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Imagine there’s no countries, it isn’t hard to do.
Nothing to kill or die for, and no religion too.

John Lennon.

A María
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Chapter 1

Introduction.

This thesis focuses on the study of social systems through methods of theoretical
physics, in particular proceedings of statistical physics and complex systems, as well
as mathematical tools like game theory and complex networks. There already ex-
ists predictive and analysis methods to address these problems in sociology,but the
contribution of physics provides new perspectives and complementary and powerful
tools. This approach is particularly useful in problems involving stochastic aspects
and nonlinear dynamics. The contribution of physics to social systems provides not
only prediction procedures, but new insights, especially in the study of emergent
properties that arise from holistic approaches.

We study social systems by introducing different agent-based models (ABM).
When possible, the models are analyzed using mathematical methods of physics,in
order to achieve analytical solutions. In addition to a theoretical approach, experi-
mental treatment is performed via computer simulations both through Monte Carlo
methods and deterministic or mixed procedures. This working method has proved
very fruitful for the study of several open problems.

The book is structured as follows. This introduction presents the mathematical
formalisms used in the investigations, which are structured in two parts: in partI we
deal with the emergence of cooperation, while in part II we analyze cultural dynamics
under the perspective of tolerance.

1.1 Game theory.

In 1944, mathematician John von Neumann and economist Oskar Morgenstern es-
tablished a definition of game and its components [1]:
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“First, one must distinguish between the abstract concept of a game, and the individual

plays of that game. The game is simply the totality of the rules which describe it. Every

particular instance at which the game is played – in a particular way – from beginning to

end, is a play. Second, the corresponding distinction should be made for the moves, which

are the component elements of the game. A move is the occasionof a choice between various

alternatives, to be made either by one of the players, or by some device subject to chance,

under conditions precisely prescribed by the rules of the game. The move is nothing but this

abstract ’occasion’, with the attendant details of description, – i.e. a component of the game.

The specific alternative chosen in a concrete instance – i.e.in a concrete play – is the choice.

Thus the moves are related to the choices in the same way as thegame is to the play. The

game consists of a sequence of moves, and the play of a sequence of choices. Finally, the

rules of the game should not be confused with the strategies of the players.[...] Each player

selects his strategy – i.e. the general principles governing his choices – freely. [...] The rules

of the game, however, are absolute commands. If they are everinfringed, then the whole

transaction by definition ceases to be the game described by those rules.” (von Neumann
and Morgenstern. Theory of Games and Economic Behavior (1944)).

Game theory (GT) is an area of applied mathematics that uses models to study
interactions with formalized incentive structures (i.e. games), and is therefore a field
closely related to decision theory. The origins of game theory go far back intime: In
1713, James Waldegrave proposed a solution for a two player game [2]. Nevertheless,
GT as a specific field did not appear until 1928 through a series of papers published
by John von Neumann [3]. Modern game theory was comprehensively formalized
in 1944 by John von Neumann and Oskar Morgenstern [1], and experienced a very
important step forward with John Nash’s contribution of strategic equilibrium:the
Nash equilibrium [4]. GT was firstly developed as a tool for understanding economic
behavior, but now is applied in many fields such as biology, physics, sociology, traffic
control, etcetera; in fact, it applies to a wide variety of agents including humans,
microorganism and nonhuman animals. Further refinements to game theory include
evolving populations and underlying topologies, among others.

1.1.1 Definitions.

In this section is a brief introduction to game theory related to the focus of this thesis,
a deeper study can be found in [5, 6, 7].
A game is a mathematical representation of a conflict situation. The outcome (pay-
off) results from mutual interaction between different agents or players. A player is
defined as a decision maker: a person, a people group, an animal or whatever kind of
element. Based on the number of playersN ≥ 2, games are classified as two-person
games, three-person games, and in general as N-person games. The interactions be-
tween the players are governed by rules that state the actions each playercan take,
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the information each player has available and the outcomes of the actions. A strategy
defines the actions that a player will follow in every scenario.

There is a distinction between games withperfect, completeand incompletein-
formation.Perfectinformation describes the situation when each player has available
the information to determine all of the possible scenarios, strategies, actions and out-
comes all game long: so, players have full information about the actions thathave
already taken place. In games withcompleteinformation, each player knows the
rules of the game and the payoff functions of all the players, but playersmay not see
all of the actions chosen by other players. Inincompleteinformation games, players
may not know some information about the other players (actions, strategies,payoffs)
or about the rules (e.g.game’s length).

According to the updating, games can be classified assimultaneousandsequen-
tial games. Insimultaneousgames, players choose their actions simultaneously,
therefore, players may predict other players’ action but don’t know it.By extension,
a game can be classified assimultaneousif decisions are not taken simultaneously
but players’ actions are in ignorance of others players’ actions. On thecontrary, in
sequentialgames players make decisions in sequential order and later players have
some knowledge on actions already taken by earlier players.

Based on the total outcome, there arezero-sumgames andnon-zero-sumgames.
In a zero-sumgame, a player’s gain (or loss) is balanced by the losses (or gains) of
the other players(s),i.e. the total pay-offs for the players, for every combination of
the available actions, sum to zero. Otherwise, innon-zero-sumgames, total payoff is
different from zero. Attending the indiscernibility of players, games can be classified
betweensymmetricor asymmetricgames. Insymmetricgames, payoffs depend only
on the actions, not on who is chosen them. Otherwise, the game isasymmetric.

1.1.2 Normal form.

A game can be can be represented through different forms, such as extensive and
normal form. Normal form is a description of a game by way of a matrix that relates
players’ actions to payoff functions. In order to have a normal form description of a
game, we take in consideration the following data:

i) A setN of players,N = {1, 2, . . . , n}.

ii) Each playeru has a finite number of actions, represented by the actions setAu =

{1, 2, . . . ,mu}.
iii) Each playeru has a payoff function associated (Pu : A1 × A2 × . . .× An → R)
that provides the payoff of playeru.
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Definition: A game in normal form is a structureG = 〈N,A,F〉, whereN =

{1, 2, . . . , n} is a set of players,A = {A1, A2, . . . , An} is an n-tuple of actions sets,
one for each player, andF = {F1, F2, . . . , Fn} is an n-tuple of payoff functions.

The normal form of a two-person symmetric game is given by a pair(A,P ),
whereA is a nonempty set, the set of actions, andP is a real-valued function defined
on A × A, (i.e., P (ij) ∈ R, ∀ i, j ∈ A.). Thepayoff matrixP, defined asPij =

P (i, j), represents the payoff of player I, given the actions chosen by players I and
II are i andj respectively. Note thatP is am × m matrix, wherem is the number
of possible actions. Inasmuch as the game is symmetric, player II’s payoff isgiven
by P (j, i). In particular, a two-player m-action symmetric game is defined by the
matrix:

P =











P11 P12 . . . P1m

P21 P22 . . . P2m

...
...

. . .
...

Pm1 Pm2 . . . Pmm











=











P (1, 1) P (1, 2) . . . P (1,m)
P (2, 1) P (2, 2) . . . P (2,m)

...
...

. . .
...

P (m, 1) P (m, 1) . . . P (m,m)











(1.1)

1.1.3 Pure and mixed strategies.

A player’s strategy determine the action the player will take at any stage of thegame.
A strategy profile or strategy combination is a set of strategies for each player which
fully specifies all actions in a game. A strategy profile consists of one and only
one strategy for every player. Then, strategy and move are differentconcepts: A
move is an action taken by a player at some point of the game. On the other hand, a
strategy is a player’s algorithm that relates every scenario to the player’sactions [8, 9].
Although the terms action and strategy represent different concepts, sometimes have
been used interchangeably, especially for the last twenty years. This is due to the
use of repeated one-round games in evolutionary dynamics, where the players action
change is sometimes studied according to updating rules. In this thesis we try to
recover the original meaning of such terms; nevertheless, in chapter 2 weuse the
notationstrategy, updating rule. Note that original notation provides more levels:
move, action, strategy, updating rule.

A pure strategyR determines the move a player will make for any scenario. A
player’s strategy set{R1, R2, . . . , Rm} is the set of pure strategies available to that
player. The convex linear combination setS of pure strategies
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S = {p = (p1, . . . , pm) ∈ R
m : pi ≥ 0,

m
∑

i=1

pi = 1} (1.2)

is the set of mixed strategies. Therefore, a mixed strategyp is an assignment of a
probabilitypi to each pure strategyRi.

1.1.4 Minimax rule.

Minimax is a decision algorithm for minimize losses under the maximum loss sce-
nario; similarly, maximin rule consists in maximizing the minimum payoff. John
von Neumann proved the minimax theorem in 1928 [3]: He stated that in every two-
person zero-sum game with finitely many pure strategies, there exists a valueV and
a mixed strategypppj for each playerj, such that:

i) Given player 2’s strategyppp2, the best payoff possible for player 1 isV , and
ii) Given player 1’s strategyppp1, the best payoff possible for player 2 is−V .

Subsequently, it has been extended to other types of games. A generalization of
Neumann’s minimax theorem is the Sion’s minimax theorem that states [10]:

Let X be a compact convex subset of a linear topological space andY a convex
subset of a linear topological space. Letf be a real-valued function onX × Y such
thatf(x, ·) is upper semicontinuous and quasiconcave onY , ∀x ∈ X, andf(·, y) is
lower semicontinuous and quasi-convex onX, ∀y ∈ Y . Then:

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y). (1.3)

In two-person zero-sum games, the minimax algorithm can be summarized as
choosing the best move for yourself (higher payoff) assuming that your opponent
will choose the worse for you (lower payoff). In an iterated game, minimax method
implies considering all possible moves for all players and rounds.

1.1.5 Dominant strategy. Nash equilibrium. Stability.

A strategy is a strict(resp. weak)dominant strategy if it provides greater(resp.
greater or equal)payoff to a given player than any other strategy, no matter other
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players’ strategies. LetB be the set of strategies for which the functionv → vPw
gets its maximum value; thenB is called set of best responses tow.

A set of strategies is aNash equilibriumif no player can get greater payoff by
unilaterally changing its strategy. LetSi be the strategy set for playeri, S = S1 ×
S2× ...×Sn be the set of strategy profiles andfi(x) be theplayer-i’s payoff function
for x ∈ S. Let xi be a strategy profile of playeri andx−i be a strategy profile of all
players except for playeri. A strategy profilex∗ ∈ S is a weak Nash equilibrium if:

fi(x
∗
i , x
∗
−i) ≥ fi(xi, x

∗
−i), ∀i, xi ∈ Si, xi 6= x∗i . (1.4)

In the same way, a strategy profilex∗ ∈ S is a strict Nash equilibrium if:

fi(x
∗
i , x
∗
−i) > fi(xi, x

∗
−i), ∀i, xi ∈ Si, xi 6= x∗i . (1.5)

A game is finite if the number of players and the number of pure strategies each
player has are both finite. Nash proved that, taking into account mixed strategies, at
least one Nash equilibrium exists for all finite games [4].

There is a intermediate equilibrium between strict and weak Nash equilibria. A
Nash equilibrium isstableif an infinitesimal change in probabilities for any player
u implies: i) Any other playerv 6= u do not gets a higher payoff,ii) Playeru gets a
lower payoff.

1.1.6 Evolutionary game theory.

Evolutionary game theory(EGT) is defined as the application of game theory to
evolving populations, providing a useful framework to model Darwinian competition.
The origins of EGT can be found in John Maynard Smith and George R. Price’s study
about the way in which animal conflict can be modeled through survival strategies in
hostile scenarios [11]. Evolutionary game theory has been successfully used not only
in many aspects of biology (e.g. the basis of altruistic behaviors, the emergence of
multicellular organisms, group selection, sexual selection, parental care,coevolution
or ecological dynamics), but also in other sciences such as economics orsociology
[12, 13, 14, 15, 16].
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Replicator equations.

The usual method for studying evolutionary dynamics in GT is through replicator
equations. These replicator equations establish a relation between the growth rate of
the proportion of players using a certain strategy (that can be interpreted, for example,
as a specie’s population growth or a behavior evolution) and the difference between
the average payoff of that strategy and the average payoff of the whole population
(respectively the specie’s fitness or the behavior reward) [12, 13].Replicator equation
assume infinite and well-mixed populations and continuous time. Usually, the interest
is not in the transient but in the steady-state solutions: the stable states.

The replicator equation can be obtained from Darwinian arguments. Once pos-
tulated that expected offspring of a kind (mutation, race, specie, ...) is proportional
to the fitness (that provides food, welfare, safety, ...), the growth ratioẋi/xi of that
kind i can be assumed as the difference between kind’s fitness and mean population
fitness, that is,̇xi/xi = fi(x)− f̄(x). Assuming continuous time, the evolution of a
population distributed inn (finite) kinds is given by:

ẋi = xi[fi(x)− µ(x)], µ(x) =
n
∑

i=1

xifi(x) , (1.6)

wherexi (i = 1, 2, . . . , n) is the ratio of kindi in the population,fi(x) is the fitness
of typei, andµ(x) is the average population fitness. Since

∑

i xi = 1, the population
vectorx = (x1, . . . , xn) evolves in the (n-1)-simplex defined by then verticesxi =
δij , j = 1, . . . , n. Eq. 1.6 is the most general form of replicator equation.

Under the assumption that kind’s fitness is a linear function of population ratio,
the replicator equation can be written as:

ẋi = xi
(

(Px)i − x
T
Px

)

, (1.7)

whereP is the payoff matrix and contain the fitness information,(Px)i represents the
expected payoff ofi-kind andxT

Px stands for the whole population’s mean payoff.

Replicator dynamics.

An alternative way to get the replicator equation, often used in social sciences, is
based on the concept of imitation, rather than offspring, most related to biology
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[15, 17, 18]. Consider a iterated two-player n-action symmetric game and a pop-
ulation ofN players. Let bet the round number,i = 1, 2, . . . , n the actions,xti the
proportion of population choosing actioni andP t

i = Pi(x
t) is the expected payoff

of a player choosingi at time (round)t. The evolutionary dynamics can be model in
the following way (replicator dynamics): assume that each time lapsedt, a randomly
and equiprobably playeru (the past action ofu wasi) chooses a random playerv (the
past action ofv wasj) andu changes its action toj, if the payoffP t

j of v is greater
than his payoffP t

i , with a probability proportional to the payoff differenceP t
j − P t

i .
That is, once two players with past actionsi andj have been chosen, the first player’s
change probability is given by:

Πt
i→j = β(P t

j − P t
i )Θ(P t

j − P t
i ) , (1.8)

whereΘ(y) is the Heaviside function (Θ(y) = 1 if y > 0 and0 otherwise).

If the actions are ordered (without loss of generality), such thatP t
1 ≤ P t

2 ≤ . . . ≤
P t
n, the expected ratio of players choosing actioni at timet+ dt will be given by:

x̄t+dt
i = xti −

1

N
xti(dt)

n
∑

j=i+1

xtjβ(P
t
j − P t

i ) +
i

∑

j=1

1

N
xtix

t
j(dt)β(P

t
i − P t

j )

= xti +
xtiβ(dt)

N
(P t

i − P̄ t) , (1.9)

whereP̄ t =
∑

j P
t
jx

t
j is the whole population mean payoff. Under the assumption

of large population size, we can replacex̄t+dt
i by xt+dt

i , getting:

ẋti =
β

N
xti(P

t
i − P̄ t) . (1.10)

and makingβ = N (time rescaling), we get the replicator equation:

ẋi = xi(Pi − P̄ ) . (1.11)

The strategy above described,replicator dynamics, has been used extensively to
describe a large variety of problems. The main advantage is that it can be applied in
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finite and non-well-mixed populations but, unfortunately, the mean-field description
is not valid anymore and those problems must be numerically solved, usually through
extensive numerical simulations. In fact, the first part of this thesis is focused in such
kind of problems.

Other update rules.

A necessary ingredient of evolutionary game models is the way in which agents
choose their actions. In order to frame the thesis’ subject of study, this description is
focused on repeated two-player symmetric games. In simultaneous games (i.e., play-
ers choose their actions simultaneously), at a given time step, every playerplays the
game with all her neighbors, usually using the same strategy in all pairings. Ifthere
is an underlying topology, the neighbors of each player are given by thenetwork(s)
of the model [16]. Once all the games are played each agent collects the total payoff.
Subsequently, players decide the action they will take in the next round: This de-
cision constitutes the strategy (update rule). Besides the aforementionedreplicator
dynamics, some of the most used strategies are:

Unconditional imitation : A randomly chosen playeri compares its payoffPi with
its neighbor with the largest payoff, say playerj. If Pj > Pj playeri will imitate in
the next round the last action taken byj. Otherwise, playeri will repeat action [19].

Moran rule : A randomly chosen playeri chooses one of its neighborsj proportion-
ally to its payoffPj . In the next round agenti will chose the last action taken byj
[20].

Fermi rule : A randomly chosen playeri compares its payoffPi with a random neigh-
bor j. If Pj > Pi playeri will imitate in the next round the last action taken byj
with a probability proportional to:

Πi→j =
1

1 + e−β(Pj−Pi)
. (1.12)

Otherwise, playeri will repeat action [21].

Best-response: The best response is the strategy consisting on choosing, for the next
round, the action which would have produced the higher payoff in the past round,
once each player knows the chosen action by its neighbors. [22].

In some kind of problems, instead of considering that the strategies dependdi-
rectly on the payoff, it is more realistic to consider the fitness as a function ofpay-
off. For instance,weak selectiondescribes situations in which the effects of payoff
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A) B) C)

Figure 1.1:Examples of graphs.Although the three graphs have a similar number of nodes,
only the one on the right can be considered a complex network.A) Regular lattice of 25x25
(625 nodes). B) Regular lattice of 25x25 (625 nodes) with periodical boundary conditions.
C) Complex network consisting of 700 nodes and a heterogeneous connectivity according to
a binomial distribution. The diameter of each node is proportional to its connectivity.

differences are small. Weak selection has been extensively studied in evolutionary
biology, and recently in evolutionary game dynamics [24]. Nevertheless, not all the
usual strategies take into consideration the payoffs:Majority rule consists on the
imitation of most common action in the neighborhood, andanalysis players’ strate-
gies, described in chapters 5 and 6, consists on the imitation of neighborhood actions
with a probability proportional to their frequency [23].

1.2 Complex networks.

The study of the relations among elements of different systems unveil underlying
networks: Regardless of its origins, many networks of different areascan be char-
acterized through common schemes, showing similar properties [25, 26, 27,28].
Examples of this can be found in biology (e.g., regulatory, metabolic, signaling or
neuronal networks), sociology (e.g., scientific colaborations, coworking relations or
information exchange networks) and technology (e.g., internet). The topology of the
interaction network may provide the key to understanding many complex systems
and, in fact, complex networks have become a new paradigm for complexity [29].

1.2.1 Definitions.

A graphG = {N,L} consists of two setsN andL, such thatN is not empty and
L is a set of couples of elements ofN . If L is ordered (unordered), then the graph
is directed (undirected). The elementsni of N are called vertices or nodes and the
elementsli of L are the links or edges. Let N and K be the number of elements in
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N andL, respectively. We can refer to a node by its order number i, then a linkl

consisting of couple(i, j) can be referred bylij or by lk, wherek is the order number
of the link l in setL. The link lij is said to be incident in nodes i and j, or to join i
and j. Two nodes (i,j) are adjacent, connected or neighbors if there existsa link lij
incident in nodes i and j.G′ = {N ′, L′} is a subgraph ofG = {N,L} if N ′ ⊂ N

andL′ ⊂ L. In order to get a matricial representation of graphG, we consider the
adjacency matrix A: a NxN square matrix with componentsaij such thataij = 1 if
and only ifthe link lij exists, otherwiseaij = 0. The componentsaii of the diagonal
of the adjacency matrix satisfyaii = 0 and it is a symmetric matrixaij = aji for
undirected graphs. An alternative matricial representation is given by theincidence
matrix B: a NxK matrix with componentsbik such thatbik = 1 if and only iflk = lij
for a nodej, otherwisebik = 0.

