measure every request for service and its overhead must not exceed its benefit. Finally

the algorithm should be able to scale regardless on how many devices or services are

added to the system. Therefore, it is preferable that the algorithms time or memory

complexity will not be dependant on the total number of devices served or on the number

of participant services.

Another constraint is the type of data that the algorithm will be able to use. It would be

an easier task if it were possible to get an accurate view on every parameter ofthe system.

However, it is not possible for every service to collect every piece of information

66

Infrastructure to Communicate\ Sharon Koubi

available in the system. Some of the useful information is too hard to collect or it is

private information. There could be information that needs to be collected from other

services or from client devices, in such cases there could be a problem with the reliability

of the reported information. Therefore the algorithm should be designed such that all the

necessary information for each service could be collected reliably.

The third requirement is probably the most challenging. It is possible that a

participating service or a client device would have malicious intentions of hindering the

execution of the algorithm. Such cases should be detected and excluded from any activity

in the infrastructure. The requirement in this case is that the algorithm would be tamper

proof to any such attempts. Such a requirement is hard to fulfill.

7.2. System Model

7.2.1. Basic Definitions

The system model will formalize the definitions of the system components and the

relation among the different components. We consider the set D to be a finite population

of devices and the setS a finite population of services. We assume that IDI >>IS). Every

device is associated with a set of services. As previously defined, let REG device (d) be

defined for every device dE D as the set of services that dis registered to. Similarly, for

every service s, the function REG.,·ervice (s) is defined as the set of devices the service is

associated with. Therefore, the number of devices that are registered to service s is

jREGserwce (s ~ ·

The "fair share" of devices that shou ld be supported by a service s is determined by

total number of devices registered to s, jREGservice (s ~, and the average number of services

that each devices that is registered to s is registered to. This average is determined by the

function A VG(s) that is calculated as following:

67

Infrastructure to Communicate\ Sharon Koubi

L /REG devtce (d~
AVG(s) = de !IEG,.~1,. (s)

/REG service (s ~

The "fair share" of devices that each services should support is denoted by:

FAJR(s)= /REGservice (s~
AVG(s)

The function SUPPORTED(s) denotes the number of devices that service s is actually

willing to accept.

The system operates m discrete time slots. In each slot any device might leave the

AOSS that currently handles its traffic. The real life reasons that parallel to a device

leaving a ADSS in the system model vary. It could be a representation of inactivity in a

device, rejection of a device, a device that switched to a connection that does not allow it

to use the same ADSS or other reasons. H could also be due to a device that is leaving the

system. However, in the system model that is presented here the number of devices in the

system remains constant. It is regarded as if the number of devices that leave the system

is balanced by the number of devices that join the system. The probability for any device

to leave the ADSS it is currently registered with is denoted by Pd . A device that is not

registered to an ADSS at the beginning of a time slot will try and register to one. It will

try and register until it is accepted. Only one registration attempt can be made in one time

slot.

The algorithm that we suggest in this chapter determines whether a service should

accept or reject an acceptance request from a device. The service uses acceptance rates

information as parameters to base its decision on. The acceptance rates that are used are

the service's own acceptance rate and the average acceptance rate for all requests made

by all devices that are registered to the service. The former rate can be viewed as how

" nice" has the service been to its devices and the latter can be viewed as how "nice" the

other services have been to devices registered to this service. The acceptance rate of the

service is calculated to be the number of requests the service accepted up to time slot k

divided by the number of total requests the service received up to time slot k. Let

Accepted 5 (k) denote the number of requests that service s accepted up to time k and let

68

Infrastructure to Communicate\ Sharon Koubi

Re cieved
5
(k) denote the total number of request that server s received. Then the

acceptance ratio of sat time slot k will be denoted as:

(k) = Accepteds(k)
lf/s Recieved. (k)

The average acceptance rate for all devices that are registered to service s will be

calculated by averaging the acceptance rate for all devices that are registered to s. For

each device dE D, Grantedd(k) denotes the number of granted registration requests for

this device up to time slot k. Re questedd (k) denotes the total number of request that

where made by d. Similarly to lf/s(k), then rp"(k) denotes the ratio of granted requests to

total requests:

L:Grantedd(k)

(k) = de/1/;'G,~," (s)
rp , " . · LJ Re questedd (k)

d e i?JSGurvicr {s}

7.2.2. Utility Function

The utility function measures the gain of each participant at a particular time slot k. If

comparing to a market scenario, then the utility measures the profit of each merchant.