1.2.2 Properties.

Let G = {N,L} be an undirected graph. The connectivityki or degree of a node
i ∈ G is defined as:

ki =
∑

j∈L

aij , (1.13)

and represents the number of incident links in i. In the same way, ifG′ = {N ′, L′}
is a directed graph, the out-degree and in-degree of a nodei ∈ G′ are defined as:

kouti =
∑

j∈L′

aij ,

kini =
∑

j∈L′

aji ,

(1.14)

and represent the number of outgoing and ingoing links respectively, and the total
degree of the nodei in a directed graph iski = kouti + kini . In order to characterize
the topology of an undirected graph, the degree distributionP (k) = Pk is defined
for k = 0, 1, 2, . . . as the fraction of nodes with connectivity k in the graph. Like-
wise, for directed graphsP out(k), P in(k) are defined in the same way. As well, the
n-moments ofP (k), defined as〈kn〉 = ∑

k k
nP (k), give us information about net-

works’ topology and therefore about their behavior under the dynamical processes
that we study in this work. To deal the degree correlations,P (k′|k) is defined as the
likelihood that a given link connecting a degreek node i is connected to a node j of
degreek′, and satisfies the normalization equation

∑

k′ P (k′|k) = 1 and the detailed
balance conditionkP (k′|k)P (k) = k′P (k|k′)P (k′). Nevertheless, in finite size real
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networks we can obtain clearer results computingknn(k), that is, the average degree
of the neighbors of degree k nodes:

knn(k) ≡
N
∑

i=1

N
∑

j=1

aij
kj
ki

=
∑

k′

k′P (k′|k) . (1.15)

Depending onknn(k), the networks can be uncorrelated, assortatives (knn(k) in-
creases with k) or dissortatives (knn(k) decreases with k).

The shortest pathdij or geodesic between two nodes (i,j) is the minimum number
of links required to connect i and j. In order to characterize the size of anetwork
G, beside the values of N (number of nodes) and L (number of links), the diameter
Diam(G) of G is defined as the maximum value of the shortest paths inG. For fully
connected graphs, the characteristic path length L is defined as:

L =
1

N(N − i)

N
∑

i=1

N
∑

j=1, j 6=i

dij , (1.16)

as it diverges for disconnected graphs, can be useful the efficiency:

E =
1

N(N − i)

N
∑

i=1

N
∑

j=1, j 6=i

1

dij
. (1.17)

With the purpose of characterizing the connectedness of a nodei, together with
the degree, the closenessci of i is defined as the inverse of the average distance from
i to all nodesci = N(

∑N
j=1,j 6=i dij)

−1. Besides, the betweenness ofi is defined as
the average fraction of shortest paths passing throughi (njk(i)) over total the shortest
paths (njk) for every pair of nodes:

bi =
N
∑

j=1

N
∑

k=1, k 6=j

njk(i)

njk
. (1.18)

Another typical property of complex networks is clustering, it characterizes the
likelihood that two nodes with a common neighbor are connected. One of the many
measures of clustering is transitivity T, which is defined as the normalized ratioof
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the number of transitive (fully-connected) triples divided by the amount ofconnected
(fully or simply-connected) triples.

T = 3(#transitive triples in G)
#connected triples in G . (1.19)

When a subgraphG′ = {N ′, L′} of G = {N,L} has higher connectivity than
G, i.e. the nodes ofG′ are tightly connected,G′ is called a cluster. More precise
definitions of cluster are the n-clique and the k-plex. A clique or 1-clique is afully-
connected subgraphG′ of G. More generally, a n-clique is a subgraphG′ such that
the largest geodesicdij between two nodes (i,j) ofG′ is n. On the other hand, a
subgraphG′ = {N ′, L′} is a k-plex if it is a maximal subgraph such thatk′i ≥
N ′ − k, ∀i ∈ N ′, that is, each node ofG′ has at leastN ′ − k neighbors inG′ and
there is not another graph inG containingG′ that satisfy this property.

1.2.3 Weighted networks.

So far, we have considered unweighted networks, which means that the links between
nodes are either present or not, without an assigned value. However,many real net-
works exhibit heterogeneity in the links. This feature has been studied in many fields
such as social networks [33, 34, 35, 36, 37], metabolic networks [38,39], predator-
prey interactions [40, 41], neural networks [35, 44], traffic of the passengers in airline
networks [42, 43], internet traffic [60], etcetera. Weighted networks(i.e. networks
in which each link is characterized by a value) provide a very useful toolto describe
these systems.

A weighted networkGW = {N,L,W} consists of three setsN , L andW , such
thatN = {n1, n2, ..., nN} is a not empty set ofN nodes,L = {l1, l2, ..., lK} is a
set ofK couples of elements ofN (the links) andW = {w1, w2, ..., wK} is a set
of real numbers (weights) associated to the links. A Weighted networkGW can be
described by aN ×N matrixW , the weights matrix , such that its componentwij is
the weight of the link from nodei to nodej, assumed thatwij = 0 if such connection
does not exist. The network is symmetric ifwij = wji, ∀i, j .

In a weighted networkGW , the weight distributionQ(w) is defined as the prob-
ability for a given edge to have weightw. The node weight (or strength, or weighted
connectivity) is defined assi =

∑

j∈N wij . If there are not correlations between
weights and connectivity, one obtainss|k ∼ 〈w〉k. In the same way, measure coeffi-
cients of unweighted networks (such as shortest paths, clustering coefficient, etcetera)
can be generalized to weighted networks [28].
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Example of real network.Partial map of the Internet: Each node represents an IP
address while each line symbolizes a link between two nodes, the length of the lines
indicate the delay. This graph represents less than 30% of the Class C networks reach-
able by the data collection program. Different colors represent different allocations.
The Opte Project (2005).
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1.2.4 Real networks: distributions and topologies.

Complex networks can represent a huge range of real systems consisting on many
highly connected elements that can be found in different fields, such as sociology,
biology or technology. Although the use of complex network theory makes upan
approximation that implies loss of information, it provides a holistic approach and
details about emergent phenomena. Different sorts of systems are characterized by
different kinds of networks, with dissimilar properties as degree distributions, path
lengths, clustering, degree correlations, etc.

Regular graphs.

In graph theory, a regular graph (RG) is a graph where each vertex has the same de-
gree connectivity. In addition, in a regular directed graph the indegree and outdegree
of each vertex are equal to each other. A RG with vertices of degreek is called a
k-regular graph. A network is a regular graphif and only ifthe vectoru = (1, . . . , 1)

is an eigenvector of its adjacency matrixAij . In addition, the eigenvalue of u is the
constant degreek of the graph. Eigenvectorsv corresponding to other eigenvalues
are orthogonal tou, for such eigenvectorsv = (v1, . . . , vn), we have

∑n
i=1 vi = 0

(see,e.g. [78]).

RG of degreesk = 0, 1, 2 are trivial, but higher degree RG can be complex net-
works. In some parts of this work (e.g.chapter 2) we use a kind of RG, called random
regular graph (RRG), characterized by a random distribution of links. Starting from a
regular lattice, a RRG can be generated by randomization of links through a rewiring
process.

Random graphs.

Erdös and Rényi initiated in 1959 the study of graphs that grow through random pro-
cedures [76]. The original Erdös-Rényi graphGER

N,K consists of a set of N nodes,
firstly disconnected, and later linked by connecting K pairs of nodes at random. In
the same way,GER

N,p represents a graph generated though a set of N nodes, firstly
disconnected, and later linked by connecting each pair of nodes with probability p
(figure 1.2). Although both processes generate different (but similar)kinds of net-
work, for large values of N they provide the same distribution. The graphGER

N,p has
on average

(

n
2

)

p edges. The degree distribution of a nodei is binomial:

P (ki = k) =

(

n− 1

k

)

pk(1− p)n−1−k . (1.20)
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Figure 1.2: Random network according to a Poisson distribution of the connectivity. The
diameter of each node is proportional to its connectivity. Network sizeN = 800, averaged
degree〈k〉 = 4
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Figure 1.3: Random network generated through Erdös-Rényi mechanism (left) and its con-
nectivity histogram (right). The diameter of each node is proportional to its connectivity.
Network sizeN = 1000, averaged degree〈k〉 = 2

In [77], Erdös and Rényi showed that the topology ofGER
N,p depends mainly onp,

in fact:

• If p < 1/N , then the sizeSmax of the greatest connected component of graph
GER

N,p will be Smax . lnN , with a probability increasing with N.

• If p = 1/N , then almost surelySmax ≃ N2/3.

• If p > 1/N , thenGER
N,p will almost surely have a giant component and no other

component will contain more thanO(lnN) nodes.

Small-world networks

Many real networks, such as social networks [62, 63, 64], show theproperty that,
although the mean connectivity is much low that the system size, most nodes canbe
reached from every other by a small number of steps. A small-world (SW) network is
a network where the characteristic path length grows proportionally to the logarithm
of the network size:

L ∝ logN . (1.21)
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The Watts and Strogatz model consists of an algorithm to make graphs that pro-
vides small-world networks with a high clustering coefficient [25]. Starting from a
ring of N nodes (that is, a circle of nodes in which each node is connected to its2m

nearest nodes), a rewiring process is performed, so that with probability p each node
is disconnected from its clockwise neighbor and connected to a random node. On
one extreme, forp = 0 the ring remains unchanged and we have a regular lattice; at
the other extreme, forp = 1 the procedure provides a random graph with minimum
connectivitykmin = m.

According to the SW definition, most pairs of nodes will be connected by at least
one short path. Furthermore, from the high clustering coefficient property follows
that SW networks contain a high number of cliques and many highly connectedsub-
graphs. Real SW networks usually have high degree nodes that serveas hubs of short
paths, and the degree distribution are fat-tailed. Anyway, very different graphs (both
real and artificial networks) can be defined as small-world networks as long as they
satisfy the property 1.21.

Scale-free networks

The degree distribution of many real networks follows a power-law, at least asymp-
totically. That is, P(k) goes for large values of k as

P (k) ∼ k−γ , (1.22)

where the value of the constantγ is usually2 < γ < 3. Power-laws are the only
functionsf(x) that presents scale invariance: do not change if independent variable
x is multiplied by a common factor, apart from a dilatation. In reference to this prop-
erty, such networks are called scale-free networks. Many networks belonging to a
wide range of subjects appear to be scale-free: Social networks (by example the col-
laboration networks, as the collaboration of movie actors in films or the coauthors
relationships), biological networks as the protein-protein interaction networks, sex-
ual relations in humans (related with the diffusion of sexually transmitted diseases),
semantic networks, many technological networks as the World Wide Web, etcetera.
Although the average degree〈k〉 is bounded, the variance

σ2 = < k2 > − < k >2 , (1.23)

diverges as the second moment< k2 >:

< k2 > =

∫ kmax

kmin

k2P (k) ∼ k3−γmax = kamax , (1.24)

where the exponenta > 0.
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The Barabási-Albert (BA) model

In 1999, A. L. Barabási and R. Albert mapped of a portion of the Web, and show
that some nodes (hubs), had a connectivity degree very higher than therest ones, and
that the degree distribution of the whole network follows a power-law distribution
[45]. They found that other social and biological networks also had similar prop-
erties. Barabási and Albert proposed a mechanism, the preferential attachment, to
explain the emergence of the power-law distribution. However, this mechanism only
produces a specific kind of scale-free networks, and many other mechanisms have
been discovered since (and earlier). The preferential attachment mechanism generate
a graphGBA

N,K according to the next rules: starting fromm0 isolated nodes, a new
node j withm < m0 links is added. The likelihood that j will connect to a given node
i is proportional to the i-degree:

P (j → i) =
ki

∑

l kl
. (1.25)

The operation of addition a node is repeatedN − m0 times. At the end, the graph
obtained, known as Barabási-Albert (BA) network, will haveN nodes andK ≃ mN

links, with< k >= 2m (figure 1.4).

The BA model has been solved in the mean-field approximation [45]: In the
thermodynamic limitt → ∞, the degree distribution obtained isP (k) ∼ k−γ , with
γ = 3. For the same value ofN andK, BA graphs have smaller average distance
than ER graphs, resultingL ∼ logN/log(logN) [46]. Furthermore, the clustering
coefficient decreases with respect to the size of the system asC ∼ N−0.75, that
is, slower than that observed for ER graphsC ∼ 1/N . Several variations of the
model have been studied, such as directed graphs [47] or alternative mechanisms for
preferential attachment [48], among many others.

Configuration model

Starting from a set ofN nodes and a given connectivity vectorV (that is,V is the
connectivities sequencek1, k2, . . . , kN , andki the connectivity of linki), the con-
figuration model (CM) provides an algorithm to build up a network [49, 50].The
CM takes the setGconf

N,D of all graphs withN nodes and connectivity vectorV , and

consider all the elements ofGconf
N,D with equal probability. The algorithm consists of

the following steps: firstly assignski half-edges to each nodei, after this connects
by pairs the half-edges in an equiprobable way. A giant component emerges almost
surely whenQ =

∑

k k(k − 2)P (k) > 0 and the maximum degreekmax is not too
large [49] (figure 1.5).
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Figure 1.4: SF network generated through Barabási-Albert mechanism. Red (blue) colored
circles represent the high (low) connectivity nodes. Network sizeN = 2000, averaged
degree〈k〉 = 2. The subgraph (detail) highlights the scale invariance property of power-
law distributions.

The configuration model proposed by Molloy and Reed provides networks with
degree correlations, in the sense that the expected degree of the neighbors of a given
nodei is not independent ofki. Starting from the CM,Catanzaro, Boguña, and
Pastor-Satorrasproposed the uncorrelated configuration model (UCM), capable to
generate random uncorrelated scale-free networks [51]. The modeladds a restriction
on the maximum possible degree of the vertices, governed by the structuralcutoff
kmax ≃

√
kN .

1.3 Sociophysics.

The use of methods of probability theory and statistics for dealing with large pop-
ulations in solving physical problems constitutes Statistical Physics as a branch of
physics, and its procedures are successfully used in a wide variety of fields of physics
involving many interacting entities. In the light of its usefulness, this successful
framework has recently been extended to other sciences including chemistry, biol-
ogy, neurology, and even some social sciences, such as economics and sociology.

Sociophysics is a multidisciplinary research field that applies theories and meth-
ods originally developed by physicists in order to study social topics, usually those
including uncertainty or stochastic processes and nonlinear dynamics [142]. In Sta-
tistical Physics, the elementary components of studied systems usually are simple
objects whose behavior is conditioned by some well-know laws: the statistical study
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A) B)

Figure 1.5:Examples of configuration model graphs:The C.M. algorithm allows to make a
network according to a given connectivity vector. Both graphs above consist ofN nodes and a
heterogeneous connectivity conforming to a truncated power-law distributionP (k) = k−2.7.
A)N = 600, kmin = 2, kmax = 15. B)N = 2000, kmin = 2, kmax = 44. The diameter
of each node is proportional to its connectivity.

focuses on collective effects due to the interactions of a large number of elements.
In contrast, the basic constituents of social phenomena are humans, and each indi-
vidual interacts with a variable number of individuals that, for most individuals and
problems, is negligible compared to the system size. People are not single objects
following simple behavior rules, and modeling of social topics involves a great sim-
plification of reality. Clearly, this approach does not try to model the complexityof
individuals, but focus on the nature of interactions, seeking an holistic approach and
drawing conclusions about the overall system. These conclusions include transitions
from order to disorder phase, transient and stationary states, scaling properties, and
so on. Obviously, the limitations in the modeling of agents (people) condition the
validity of the results, and should be taken with caution. However, in most collec-
tive systems, global properties do not depend on microscopic configuration but on
global features as symmetries, conservation laws, temperature, externalfields, noise,
etc. Following this holistic view, the modeling of social systems includes only the
most important characteristics of individuals, nevertheless criterion commonto all
scientific modeling process.

A high number of scientists and multidisciplinary work teams are involved in
this branch of knowledge and the topics have been dealt in recent yearswith this
approach are so varied as opinion dynamics, ethnic segregation, cultural dynamics,
crowd behavior, social hierarchies, language dynamics and spreading phenomena
among others.
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1.3.1 Agent based models.

An agent-based model (ABM) is a class of numerical models for simulating the inter-
actions of autonomous agents with the purpose of studying their effects on the system
as a whole. Usually ABMs rely Monte Carlo methods to introduce randomness and
the high numbers of interactions is performed trough specific computer programs.
The origin of agent based (AB) modeling dates back to the late 1940s when the
mathematician John von Neumann (starting from the Alan Turing idea) designedthe
von Neumann machine, a theoretical system based on self replication. The concept
was then improved by Stanislaw Ulam: Ulam suggested to build the machine as a
set of cells on a grid [30]. The concept was taken up by von Neumann, who cre-
ated the first of the devices later termed cellular automata [31]. The development of
computers led to AB modeling widespread since the 1990s. ABMs have been used
to deal with a wide range of problems in several fields as biology (ase.g., spread
of epidemics, population dynamics), biomedical applications, economics, dynamics
of ancient civilizations, logistics, traffic control, workforce management,distributed
computing, people’s migrations, language dynamics and social network effects.

One of the firsts ABM designed to explore a social issue was developed by
Thomas Schelling in 1971 [52, 53]. The Schelling’s residential segregation model
studies the effects of a preference for people to be in a similar neighborhood and
consists of a regular lattice, with a density of empty sites, whose nodes mimic agents
of different ethnicities. After an initial distribution of the agents, at each elementary
dynamical step an agent is randomly chosen and it moves to a empty site chosenat
random if its ratio of other ethnic neighbors is higher than a tolerance threshold T.
After a long enough transition time, he found that the agents remain in a mixed distri-
bution only for very high values of the tolerance threshold, but agents form segregated
neighborhoods for other values of tolerance (Figure 1.6).

Opinion Dynamics is a social topic very dealt with AB modeling, it studies the
chance for a social group to reach agreement or disagreement abouta question. Out-
side this framework, in the early 70’s Clifford an Sudbury defined a modelfor popu-
lation dynamics [54], the latter named Voter Model has been used in fields so varied
such as social dynamics, population genetics, chemistry and probability theory. The
description of Voter Model is not at all complex: each agent is provided of a variable
that take two possible values, and at each time step a randomly chosen agentselects
at random a neighbor and imitates its variable’s value. Although its extremely simple
design and the fact that can be solved exactly in any finite dimension [55], the model
has been and is still studied in many sciences and according to different variants (as
e.g., different topologies, noise and external fields). Other opinion dynamics model,
the majority rule model [56], explores a similar topic through a different procedure:
Starting from a complete graph whose nodes (agents) are provided of a variable (opin-
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ion) that can take two possible values (-1, +1), at each time step a random group of
r agents is selected and they share the majority opinion inside the group. The group
size r is taken at each interaction from a given distribution. The model includes an
asymmetry: when r is even, a value of opinion (e.g. +1) can be promoted in case of
a tie. Under the mean field assumption, Krapivsky and Redner [57] solvedthe model
for a fixed value of r. They found three fixed points: one unstable fixedpoint that
corresponds to a situation in which the population is evenly distributed in both values
of opinion variable, and two stable fixed points that correspond to one-opinion frozen
states. The majority rule model has been studied under different network topologies,
multi-state opinion and plurality rule [58], as well as modifications that include mo-
bility, external fields, variable connectivity, etcetera ...

Other context of social research corresponds to the cases in which opinion is mod-
eled as a vector of variables. These models are usually grouped under the name of
cultural dynamics. The most representative and studied model in cultural dynamics
was introduced by Robert Axelrod in 1997 [59]. The well-known Axelrod’s model
for culture dissemination explores the principle of homophily, developing the idea
that a social agent will convince similar people easily than dissimilar ones, andthere-
fore similar people tend to become even more alike. It consists of a regular lattice,
whose nodes mimic cultural agents. Each one of these nodes is provided witha set
of F cultural features that can assumeq possible integer values. The parameterq

represents the possible traits that each feature can assume. Thus a culture is modeled
as a vector ofF integer variables. After assigning the traits at random, the system
evolves as follow: at each elementary dynamical step, an individuali randomly cho-
sen imitates a feature’s trait of a random neighborj with a probability equal to the
cultural overlapωi,j between both agents, defined asωij = (

∑F
f=1 δσf (i),σf (j))/F ,

whereδx,y is the Kronecker’s delta which is 1 ifx = y and 0 otherwise. After a
long enough transient, for a low value of the initial cultural diversityq, the system
reaches a frozen monocultural state, in which all agents share every trait. On the other
hand, for high values of the initial cultural diversity, the system can’t arrive to cul-
tural convergence but remains at a multicultural state, characterized by agents who
hardly share features with their neighbors (Figure 1.7). The usual order parameter
is the relative size of main culture〈Smax〉/N , i.e. the maximum number of agents
sharing every trait divided by the total population. Several others order parameters
can be used as the numberg of different cultural domains in the asymptotic state over
the total populationg = 〈Ng〉/N . Then, the final states above mentioned are char-
acterized by〈Smax〉/N ∼ 1, 0 andg ∼ 0, 1 respectively. Both states are bounded
by a phase transition at a critical valueqc depending onF : this transition is continu-
ous forF = 2, but discontinuous forF > 2. Axelrod model has been studied with
many variants as random noise [147], mass media effects [150] and different network
topologies [141, 145] among others.
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Figure 1.6:Dynamics of the Schelling model.The Schelling’s model of residential segre-
gation studies the effects of intolerance in the populationdistribution. People move if their
neighborhood is unfriendly according to a tolerance parameter. The model shows segregation
in neighborhoods for intermediate and high values of intolerance [52, 53]. Colors represent
ethnicities and opposite sides are connected.