There are two factors that are considered to contribute to the utility of the participants.

The first factor is the number of resources that are used, the more resources that are used

the lower the utility is. The second factor is the level of user service, the higher the

service level the higher the utility. The amount of resources in this case is the number of

devices that an ADSS is will ing to accept. The level of user service is measured by the

ratio of granted requests to total requests. The utility function can be adjusted by two

constants uc1 and uc2 . The constants adjust the value of each of the factors that contribute

to the utility and unless otherwise stated both are equal to I. Formally, for every s E S

then UTILITY, (k) describes the utility of sat time slot k:

((
SUPPORTED(s)J

UTILITYs k) = uc1 1- () + uc2 (rps (k))
FAIRs

69

Infrastructure to Communicate\ Sharon Koub i

The value SUPPORTED(s) can range between 0 and FAIR(s) , rp_, (k) can range between

0 and 1.

7.3. Algorithm Description

7.3.1. A Simplified Scenario

In this chapter we put some constraints on the system model in order to better explain

some theoretical concepts. In the simplified model there are IDI devices and lSI servers,

however every device is registered to each and every one of the services. In addition,

when randomly choosing a service to register to it is assumed that the choices are always

perfectly distributes, thus if in one turn there are x requests the each server receives

exactly
1

;

1

requests. Also it is assumed that Pd is equal for a ll dE D and that if there are

x registered devices at a given time slot then exactly Pdx devices will have to switch that

turn. Clearly in such a scenario FAIR(s2)= FAIR(sJ for every s~>s2 E S and it will be

referred to simply as FAIR.

Service Service Service Service Service

Figure 8.1 Simplified problem.

7.3.2. Rational and Pareto Optimal Operating Point

Pareto efficiency, or Pareto optimality, is a central concept in game theory with broad

applications in economics, engineering and the social sciences. ln a game, a change that

70

Infrastructure to Communicate\ Sharon Koubi

can make at least one individual better off, without making any other individual worse off

is called a Pareto improvement: an allocation of resources is Pareto efficient when no

further Pareto improvements can be made. In the system that is described in this work, a

Pareto efficient point would be a state of the system where it is not possible to increase

the utility of any participant without reducing the utility of another.

Theorem 7.1: The system is Pareto efficient if every service is accepting exactly FAIR

devices.

Proof for theorem 7.1: If every service is accepting FAIR devices then under the

constraints mentioned in subsection 7.3.1 then at any given time slot k rps(k) is maximal

SUP PORTED(s) .
and equals to I for all s E S . Also, equals I for all services and

FAIR

therefore UTILIT'((k) = 1 for all services. Since it is not possible for any service s to

increase its utility by increasing rps(k) then it must increase its utility by decreasing its

SUPPORTED(s) value. By doing that, it will have to deny requests made by devices,

thus reducing the utility of all other services. Therefore the system is Pareto efficient.

QED.

7.3.3. The Distributed Tit for Tat Algorithm

This chapter describes the policy that ADSS use in order to determine whether to

accept or reject a registration request from a device. The idea of the proposed algorithm is

that it should encourage all rational participants to allocate resources in fair way, that is to

have SUPPORTED(s) = FAIR for every rationally motivated servers. The idea of the

algorithm is that no server will accept more than a FAIR number of devices. However, if

other services are not cooperating then it wi II reduce its resource allocation. In order to

determine whether to reduce its resource allocation it will test its own acceptance ratio

against the acceptance ration of the other services. Figure 8.2 shows the algorithm

description. RESGISTERED(s) denoted the number of devices that are registered to s.

71

Infrastructure to Communicate\ Sharon Koubi

If RESGISTERED(s)'?. SUPPORTED(d) or lf/s(k) > rps(k) then Reject

Else Accept

Figure 7.2 Algorithm to decide whether to accept or reject.