Figure 1.7:Dynamics of the Axelrod model.Top panels: For low values of the initial cul-
tural diversity (q), the system converges to a frozen monocultural state, characterized by a
cultural group shared by all the agents. Bottom panels: Otherwise, for high values ofq the
system remains in a multicultural state in which agents do not share many traits with their
neighborhood [59]. Colors represent different cultures and periodic boundary conditions are
applied.
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1.3.2 Topology.

The description of interacting relations (who interacts with whom, how often, in
which way do agents relate), is a key of the modeling process in social dynamics. The
usual tool to describe the relationship between agents is a network in which agents are
represented by the nodes and links represent the interaction chances.ABMs rely on
different network structures, and outcomes usually strongly depend onthe topology
chosen. In a society, people are not usually connected everyone to everyone but in
several ways. This fact can be modeled through different network kinds (directed or
indirected, weighted or unweighted, etc) and topologies, including regularand com-
plex networks (e.g. lattice, small-world, RRN, ER or SF). Although real networks,
and particularly social networks, often differ from artificial networks inmany fea-
tures, the dependence of model behavior with topology provides a tool to understand
in what way individual relationship influence on society.

A social network is a graph in which the nodes represent individuals or social
groups and the links symbolize the relationships among them [60, 61]. In fact, many
of the concepts used in the analysis of complex networks are based in social features,
such as small-world property [62, 63, 64], as well as theoretical tools such as node
centrality or clustering index [65]. Graph theory has provided a very useful tool for
measurement of different social topics as collaboration networks, friendship or so-
cial interdependence. Additionally, new technologies provide new kinds of social
interactions characterized by lower dependence on the physical locationand higher
connectivity of individuals [66]. Complex network theory offers a tool tostudy the
properties of the contacts structure and the dynamics involved in the forming pro-
cess. Examples of social networks are scientific colaborations (such ascoauthorship
networks), actors coworking relations, information exchange, online social networks
friendship, etcetera.

The influence of network topology on the behavior of social ABMs mentioned
in section 1.3.1 has been studied in the last decades, including several areas such as
language dynamics, social behavior, rumors spreading, opinion models, cultural dy-
namics, etcetera (see,e.g. [67]). For example, in opinion models, consensus critical
values show a strong dependence on the underlying topology [57]. Similarly, Axelrod
model for cultural dissemination displays dependence of the phase transition on the
network structure [145, 146]; beyond this dependence, the dynamics of the model
can be used to build a network through a rewiring process, which in turn provides
new system behaviors [166, 167].

In strategic games [12, 17], the role of network topology is usually introduced
through the condition that, at every time step, one or more individuals interact with
one or more agents chosen among their network neighbors. The specific model def-
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inition depends, among other parameters, on the kind of synchronization (e.g. syn-
chronous, serial) and on the strategies and updating rules considered.In particular,
the dependence of social observables on the underlying topology has been widely
analyzed through EGT models. For example, prisoner dilemma in complex net-
works has been object of several studies for the last twenty years, focusing in the
influence of the structure of interactions among people on the level of cooperation
[16, 94, 18, 109, 95]. The studies showed a strong dependence of the cooperation
level on the topology, that is, heterogeneity enhances cooperation. Nevertheless, this
dependence is very sensitive to the type of strategies and updating rules considered
[79].



Part I

The emergence of cooperation.
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“First, let it be remembered that we have innumerable instances, both in our domestic
productions and in those in a state of nature, of all sorts of differences of inherited structure
which are correlated with certain ages and with either sex. We have differences correlated
not only with one sex, but with that short period when the reproductive system is active, as
in the nuptial plumage of many birds, and in the hooked jaws ofthe male salmon. We have
even slight differences in the horns of different breeds of cattle in relation to an artificially
imperfect state of the male sex; for oxen of certain breeds have longer horns than the oxen
of other breeds, relatively to the length of the horns in boththe bulls and cows of these same
breeds. Hence, I can see no great difficulty in any character becoming correlated with the
sterile condition of certain members of insect communities; the difficulty lies in understand-
ing how such correlated modifications of structure could have been slowly accumulated by
natural selection. This difficulty, though appearing insuperable, is lessened, or, as I believe,
disappears, when it is remembered that selection may be applied to the family, as well as
to the individual, and may thus gain the desired end. Breeders of cattle wish the flesh and
fat to be well marbled together. An animal thus characterized has been slaughtered, but the
breeder has gone with confidence to the same stock and has succeeded. Such faith may be
placed in the power of selection that a breed of cattle, always yielding oxen with extraordi-
narily long horns, could, it is probable, be formed by carefully watching which individual
bulls and cows, when matched, produced oxen with the longesthorns; and yet no one ox
would ever have propagated its kind. Here is a better and realillustration: According to
M. Verlot, some varieties of the double annual stock, from having been long and carefully
selected to the right degree, always produce a large proportion of seedlings bearing double
and quite sterile flowers, but they likewise yield some single and fertile plants. These latter,
by which alone the variety can be propagated, may be comparedwith the fertile male and
female ants, and the double sterile plants with the neuters of the same community. As with
the varieties of the stock, so with social insects, selection has been applied to the family, and
not to the individual, for the sake of gaining a serviceable end. Hence, we may conclude that
slight modifications of structure or of instinct, correlated with the sterile condition of certain
members of the community, have proved advantageous; consequently the fertile males and
females have flourished, and transmitted to their fertile offspring a tendency to produce ster-
ile members with the same modifications. This process must have been repeated many times,
until that prodigious amount of difference between the fertile and sterile females of the same
species has been produced which we see in many social insects.” (Charles Darwin. The
Origin of Species by means of Natural Selection. (1859)).

Understanding how cooperative behavior emerges in different contexts is one of
the major questions of modern science. The presence of cooperation in hostile en-
vironments, that is, when selfish behavior provides higher individual fitness as does
cooperation, has been studied in many areas including microbiology, species evolu-
tion, population dynamics, economy and sociology.
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Theory of evolution is based on natural selection, which in turn is based onthe
survival-of-the-fittestrule. The limited resources available in a habitat promotes com-
petition between organisms of the same or different species that have to struggle to
survive; the final purpose of this competition is to provide offspring. In such com-
petition, cooperation is, at least in the first instance, faced to individual interest of
survival and reproductive success. Nevertheless, cooperation and even altruism have
evolved and persist, and evolutionists have studied this question extensively for the
last 150 years.

Cooperation between biological entities pursuing their own ends is key to under-
standing biological issues such as the emergence of multicellular organisms orgre-
garious behavior, but also to analyze human societies: people form families, tribes,
cities, nations, coworker networks, companies, research teams, associations, etcetera.

Altruism is defined as a form of cooperation in which there is no direct benefit to
the organism carrying out the behavior, while mutually beneficial relationship refers
to cooperative behavior in which there is a direct benefit to the actor as well as the
recipient [68]. There are several proposed mechanisms which help to explain cooper-
ative behavior; they are not necessarily mutually exclusive, so that a combination of
some of them may be applied to explaining a particular case of cooperative behavior.
The most widely accepted and studied ones are:

Kin selection refers to evolutionary strategies that favor the persistence and repro-
ductive success of an agent’s relatives, even at a cost to the survival or reproduc-
tion of the agent. Kin selection implies cross-generational genetic changes driven
by interactions between relatives and may be applied when relatives influence one
another on survival and offspring. William D. Hamilton established, in 1964, a math-
ematic condition to explain altruistic behavior through kin selection [69]. According
to Hamilton’s rule, an altruistic action from agenti to j may be justified when:

rB > C , (1.26)

wherer is the genetic relatedness ofi to j, defined as the probability that two
genes taken at random from the same locus in both individuals are identicalby de-
scent,B is the reproductive benefit obtained byj andC is the reproductive cost paid
by i.

Group selectionmechanism in biology takes the assumption that genes can spread
into a population because of the benefits they provide to the community [70]. Al-
though group selection is not widely accepted by evolutionists in biology for several
reasons (e.g., the different time scales between groups dynamics and reproduction),
it is often applied to other areas such as human behavioral sciences [71].
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Reciprocity refers to situations where cooperation and/or altruism is enhanced by
the probability of future mutual interactions. There are three types of reciprocity that
have been deeply studied:

i) Direct reciprocity mechanism was proposed by Robert Trivers in 1971 [72]. If
there is a probability of repeated interactions between the same two players witha
cooperateaction available, then a strategy of mutual cooperation may be favored even
whennon-cooperateactions brings larger short-term benefits. Direct reciprocity can
enhance cooperation only if the probabilityw of another encounter between the same
two individuals is higher than the cost-to-benefit ratioc/b of the cooperative action
w > c/b.

ii) Indirect reciprocity mechanism do not requires that the same two individuals
interact again. In a mutual interaction, actions are observed by third partyindividuals
who might inform others. Thus, social approval promotes cooperation by indirect
reciprocity [73]. Indirect reciprocity can enhance cooperation only ifthe probability
p, of knowing a random agent’s reputation is higher than the cost-to-benefit ratio c/b
of the cooperative actionp > c/b.

iii) Network reciprocity . Real populations have spatial structures or underlying net-
works which imply that some individuals interact more often than others. According
to the so-calledlattice reciprocitymechanism, the cooperative action can take advan-
tage of the topology of the network, so that cooperators clusters are often resilient to
invasion by the defective action [19].

In this part of the thesis, we focus on the emergence of cooperation in com-
plex networks. In the framework of evolutionary game theory, among othergames
that provides a satisfactory description of a wide range of situations (e.g., the Public
Goods Game), the Prisoner’s Dilemma (PD) has become a standard for studying the
cooperation. First, in chapters 2-3-4 we investigate in detail the dynamics ofPD in
different artificial networks under the assumption of a widely accepted strategy: the
replicator dynamics. Later, in chapter 5 we take into consideration observed strate-
gies in human behavior and study the consequences of such rules. Finally, in chapter
6 we test the predictions by a large-scale experiment.





Chapter 2

The dipole model:
Thermodynamic study of a social
system.

In Evolutionary Dynamics the understanding of cooperative phenomena innatural
and social systems has been the subject of intense research during decades. We focus
attention here on the so-called “Lattice Reciprocity” mechanisms that enhanceevolu-
tionary survival of the cooperative phenotype in the Prisoner’s Dilemma game when
the population of darwinian replicators interact through a fixed network ofsocial
contacts. Exact results on a “Dipole Model” are presented, along with a mean-field
analysis as well as results from extensive numerical Monte Carlo simulations. The
theoretical framework used is that of standard Statistical Mechanics of macroscopic
systems, but with no energy considerations. We illustrate the power of this perspec-
tive on social modelling, by consistently interpreting the onset of lattice reciprocity
as a thermodynamical phase transition that, moreover, cannot be capturedby a purely
mean-field approach.

2.1 Introduction.

Is the term “social temperature” just a rhetoric figure (suggestive metaphor), or on
the contrary, could it be given a precise meaning? By working out in detailthe evolu-
tionary dynamics of the most studied social dilemma (the Prisoner’s Dilemma) on a
simple kind of artificial social networks we will show here that the formal framework
of equilibrium statistical mechanics is, to a large extent, applicable to the rigorous
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description of the asymptotic behavior of strategic evolution, thus providing the key
for a formal quantitative meaning of the term social “temperature” in these contexts.

Evolutionary game theory, in contrast with classical game theory that focusses
on the decision making process of (rational) agents, is concerned with entire popu-
lations of agents programmed to use some strategy in their interactions with other
agents. The agents are replicators,i.e. entities which have the means of making
copies of themselves (by inheritance, learning, infection, imitation, etc...), whose
reproductive success depends on the payoff obtained during interaction. As the pay-
off depends on the current composition of strategies among the interacting agents,
this yields a feedback loop that drives the evolution of the strategic state of the
population[12][17][79][80].

This darwinian feedback (frequency-dependent fitness) dynamics depends strongly
not only on the particular game, and on the specifics of the way strategies spread, but
also on the (social) structure of connections describing the interactions. Under the
assumption of a well-mixed population (social panmixiaassumption), the temporal
evolution of the proportion of strategies among the population is governed bya differ-
ential equation namedreplicator equation(see below). Well-known celebrated folk’s
theorems (see, e.g. [79]) establish a connection between the asymptotic behavior of
this equation and the powerful concepts of classical game theory based on the notion
of best reply (Nash). However, if the social panmixia assumption is abandoned, and
individuals only interact with their neighbors in a social network, the asymptotic of
evolutionary dynamics generically differ in a substantial way from this “well-mixed
population” description. The social structure of strategic interactions turns out to be
of importance regarding the evolutionary outcome of the strategic competition.

We will consider here the Prisoner’s Dilemma (PD), a two-players-two-strategies
game, where each player chooses one of the two available strategies, cooperation or
defection: A cooperator receivesR when playing with a cooperator, andS when
playing with a defector, while a defector earnsP when playing with a defector, and
T (temptation) against a cooperator. WhenT > R > P > S, the game is a PD
(while if T > R > S > P it is called Snowdrift game, also “Chicken” or “Hawks
and Doves”). Given the payoff’s ordering, whatever the value of theprior assign of
probability to the co-player’s strategy is, the expected payoff is higher fordefection,
and that is what a rational agent should choose. In the PD game only the defective
strategy is a strict best response to itself and to cooperation, thus it is an easy example
of game with an unbeatable [80] strategy. Still, though there is no difficulty in the
making of the strategic decision from Nash analysis, two cooperators are better off
than two defectors, hence the social dilemma.

In graph-structured populations, a large body of research [19, 81,82, 83, 84, 85,
86, 87, 16, 90, 101, 102, 103, 104] (and references therein) on evolutionary dynamics
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of the PD game has convincingly show the so-calledlattice reciprocityeffects: The
cooperative phenotype can take advantage of the topology of the socialnet, so that
clusters of cooperators are often resilient to invasion by the (continuum-unbeatable)
defective phenotype. This enhancement of asymptotic macroscopic levelsof coop-
eration due to the structure and topology of strategic interactions includes, but it is
far more general than, the so-called space reciprocity mechanisms, where social nets
are discretizations (solid state lattices) of the euclidian space, and diffusionapprox-
imations are often useful [105]. In this regard, one should stress the accumulated
evidence that (i) many interesting social nets [27, 28, 45] are far away from being
regular lattices, and (ii ) freedom of connectivity scales (scale-free complex networks)
enhances [18, 106, 107, 109, 111, 112, 113] the lattice reciprocity mechanisms up to
unexpectedly high values of the temptation parameterT of the dilemma, where co-
operation is very expensive (but affordable in an evolutionary sense).

In this chapter we investigate in detail the lattice reciprocity mechanisms in an
artificial network (Dipole Model) that models the competition for influence on a pop-
ulation of social PD-imitators of two antagonist Big Brothers (nodes connected to the
whole population, but with no direct connection between them).

2.2 Natural strategic selection on graphs.

We specify here the evolutionary game dynamics scenario, meaning the game parametriza-
tion, the microscopic strategic dynamics (replication mechanism or strategic updating
rule), and the social structure of contacts that we will consider along the chapter.

We normalize the PD payoffs to the reward for cooperating,R = 1, and fix
the null payoff at punishmentP = 0. Note that provided the (differential or rela-
tive) selective advantage among two individuals depends on their payoff’s difference
(see below), one can arbitrarily fix the zero payoff level. Then only two parame-
tersT = b > 1 andS = ǫ ≤ 0 are tuned. Note that the rangeǫ > 0 defines a
game named Hawks and Doves (also Chicken and Snowdrift) where punishment and
sucker’s payoff have the reverse order. We will occasionally commenton this range
of parameters.

Moreover, we do not restrict our computations to2R > T + S. This restriction
means that the total payoff for the two players is higher if both cooperate (2R) than if
one cooperates and the other defects (T + S), and is usually incorporated in iterated
games studies of the PD to prevent agents taking turns at defection and thensharing
the payoffs. For the specifics of the replicator dynamics (memory-less, markovian)
in the next paragraph, one should not expect that this restriction qualitatively matters.
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Regarding the replication mechanism, we implement the finite population (size
N ≫ 1) analogue of replicator dynamics [15, 18]. At each time stept, which repre-
sents one generation of the discrete evolutionary time, each agenti plays once with
each one of the agents in its neighborhood and accumulates the obtained payoffs,
Pi. Then, the individuals,i, update synchronously their strategies by picking up at
random a neighbor,j, and comparing their respective payoffsPi andPj . If Pi > Pj ,
nothing happens andi keeps the same strategy for the next generation. On the con-
trary, if Pj > Pi, with probabilityΠi→j = η(Pj − Pi), i adopts the strategy of its
neighborj for the next round robin with its neighbors, before which all payoffs are
reset to zero. Hereη is a number small enough to makeΠi→j an acceptable probabil-
ity; its physical meaning is related to the characteristic inverse time scale: the larger
it is, the faster evolution takes place.

From a theoretical point of view, this specific choice of the dynamics has the
virtue of leading directly (see,e.g. [17]), under the hypothesis of a well-mixed pop-
ulation and very large population size, to the celebrated replicator equation for the
frequenciespα of strategiesα(= C or D) in the population:

ṗα = pα(fα − f̄) (2.1)

wherefα is the payoff of anα-strategist and̄f is the average payoff for the whole
population. Note that time unit in equation (2.1) is scaled toη−1.

For the payoffs of the Prisoner’s Dilemma the asymptotic frequency of coopera-
tors, from the replicator equation, is driven to extinction,pc = 0, while for the Hawks
and Doves game, its asymptotic value isǫ/(b− 1 + ǫ) . As stated in the introductory
section, we will be concerned here mainly with populations that are not well-mixed,
where predictions based on this nonlinear differential equation are oftenof little use.

Regarding the structure of connections between interacting agents, we willcon-
sider here that it is given by a fixed graph (i.e. connections between players do
not change by rewiring) where agents are represented by nodes, and a link between
nodes indicates that they interact (play). Ifki is the number of neighbors of agenti

(connectivity or degree), and∆ is the maximal possible one-shot-payoff difference
(∆ = max{b, b− ǫ}), we will assumeη = (max{ki, kj}∆)−1 for the specification of
the probabilityΠi→j of invasion of nodei by the strategy of neighborj. This simple
choice, introduced in [18], assures thatΠi→j < 1; in heterogeneous networks it has
also the effect of slowing down the invasion processes from or to highly connected
nodes, with respect to the rate of invasion processes between poorly connected nodes,
a feature not without consequences [114].

We now introduce some notation, which is familiar to statistical physicists: The
configuration (strategic microstatel) of a population ofN agents at timet is specified
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by the sequencel = {si(t)} (i = 1, ..., N ), wheresi(t) = 1 (or 0) denotes that nodei
is at this time a cooperator (resp. defector). The set of all possible2N configurations
is called the phase space. Stationary probability densities of microstatesP(l) (l =
1, ...2N ) are then representatives ofstrategic macro-states. The average cooperation
cl of microstatel is defined as

cl =
1

N

N
∑

i

si (2.2)

We denote byΠl′l the probability that the strategic microstate of the population
at timet+ 1 is l′, provided that it isl at timet. Note that

∑

l′ Πl′l = 1. A microstate
l̂ is a frozenequilibrium configuration if the probability that it changes in one time
step is null, and thenΠl̂l̂ = 1 andΠl′ l̂ = 0 if l′ 6= l̂. We will assume generic
real values (irrational) of the payoff parameters, so that if a configuration contains a
C-D link it cannot be a frozen configuration. The only possible frozen equilibrium
configurations areall-C andall-D. However, for a very wide class of graphs, and a
wide range of model parameters they are not the only possible stationary probability
measures.

We now illustrate by means of easy examples the evolution of PD on graphs.
Our first and simplest example is a star-shaped graph consisting of a central node
connected toN − 1 peripheral nodes. It is straightforward to check that any initial
condition with cooperators at the central node and (at least) at[(b− ǫ(N − 1))/(1−
ǫ)] + 1 peripheral nodes has a positive probability of evolving in one time step to a
configuration with a higher number of cooperators, and a null probability of evolving
towards less cooperators. Thus, all those configurations evolve asymptotically to the
all-C equilibrium. The rest of configurations evolve towards theall-D equilibrium.
Therefore, ifN > (b− ǫ+ 2) both equilibria are attractors (absorbing states), in the
sense that some configurations different from themselves evolve to them; the phase
space is partitioned into two basins of attraction. IfN < b − ǫ + 2, only theall-D
frozen equilibrium is attractor. The stationary probability densitiesP∗(l) of the star
are pure point measures (two- or one- Dirac delta peaks) in the thermodynamic limit
N → ∞.