The following theorem states the condition in which the algorithm reaches a Nash

equilibrium.

Theorem 7.2 If all participants apply the algorithm as described in figure 7.1 then the

uc PdiDI - PdFAIR
system will reach a Nash Equilibrium if - 1 ~ 1- I I ·

uc2 Pd D- PdF AIR + FAIR

Proof for theorem 7.1: The theorem states that the leve l of user service should be

valued higher than the amount of resources used for the system to reach equilibrium and

it gives and upper bound for this ratio (this is not a tight bound!). The proof needs to

show that no services can achieve a higher utility by reducing SUPPORTED(s) to less

than FAIR. Assume that for some service s E S , SUP PORTED(s) = FAIR- r for some

0 ~ r ~FAIR. Then the utility for that service will be:

UTILITYs(k) ~ uc1(1 -FAIR - r) + uc2 (rp, (k)) =
FAIR .

uc (I- FAIR- r) + uc (PdFAIR~SI - 1)+ Pd (FAIR- r) J =
1

FAIR
2 PdFAIR~SI - 1)+PAFAIR - r) +r

it is g iven that uc1 ~ 1- I I and that uc2 = 1 .
Pd D - PdFAIR+FAIR

Therefore,

For 0 ~ r ~ FAIR , the maximum value UTILITY,.(k) can reach is I. It reaches this

72

Infrastructure to Communicate\ Sharon Koubi

value when r = 0, i.e. cooperation or when r = FAIR, i.e. complete defection. However, it

cannot exceed I therefore if all participants are cooperating, then one cannot improve his

utility by not cooperating. Therefore if the utility function is as defined by the Theorem

7.2 then the system reaches a Nash equilibrium. QED.

To emphasize, since lower cooperation rates by one participant will reciprocate in

lower cooperation rates from others then the high utility value is not likely to be

maintained when one does not cooperate. Figure 7.2a-c illustrates the possible utility

values for a defector. The x axis is the possible values of r and the y axis is the utility

values.

2

1. 75

1.5

1.25

1

0 .75

0.5

0 .25

2

1.75

1.5

1.25

1

0.75

0.5

0.25

200

200

-~~-·--

400 600 800 1000

400 600 800 1000

73

2

1.75

1.5

1.25

1

0.75

0.5

0 .25

Infrastructure to Communicate\ Sharon Koubi

200 400 600 800 1000

7 .3.4. Algorithm Simulations

Algorithm simulations were done both for the restricted simplified problem and with

the restrictions removed. Details about the simulation implementation and environment

are described in Chapter 8. In both cases simulation clearly showed that isolated services

that did not contribute a FAIR amount of slots increased dramatically the amount of

requests that were denied, thus rendering non-cooperation to be unprofitable. It is notable

that in the unrestricted scenario the effects of non-cooperation were less dramatic and

slower to propagate than in the simplified scenario.

The first simulation was of the simplified scenario with IDI devices and lSI servers

where every device is registered to each and every one of the services. A device chose a

service to register to by using a random function; therefore the device choices were nicely

distributed. The simulated servers were selected to either be in a cooperative mode, thus

accepting registration requests, or non cooperative. All cooperative servers employed the

distributed tit for tat algorithm. The dependant variable was the parameter measured to

evaluate the effectiveness of the a lgorithm. It was calculated as ratio of successful device

registration requests over total device registration requests made. The independent

variable was the percentage of servers in the system that are in cooperative mode. Figure

7.3 summarizes the results ofthis simulation.