Now take a star and add some arbitrary number of links between its peripheral
nodes. We call this network a crown, whose head is the central node. Ifthe head
is occupied att0 by a defector, it will remain so forever, because the payoff of a
peripheral cooperator is strictly lower than head’s payoff. Sooner orlater the head
(center) of the crown will be imitated by the whole crown, and the evolution will
stop when everybody be defecting. But, what happens to a cooperatoron the head?
The answer is dependent on both, the net topology of the crown periphery and the
cooperators disposition there: To ensure fixation of cooperation at the head node, it
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suffices that a subsetC of peripheral nodes occupied by cooperators, and with no
direct links to the rest of the periphery, have a sizenC > bkmax − ǫ(N − nC − 1),
wherekmax is the maximal degree in the rest of the periphery. Under this proviso
all-C is the unique absorbing microstate of all corresponding initial conditions.

Finally consider the graph schematized in Fig. 2.1, composed of the following:

(a) A componentF of nF nodes with arbitrary connections among them.

(b) A node, say node 1, that is connected to all the nodes inF and has no other
links.

(c) A componentC of nC nodes with arbitrary connections among them.

(d) A node, say node 2, that is connected to all the nodes inF andC, but not to
node 1.

This is what we will call a Dipole Model network. It is a two-headed (nodes
1 and 2) crown (with peripheryF) plus a tailC hanging on head 2. To strength
the special status of the head nodes, let us nickname them as “Big Brothers”. They
certainly enjoy a sort of omnipresence that fits well with the character of Orwell’s
famous social sci-fiction novel1984. In the following section we prove that for this
simple network there exists a non-trivial stationary probability density of microstates
P∗(l) for the strategic evolution of the PD game.

2.3 The Dipole Model.

The analysis of evolutionary dynamics of the PD on the Dipole network showsthat
there is a non-trivial invariant measure in phase space. Let us consider the setI of
initial conditions defined by: (i) Big Brother 1 is a defector, (ii ) Big Brother 2 is
a cooperator, and (iii ) all nodes in componentC are cooperators. Note that this set
contains2nF different configurations. We now prove that, provided some sufficient
conditions, this is a minimally invariant set of the evolutionary dynamics.

First, one realizes that Big Brother 1 cannot be invaded by the cooperative strat-
egy: The payoff of a cooperator nodei in F isP c

i = kci + 1+ ǫ(ki − kci + 1), where
ki is the number of its neighbors inF andkci ≤ ki is the number of those that are
cooperators. The payoff of Big Brother 1 (BB1) is thenP1 ≥ (kci + 1)b. For the PD
game, whereǫ ≤ 0, the inequalityP1 > P c

i always holds, so that BB1 will always
be a defector. (Note also that for the Hawks and Doves game, a sufficient condition
for P1 > P c

i is b > 1 + ǫ(kF + 1), wherekF (< nF ) is the maximal degree in
componentF , i.e. the maximal number of links that a node inF shares withinF .)
We thus conclude that defection is fixed at BB1.
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Figure 2.1: Structure of the Dipole Network. Two nodes (1 and2) are connected to all nodes
in F , whose elements can be arbitrarily linked to each other. Moreover, node2 is also linked
to a setC (with arbitrary internal connections as well). Initial conditions are indicated by
colors: red for cooperators (node2 and setC), blue for defectors (node1), and green means
arbitrary (setF). See the text for further details.

Second, thanks to its interaction with setC, Big Brother 2 resists invasion, pro-
vided its sizenC is above a threshold: The payoff of a defector nodei in F is
P d
i = (kci + 1)b, wherekci is the number of its cooperator neighbors inF , while

the payoff of Big Brother 2 (BB2) isP2 = nC + nF ǫ+ nc
F (1− ǫ), wherenc

F ≤ nF

is the number of cooperators inF . Thus, a sufficient condition forP2 > P d
i is

nC > b(kF + 1) − nF ǫ. With this proviso, BB2 will always be a cooperator, which
in turn implies that all the nodes in the componentC will remain always cooperators.
Note that forǫ ≤ 0 andb > 1, the absence of the componentC could imply invasion
of node2, that would lead to fixation of the defective strategy on the whole network.

The previous argument proves that provided the sufficient conditionsnC > b(kF+

1) − ǫnF andb > 1 + ǫ(kF + 1) hold, the subsetI of phase space defined by (i),
(ii ), and (iii ) is an invariant set. As this set does not contain equilibria, no stochastic
trajectory evolves from it to a frozen equilibrium configuration.

Finally, one realizes thatI is indeed minimal, because at any time, a defector
in F has a positive probability to be invaded by the cooperation strategy (at least
from BB2), and a cooperator inF has a positive probability of being invaded by the
defection strategy (at least from BB1). Therefore, any strategic configuration of the
setI is reachable in one time step from any other,i.e. for all pairs (l, l′) of microstates
in I, the transition probabilityΠl′l > 0. Consequently,I does not contain proper
invariant subsets: it is minimally invariant. Moreover, following Perron-Frobenius
theorem, there exists a unique stationary macro-stateP∗(l). This provides a rigorous
framework for the interpretation of results from numerical Monte Carlo simulation
studies in evolutionary dynamics on dipole models, provided the sufficient conditions
above.



40 The dipole model: Thermodynamic study of a social system.

While nodes inC and Big Brother 2 are permanent cooperators, and Big Brother
1 is a permanent defector, nodes inF are forced to fluctuate. This partition of the
network into sets of nodes where each particular strategy is fixed forever, and a set of
fluctuating nodes, turns out to be a generic feature of the discrete replicator dynam-
ics (neighbor imitation proportional to payoffs difference) on many network settings
[109, 112]. The simplicity of the Dipole Network model allows on it an easy formal
proof of existence of this partition, so providing an illustration of both, its origins
and generic character. It also shows the formal applicability of equilibriumstatistical
physics formalism to characterize the asymptotic behavior of evolutionary dynam-
ics on these graphs. This will be made in the next section for specific choices of
structural traits for the subgraphF .

Let us note that if a direct link between BB1 and BB2 is added, then (see appendix
2.4.3) asymptotic fixation in the whole network of either cooperation or defection will
occur, depending on the relative sizenC/nF of componentsC andF .

The name dipole for this structure of connections is suggested by the strategic
polar (C−F −D) aspect of the whole graph. Note also that the number ofC−F and
F −D connections scales linearly with the sizenF of the fluctuating interior, that is
to say that the poles (C and D) act as an externally imposed (AC) field onF , whose
strength is proportional to the internal levels of cooperation. As the cooperation (and
then the fitness) levels are self-sustained (as proved by the previous theorem), this
is a closed macroscopic system with a non-trivial self-sustained social activity of
cooperation at evolutionary equilibrium.

The interest of the Dipole Model is by no means restricted to a mere academic il-
lustration: First of all, we can make a technical use of it in macroscopic stabilityanal-
ysis studies of PD-evolution on highly heterogeneous complex networks. Indeed, the
fluctuations inside the subsetF are the effect of the competition for invasion among
two non-neighboring hubs (hugely connected nodes), where oppositepure strategies
have reached fixation, in their common neighborhood. This is a local strategic con-
figuration that mimics those that are often observed in stochastic simulations of evo-
lutionary dynamics in highly heterogeneous (scale-free) networks [109, 112]. Simple
multipolar network models can easily be constructed (e.g. by establishing direct links
from C toF in a way that simple sufficient conditions guarantee that the theorem still
holds), that are indeed indistinguishable from typical strategic patterns found in the
numerical simulations on scale-free networks. This makes the Dipole net a very use-
ful technical device to analyze the stability mechanisms of the cooperator clusters
[109, 112] in scale-free structured populations, as well as the kind of temporal fluc-
tuations of cooperation that one should expect in the fluctuating set of nodes.

Regarding potentialities for econo-socio-physics applications of the Dipolemodel,
it could be viewed as a sort of schematic (then simplistic, cartoon-like) model for
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the competition for influence of two powerful superstructural institutions (e.g. like
“mass media”, political parties, or lobbies) on a target population, in stronglypo-
larized strategic contexts. The analysis rigorously provides sufficient conditions for
the parameter values where fixation of strategic traits is proved impossible, sothat
temporal fluctuations dominate forever the target population of social imitatorsF .
The influence on each individual of the two competing institutions is simulated here
through the omnipresent (“Big Brother” nodes 1 and 2) neighbors, whose own high
appeal for imitation (the strength of Big Brother’s influence) is in turn conditioned
by the strategic composition of the target population. Here the interest could well be
the study of the influence that metric and topological network characteristicsof the
social structure have on the strategic macro-state, and thus on the quantitative values
of social indicators. We address some aspects of this issue in the next section.

At a more general level, the design of experiments in social sciences as well as
theoretical studies of artificial societies could greatly benefit from havingat hand
simple but non-trivial “exactly soluble statistical-mechanical models” that may pro-
vide safe guides to develop further intuitions on social phenomena that demands more
comprehension.

2.4 The role of social structure in Big Brothers competition.

In this section we present some analytical and numerical results on the evolutionary
dynamics of games in the Dipole Model for different choices of topologies of the
fluctuating setF . The sufficient conditions stated in the previous section are assumed
hereafter. We are interested in the situation wherenF ≫ 1, i.e. large size of the
fluctuating population.

First we will briefly comment on the straightforward limiting case when the
macroscopic setF is a fully connected set, so thatkF = nF − 1. This is the
well-mixed population limit, for which it is easy to show that the replicator equa-
tion (2.1) is an exact description. The payoffs of polar nodes BB1 and BB2 are given
by P1 = bcnF andP2 = nC + cnF + ǫ(1− c)nF , while the payoffs of a cooperator
node and a defector node inF arePc = cnF +ǫ(nF −cnF +1) andPd = (cnF +1)b.
One easily realizes thatPc < Pd, provided the sufficient condition (b > 1+ ǫnF ) for
fixation of defection at node 1. Thus the (one time step) probabilitiesQDC (invasion
of a cooperator node inF) andQCD (invasion of a defector node inF) are
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QDC =
1

(nF + 1)

P1 − Pc

∆(nF + 1)
+

(1− c)nF

(nF + 1)

Pd − Pc

∆(nF + 1)

QCD =
1

(nF + 1)

P2 − Pd

∆(nF + nC)
. (2.3)

Assuming that the size ofF is macroscopic,nF ≫ 1, the fraction of cooperators
c in F evolves according to

ċ = (1− c)QCD − cQDC . (2.4)

Now, if nF ≫ 1, andnC/(nF )
2 → 0, then bothQCD and the first term in the

right-hand side ofQDC vanish, and we arrive to the differential equation

ċ =
c(1− c)

∆
(ǫ(1− c)− (b− 1)c) . (2.5)

This is, with a simple re-scaling of time, the replicator equation (2.1): note that in
the limit nF ≫ 1 that we have considered, the probability that a node inF picks up
a Big Brother when updating its strategy is negligible, and then the evolution inside
the complete graphF is overwhelmingly determined by the internal connections, and
thus by the replicator equation. In other words, in this limit of maximal possible con-
nectivity, BB1 and BB2 are no longer bigger than the nodes inF and their influence
on the fluctuating set is negligibly small in the thermodynamic limit.

We now turn attention to situations wherekF ≪ nF , far from the social pan-
mixia. In subsection 2.4.1 we will explicitly solve the opposite trivial case of dis-
connectedF set (kF = 0), which turns out to reduce to the standard textbook ideal
two-states model of Statistical Physics. After that, in subsection 2.4.2, the “random
regular” network structure forF is seen to be amenable to a plausible mean-field
approach, but insufficient to explain the phenomenology shown by MonteCarlo nu-
merical results. These show beyond any doubt a critical behavior, a transition point
separating two qualitatively different types of social macro-states. This transition is
sensibly interpreted as the onset of lattice reciprocity. In other words,lattice reci-
procity is a true critical social phenomenon.

2.4.1 F is a disconnected graph (ideal-gas).

Let us now obtain some explicit results for one of the simplest choices for thetopol-
ogy of connections inside the fluctuating set, namelykF = 0. In this case each node
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in F is only connected to Big Brothers. This is in fact an effective single node prob-
lem, where homogeneity (i.e., mean field assumption) inF is exact; in other words,
the absence of internal interactions in the setF is a sort of ideal-gas condition easy
to exactly deal with in the large size limit.

Note that the sufficient conditions for fixation of defection at BB1 and of co-
operation at BB2 are respectively,b > 1 + ǫ, andnC > b − ǫnF . Denoting by
c(t) the instantaneous fraction of cooperators inF , one finds for the (one time step)
probabilityQDC of invasion of a cooperator node inF

QDC =
cb− (1 + ǫ)/nF

2∆
, (2.6)

and using the notationA = ǫ+ (nC − b)/nF andB = 1 + nC/nF

QCD =
A+ c(1− ǫ)

2∆B
, (2.7)

for the probability of invasion of a defector node inF . Note thatA > 0 due to the
non-invasion of BB2 (sufficient) condition.

ProvidednF ≫ 1, the fraction of cooperatorsc in F evolves according to the
differential equation (2.4), which after insertion of expressions (2.6) and (2.7), and
re-scaling of time, becomes

ċ = f(c) ≡ A0 +A1c+A2c
2 , (2.8)

where the coefficients are

A0 = A , (2.9)

A1 = 1− ǫ−A+B(1 + ǫ)/nF , (2.10)

A2 = −(1− ǫ+ bB) , (2.11)

One can easily check (A0 > 0 andA2 < 0) that there is always one positive root
c∗ of f(c), which is the asymptotic value for any initial condition0 ≤ c(0) ≤ 1 of
equation (2.8).

For ǫ = 0, in the so called weak PD game (i.e. at the border between the PD and
the Hawks and Doves game), if one further assumes that the relative sizeµ(F ) of
the component F is large enough,i.e. µ(F ) → 1, andµ(C) → 0, one easily obtains
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that the stationary solution of equation (2.8) behaves asc∗ ≃ (b+1)−1 near the limit
µ(F ) → 1.

From the point of view of the setF , whennF ≫ 1, the model corresponds to a
non-interacting (ideal) set of independent phenotypic strategists that fluctuate due to a
polar field (Big Brothers influence) whose strength is self-consistently determined by
the average cooperationc. This problem is equivalent to the equilibrium of an ideal
paramagnetic salt in a noisy (telegraphic) magnetic AC field of intensity proportional
to the average magnetization.

A typical and correct statistical-physicists approach “from scratch” to this two-
states model is the familiar micro-canonical setting: At (dynamical) macroscopic
equilibrium, the probability of each strategic micro-statel = {si} of fixed value of
cl = c is uniform

Pl = Ω−1 , (2.12)

whereΩ = nF !/((cnF )!(nF − cnF )!)) is their number. The lack of information
S = lnΩ of the macro-state as a function of global cooperationnF c, i.e. the rela-
tion S(nF c), can be regarded as the analogue of the micro-canonical fundamental
“thermodynamical” relation, and its first derivative is the intensive parameter β (thus
the analogue of the inverse thermodynamical temperature), that after usingStirling’s
approximation is easily obtained as

β = ln

(

1− c

c

)

. (2.13)

This relation is the analogue of a thermodynamical equation of state, which sim-
ply expresses the connection of the equilibrium value of the macroscopic cooperation
level c to the “entropic” intensive parameterβ. Note thatc is determined by the bal-
ance condition (̇c = 0):

1− c

c
=

QDC

QCD
, (2.14)

from where the equation of state (2.13) determinesβ as a function of model param-
eters (i.e. b, ǫ, andnC/nF ). For example, whenǫ = 0, β = ln b > 0, indicating
that the disorder of the activity increases with increasing cooperation. The maximal
value ofβ → ∞ corresponds to zero disorder (b → ∞), while its minimal zero value
corresponds to highest possible value (atb = 1) of cooperation (c = (1/2)). Note
that values ofb < 1 correspond to negativeβ values, where entropy decreases with
increasing values of cooperation, outside the PD domain.1

1Note: The Stag Hunt game corresponds tob < 1 andǫ ≤ 0, and it is the archetype of coordination
games. A clear case for the deep importance of this game in Social Studiescan be found in [116].
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An alternative (and equivalent in the thermodynamic limit) setting is to consider
the whole space of2nF configurationsl = {si}nF

i=1, of unrestrictedcl, but under the
condition that the average valuec =

∑

l Plcl is fixed. This is the analogue of the
canonical setting. The normalization factorZ =

∑

l exp(−βcl) is the analogue of
the familiar canonical partition function (Boltzmann’s Zustandsumme), that dueto
the agents independence (k = 0) is easily factorized asZ = (1 + exp(−β))nF .

In the canonical setting a most informative macroscopic quantity is the “heat ca-
pacity” analogue: The fluctuations ofcl along representative (typical) stochastic tra-
jectories at equilibrium under the evolutionary dynamics of the game are, following
the standard thermodynamical formalism, given by∂c/∂(β−1), so that this quan-
titative social indicator detects very precisely sudden variations of the macroscopic
cooperation with payoff’s parameters. In this ideal-gas kind of case there are no crit-
ical points and fluctuations do not diverge. For example, forǫ = 0 they are given by
the (Bernouillian) binomial variancenF c(1− c) = nF b/(b+ 1)2.

2.4.2 F is a random regular graph.

Random regular networks are random networks of fixed degreek. All nodes being
thus equivalent, a sensible approach is to assume (mean-field like, seee.g. [117])
that the fraction of instantaneous cooperators in the neighborhood of a node is the
fractionc of the whole setF . In other words, one neglects local fluctuations ofc. The
contribution of the internal interactions to the variation ofc is then of the “replicator
equation” type, as discussed above for the complete graph case. The difference here
is that if kF ≪ nF the contribution of the interactions with Big Brothers cannot be
longer neglected.

Mean-field approximation.

The payoffs of Big Brothers BB1 and BB2 are given byP1 = bcnF andP2 =

nC + cnF + ǫ(1− c)nF , while the payoffs of a cooperator node and a defector node
atF under the mean-field assumption are:

Pc = ck + 1 + ǫ(k(1− c) + 1) , Pd = (ck + 1)b . (2.15)

The differential equation forc is then

ċ =
(1− c)(P2 − Pd)

(k + 2)BnF∆
− c(P1 − Pc)

(k + 2)nF∆

+
(1− c)ck(Pc − Pd)

(k + 2)2∆
, (2.16)
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Figure 2.2: Macroscopic cooperation in a random regular graph structure for the setF , with
k = 4, andnF = 4000, andǫ = 0. A decreasing sequence ofnC/nF , as indicated in
figure, has been used. Symbols represent numerical Monte Carlo results, and the different
lines represent the mean-field predictions as given by the solution (ċ = 0) of Eq. (2.17).

which under the assumptionkb ≪ nF , takes the form

ċ = f(c) ≡ 1

(k + 2)2B∆
(A′0 +A′1c+A′2c

2 +A′3c
3) , (2.17)

where the coefficients are

A′0 = (k + 2)(B − 1 + ǫ) , (2.18)

A′1 = 2(2(1− ǫ)−B) + k(2(1− ǫ)−B(b− ǫ))

+k2Bǫ , (2.19)

A′2 = 2(ǫ− 1−Bb) + k(ǫ− 1−B(1 + ǫ))

+k2B(1− b− 2ǫ) , (2.20)

A′3 = k2B(b− 1 + ǫ) , (2.21)

Note that the assumptionnC > b−nF ǫ (i.e. the condition for Big Brother 2 to be
a permanent cooperator) implies thatA′0 > 0, so thatċ(0) > 0 and one positive root,
sayc∗, of f(c) is then ensured, in agreement with the theorem of section 2.3. In Fig.
2.2 we show the asymptotic value of the average cooperationc versus the temptation
parameterb, as obtained from (2.17), for several different values ofnC/nF , ǫ = 0,
andk = 4.