74

Infrastructure to Communicate\ Sharon Koubi

0.9

0.8

.. 0.7
c:
~
~
-.; 0.6
2'
a:
:i! 0.5
" u
u

" (/) 0.4
0
.2
:;
a: 0.3

0.2

•
0.1

a~~~~~==~~~~~~
~~~~~~~~~v~~~~~*~~~~~~~~~~~~~~~ 

Cooperation Percentage 

Figur·e 7.3 Simulation of the simplified problem. The simulation demonstrates that the ratio of successful quickly 
drops when there are servers that are not cooperating. 

The first simulation was of a more realistic scenario. There were still IDI devices and IS! 
servers; however, each device registered to a random set of services. The simulation 

results where similar to the first one as shown in figure 7.4. 

75 



0.8 

0.7 

.. 
~ 0.6 

~ .. ·;;, 
~ 0 .5 

~ 
~ 
::l 0.4 

" (J) -0 
0 
~ 0.3 
~ 

0.2 

0.1 

Infrastructure to Communicate\ Sharon Koubi 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Cooperation Percentage

Figure 7.4 Simulation of the more realistic situation. The cooperation ratio was a li ttle lower than in the simplified
situation simulation, yet the results were still very similar to the simplified situation simulation.

7.4. Handling Irrationality

It is possible that a service that is participating in the network will deliberately not

cooperate in order to decrease the level of cooperation in the network and hurt the system

performance. Such cases are handled in AIM in a "semi-automatic" manner. Each server

can collect information on the other services that are in its neighbourhood. Using reports

from registered devices, service s1 can estimate the acceptance rate of a neighbouring

service, s2. If it is estimated that lf/_,2 (k) << lf/_,1 (k), then the system notifies the

administrator of s1• The administrator can then decide to ban server s2. Therefore

transmissions for service s2 will not be processed and devices that are registered to s 1 will

be notified not to attempt to use s2 ADSS.

76

Infrastructure to Communicate\ Sharon Koubi

7.5. Summary

We have demonstrated that by using a simple and computationally cheap algorithm it is

possible to protect the AIM system against 'selfish' parties. This algorithm was used in

the implementation of AIM that was created for this work.

77

--

Infrastructure to Communicate\ Sharon Koubi

8. The Implementation of AIM

This chapter describes the software implementation and design of the AIM

infrastructure. The implementation of the server was done in Java. Two client versions

where made, a Java version for testing and simulations and a C++ version that was

written for the Symbian 7.0 OS. A simulation system which automated the system

simulation runs was also implemented.

The implemented infrastructure version, which is labeled 0.2, contains a basic server

and client implementation. The server implementation is basic and does not contain the

AIM server programs ADSS and ADDS described in previous chapter. The installation

and configuration modules were not implemented and theses parts need to be done

manually.

8. 1. The AIM API

The AIM API is a set of interfaces and classes that can be used to develop applications

based on the AIM infrastructure. The Server API was implemented in Java. The client

API was implemented in Java for the Java client and in C++ for the Symbian client. The

goal of the API desing was to keep them as minimal and simple to use as possible.

Connection details are not visible through the API and are managed by the infrastructure

using the configuration information.

8.1.1. Common API

This is a set of interfaces that is used by the server and client A Pis.

AIMAddress

Represents an AIM server or client that a message can be sent to

GetldO - returns the client or server ID.

AIMMessage

A message to be sent from a client to a server or from a server to a client. Implementation

78

Infrastructure to Communicate\ Sharon Koubi

needs to be derived from CAIMMessage.

ToXml() - returns the XML message.

AIMRegistrationMessage

A registration message to be sent from a client to a server. Derived from AIMMessage.

AIMEven tManager

A interface to receive callbacks by the client and server informing of system events

Regsitration()- A registration request event (usually used only on the server side).

Message() - A message, other than a registration.

8.1.2. Server API

The server API is the interface that a server application can use in order to use the AIM

infrastructure. Through the server API it can communicate with client applications.

AIMServer

The interface to be used by an AIM service application.