Within the mean field approximation, it is possible to obtain explicitly the equi-
librium macro-state,i.e. the stationary probability distribution densityP∗l , which as
expected from section 2.3 turns out to be of the Boltzmann type. Let us consider two
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different (arbitrary) strategic microstatesl = {si} (i = 1, ..., nF ), andl′ = {s′i}, of
the fluctuating set. For any pair of microstates(l, l′) we define the following numbers:

n11 =
∑

i

δsi,s′iδs′i,1 , (2.22)

n10 =
∑

i

(1− δsi,s′i)δs′i,0 , (2.23)

n00 =
∑

i

δsi,s′iδs′i,0 , (2.24)

n01 =
∑

i

(1− δsi,s′i)δs′i,1 , (2.25)

i.e., n11 is the number of nodes that are cooperators in both microstates,n10 that of
the nodes that are cooperators inl but defectors inl′, etc... Using equation (2.2) it is
straightforward to obtain

cl − cl′ =
1

nF
(n10 − n01) . (2.26)

Now, let us assume that the probabilities that a nodei changes strategy are inde-
pendent of nodei (homogeneity assumption, mean-field), and denote them byQCD

(transition from defector to cooperator) andQDC (for the transition from coopera-
tor to defector). Then we can easily see that the transition probabilities between the
microstatesl andl′ are given by

Πl,l′ = (1−QDC)
n11(1−QCD)

n00Qn01

DCQ
n10

CD, (2.27)

Πl′,l = (1−QDC)
n11(1−QCD)

n00Qn10

DCQ
n01

CD, (2.28)

Henceforth, denotingexp(−β) = QCD/QDC , one easily obtains the expression:

Πl,l′ exp(−βcl′nF ) = Πl′,l exp(−βclnF ) , (2.29)

from where the unique solution to the fixed point equation

Πl,l′P∗l′ = P∗l , (2.30)

is easily found to be:

P∗l = Z−1 exp(−βclnF ) , (2.31)
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whereZ is the analogue of the canonical partition function

Z =

[

QCD +QDC

QDC

]nF

. (2.32)

Note that Eq. (2.29) expresses the “detailed balance” condition, which is thus
proved to be satisfied. As it is well-known [118], the canonical probabilitydistri-
bution density (2.31) is the unique density that maximizes the lack of information
(entropy),S = −∑

l Pl lnPl, among those (compatible) densities that share a com-
mon value for the macroscopic average of cooperationc =

∑

l Plcl. This provides
a “generalized thermodynamic” meaning to the parameterβ: it is no other than the
intensive entropic parameter associated to cooperation, that is, the Lagrange multi-
plier [119, 120] associated to the restrictionc =

∑

l Plcl on the compatible measures
(canonical restricted maximization of entropy), that is:

β =
∂S

nF∂c
. (2.33)

The parameterβ simply measures how fast the entropy of the equilibrium macro-
state increases versus global cooperation variations. Its formal role is that of an ana-
logue of inverse thermodynamical temperature. Let us note that, at variance with
many works in evolutionary game dynamics (see [16] and references therein) where
an analogue of temperature is introducedad hocas a parameter entering into the def-
inition of the (stochastic) strategic updating rules, the parameterβ (2.33) is a kind
of emergent property that characterizes the equilibrium macro-state, andthus is a
function of the model parameters (not a model parameter itself).

The fluctuations of the micro-states cooperationcl, namely(nF )
2(
∑

l(Plc
2
l ) −

(
∑

l Plcl)
2) are given bynF c(1− c). This is the analogue of the heat capacity. The

dependence on the game and network parametersb, ǫ, nC/nF , k of the fluctuations
of cooperation is obtained by solving for the cooperation equilibrium valueċ = 0 in
(2.17), and plotted in Fig. 2.3(panel b) fork = 4, ǫ = 0, and decreasing values of the
rationC/nF .

Numerical results, and the mean-field failure.

In this subsection we compare the mean-field results with those obtained from Monte
Carlo simulations implementing the updating rules on the dipole model with a ran-
dom regular network structure for the fluctuating setF .

In order to illustrate the Boltzmannian character of the stationary probability den-

sity P∗(l), we plot in Fig. 2.4 the numerical estimates ofln
(

P (c)
g(c)

)

, whereP (c) is
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Figure 2.3: Fluctuations of cooperation in a random regulargraph structure for the setF . The
upper panel (a) shows, fork = 4, ǫ = 0, nF = 4000, and a decreasing sequence ofnC/nF

values as indicated, the fluctuations of cooperation observed in Monte Carlo simulations. The
lower panel (b) shows the mean-field predictions. The mean-field approach is shown in text
to be unable to predict the observed phase transition. This qualifies network reciprocity as a
true “critical” social phenomenon.
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Figure 2.4: Plot ofln
(
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)

versus cooperationc, showing the Boltzmannian character of

the stationary probability density of microstates, for a random regular network structure for
the setF . The parameter values areb = 1.1, nF = 5000, k = 4, nC = 500, andǫ = 0. The
results shown here correspond to5 × 104 Monte Carlo steps (after a long enough transient),
for each one of the1.5× 103 different network realizations and/or initial conditions.

the probability that a microstate has an average cooperationc (2.2), as inferred from
the simulation results, andg(c) = nF !/((cnF )!(nF − cnF )!) is the degeneracy ofc
(i.e., the number of microstatesl such thatcl = c). The data correspond to a random
regular network structure for the componentF with degreek = 4, and parameter
valuesb = 1.1, nF = 5000, nC = 500, andǫ = 0. As one can see from the per-
fect straight line shape of the plot, the data are fully consistent with the Boltzmann’s
density (2.31).

Though the system evolution is governed by dynamical rules (strategic updating)
which “a priori” could be thought to lead to non-equilibrium behaviors, onefinds that
the asymptotic regime of the PD evolutionary dynamics in the dipole model is a true
macroscopic equilibrium regime, where the formalism of generalized thermodynam-
ics [120] applies.

The results of the asymptotic value of the average cooperationc versus the temp-
tation to defectb are presented in Fig. 2.2 for (relatively small) values ofnC/nF

ranging from0.025 down to4× 10−3, but still satisfying the sufficient condition for
the fixation of cooperation at BB2. The comparison with the mean-field predictions
show that the mean-field approximation overestimates the cooperation value. Most
notably, for very small values ofnC/nF , the numerical results show, at aboutb ≃ 1.4,
a fast decay of cooperation to values close to zero (thus suggesting the existence of
a phase transition), while the corresponding decay for the mean-field prediction is
smooth in the whole range.

To which extent the mean-field approximation fails for low values of the pa-
rameternC/nF , can be appreciated by confronting its prediction,nF c(1 − c), for
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the fluctuations of cooperation with the results from Monte Carlo simulations. In
Fig. 2.3 (panel a) we see how a peak in cooperation fluctuations is revealed, when
nC/nF → 0, signaling the occurrence of a phase transition between two qualita-
tively different equilibrium macroscopic behaviors, that correspond tolow and high
temptation regimes. The mean-field assumption is thus qualitatively wrong if the
payoff received fromC by Big Brother 2 becomes negligible versus the sizenF .

The reasons for this qualitative failure of the mean-field approximation rely on
the lattice reciprocity of internal interactions, which is totally absent in the mean field
approximation. Let us remind here our remark above on the replicator-equation-
type of effect of internal interactions in equation (2.8) because of the mean-field
assumption. The transition signaled by the divergence of fluctuations atb∗ reveals
the onset of internal lattice reciprocity, a conclusion that we now substantiate (see
also appendix 2.4.4 below).

For b > b∗, say in the low-temperature (high temptation) phase, the macro-state
is dominated by fast defection invasions on the relatively few nodes that are instan-
taneous cooperators due to sporadic interactions with Big Brother 2. In theappendix
2.4.4 we show that, in the lowc and lownC/nF regime, the BB-imitation events
in a given node are typically separated by intervals of time of aboutc−1 time units
large. In those large intervals when Big Brother 2’s influence is null, the very few
and mostly isolated instantaneous cooperators are quickly invaded by defector in-
ternal neighbors. In this regime lattice reciprocity has no chance to develop, and
cooperation is only weakly sustained by the sporadic influence of BB2.

On the contrary, forb < b∗ (high temperature, or low temptation phase) the
local fluctuations of the neighbors strategic field favor the building up of clusters of
cooperators that resist invasions during time intervals that are comparableto the char-
acteristic time intervals between BB-imitation events. Under these circumstances the
“extra payoff” that BB2 receives fromC does not anymore need to be high in order
to sustain high levels of cooperation. Internal lattice reciprocity enhancesthe prob-
ability of highly cooperative micro-states, so that the macro-states below transition
differs substantially from those of the high-temptation phase. This was not captured
by the mean-field approximation, for these effects require a sizable likelihood of oc-
currence for the local fluctuations of the strategic field, and the neglect of them is all
a mean-field approach is based upon.

To summarize the discussion of the results shown in figure, a random regular
structure of interactions insideF is enough to support lattice reciprocity mechanisms
that cannot be captured by a simple mean-field approach. The onset of lattice reci-
procity in the dipole model is furthermore interpreted as a “thermodynamical” phase
transition, in a rigorous formal sense (divergence of the fluctuations ofan equilibrium
extensive parameter, the cooperationc). One is then lead to a sensible and precise for-
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mal framework where such a term as “social temperature” is not a vague metaphor,
but it denotes a truly quantitative parameter, a legitimate (measurable, observable)
social indicator.

2.4.3 What if BB1 and BB2 are directly connected?

If a direct connection between Big Brothers is added (for the set of initialconditions
specified in section 2.3, and the conditions on parameters given ibidem), onemust
compare their respective payoffs to see who can invade the other. One easily finds
that the payoff of the defector BB1 is higher than that of the cooperator BB2 provided
the following condition holds:

nC

nF
< c(b+ ǫ− 1)− ǫ+

b− ǫ

nF
, (2.34)

wherec is the (instantaneous) average cooperation inF . In this case, BB2 will be
invaded with a non-zero probability. Once this eventuality occurs, no cooperator (in
F or in C) can later invade BB2 because all of them have lower payoffs, and fixation
of defection in the whole network will occur. Note that as the average cooperation
in F fluctuates, the condition above must be satisfied at the precise time when BB2
has chosen (by chance) to compare its payoff with BB1, and that due to thehigh
connectivity of BB2 (which is nownC + nF + 1) the later event occurs with a very
low probability for macroscopic values ofnF . In other words, the eventual invasion
of BB2 from BB1 and the subsequent fixation of defection in the whole network can
take on a very long time.

If the opposite condition holds, say if

nC

nF
> c(b+ ǫ− 1)− ǫ+

b− ǫ

nF
, (2.35)

when BB1 has chosen to compare its payoff with BB2, then invasion of BB1 will
occur with a non-zero probability. After this has occurred, BB1 becomesa fluctuating
node (for it could be eventually invaded by an instantaneous defector inF), but in
the long term fixation of cooperation in the whole network will occur.

The introduction of a direct connection between Big Brothers in the Dipole Model
makes fixation of opposite strategies on them impossible, and then asymptotic fixa-
tion on the whole network of either defection or cooperation will occur, depending
on the relative sizenC/nF of componentsC andF .
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2.4.4 Lowc approximation.

In order to simplify expressions we assume hereafterǫ = 0 andk = 4, and denote
δ = nC/nF . For the case of a random regular graph structure of the fluctuating set
F , the probabilityΠBB

C←D that an instantaneous defector node chooses to imitate Big
Brother 2 (invasion event from BB2) is, to first order inn−1F ,

ΠBB
C←D =

1

(k + 2)

c+ δ

(1 + δ)b
(2.36)

while the probabilityΠBB
D←C of an invasion event from BB1 to an instantaneous co-

operator node inF is, to first order inn−1F ,

ΠBB
D←C =

c

(k + 2)
(2.37)

Thus, forδ ≤ c, typical intervals between invasion events from Big Brothers in
a node are (of the order of)c−1 time units large. For large values of the temptation,
where the value ofc is expected to be very small, the dynamics is consequently
dominated, for typically very large intervals of time, by internal strategic interactions.
Let us analyze them.

The internal neighbors of a cooperatori are overwhelmingly likely instantaneous
defectors in this “lowc” regime, so thati will be quickly invaded by them. The
only chance for it to resist invasion would be that its instantaneous neighborhood
microstate had at least two cooperator neighbors and thatb < (3/2) (note that in
this strategic configuration, the payoff ofi is Pi = 3 and that of its typical defector
neighbors is2b). These neighborhood microstates (cooperative clusters) are so rare
fluctuations that low values of the temptationb are necessary for their non-negligible
occurrence. Providedb is below the transition value, the resilience to invasion (lat-
tice reciprocity) of cooperative clusters enhances the likelihood of thesefluctuations,
which in turn reinforces the clusters resilience, and so on. This positive feedback
mechanism of cooperative fluctuations enhancement is thus what triggersthe transi-
tion to highly cooperative macro-states, and qualifies lattice reciprocity as a critical
social phenomenon.

2.4.5 General case:F is a general random graph.

Let us pay attention to the behavior of the model whenF is a graph characterized by a
given degree distributionP (k). While the random regular network (RRN) considered
in the previous section corresponds to the distributionP (k) = δ(k − kF ), now we
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Figure 2.5: Fraction of cooperators as a function of the temptation to defectb in a ER (BA)
topology for the setF , with nF = 4000, nC = 3804 and ǫ = 0, −0.2. Each point is
averaged over 1600 realizations (40 networks, 40 initial conditions).

consider two cases: whenF is a Erdös-Rényi (ER) or Barabási-Albert (BA) network.
While in homogeneous ER graphs,P (k) follows a Poisson distribution centered at
kµ, in BA networks the degree distribution follows a power-law, and the different
connectivity distribution determines the system behavior; as will be detailed below,
the hubs of the setF in the BA case are a deciding factor.

With regard to the roots of cooperation, highly connected nodes are critical el-
ements in the intensity of lattice reciprocity mechanism. This is mainly due to the
effect that the network topology has on the distribution of strategies: the formation of
clusters of cooperators prevents the invasion of the strategy D in them. If the connec-
tivity distribution is such that there are very connected vertices, the hubs having an
initial strategy C are likely to form cooperative clusters, and the change ofstrategy of
these hubs is very unlikely. According to this argument, BA networks will promote
cooperation more than ER ones.

We have numerically studied the system by performing Monte Carlo simulations
after implementing in the fluctuating setF a network topology generated by a routine
taken from [140]. This algorithm provides a random network such thatP (k) depends
on a continuous parameterα: α = 0 (resp., 1) generates a Scale-Free (resp., Poisson
distribution) graph. We have scanned the parameter space{α, ǫ, b}, with 0 ≤ α ≤ 1

(SF to ER). The conditionb > 1 + ǫ(kF + 1), in practiceǫ ≥ 0, involves PD. In the
same way, the constraintnC > b(kF + 1) − ǫnF implies a large number of BB2
stabilizer agents (setC) for a high connectivity, as in the BA case.

Regarding macroscopic cooperation, the numerical results obtained do not show
any abrupt transition when the parameterα varies: the gradual change fromα = 0

(SF) to 1 (ER) implies a gradual change inc. The results of the asymptotic value
of the average cooperationc can be seen in figure 2.5. The figure shows greater
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Figure 2.6: The main panel shows the probability for a fluctuating node to remain as a co-
operator for a periodτ , for ǫ = −0.2 (PD), b = 2 and a BA structure for the setF . The
permanence probability follows a power law. The inside panel shows the slopes of the main
panel, for all connectivity classes. Nodes with higher connectivity are more resilient to strat-
egy change, which provides a microscopic basis for lattice reciprocity. See the text for further
details.

cooperationc in BA graphs than in ER ones, as we argued above. Moreover, the
dependence ofc on ǫ (always forǫ < 0, i.e., PD game) turns out to be approximately
linear for all values ofb, depending very little on the type of network:

c(ǫ) = c(ǫ = 0)(1 + κǫ), (ǫ < 0), κ ≈ 1.

This relation is valid for all values ofb, as verified by low variance of

φǫ(b) =
c(b)|ǫ′
c(b)|ǫ=0

, (e.g.σ2(φǫ) = 0.004 for ǫ′ = −0.2).

Fluctuations.

Given that the elements of the setF always have a non-zero probability of strategy
change, we have studied the distribution of thecharacteristic cooperation timeτc,
which is defined as the average period that a node remains as cooperator. The simu-
lations showed thatτc is independent ofα, that is, the characteristic cooperation time
for a given connectivity is independent of the network topology. Figure2.6 shows
the probabilityP (τ)that a node of the setF keeps strategy C during a periodτ , in
a BA graph, forǫ = 0, b = 2 and different connectivity classes. The probability of
permanence decreases exponentially over time and, as expected, nodeswith higher
connectivity have higher characteristic cooperation time, whichconstitutes a man-
ifestation of the microscopics roots of lattice reciprocity, and explains why BA
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networks show higher cooperation rates than ER ones. The inset of figure 2.6 shows
the slopes of main figure, and represents the coefficientλ of the relation:

P (τ) ∝ e−λτ (2.38)

As shown,λ(k) is monotonically decreasing, which highlights the relationship
between connectivity and network reciprocity.

As in the previous sections, we study the fluctuations of cooperation along stochas-
tic trajectories. Nevertheless, for a ER or BA structure for the setF , the analogy
between the cooperation rate variance and the heat capacity is not as justified as in
the random regular structure and, therefore, the study is restricted to Monte Carlo
simulations. As shown in figure 2.7, BA structures presents more fluctuationsthan
ER ones.

2.5 Heat transfer: Two dipoles in contact.

The system shown so far constitutes a Markov process. We have seen insection
(2.4.2) that, in the scope of applicability of mean field approximation (as whenF is
a RRN), the model satisfies detailed balance condition (2.29). Therefore,in the sta-
tionary state we deal with a reversible Markov process described by the Boltzmann
distribution (2.30). However, the analogy of the model with a real particle system has
a drawback: the equivalent of energy is the total number of cooperators cnF , which
means that the model is not conservative. Despite that, it’s hard not to wonder how
two dipoles behave when they come into contact. The interest of this extensionof the
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original model is wide: On one hand, we can study the validity of the social temper-
ature concept and evaluate its relation to the physical temperature. Furthermore, the
expanded model allows to study the interaction between two evolutionary dynamics,
both with two pure strategies.

2.5.1 The double dipole model.

In order to simulate the heat transfer, we consider two dipolesD1 andD2, composed
by respective fluctuating setsFi, the hubsBB1i andBB2i and the cooperating sets
Ci. The subscripti indicates the dipole subsystem to which it belongs,i = 1, 2.
Both dipole subsystems have the same size:nC1

= nC2
= nC , nF1

= nF2
= nF .

Therefore, from now on, these sizes will be denoted bynC andnF . The parameter
ǫ is common for both dipoles, and the difference in payoffs is determined by the
respective parametersbi. The definition of temperature,β−1 = −(lnQCD

QCD
)−1 =

f(b), leading to the Boltzmann distribution (2.30), takes us to useb as an independent
variable. This procedure allows to control the temperature of each of the two dipoles
when they reach their respective stationary states.

Let I’ be the set of initial conditions: the Big BrothersBB1i are defectors, Big
BrothersBB2i are cooperators, and all nodes in setsCi are also cooperators. There
is not constraint to initial strategies for elements in setsFi. To ensure that I’ is a
invariant set of the evolutionary dynamics, we maintain the restrictions of section
2.3, now take the form:nC > bmax(kF + 1)− ǫnF andbi > 1 + ǫ(kF + 1), where
bmax = sup{bi}.

2.5.2 Dynamics.

The subsystemsD1 andD2, after setting their parameters, are left to evolve according
to the usual dynamic to reach equilibrium. Once reached their respective stationary
states(t = 0), we connect both fluctuating sets as follow: We choose at random
a nodei1 of F1 and a neighborj1, in the same way, we choose another nodei2 of
F2 and his neighborj2. Subsequently, we remove links connecting those nodes, and
connecti1 to i2, andj1 to j2. We repeat this processkκnF /2 times, whereκ is a
coupling parameter. After that, the system will evolve again according to the habitual
dynamics. When a nodei of dipolen choose a neighborj of dipolem to play, both
agents taken’s pay-off matrix, i.e. the temptation to defect isbn. We have studied
the evolution of the system, the observables and stationary states.
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Figure 2.8: Structure of the Double Dipole Network. On the left side is represented the
model before thermal contact: Without any link between the setsF1 andF2. On the right,
after the thermal contact: With links connecting nodes ofF1 to nodes ofF2. Nodes1i and
2i (Big Brothers) are linked to all nodes inFi. Furthermore, nodes2i are also connected to
all nodes inCi. Nodes in setsFi, Ci are internally connected, forming a defined network.
Initial conditions (on left side) are indicated by colors: red for cooperators (nodes2i and set
Ci), blue for defectors (nodes1i), and green means arbitrary (setsFi). See the text for further
details.

2.5.3 Effective temperature.

The intrinsic observables of the extended model areci. However, it is possible to
study the final temperature of each subsystem by introducing the conceptof effective
temperature.

By exp(−β) = QCD/QDC , we know that stationary state temperature in an iso-
lated dipole, whenF is a RRN, is a functionf(b, ǫ, nC , nF ). Besides, if all other pa-
rameters keep fixed, the cooperation is given by a monotonically decreasing function
c(b). Therefore, if we keep constant all other parameters, each value ofc corresponds
to a value ofb.

We define the effective temperature of a subsystemDi(bi, ǫ, nC , nF ) as the value
of β−1 that would fall to his levelci of cooperation in an isolated dipoleD(bi, ǫ, nC , nF )

in stationary state. The effective temperature is applicable to each subsystem, once
put in thermal contact and reached a new stationary state.

We can study now the temperatures of the subsystems before and after putting
them in contact. The problem is that, knowing the asymptotic value ofci, we can not
infer β for any topology in setF , unless we use an approximation as MF. Therefore,
we use the observed value of c as relatives of the temperature. The Big Brothers’
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influence on fluctuating setsFi is determined by its payoffs, which in turn are a
function of ci, bi, nC , nF andǫ. An interpretation of the influence of BBs onFi is
that the setsFi are thermodynamic systems in contact with respective heat baths. The
influence of the heat baths remains after putting the dipoles in contact, therefore the
effective temperature of both subsystems need not be equal once it hasreached the
new stationary state, unless the coupling parameter isκ ≥ 0.5.

In the model, there are only two strategies or accessible levels by element, and
there exists a extern source of cooperation: The setsCi. It is therefore possible to
have configurations in which there are more elements adopting cooperating strategy
than defect one and the system can be characterized by a negative effective tempera-
ture. This is only possible if the external field (heat bath) has enough influence, that
is, for high values ofnC . Negative temperatures are possible in both dipole, before
and after heat contact, for high enough values ofnC .

2.5.4 Mean-field approximation.

For an isolated dipole, in subsection 2.4.2 we assumed that the fraction of instanta-
neous cooperatorsc[i] in the neighborhood of a node i, is the fractionc of the whole
setF . In order to generalize MF approximation, now we makec[i] to correspond to
the weighted average of the cooperation: We assume that for a fluctuant nodei1 in
the dipoleD1, in thermal contactκ with another dipoleD2, the fraction of coopera-
tors in the neighborhood ofi1 is c[i1] = (1 − κ)c1 + κc2. In the same way, we take
c[i2] = κc1 + (1 − κ)c2. In the model, according to 2.5.2, when a node of dipole n
chooses a neighbor to play, they takebn, in this approximation we assume the average
temptation to defect̄b = (b1 + b2)/2 for heat interactions (between two fluctuating
sets).

Under these assumption, the payoffs of Big BrothersBB1i andBB2i are given
by P1i = bicinF andP2i = nC + cinF + ǫ(1 − ci)nF , while the payoffs of a
cooperator node and a defector node atFi are:

Pc1 = k(λc1 + κc2) + 1 + ǫ(k(λ(1− c1) + κ(1− c2)) + 1) ,

Pc2 = k(κc1 + λc2) + 1 + ǫ(k(κ(1− c1) + λ(1− c2)) + 1) ,

Pd1 = (kλc1 + 1)b1 + kκc2b̄ ,

Pd2 = kκc1b̄+ (kλc2 + 1)b2 ,

(2.39)

whereλ = 1− κ.
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bi > 1 impliesPdi > Pci. Without loss of generality, we assume thatb2 > b1.
If there is not constraint toκ, can not ensure thatPci > Pcj norPdi > Pdj for any
i 6= j. For nodes inFi, each time step, the probabilitiesQDCi (a cooperator changes
its strategy to defector) andQCDi (a defector changes its strategy to cooperator) are:

QDC1 =
P11 − Pc1

(k + 2)nF∆

+k
λ(1− c1)(Pd1 − Pc1) + κ(1− c2)(Pd2 − Pc1)H(Pd2 − Pc1)

(k + 2)2∆
,

QCD1 =
P21 − Pd1

(k + 2)BnF∆
+ k

κc2(Pc2 − Pd1)H(Pc2 − Pd1)

(k + 2)2∆
,

QDC2 =
P12 − Pc2

(k + 2)nF∆

+k
κ(1− c1)(Pd1 − Pc2)H(Pd1 − Pc2) + λ(1− c2)(Pd2 − Pc2)

(k + 2)2∆
,

QCD2 =
P22 − Pd2

(k + 2)BnF∆
+ k

κc1(Pc1 − Pd2)H(Pc1 − Pd2)

(k + 2)2∆
,

(2.40)

whereH(x) represents Heaviside’s step function, that takes value 1 ifx > 0, 0
otherwise.

After a time step, the fraction of cooperators in setFi is given by:

ci(t+ 1) = ci(t) + (1− ci(t))QCDi − ci(t)QDCi . (2.41)

Now, we can replace (2.39) and (2.40) in (2.41) to achieve two coupled finite
difference equations forci. These equations provide the evolution of the system and
the stationary state, according to MF approximation.

2.5.5 Numerical results.

We compare the mean-field results, obtained by evaluating the expression (2.41) iter-
atively, with experimental ones obtained from Monte Carlo simulations. The values
of ci, once stationary state is reached, are related to the effective temperatures ac-
cording to 2.5.3.

In order to study transition phenomena, we measure the cooperation evolution
from the stationary states for the isolated dipolesDi to the stationary state after ther-
mal contact. Fig. 2.9 shows the evolution of cooperation, by comparing simulations
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Figure 2.9: Evolution of macroscopic cooperation after putting in contact two dipoles (t = 0),
with k = 4, nF = 4000, ǫ = 0, nC = 100, b1 = 1.1, and for different values ofb2 = 1.5
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Black lines represent to dipoleD1 and red lines to dipoleD2. Time unit corresponds to a
Monte Carlo step. See the text for further details.
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Figure 2.10: Macroscopic cooperation levelsc for both subsystems, versus the sizenC of
pure cooperators sets, withk = 4, nF = 4000, ǫ = 0, κ = 0.5 and RRN structures in
fluctuating setsFi. Upper panelsshow the results of Monte Carlo simulations, after a long
enough transient, averaged over5 × 104 steps and5 × 103 different network realizations.
The temptation parameters of both sybsystems are fixed atb1 = 1.1 (blue, +) andb2 = 1.5

(red, x). The upper-left panel corresponds to the stationary state before putting in contact the
dipoles, and the upper-right panel corresponds to the stationary state after exchanging1.5nF

links. Lower panels: Mean field estimate for the same values of parameters.
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Figure 2.11:Upper panels: Cooperation levels in dipolesD1 (symbols +) andD2 (x) versus
the differenceb2 − b1 of temptation parameters. The rest of parameters have been fixed to
b1 = 1.1, k = 4, nF = 4000, nC = 100, ǫ = 0 andκ = 0.5. SetsFi are endowed with a
random regular graph structure. Symbols correspond to the value of c once reached stationary
state, averaged over5 × 104 Monte Carlo steps and for5 × 103 different networks, before
(left) and after (right) putting in contact the dipoles.Middle panels: Mean-field estimation
of cooperation levels in dipolesD1 (solid lines) andD2 (dashed lines), before (left) and after
(right) contact, for the same values of parameters.Lower panels: Mean-field estimation of
effective temperaturesTeff of dipolesD1 (solid lines) andD2 (dashed lines), before (left)
and after (right) contact, for the same values of parameters.
In all panels, the temptation parameterb1 of dipoleD1 remains constant (+, solid lines), while
varying the respective parameterb2 of dipoleD2 (x, dashed lines).
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results with MF estimate, for different values of coupling parameterκ andb2 − b1
(in monotone bijection to initial temperature difference). One can observe that the
mean-field predictions provide higher cooperation values. This failure ofMF ap-
proximation, as in the section 2.4.2, highlights the importance of lattice reciprocity,
which is ignored in MF approximation. As expected, this MF estimate, provided by
the finite difference equations (2.41), is coherent att = 0 with the MF estimate of
the section 2.4.2, provided by the fixed point of the differential equation (2.16).

The results for the asymptotic values of the average cooperation, that is, the val-
ues ofci at the stationary states before and after the thermal contact, versus the size
of fluctuating setsCi are represented in figure (2.10). As shown, for low values of
nC the difference in cooperation between the dipoles is smaller than for high values
of nC . This is a consequence of the BB’s influence, which grows as do the sizeof
the set of cooperating nodes. Put another way, the influence of heat bath increases
with nC/nF . This has a direct explanation because the size ofnC does not affect the
payoff of fluctuating nodes, but it does increase the payoff of cooperator hubsBB2i.

The upper panel of figure 2.11 shows the average cooperation c versus the differ-
ence in the temptation to defectb2 − b1, once fixednC = 100, nF = 4000, ǫ = 0,
κ = 0.5, b1 = 1.1 and takingb2 as independent variable. For high values ofb2, the
proportion of cooperators of both subsystems after heat transfer andonce reached the
new stationary state tend to equate: The heat bath effect decreases withbmax, and
cooperation final ratios tend to be equal whenb2 increases. When we use the MF
approximation, the same results can be analyzed from the perspective of effective
temperature, as shown in the lower panel of figure 2.11. Effective temperature de-
creases asci increases, and then it increases whenbi increases. The final temperature
difference depends on the value of the coupling parameterκ, a higherκ implies lower
difference. However,κ > 0.5 means that in average, nodes have more links to the
other fluctuating set than to his. Therefore, for small enoughnc size andκ > 0.5, the
final temperature of initially hotter dipole will be lower than the opposite dipole final
temperature.

2.6 Prospective remarks

The plausibility of a thermodynamical perspective on evolutionary game dynamics
studies is not a new issue, for it is somehow implicit (or at least connatural) toa
body of research literature on statistical mechanics of strategic interactions[16, 121].
What our simple analysis here shows is that it can sometimes be strengthened up to a
formal interpretation of quantitative macroscopic social indicators as thermodynamic
quantities. In the extent that it helps to understand and to quantitatively characterize
the phenomenology of social and economical models, it should be recognized as
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a powerful theoretical perspective. What is even more important, this perspective
emphasizes the central role of quantitative (experimental, observational) studies in
social sciences, and could provide, in those contexts, alternate valuablemeanings to
quantitative social indicators and even suggestions for new and better ones.

Any “general-physics” trained scientist recognizes that entropy reasoning is an
extraordinary powerful tool for the analysis of macroscopic behaviorin (material)
traditional-physics systems. It turns out that some of the models (at least a bunch
of interesting ones) of social phenomena are to a large extent amenable to amacro-
scopic description where thermodynamical concepts have proved to be essential. Of
course, some notions likee.g. “First Law of Thermodynamics” could be often ab-
sent in these new contexts. However we emphasize that the absence of energy as a
variable in social models is not a shortcoming for the applicabilitymutatis mutandi
of many aspects of the thermodynamical formalism to these models. A word of cau-
tion is nevertheless worth here regarding typical system sizes in controlledsocial
experiments, where finite size effects could be hugely determinant. Also, one should
not expect always social processes to be amenable to equilibrium descriptions, what
makes them even more interesting from the physicists point of view.

Nowadays, it is somewhat generally accepted that physics in general, and statis-
tical physics in particular, offers a powerful tool-box for problem solving in social
sciences and many other areas. Recent trends in cognitive science [122] have cor-
rectly emphasized the power of the “diversity of perspectives” in problem solving,
so it does not come as a surprise that adding physical perspectives to social models
may sometimes pave the way to the needed breakthrough. Perhaps one should also
wonder about the possibility of reverse flow in these interdisciplinary approaches to
social sciences. After all, the proper use of a tool helps to its reshaping,and one could
perhaps expect some kind of feedback. In other words, is there any new physics that
we can learn from the study of social and economic complex systems? Only there-
course to empirical and quantitative methods in the study of social phenomenamay
likely give clues for sensible answers to this question.

—————————————————————————



Chapter 3

Cooperation in changing
environments: Irreversibility in
the transition to cooperation in
complex networks.

In this chapter, we study the evolutionary dynamics of the prisoner’s dilemma game in
differents complex networks, focusing on its reversibility under adiabatic variations
of the payoff matrix parameterb (temptation to defect). We find that, for the networks
considered, the process is reversible provided it is kept away from theabsorbing
states. Nevertheless, irreversibility appears when the level of cooperation reaches a
tipping point, emerging a hysteresis cycle whose shape depends on the underlying
topology.

3.1 Introduction.

Evolutionary dynamics has been widely used to describe the evolution of biological,
economic and social systems [12]. The replicator dynamics ofevolutionary game
theory (EGT) provides a powerful tool to study the progress of strategies through
the lens of evolution [79, 17]. In this respect, one of the hot topics of the evolu-
tionary game dynamics is the understanding of the observed evolutionary survival of
cooperative behavior among individuals despite selfish actions provide higher fitness
(reproductive success). Possibly, the most used EGT model to formalizethe emer-
gence of cooperation is iteratedPrisoner’s Dilemma(PD), a symmetric two-player
two-actions game where each player choose one of the two available actions: coop-
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eration or defection: A cooperator receivesR from another cooperator andS from
a defector; a defector receivesT from a cooperator andP from another defector;
payoffs satisfyT > R > P > S. Several studies on the iterated PD on com-
plex networks [19, 81, 82, 83, 84, 85, 86, 87, 16, 90, 101, 102, 103, 104] show that
the cooperation level depends strongly on the topology of the network. The exis-
tence of cooperation enhancing mechanisms based on the interaction structure now
is widely accepted: The clustering of cooperators could provide high enough payoff
to the cooperator nodes to resist invasion of defectors, even when defection is fa-
vored by the one-round two-players game analysis. For small values ofP − S (i.e.,
P − S ≪ T − R), cooperation decreases slowly whenT − R increases from zero,
and becomes zero at a value ofT/R > 1 that depends on the network considered.

Recent studies of replicator dynamics [109] on graphs show that fixationof co-
operation on certain nodes occurs after transients, in which the trajectories are char-
acterized by a partition of the network into three sets: the setC of pure cooperators
(nodes where cooperation is fixed), the setD of pure defectors (nodes where defec-
tion is fixed), and the setF of fluctuating nodes (nodes that never reach an unchanging
action). Furthermore, robustness of cooperation in the evolutionary PD on complex
networks has been recently studied [112], showing that the level of cooperation un-
der different network structures is robust against variation of initial conditions. The
aim of the present study is to investigate evolutionary PD on complex networksin
changing environments, in particular its reversibility under variations of temptation
to defectT , and to determine how topology affects reversibility.

3.2 The model.

We consider a two-players two-actions game, where each player chooses one of the
two available actions, cooperation or defection: A cooperator earns R when play-
ing with a cooperator, and S when playing with a defector, while a defector earns
P when playing with a defector, andT (temptation to defect) against a cooperator.
WhenT > R > P > S, the game is called Prisoner’s Dilemma (PD), while if
T > R > S > P it is called Snowdrift Game (SG). In this work we study a variant
of PD called weak Prisoner’s Dilemma, placed in its boundary respect to SG,that is
T > R > P = S. In PD (including weak variant), whatever the opponent’s action,
the payoff is never higher for cooperation, and a rational agent should choose defec-
tion. Still, two cooperator agents receive higher payoff (2R) than two defector ones
(2P ), which leads to the dilemma. Provided the relative selective advantage among
two individuals depends on their payoff’s difference (see below), wecan normalize
without loss of generality the pay-off matrix takingR = 1 and fix the punishment
P = 0. Then only a parameterT = b > 1 is a system variable.
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In this study we implement the following replication mechanism: At each time
step, each agenti plays once with each one of its neighbors (i.e. agents connected
to i) and accumulates the obtained payoffs,Pi. After that, the individuals,i, update
synchronously their actions choosing a neighborj at random, and comparing their
respective payoffsPi andPj . If Pi ≥ Pj , nothing happens andi preserves its ac-
tion. Otherwise, ifPj > Pi, i adopts the action of its neighborj with probability
Πji = η(Pj − Pi). Next, all payoffs are reset to zero. Here,η is a positive real
number, related to the characteristic inverse time scale: the larger it is, the faster evo-
lution takes place. We consider that players and connections between themare given
by a fixed graph where agents are represented by nodes, and a link between nodes
indicates that they interact. We choose here the maximum value ofη that preserves
the probabilistic character ofΠji, that is,η = (max{ki, kj}b)−1, whereki is the
number of neighbors of agenti (connectivity or degree). This choice, introduced in
[18], slows down the invasion processes from or to highly connected nodes (hubs),
with respect to the rate of invasion processes between poorly connectednodes.

Our aim is the study of the reversible (or irreversible) character of cooperation
level c under the variation of the temptation to defect parameterb, wherec is defined
as the number of cooperator nodes divided by the total populationc = Nc/N . In
order to study the system’s behavior, we choose an initial value ofb = b0 such that
the asymptotic cooperation valuec is close to a half:c(b0) ≃ 0.5. Once the system
has reached stationary state, we decreaseb in a quasi-static way, that is, in steps
∆b < 0 small enough to ensure that the system remains very close to equilibrium.
Along this process, we compute the stationary value of cooperationc(b) for each
value ofb. To avoid getting stuck in the absorbing states we deal with large enough
networks sizes (N > 105), considering that fluctuations decrease according to the
square root of the system size. Once the system has almost reached the absorbing
statec = 0, we reverse the sign of the increase inb, i.e. ∆b > 0, to almost reach the
other absorbing statec = 1, and then again decreaseb to complete the cycle.

3.3 Results.

To study the influence of network topology in the reversibility of the process, we
consider three different network models: Random Regular Graphs (RRG), Erdös-
Rényi and Scale-free networks. In the case of RRG (i.e., random networks of fixed
degreek, which means that every node has the same number of neighbors), adiabatic
cycles are identical; that is,the behavior observed in the numerical simulations
with RRG corresponds to a reversible process.
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Figure 3.1: Cooperation level〈c〉 versus the temptation to defectb averaged over103 ER
networks (solid lines) and envelopes (pointed lines). Red lines represent semicycles with
increasingb and blue lines represent semicycles with decreasingb. The network size isN =

1.2× 105. See the text for further details.

3.3.1 Erdös-Rényi networks.

Erdös-Rényi (ER) networks are random graphs characterized by abinomial degree
distribution of any particular node, this distribution is Poisson for large number N of
nodes. To study the processes reversibility, we have performed numerical simulations
in 103 independent networks of sizeN = 1.2× 105 generated through Erdös-Rényi
algorithm. As outcome, for reduced cycles, that is, when the return points are far from
absorbing states (1−Nc(bmin) ≫ 1,Nc(bmax) ≫ 1) the processes are reversible and
the level of cooperation is independent of the sign of the increase inb. Nevertheless,
when return points are close enough to the absorbing states (c(bmin) ≈ 1, c(bmax) ≈
0), ER networks show a dramatic irreversibility. In fact, once the level of cooperation
reaches a tipping point, all processes are irreversible. In particular, there is a strong
resilience of cooperation (defection) when increasing (decreasing) the value ofb.
However, the backward and forward transition curves are identical for intermediate
values of cooperation. The proximityǫ of the tipping pointsc(bmin), c(bmax) to the
absorbent states in both ends of cycle turns out to be similar:1 − c(bmin) = ǫ ≈
c(bmax) and, for the networks size used, it takes on the valueǫ ≈ 2× 10−3.

As a result, once the population has reached a cooperation level above (below) a
tipping point, the system shows a reticence to retrieve the past level of cooperation
when the parameterb increases (decreases). This phenomenon is independent of
the particular ER network, being observed in all network realizations. Figure 3.1
shows the level of cooperation〈c〉 versus the temptation to defectb, averaged over
103 realizations in distinct ER networks. Different realizations show different b-
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increasing andb-decreasing curves, whose envelopes are depicted as dotted lines in
Figure 3.1. Remarkably, the dispersion of the different curves is much larger for the
b-decreasing direction.

3.3.2 Scale-free networks.

Scale-free (SF) networks are random graphs whose degree distributionP (k) follows
a power law, that is,P (k) ∼ ck−γ . We ran simulations in5 × 103 independent
networks of sizeN = 1.2 × 105 generated through the Barabási-Albert algorithm.
Although most of the SF networks show nearly reversible behavior, around5% of net-
works show a strong hysteresis. Nevertheless, irreversibility in SF networks should
not be considered as a rare event: Increasing the network size increases the proportion
of networks that show irreversible behavior. The explanation for this fact is that the
use of larger networks allows to approach closer the absorbing statesc = 0, 1 with-
out getting stuck in them. Based on this argument, we have separated realizations
showing a reversible behavior from irreversible ones. In these latter cases, hysteresis
shows up only for low values ofb; in other words, when cooperation is very small,
backward and forwardc(b) curves are almost identical. Moreover, the behavior of
the system inb-increasing semicycles is always similar, the cooperation levelc(b)

taking approximately the same value in all realizations, regardless they are reversible
or irreversible. On the contrary,c(b) curves are different for different (irreversible)
realizations inb-decreasing semicycles, and show a substantially larger dispersion
that those of ER networks.

The results of the average cooperation level〈c〉 as a function of the temptation to
defectb, for SF networks showing irreversible behavior, are presented in figure 3.2.
The return pointsbmin, bmax were chosen such thatc(bmax) = 1− c(bmin) = ǫ, for
a value ofǫ = 10−3. Note that, despite the small value ofǫ, the network sizeN is
large enough to asses that we are not dealing with pathological cases, since a value
c = 0.001 involves a number of cooperatorsNc = 120. In the same way,c = 0.999

implies 120 defector nodes. As shown in envelopes (dotted lines), the degree of ir-
reversibility varies greatly from each realization. Specifically, irreversibility depends
on the particular network, since for a given network repeated cycles share approx-
imately the samec(b) curves for a given (forward or backward) direction. A most
remarkable feature of the irreversibility in SF networks is that, for irreversible net-
work realizations, the value of the temptation to defect needed to reach a cooperation
level of c = 10−3 is bmin < 1, that is to say, outside the PD game range.
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3.4 Microscopic roots.