Start() - Start the aim server.

Stop() - Stop the aim server.

GetClientManager() - Get the AIMCiientManager instance.

SetEventManager() - Set the interface for callbacks.

AIMClientManager

The interface to be used by an AIM service application to manage clients.

Add{) - Add a client, confirm registration.

Remove() - Remove a client, deny registration.

Message() - Send a message to a client.

GetClientlnfo() - Get the client profile information.

79

Infrastructure to Communicate\ Sharon Koubi

8.1.3. Client API

The client API is the interface that a client application can use in order to use the AIM

infrastructure. Through the client API it can communicate with an AIM service.

AIM Client

The interface to be used by an AIM client application.

Start() - Start the aim client.

Stop() - Stop the aim client.

GetServiceManager()- Get the AIMServiceManager insance.

SetEventManager()- Set the interface for callbacks.

AIMServiceManager

The interface to be used by an AIM client application to manage server registration and

messaging.

Register() - Request to register to a service.

Message() - Send a message to a service.

GetServicelnfo()- Get the server profile.

8.2. Common Module

The common module contains the classes that are shared between the client and server.

It contains the classes that represent the XML messages, the common API interfaces and

the classes that implement these interfaces.

8.3. AIM Server

The AIM server module was implemented in Java. It contains the implementation for

CAIMServer which implements AIMServer and provides access to the AIMServer. It also

contains the classes that deal with implementing the "Distributed Tit-for-Tat" algorithm

and the server configuration. In order to simplify simulation the server can run in two

modes, regular mode where the server creates new threads and simulation mode in which

the server runs only in the calling process thread and does not open a new thread.

80

Infrastructure to Communicate\ Sharon Koubi

8.4. AIM Client

The AIM client module contains the implementation for the CAIMCiient which

implements the AIMCiient interface. It also contains the client configuration

implementation and the classes that serve s interface to different networks types. The

AIM client was implemented in Java and in C++ for Symbian 7.0.

The Java implementation was created for testing purposes and does not deal with

switching to different types of networks. Similarly to the server the Java client can run

only in the calling process thread and does not open new threads.

The Symbian client is deigned to be aware of whether a cellular network or a WiFi

network is used.

8.5. AIM Simulation System

The simulation system was designed in order to simulate a large number of AlM

servers and clients in collaboration. It contains a simple demo client Java application and

a simple demo Java server application that uses the AIM APis.

The demo server application is runs the AIM server and accepts new clients according

to the "Distributed Tit-for-Tat' algorithm. The simulation system can override this in

order to simulate a situation where there are servers that are not cooperating. The

configuration information is supplied by the simulation system.

The demo client appl ication is a Java application that uses the AIM client Java API. It

can make registration requests to AIM services and send messages through the AIM

services that it is registered to. The list of available services and other configuration

information is supplied by the simulation system. The simulation system also determines

the ru les by which a client selects to how many and which servers to register to.

Simulations were run with up to I 0000 clients and I 00 services operating in parallel.

The simulations ran on a PC with a AMD 64 Athlon and 2GB memory running Windows

XP.

8.6. Summary

The AIM infrastructure version 0.2 is a preliminary implementation of the AIM

81

.---------------------------- ------------

Infrastructure to Communicate\ Sharon Koubi

infrastructure. A more complete implementation would include a full implementation of

the ADDS and ADSS servers as well as automation of the configuration process and

modules that would allow simple interface for common mobile applications.

82

Infrastructure to Communicate\ Sharon Koubi

9. Summary

As envisioned in [19] and [27], handheld devices are becoming more and more

ubiquitous. The market for mobile software is rapidly growing and tools for facilitating