Previous studies [109, 112, 113] have shown that, in the asymptotic states ofthe
evolutionary dynamics of the PD game, under the updating of the actions explained
above, the network is generically partitioned into three sets of nodes: Purecoopera-
tors (nodes where cooperation has reached fixation), pure defectors, and fluctuating
strategists (nodes where fixation is impossible so that defection and cooperation al-
ternate forever). Pure cooperators resist invasion by grouping together in cooperator
clusters, each of these connected subgraphs keeping around it a cloud of fluctuating
strategists. The basis for an understanding of the irreversible behaviorin ER net-
works is found by looking along both (b-increasing andb-decreasing) branches at the
details of this microscopic organization of cooperation. In particular, in what follows
we pay attention to the number and size of pure cooperator clusters as a function ofb.
Figure 3.3 shows the averaged relative size〈Gc/N〉 of the largest cooperator cluster,
and the average〈ncc〉 of the number of cooperator clusters versus the temptation to
defectb, in both semicycles for ER networks.

Let us first analyze theb-increasing semicycle. In typical configurations near the
absorbent statec = 1, the pure cooperators percolate the network conforming a giant
cooperator cluster whose averaged relative size〈Gc/N〉 ≃ 1. As the temptation to
defectb increases, starting from such configurations, the existence of a single very
large cluster of pure cooperators allows initially for a very efficient resilience to in-
vasion by defectors until a value ofb ≃ 1.16 is reached. From there on, invasion
processes are dramatically enhanced so inducing the fragmentation of the large clus-
ter: 〈Gc/N〉 decreases quickly, the large cluster giving birth to an increasing number
ncc of small clusters of pure cooperators, that atb ≃ 1.23 reaches its maximum value
ncc ≃ 160 when the large cluster size has been reduced to〈Gc/N〉 ≃ 0.15. Fur-
ther increase ofb reduces both the number of pure cooperator clusters and the size
of the largest one: Atb ≃ 1.8 basically only the largest cluster remains with a very
small size which keeps decreasing further beyond the tipping point (typically found
at b ≥ 2).

Now we analyze theb-decreasing semicycle. Back from the typical configura-
tion reached past the tipping point near the absorbing statec = 0, when decreasing
the temptation valueb the very small size of the remaining pure cooperator cluster
cannot benefit (i.e., enlarge its size) enough from cooperative fluctuations nearby;
correspondingly the level of cooperation〈c〉 remains well below the values observed
for theb-increasing branch. It is not until a value ofb ≃ 1.6 is reached, that〈Gc/N〉
starts a significant increase. Simultaneously, some cooperative fluctuationsin the
cloud of fluctuating agents form separated small cooperator clusters, sothatncc also
starts to significantly detach from zero. At aroundb ≃ 1.5 both 〈Gc/N〉 andncc

(as well as the average level of cooperation〈c〉) show already values that are very
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Figure 3.4: Relative size of the main cooperator clusterGc/N for reversible processes
(dashed line) and irreversible ones (solid line) in theb-decreasing semicycle (∆b < 0) on
SF networks. Averaged over the100 different networks studied that show irreversible behav-
ior. The system size isN = 1.2× 105.

close to those exhibited by theb-increasing branch. However, once reached the value
b ≃ 1.23, wherencc has its maximum value (and, as explained in previous para-
graph, the fragmentation of the large cluster of pure cooperators reached an end in
theb-increasing branch), though further decrease inb leads to an increase of〈Gc/N〉,
and a concomitant decrease ofncc due to the connection of small cooperator clusters
to the largest one, these processes take place at a slower pace than the correspond-
ing fragmentation occurring for theb-increasing branch. The consequence is that
the cooperation level values in this range ofb values for theb-decreasing branch are
significantly lower than those for theb-increasing semicycle. Note that though the
values of〈Gc/N〉, ncc, and〈c〉 in the range of intermediate1.23 ≤ b ≤ 1.5 values
are very similar in both branches, the system keeps memory of the path followed,
demonstrating the importance of the particular topological details of the organization
of cooperator clusters.

A significant difference, regarding the microscopic organization of cooperation,
between ER and SF networks, is the observation first reported in [109] that for SF
networks pure cooperators group together in a single cluster, while in ER networks
they are disaggregated into several cooperator clusters for generic values ofb. In our
simulations here we are using network sizes that are larger than those usedin [109]
by a factor of30, and for SF networks we have observed nodes that, though being iso-
lated from the main cooperator cluster, remain cooperators during observational time
scales. Strictly speaking they are not pure cooperators, for the probability of invasion
by the defective strategy is not strictly zero (in all the cases analyzed), though it turns
out to be exceedingly small, due to the large connectivity (degree) of thesenodes.
These quasi-pure cooperators appear in both, reversible and irreversible network re-
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alizations. For a network size ofN = 1.2× 105 its number is never larger than8 for
reversible realizations andb-increasing branches of irreversible ones, and not larger
than14 for b-decreasing branches of the latter. Their contribution both direct and in-
direct (through the cloud of fluctuating strategists each one keeps nearby) to the level
c of cooperation can be considered as negligible. Still one cannot discarda priori an
eventual role they might play in the reshaping of the main cooperator cluster during
the hysteresis cycle of particular irreversible realizations.

In figure 3.4 we plot the relative size of the cooperator cluster〈Gc/N〉 averaged
over100 irreversible realizations for both forward and backward branches ofthe cy-
cle. Contrary to what happens for ER networks at high values of the temptation to
defect, when starting to decrease it frombmin, the size of the cooperator cluster in SF
networks initially follows very closely the values of the forward branch untilb ≃ 2.5.
However, significant differences in the average cooperation value〈c〉 (see figure 3.2)
are already noticeable fromb ≃ 3, indicating that the contribution from the cloud
of fluctuating strategies is lower for the backward branch. When furtherdecreasing
b down fromb ≃ 2.5, the averaged size of the cooperator cluster takes on values
progressively lower than in theb-increasing branch. This agrees nicely with the ob-
servation just made in the previous sentence on the cloud of fluctuating strategies, for
the growth of the cooperator cluster originates from the cooperative fluctuations in its
frontier, and thus the strength of these fluctuations determines the pace of the cluster
size growth. The difference between forward and backward branches persists down
to the tipping point, which somewhat surprisingly occurs for values ofb outside the
PD game range.

—————————————————————————





Chapter 4

Evolutionary dynamics on
interdependent populations.

Although several mechanisms can promote cooperative behavior, there isno general
consensus about why cooperation survives when the most profitable action for an
individual is to defect, specially when the population is well mixed. Here we show
that when a replicator like evolutionary game dynamics takes place on interdependent
networks, cooperative behavior is fixed on the system. Remarkably, we analytically
and numerically show that this is even the case for well mixed populations. Our
results open the path to new mechanisms able to sustain cooperation and can provide
hints for controlling its raise and fall in a variety of biological and social systems.

4.1 Introduction

The onset of global cooperation in large populations of unrelated agentswhen defec-
tive actions provide the largest short-term benefits at the individual level constitutes
one of the most amazing puzzles for evolutionary dynamics [14, 171, 172,124]. Dur-
ing the last decade, the structure of the interactions among individuals seemsto have
provided a way out for cooperation to survive in those scenarios, such as the Pris-
oner’s Dilemma (PD) game, in which defective behaviors are evolutionary favored
under the well-mixed assumption [16, 88]. Although recent results have shown that
network reciprocity is not always a viable mechanism to explain cooperationamong
humans (see,e.g., chapter 6), larger cooperative levels are achieved if an evolution-
ary game dynamics takes place on top of structured populations and networks, in
which nodes account for players and links represent the existence ofgame interac-
tions. Moreover, further including real structural patterns of large systems [28] (scale-
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free distribution for the number of contacts a player has [108, 109], the small-world
properties [81], nonzero density of triads [173], etc) provides also high cooperative
outputs.

On the other hand, in most cases, a real population− be it a biological or a social
system− is not isolated and interactions take place at and between different levels (or
layers) following different rules [174, 175]. Think of for instance in an economical
system, where different levels account for different competitive markets and their
interdependencies (developers, manufactures, providers). The rules governing the
interactions at one layer are not necessarily the same that those driving the dynamics
at another layer− admittedly, within each layer competition should exist while this
is not necessarily the case for inter-layer interactions. Thus, a naturalquestion arises
as to whether the observed degree of interdependency in real systems isa relevant
factor for the emergence and survival of cooperative behavior.

The previous interdependency, which is also referred to as multiplexity, can be
easily incorporated into the framework of any dynamical process by coupling two or
more networked populations in which links between individuals of the same popula-
tion involve a different dynamical relationship to those stablished between members
of different populations [176, 177, 178]. In this chapter, we focus on the case in which
an evolutionary PD game drives the interactions between agents of the same popula-
tion. On its turn, the existence of links between agents of different populations allow
the two networks to interact. We will assume that the latter interactions are ruled
by the Snowdrift (SD) game. In this way, defection is punished when facing other
defectors outside the original population, thus balancing the evolutionary advantage
that defectors find by exploiting cooperators in their respective populations.

We henceforth analyze what new emergent behavior results from the multilevel
nature of a system made up by two populations that interact through a numberof links
connecting nodes located at each subsystem. Exact analytical calculations can be
carried out for the case in which the population of each layer is well mixed, through
the nonlinear analysis of the two-coupled-variable replicator equation forthe strategic
densities in both layers. Our results show the emergence of a newpolarizedstate in
which all the individuals in one of the populations cooperate while all in the other
population defect. In addition we findquasi-polarizedstates, so that all the agents
in one population are defectors, while most of the other one cooperate. Moreover,
we also numerically show that the previous results hold for the case of networked
populations. As we will discuss later on, our findings provide new mechanisms for
the rise and survival of cooperation and for its control.
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Figure 4.1: Phase portrait of replicator equation (4.1) forthe symmetric case (β = 1) and
weak PD (r = 0) intra-population game, for different values of the temptation b, with p = 0.3,
andǫ = −0.4. The direction of velocity field is indicated by the arrows, and its modulus by
the colors. We also plot the interior nullclines. For low values ofb (a), the polarized states A
and B are attractors. They lose stability atb = bup (b), in favor of the quasi-polarized states
A’ and B’. These in turn destabilize atb = bc (c) when the nullclines coincide in a line of
marginally stable equilibria. From there on, the interior equilibrium E becomes the global
attractor(d).

4.2 The model: Evolutionary dynamics on two interacting
populations.

Let us first describe the evolutionary dynamics of two interacting populations of size
N1 andN2. Two agents belonging to the same populationα (= 1, 2) play a PD
game so that a cooperator facing a cooperator (defector) in populationα obtains a
payoffR = 1 (S = 0). On the other hand, a defector facing a cooperator (defector)
obtains a benefit ofT = b > 1 (P = r ≥ 0). The games played between agents
of different populations follow the same parameterization except for the situation in
which two defectors meet. In this case, the associated punishment is negative,P =

ǫ < 0 − thus, inter-populations games follow the SD formulation. Importantly, the
strategists’ competition for replication only occurs among own-population players.
That is to say that there is no “interbreeding” (as it happens for different species, in
biological contexts) or “strategic diffusion” (as for functionally heterogeneous layers
in social or economical contexts) among the individuals of different populations. In
terms of imperfect (or/and irrelevant) knowledge, the strategists from a population
are unaware of the replicating success of strategies in the other population(or/and
this information is irrelevant for its replication).

4.3 Well-mixed populations: Analytical formulation.

To start with, consider the case in which agents of the same population (layer) are
well-mixed. Let us also assume that bothN1 andN2 are large enough,i.e.,N1, N2 ≫
1. Under these simple assumptions, an exact analytical description via the analysis
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of the phase portrait of the two-dimensional replicator equation for two-by-two ma-
trix games is possible. In our well-mixed population approximation an individualin
populationα hasNα−1 neighbors inside this population. Moreover, for interactions
between the two layers, we suppose that any pair of nodes (each one ofa different
population) is present with probabilityp. Thus, the number of inter-population links
is equal top ·N1 ·N2.

Let us callxα the fraction of cooperators in the populationα. The replicator
equations for the evolutionary game dynamics are

ẋ1 = x1(1− x1)[(N1 − 1)(x1(1− b+ r)− r) +

N2p(x2(1− b+ ǫ)− ǫ)]

ẋ2 = x2(1− x2)[(N2 − 1)(x2(1− b+ r)− r) +

N1p(x1(1− b+ ǫ)− ǫ)] . (4.1)

The results of the theoretical analysis (see section 4.4 for details) of thesecoupled de-
terministic equations are illustrated in Fig. 4.1 for the symmetric (thus non-generic)
caseN1 = N2, and the simple weak (r = 0) PD game for those intra-population
encounters. Below we will comment on the main qualitative changes for the generic
case,i.e., whenever both the size proportionβ = N1/N2 6= 1 and general PD (r > 0)
game for intra-population interactions apply.

The analysis of Fig. 4.1 shows a rather natural non-linear resolution of the con-
flict introduced by fitness-punishment (ǫ) to inter-populations defective encounters.
Briefly said, even-symmetric (x1 = x2) states D (both populations are fully defec-
tive) and C (fully cooperative populations) are both, for anyb > 1+, unstable against
perturbations in all directions, and stability resides instead on odd-symmetric polar-
ized states [A (all-D in population1 and all-C in population2) and its symmetric
transformed B (all-C in population1 and all-D in population2)] for strictly positive
temptationb less than a boundbup(ǫ; p) = 1− pǫ (see Fig. 4.1.a). At this critical (bi-
furcation) value ofb the interior nullclinesẋ1 = 0 andẋ2 = 0 (see Fig. 4.1.b) touch
states A and B respectively. Increasing the value of the temptationb abovebup the
polarized states lose their stability in favor of the quasi-polarized states [A’ (all-D in
1 and mostly C in2) and its symmetric B’ ], which detach from A and B and become
attractors. Atb = bc = 1− pǫ

1−p the interior nullclines coincide (see Fig. 4.1.c) becom-
ing a line (A’B’) of marginally stable equilibria. Finally, forb > bc (see Fig. 4.1.d)
the global attractor is the interior even-symmetric state E, the intersection of the in-
terior nullclines, which keeps approaching, asb increases, the neighborhood of the
high b limit attractor, say the state D of fully defective populations.
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This scenario remains qualitatively unchanged for strictly positive values of the
parameterr, provided0 < r < −pǫ, the only change being that the bifurcation value
bc, where the quasi-polarized states loose stability, becomes:

bc = 1 +
r − pǫ

1− p
. (4.2)

In other words, the weak PD limit (r = 0) for the intra-population game is structurally
stable respect to (small enough) positive parametric variations of the game parameter
r. Forr > −pǫ, the scenario changes drastically: D is now a stable equilibrium, but
still, for b < bup (which doesn’t depend onr), the polarized states are also stable
equilibria. Only for largerb > bup values of the temptation, D becomes the unique
global attractor. Summarizing the results for the symmetric case, the attractor states
for increasing values ofb from b = 1+ follow the sequence:

A, B
bup→ A’, B’

bc→ E . (4.3)

when0 ≤ r < −pǫ while, whenr > −pǫ, the sequence is:

D, A, B
bup→ D . (4.4)

For the general caseN1 6= N2, the lack of the population interchange symmetry
modifies some of the features seen in the symmetric case. Without loss of generality,

(a) D, A, B
bup
B→ D, A

bup
A→ D

(b) A, B
bup
B→ A

bup
A→ A’

bcA→ E

(c) A, B
bup
B→ A

bup
A→ A’

(d) A, B
bup
B→ A, B’

bcB→ A
bup
A→ A’

(e) A, B
bup
B→ A, B’

bcB→ A
bup
A→ A’

bcA→ E

(f) A, B
bup
B→ A, B’

bup
A→ A’, B’

bcB→ A’

(g) A, B
bup
B→ A, B’

bup
A→ A’, B’

bcB→ A’
bcA→ E

Table 4.1: Sequence of attractors in phase space for equation (4.1), asb increases fromb =

1+. The arrow indicates a bifurcation at theb value that appears over the arrow. The scenarios
(a)-(g) correspond to different ranges of values of the parametersr, β, p andǫ, that are made
explicit in section 4.4. Note that except for the scenario (a), that corresponds tor > −βpǫ,
polarized and quasi-polarized states dominate the asymptotic behavior.
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we assume thatβ = N1/N2 > 1. On one hand, the lower bound ofr for the
stability of the fully defective state D becomes nowr = −βpǫ. On the other hand, the
bifurcation values at which the polarized states lose their stability are now different,

bupB = 1− pǫ

β
< bupA = 1− βpǫ , (4.5)

as well as the bifurcation values (provided they exist) at which quasi-polarized states
destabilize,bcB < bcA, where

bcB = 1 +
r2 − (pǫ)2

(r + βpǫ)− p(βr + pǫ)
(4.6)

bcA = 1 +
β(r2 − (pǫ)2)

(βr + pǫ)− p(r + βpǫ)
. (4.7)

Let us note that the polarized state A, where the defective population is of larger
size, turns out to have a wider range of stability, as well as a larger basin of attraction,
than the state B. The results of the complete analysis of the replicator equation (4.1)
are summarized in Table 4.1, where we show the sequences of attractors coexisting
in phase space. The seven scenarios (a)-(g) correspond to different ranges of values
of the parametersr, β, p andǫ (see section 4.4 for further details).

From the previous analysis of well mixed populations, one sees that polarized
and quasi-polarized states appear as generic attractors of the evolutionary dynamics
for wide ranges of model parameters, which in turn has the effect of enhancing in a
remarkable way the asymptotic levels of cooperation in the two-populations system.

4.4 Phase portrait analysis of the two-variable replicator
equation

The replicator equation that describes the continuum time evolution of the cooperator
fractionsx1(t), x2(t) in subpopulations 1 and 2 can be written as:

ẋ1 = F1(x1, x2) , (4.8)

ẋ2 = F2(x1, x2) , (4.9)

where the velocitiesF1,2, after time rescaling, are explicitly given as:

F1(x1, x2) = x1(1−x1)[β(x1(1− b+ r)− r)+ p(x2(1− b+ ǫ)− ǫ)] ,(4.10)
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F2(x1, x2) = x2(1−x2)[(x2(1− b+ r)− r)+βp(x1(1− b+ ǫ)− ǫ)] .(4.11)

The unit square0 ≤ x1, x2 ≤ 1 is the invariant set of interest here. To follow
the phase portrait variation of a two-degrees of freedom nonlinear system like equa-
tion (4.9) is pretty straightforward for one-parameter variations. We are dealing with
a model whereb, r, ǫ, β, andp are free model parameters, each one inside their
natural range,i.e.,b > 1+, 0 ≤ r ≤ 1, ǫ < 0−, β ≥ 1, and0 ≤ p ≤ 1. In our system-
atics below, we will consider continuum variation ofb, from b = 1+ up to infinity, at
fixed values of the other parameters and so we will obtain the “critical” (bifurcation)
pointsb∗(ǫ, r;β, p), where the phase portrait of the evolution experiencesqualitative
changes: Somewhat, the direction of increasing temptationb is often most considered
in recent literature on PD games. But we will pay due attention also to variationsof
the parameterr, and find two important critical values that do not depend on the
value of the temptationb, so that different scenarios of phase transitions (inside the
well-mixed population approximation to the thermodynamical limitN1, N2 → ∞)
asb varies do appear. Finally, we choose alsoβ as an interesting (e.g., for control
applications) parameter to vary, and find also two critical values that are temptation
independent, that in turns, increase the number of those scenarios.