this revolution are in need. I believe that some new concepts need to arise in order to

efficiently develop software in an increasingly mobile universe and that there is a place

for an infrastructure that would help developers to create mobile applications more easi ly

and to smoothly integrate them with established corporate software.

9. 1. Key Points of This Work

The focus of this work is AIM, an infrastructure that will provide services that will

make developing and adapting applications for mobi le devices easier and smoother. The

approach that is taken in designing AIM is the middleware approach, based on general

and mobile concepts of middleware, as similarly seen in [4]. The description of the AIM

infrastructure includes the rules that determine the interactions between the components

of the AIM network, and thus determine the topology of the AIM network and a detailed

description if the AIM protocol. The last two chapters deal with inducing cooperation in

the system.

9.2. The Benefits of a System like AIM

AIM could make unique mobile characteristics such as connection details, network

identification and network problems transparent and in addition could serve as a

connection point for mobile devices to various services and protocols. Whatever system is

used, the key argument that is made in th is work is that efficiently developing multiple,

elaborate mobile applications need to be done on top of a mobile midd leware layer that

wi ll take care of many of the technical details. Such middleware applications exist for

desktop software; however, there is a need for a specialized platform for mobile

implementations.

83

Infrastructure to Communicate\ Sharon Koubi

9.3. Proposals for Future Work

An obvious continuation of this work would be a full implementation of AIM and using

it to adapt several existing applications for mobile devices. If such a system is

implemented then the main obstacle for its commercial success would be to integrate it

with some of the commercial mobile operating systems available. I envision that such a

system can be useful for medium to small software companies that could use it as a tool

on top ofthe operating system and standard development tools.

There are other theoretical aspects of AIM that can be explored as well. There are a

couple of directions that would be particularly interesting in the context of an

infrastructure such as AIM. One would be the handling of transactions in a mobile

middleware system. Jn order for such a system to be reliable, transactions need to be an

integral part of it. Another wou ld be the issue of assuring privacy and anonymity. This

area of research is especially relevant for the public configuration of the system in order

to prevent from services the opportunity to match and possibly abuse private user

information.

84

Infrastructure to Communicate\ Sharon Koubi

About the Author

The author, Sharon Koubi, has been a student, programmer and researcher in the field

of computer science for more than ten years. He graduated from Memorial University in

2004 with B.Sc. (Honours) in computer science. In addition to his research with wireless

networks he was also involved in researching combinatorial designs and proteomics.

Currently, he is a third year medical student at Memorial University of Newfoundland

and lives in St. John's with his wife and their two children.

Journal publications by the author

1. S. Koubi, M. Mata-Montero, N. Shalaby, Using Directed Hill-Climbing for the

Construction ofDifference Triangle Sets, IEEE Transactions on Information

Theory 51 (1): 335-339, 2005.

2 . S. Koubi, N. Shalaby, The Combined Use of a Genetic Algorithm and the Hill

Climbing Algorithm to Find Difference Triangle Sets, accepted to the Journal

of Combinatorial Mathematics and Combinatorial Computing in 2007.

3. H. Paradis, T. Islam, S. Tucker, L. Tao, S. Koubi , R. Gendron, Tubedown

Associates with Cortactin and Controls Retinal Endothelial Cell Permeability to

Albumin, accepted to the Journal of Cell Science in 2008.

85

Infrastructure to Communicate\ Sharon Koubi

References

I. F. Andre and M.T. Segarra, A Generic Approach to Satisfy Adaptability Needs in
Mobile Environments, 33rd Hawaii International Conference on System Sciences
(HICSS'OO), Maui, Hawaii, January 2000.

2. 0. Angin, A. T. Campbell, M. E. Kounavis and R. Liao, The Mobiware Toolkit:
Programmable Support for Adaptive Mobile Networking, IEEE Personal
Communications Magazine, Special Issue on Adaptive Mobile Systems, Vol.5,
pp. 32-43, August 1998.

3. K. Arnold, B. O'Sullivan, R. W. Scheitler, J. Waldo, and A. Wolrath, The Jini
Specification, Addison-Wesley, 1999.

4. P. Bellavista, A. Corradi, R. Montanari and C. Stefanelli: Dynamic Binding in
Mobile Applications: A Middleware Approach, IEEE Internet Computing, Vol. 7,
pp. 34-42, 2003.

5. M. Bhide, P. Deolasse, A. Katker, A. Panchgupte, K. Ramamritham, and
P. Shenoy, Adaptive Push Pull: Disseminating Dynamic Web Data,
IEEE Trans. Computers, special issue on quality of service, pp. 265-274,
2002.

6. S. Buchegger, J.-Y. Le Boudec, Performance Analysis of the
CONFIDANT Protocol (Cooperation of Nodes: Fairness In Dynamic
Ad-hoc Networks), MobiHoc, pp. 226-236, June 2002.

7. M. Buddhikot, G. Chandranmenon, S.-J. Han, Y.-W. Lee, S. Miller, and L.
Salgarelli, Integration of 802. 11 and Third-Generation Wireless Data Networks,
Proceedings ofTNFOCOM, Vol. I , pp. 503-512, March 2003.

8. L. Buttyan and J.P. Hubaux, Enforcing Service Availability in Mobile Ad-Hoc
WANs, IEEE/ACM Workshop on Mobile Ad-hoc Networking and Computing, pp.
87-96, August 2000.

9. L. Buttyan and J.P. Hubaux, Stimulating Cooperation in Self-Organizing Mobile
Ad-hoc Networks, ACM/Kiuwer Mobile Networks and Applications, Vol. 8, pp.
579-592, 2003.

10. Y.-F. Chen, H. Huang, R. Jana, T. Jim, M. Hiltunen, R. Muthumanickam, S. John,
S. lora, and B. Wei, iMobile EE- an enterprise mobile service platform, ACM
Journal on Wireless Networks, Vol. 9, pp. 283-297, 2003.

86

Infrastructure to Communicate\ Sharon Koubi

11. L. Kleinrock, Breaking Loose, Communications ofthe ACM, Vol 44, pp 41-45,
2001.

12. L. Kleinrock, Kleinrock on Nomadic Computing, Ubiquity, Volume 6, Issue 25,
July, 2005

13. Lee et al., Backbone Construction in Selfish Wireless Networks, Proc. of the 2007
ACM SIGMETRJCS, pp. 121-132, 2007.

14. S. Marti, T.J. Giuli, K. Lai, M. Baker, Mitigating Routing Misbehavior in Mobile
Ad-hoc Networks, MobiCom, pp. 255-265, August 2000.

15. C. Mascolo, L. Capra and W. Emmerich, An XML-based Middleware for Peer-to
Peer Computing, Proceedings of the International Conference on Peer- to-Peer
Computing (P2P2001), pp. 69-82, August 2001.

16. C. Mascolo, L. Capra, W. Emmerich, Mobile Computing Middleware,
NETWORKING Tutorials, pp. 20-58, 2002.

17. M. Musolesi, C. Mascolo, S. Hailes, Adapting Asynchronous Messaging
Middleware to Ad Hoc Networking, Proc. of the 2nd workshop on Middleware for
pervasive and ad-hoc computing, pp. 121-126, 2004.

18. I.G. Niemegeers and S.M. Heemstra de Groot, Research Issues in Ad-Hoc
Distributed Personal Networking, Special issue of Wireless Personal
Communication, Vol. 26, pp. 149-167,2003.

19. C. Nika.,et al., The Challenge of Mobile IP in Wireless Networks, 4th
Wireless Personal Multimedia Communication (WPMC 2001)
International Conference, 200 1.

20. C. A. Nika, D. D. Vergados and M. Theologou, Mobile IP: A Challenge
in the Mobile World, Wireless IP and Building the Mobile Internet,
Artech House, pp. 232-242, 2003 .

21. Oh et al., A Programming Environment for Ubiquitous Computing
Environment, ACM SIGPLAN Notices, Vol. 42, Issue 4, pp. 14-22,
2007.

22. C. Perkins, Mobile IP, IEEE Comm., Vol. 35, pp. 84-99, 1997.

23. R. Prasad, and K. Larsen, 3G Networks and Standards, Wireless IP and
Building the Mobile Internet, Artech House, 2003.

87

- -------------- - ------------------~

Infrastructure to Communicate\ Sharon Koubi

24. K. Raatikainen, H. Christensen, T. Nakajima, Application Requirements for
Middlewarefor Mobile and Pervasive Systems, ACM SIGMOBJLE Mobile
Computing and Communications Review, Vol. 6, pp. 16-24, 2002.

25. T. S. Rappaport, Wireless Communications, Prentice Hall, 2002.

26. M. Roman, Ubicore: Universally Interoperable Core, http ://www.ubi-core.com.
(last accessed July 2006).

27. J. Roth, C. Unger, Using Handheld Devices in Synchronous Collaborative
Scenarios, Second International Symposion on Handheld and Ubiquitous
Computing 2000 (HUC2K), pp. 187-199, September 2000.

28. V. Srinivasan, P. Nuggehalli , C.-F. Chiasserini, and R. R. Rao, Cooperation in
Wireless Ad-Hoc Networks, in Proc. JEEE INFOCOM, pp. 808-817, 2003.

29. A. Urpi, M. Bonuccelli, and S. Giordano, Modelling Cooperation in Mobile Ad
Hoc Networks: A Formal Description of Selfishness, Proceedings of Modelling
and Optimization in Mobile, Ad-hoc and Wireless Networks (WiOpt), pp. 56-67,
March 2003.

88