The best visualization of the velocity field is a phase portrait where fixed (equilib-
rium) points and nullclines are also plotted, as in Fig. 1 in the main text. A nullcline
is the locus of points defined byFi(x1, x2) = 0 for somei. The nullclines that
correspond toF1(x1, x2) = 0 are the straight lines

x1 = 0 , (4.12)

x1 = 1 , (4.13)

x2 =
−x1β(b− 1− r)− (βr + pǫ)

p(b− 1− ǫ)
, (4.14)

while those that correspond toF2(x1, x2) = 0 are

x2 = 0 , (4.15)

x2 = 1 , (4.16)

x2 =
−x1βp(b− 1− ǫ)− (r + βpǫ)

(b− 1− r)
. (4.17)

The possible equilibria are the crossing points of any line from the first group
with any other line from the second one, so there are nine candidates. Moreover, only
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solutions in the unit square,0 ≤ x1, x2 ≤ 1, interest us, and this exclude two of
the crossing points (see below), leaving the following seven possibilities, namely the
four corners of the unit square:

• A = (0, 1) ,

• B = (1, 0) ,

• C = (1, 1) ,

• D = (0, 0) ,

and those whose location depends on parameter values:

• We callA′ the crossing point of nullclines (4.12) and (4.17), whose coordinates
arex1(A′) = 0 and

x2(A
′) =

−(r + βpǫ)

(b− 1− r)
. (4.18)

• We callB′ the crossing point of nullclines (4.14) and (4.15), so thatx2(B
′) = 0

and

x1(B
′) =

−(βr + pǫ)

β(b− 1− r)
. (4.19)

• Finally, we callE the crossing of (4.14) and (4.17). Its coordinates are obtained
as:

x1(E) =
(b− 1− r)(βr + pǫ)− p(b− 1− ǫ)(βr + pǫ)

β[(p(b− 1− ǫ)2 − (b− 1− r)2]
, (4.20)

x2(E) =
(b− 1− r)(r + βpǫ)− p(b− 1− ǫ)(r + βpǫ)

(p(b− 1− ǫ)2 − (b− 1− r)2
. (4.21)

The (missing in the list) crossings of (4.13) - (4.17), and of (4.14) - (4.16), are easily
seen to be always outside the unit square for the range of parameters considered. Also
inside this range, the non-generic event ofnullclines’ coincidenceonly could happen
providedβ = 1 andr > −pǫ, at a valuebc(ǫ, r;β = 1, p) = 1 + r−pǫ

1−p . Only then,
the exotic (forced by symmetry) situation in which there is a segment of marginally
stable equilibria occurs.
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To determine the bifurcation points, one uses the spectral analysis of tangent
space perturbations around equilibria. The linearized evolution of small perturbations
around the fixed pointx∗ is given by the matrix:







∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2







x=x∗

(4.22)

In what follows, the presentation of the results from the phase portrait analysis of
the nonlinear coupled ODE (4.11) tries to rationalize them in terms of evolutionary
game theoretic concepts, within a thermodynamical limit (statistical physics) per-
spective.

4.4.1 Symmetric case:N1 = N2(= N).

For simplicity, as well as for illustrate neatly the systematics that we follow, we an-
alyze first the case of equal population sizes. For this case, where populations are
identical (though distinguishable), the population interchange symmetry imposes that
phase portrait is invariant under permutation of coordinates (x1 ↔ x2), a non-generic
property that limits severely the possible scenarios. The stability analysis of the equi-
libria shows that there are two generic scenarios for the sequence of bifurcations that
appear whenb increases from1+ up to infinity:

(s1) If r > rc = −pǫ there is only one bifurcation atbup(r, ǫ, β = 1, p) = 1 − pǫ.
Forb < bup, the phase portrait has three stable equilibria with their own basins
of attraction: D, A, and B. The equilibria C, A’ and B’ are unstable, and E is
outside the unit square. Atb = bup, A and B destabilize (through collision with
A’ and B’ that exit the unit square) becoming saddle equilibria, and D becomes
the unique global attractor forb > bup. This translates into the following
sequence of attractors when temptation increases from1+:

D, A, B
bup→ D . (4.23)

(s2) If r < rc(p, ǫ), however, D is always unstable, and there are two bifurcations
at bup andbc (and note thatbup < bc). For b < bup the equilibria C, D are
sources, E is a saddle, and A and B are attractors, becoming saddle equilibria
at bup where A’ and B’ enter into the unit square. Forbup < b < bc A’ and B’
are the only attractors. Atbc the segment A’B’ of marginally stable equilibria is
the limit set for all trajectories (nullcline’s coincidence). Forb > bc E becomes
the unique (and even-symmetric) global attractor. This last bifurcation restores
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the symmetry of the asymptotic evolution that was spontaneously broken at
lower b values. The sequence of stationary limiting (point) densities is:

A, B
bup→ A’, B’

bc→ E . (4.24)

Note that the conditionr = rc(p, ǫ) that separates the regimes where the equi-
librium D is unstable (r < −pǫ) or attractor (r > −pǫ), corresponds to the exact
compensation of the surplusrN of defective intra-population interactions of a de-
fector and the punishmentpǫN it receives from inter-population interactions. Below
this critical value, full defection is unstable to cooperative fluctuations. But, as we
have just seen, even in case the punishment from coupling is weaker thansurplus,
polarized states have their own basins of attraction, away from whole defection, at
low values ofb > 1+. This can be rationalized from the role that punishment plays in
our -no interbreeding, punishing defective coupling- setting. Populations’ strategic
polarization emerges as stable generic asymptotic state of evolution, even when de-
fectors can afford external punishment (D being then fully stable): Theduplex (two
coupled populations) has always the option to become polarized or quasi-polarized
provided the initial conditions belong to its basin of attraction.

4.4.2 General case:N1 6= N2.

The parameterp determines the fraction of inter-to-intra-population interactions any
agent plays per unit time in the symmetric (N1 = N2) case. This fraction changes
to βp andp/β (β > 1) for small and large populations respectively, when symmetry
of population interchange is absent. This combination of parameters regulates how
important to the replicating power (fitness) of an individual the inter-population cou-
pling is, and we then see that for the largest population the effective coupling p/β is
smaller. This makes the polarized state A (where population 1 is defective) more ro-
bust than the polarized state B, and provided both are attractors, the basinof attraction
of A is correspondingly larger. This is a major qualitative change in the phase por-
trait of the velocity field of evolution in the absence of symmetry. The concomitant
change is the shift, and in more extreme cases the disappearance, of the bifurcations
associated to the quasi-polarized equilibria A’ and B’,i.e., bupA,B andbcA,B:

bupB (r, ǫ;β, p) = 1− (p/β)ǫ , (4.25)

bupA (r, ǫ;β, p) = 1− βpǫ , (4.26)

bcB(r, ǫ;β, p) = 1 +
r2 − (pǫ)2

(r + βpǫ)− p(βr + pǫ)
, (4.27)



Phase portrait analysis of the two-variable replicator equation 85

bcA(r, ǫ;β, p) = 1 +
β(r2 − (pǫ)2)

(βr + pǫ)− p(r + βpǫ)
. (4.28)

Note that the minimum of this set of values isbupB , its maximum isbcA, and that the
relative order of the other two values is parameter dependent. Several new generic
scenarios of phase portrait variations naturally follows from these major effects, when
the “population interchange” symmetry is absent. Still, let us remark that the evolu-
tionary attractiveness of the odd-symmetric polarized (A and B) and quasi-polarized
(A’ and B’) asymptotic densities still dominates ample regions of parameter space.

A first scenario, similar to the first one seen above for the symmetric case, is
found whenr > rAc (ǫ; β, p) = −βpǫ. In this scenario, the fully defective state D is
stable for allb > 1 values. For very low values ofb, A and B are also stable. Due to
asymmetry, the instabilities of A and B occur at different bifurcation values,bupB <

bupA , so that state B destabilizes first whenb increases fromb = 1+, as expected,i.e.,

(i) If rAc < r there are only two bifurcations atbupB < bupA . For all b > 1+,
C is unstable and E is outside the unit square. Forb < bupB , the states D, A
and B are attractors. AtbupB , B collides with the unstable B’ that exits the
unit square, then becoming a saddle with unstable direction correspondingto
defective fluctuations in cooperative population 1. The same happensmutatis
mutandi(1 ↔ 2 interchange) to A atbupA , leaving finally D (forb > bupA ) as the
global attractor.

D, A, B
bup
B→ D, A

bup
A→ D (4.29)

At r = rAc , for a defective individual in population 2, and state D, the “inter-
nal surplus - coupling punishment” balance exactly compensates. This means that
changing to cooperator makes no difference to its replicating power, and thus a zero
eigenvalue appears in the spectrum of the Jacobian (linear stability) matrix ofthe
fully defective state D. Inside the ranger < rAc , D is always unstable face to coop-
erative fluctuations in the smaller population. Further down in surplus (r) values, at
r = rBc = −(p/β)ǫ, D becomes also unstable face to cooperative fluctuations in the
large population. In other words, when decreasingr from large (compared torAc )
positive values of intra-population surplus, to0+ (weak PDlimit), there are two crit-
ical values, where qualitative changes of the phase portrait occur, that coincide with
the change of stability of D from stable (r > rAc ) to saddle (rBc < r < rAc ), to source
(r < rBc ).

Providedr < rAc , if one consider the highb (→ ∞) limit, one easily finds that it
can be either “mixed type” (state E, interior to the unit square) or “quasi-polarized”
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(state A’, on the verticalx1 = 0) regarding its convergence to virtually full defec-
tion. The transition between these two qualitatively different “high temptation limit
behaviors”, for given values ofǫ, p, andr, is controlled by the value of the population
ratioβ and it occurs at the critical value:

βA
c (ǫ, r; p) =

p(r − ǫ)

r − p2ǫ
. (4.30)

At this value of the population ratio, the bifurcation valuebcA (where A’ collides with
state E, this one entering into the unit square) formally diverges, so that thecollision
occurs (or doesn’t), depending on the value of the population ratioβ, for fixed value
of p, r, andǫ.

On the other side, the bifurcation value atbcB only occurs providedr < rBc , but
its relative order with respect tobupA depends also on the value ofβ with a critical
value at:

βB
c (ǫ, r; p) =

−pǫ(p2ǫ− r)−
√

p2ǫ2(p2ǫ− r)2 − 4p2ǫ(r − ǫ)(p2ǫ2 − r2)

2p2ǫ(r − ǫ)
. (4.31)

The different possible combinations of all the previous possibilities give thefol-
lowing scenarios:

(ii ) If rBc < r < rAc , then the stable linear manifold of the saddle point D (x2 = 0)
does not allow B’ to be a stable equilibrium, while its unstable direction (x1 =

0) pushes evolution to polarized A or quasi-polarized A’ states; C is a always
a source for allb > 1. Two different scenarios are realized depending on the
inter-population ratio value,β:

(ii1) If β > βA
c (see Eq. 4.30), bifurcations only occur atbupB < bupA . At bupB ,

the collision of B and the unstable exitingB’ occurs, while atbupA , it takes
place the collision of A with the enteringstate A’. The corresponding
sequence of attracting equilibria is given by:

A, B
bup
B→ A

bup
A→ A’ (4.32)

(ii2) If βA
c > β, besides the bifurcations described in (ii1), there is an addi-

tional bifurcation atbcA, where A’ collides with state E that enters into the
unit square. The corresponding sequence of attracting equilibria is given
by:

A, B
bup
B→ A

bup
A→ A’

bcA→ E (4.33)
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The presence or absence of the bifurcationbcA determines whether the approach
to the high temptation limit is via “mixed interior type” E state, or “edge quasi-
polarized type” A’ state, so that for values ofβ below critical (βA

c ), virtually
full defection (1−, 1−) is approached with non-zero cooperation levels in both
populations asb diverges.

(iii ) If r < rBc , both quasi-polarized states A’ and B’ enter into the unit square atbupB
andbupA , respectively. B’ always destabilizes atbcB (> bupB always) to become a
saddle through collision with the exiting unstable interior equilibrium E. This
may happens before [as in (iii1) and (iii2) below] or after [as in (iii3) and
(iii4)] the entrance of A’ atbupA depending onβ value (relative toβB

c ). And
finally note that the bifurcation atbcA only occurs forβ < βA

c , as analyzed
above, to arrive to the following possible four scenarios:

(iii1) If max(βA
c , β

B
c ) < β, thenbcB < bupA , andbcA is absent:

A, B
bup
B→ A, B’

bcB→ A
bup
A→ A’ (4.34)

(iii2) If βB
c < β < βA

c , thenbcB < bupA , andbcA occurs:

A, B
bup
B→ A, B’

bcB→ A
bup
A→ A’

bcA→ E (4.35)

(iii3) If βA
c < β < βB

c , thenbupA < bcB, andbcA is absent:

A, B
bup
B→ A, B’

bup
A→ A’, B’

bcB→ A’ (4.36)

(iii4) If β < min(βA
c , β

B
c ), thenbupA < bcB, andbcA occurs:

A, B
bup
B→ A, B’

bup
A→ A’, B’

bcB→ A’
bcA→ E (4.37)

This analysis provides the three-dimensional phase diagram (r, β, b) for fixed,
though arbitrary,ǫ and p. It exhibits a wealthy of different macroscopic phases
separated by critical lines and surfaces. It shows that polarized and quasi-polarized
phases dominate wide regions in parameter space. This illustrates the effectsof inter-
population trade of fitness (even under the simplest possible structure of inter and
intra population contacts) on the evolution of PD replicators.

A, B
bup→ A’, B’

bc→ E . (4.38)

when0 ≤ r < −pǫ while, whenr > −pǫ, the sequence is:

D, A, B
bup→ D . (4.39)
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4.5 Random networks.

On the other hand, for structured populations, where individuals interact with their
neighbors as dictated by a given network of contacts, it is known that under some
assumptions cooperation is enhanced, a phenomenon called network reciprocity.

While for well mixed populations, the stability of polarized states extends down
to b = 1+, one should expect that at smallb > 1 values, the enhancement of coopera-
tive fluctuations due to network reciprocity in the defective population 1 destabilizes
the polarized states below some critical valueblow. Moreover, one should also expect
blow to decrease with the parameterp, because higher values ofp increase the payoff
that a (defector) individual in population 1 obtains from encounters with (cooperator)
individuals of population 2, thus decreasing the resilience of cooperative fluctuations
(“network reciprocity”) in population 1. In other words, for low values of b, the in-
teraction between populations acts against network reciprocity. These expectations
are fully confirmed by the results from simulations of the evolutionary dynamicsin
populations with a random network structure of intra-population contacts, using the
discrete version of replicator dynamics.

In Fig. 4.2 we show the average cooperation〈c〉 level (over a sample of200 differ-
ent realizations) on the two-population system as a function ofb for different values
of p, and parameters as indicated. The two populations have a random (Erdös-Rényi
[28]) network of contacts with average degree〈k〉 = 6. In the initial conditions, the
individuals of both populations were chosen cooperators with probability1/2. The
plateau at〈c〉 = 1/2 points out the asymptotic polarized state. Moreover, the states
with 〈c〉 < 1/2 correspond to quasi-polarized regimes where all the individuals in
one population are defectors, while those with〈c〉 > 1/2, at values ofb < blow,
results from states where all the individuals in one population are cooperators. This
represent a new type of quasi-polarized states that were not found to be attractors of
the dynamics for well mixed populations. The comparison with the average cooper-
ation level for non-interacting populations (p = 0 in Fig. 4.2) confirms that for low
values ofb the inter-population interaction acts against network reciprocity.

From a complementary perspective, the networked populations show new attrac-
tors, impossible to be such for coupled well-mixed populations, because theyare the
effect of network reciprocity. On the other hand, for larger values ofb, the popu-
lations’ coupling favors the achievement of substantial levels of cooperation, well
beyond the typical values ofb for which network reciprocity ceases to be effective,
being an effect already present in the well-mixed case. This clarify farther the con-
fluent effects of these two different mechanisms of cooperation enhancement.

Finally, the robustness of polarized and quasi-polarized states suggeststo use the
coupling to a defective population as an engineered (control) procedure to induce
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Figure 4.2: Average level of cooperation in the two-population system as a function ofb, for
different values of the fractionp of inter-population contacts. Other parameters arer = 0,
ǫ = −0.4, N1 = N2 = 103. The two populations have a random (Erdös-Rényi) network of
contacts with average degree〈k〉 = 6. See the text for further details.
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Figure 4.3: Average level of cooperation in the population 1as a function ofb, for different
values of the fractionp of inter-population contacts. The population 1 (of sizeN1 = 103) has
been coupled to a smaller population 2 (N2 = 102). While initial strategies in population 1
are equiprobables (random initial conditions), the population 2 starts from the absorbent state
of fully defection. Other parameters arer = 0, ǫ = −0.4. Both populations have a random
(Erdös-Rényi) network of contacts with average degree〈k〉 = 6.

high levels of cooperation in a target population. To check for this possibility, we
have coupled a large population 1 with random (equiprobable in strategies)initial
conditions to a smaller defective population 2. In Fig. 4.3 we show the asymptotic
average level of cooperation in a target population of sizeN1 = 103 for different
values of the average number,N2 · p, of inter-population contacts per individual of
the target population. The results suggest that such arrangements can provide new
mechanisms to control and/or sustain cooperation in different kind of systems.
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Summarizing, two PD populations SD-coupled in conditions of strict inbreed-
ing (no inter-population strategic diffusion) evolve easily to polarized and quasi-
polarized strategic probability densities in the well-mixed thermodynamical limit of
the evolutionary replicator dynamics. This happens also when population structure
is a complex network of contacts, where other mechanisms (known as network reci-
procity) of enhanced cooperation also operate. The confluence of both mechanisms
has been analyzed in depth showing that polarization opposes network reciprocity at
small values of the temptation parameter, while both act (synergy) together enhancing
cooperation in one of the layers for higher temptation values. This phenomenon, that
could be rationalized as the effect of incorporating a punishment to defective inter-
population encounters, illustrate the remarkable effects that structural multiplexity
introduces in evolutionary dynamics.



Chapter 5

Human behavior in Prisoner’s
Dilemma experiments suppresses
network reciprocity.

During the last few years, much research has been devoted to strategic interactions
on complex networks. In this context, the Prisoner’s Dilemma has become a paradig-
matic model, and it has been established that imitative evolutionary dynamics lead to
very different outcomes depending on the details of the network. We herereport that
when one takes into account the real behavior of people observed in theexperiments,
both at the mean-field level and on utterly different networks the observed level of
cooperation is the same. We thus show that when human subjects interact in anhet-
erogeneous mix including cooperators, defectors and moody conditionalcooperators,
the structure of the population does not promote or inhibit cooperation with respect
to a well mixed population.

5.1 Introduction

In recent years, the physics of complex systems has widened its scope byconsidering
interacting many-particle models where the interaction goes beyond the usualconcept
of force. One such line of research that has proven particularly interesting is evolu-
tionary game theory on graphs [16, 88], in which interaction between agents is given
by a game while their own state is described by a strategy subject to an evolutionary
process [12, 91]. A game that has attracted a lot of attention in this respectis the Pris-
oner’s Dilemma (PD) [92, 93], a model of a situation in which cooperative actions
lead to the best outcome in social terms, but where free riders or non-cooperative in-
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dividuals can benefit the most individually. In mathematical terms, this is described
by a payoff matrix (entries correspond to the row player’s payoffs andC and D are
respectively the cooperative and non-cooperative actions)

C D
C 1 S
D T 0

(5.1)

with T > 1 (temptation to free-ride) andS < 0 (detriment in cooperating when the
other does not).

In a pioneering work, Nowak and May [19] showed that the behavior observed
in a repeated Prisoner’s Dilemma was dramatically different on a lattice than in a
mean-field approach: Indeed, on a lattice the cooperative strategy was able to prevail
by forming clusters of alike agents who outcompeted defection. Subsequently, the
problem was considered in literally hundreds of papers [16, 94, 18, 109, 95], and
very many differences between structured and well-mixed (mean-field) populations
were identified, although by no means they were always in favor of cooperation [96,
97]. In fact, it has been recently realized that this problem is very sensitive to the
details of the system [88, 115], in particular to the type of evolutionary dynamics
[79] considered. For this reason experimental input is needed in orderto reach a
sound conclusion about what has been referred to as ‘network reciprocity’.

Here, we show that using the outcome from the experimental evidence to inform
theoretical models, the behavior of agents playing a PD is the same at the mean field
level and in very different networks. To this end, instead of considering somead
hoc imitative dynamics [19, 98, 21], our players will play according to the strategy
recently uncovered by Grujić et al. [23] in the largest experiment reported to date
about the repeated spatial PD, carried out on a lattice as in Nowak and May’s paper
[19] with parametersT = 1.43 andS = 0.

The results of the experiment were novel in several respects. First, thepopulation
of players exhibited a rather low level of cooperation (fraction of cooperative actions
in every round of the game in the steady state), hereafter denoted by〈c〉. Most im-
portant, however, was the unraveling of the structure of the strategies. The analysis
of the actions taken by the players showed a heterogeneous population consisting
of “mostly defectors” (defected with probability larger than 0.8), a few “mostly co-
operators” (cooperated with probability larger than 0.8), and a majority of so-called
moody conditional cooperators. This last group consisted of players that switched
from cooperation to defection with probabilityPDC

i = 1 − d − γci = 1 − PCC
i

and from defection to cooperation with probabilityPCD
i = a + βci = 1 − PDD

i , ci
being the fraction of cooperative actions in playeri’s neighborhood in the previous
iteration. Conditional cooperation, i.e., the dependency of the chosen strategy on the
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amount of cooperation received, had been reported earlier in related experiments [99]
and observed also for the spatial repeated PD at a smaller scale [100]. The new ingre-
dient revealed in Grujić et al.’s experiment [23] was the dependence of the behavior
on the own player’s previous action, hence the reason to call them “moody”.

5.2 Results

To study how the newly unveiled rules influence the emergence of cooperation in an
structured population of individuals, we first report results from numerical simula-
tions of a system made up ofN = 104 individuals who play a repeated PD game
according to the experimental observations. To this end, we explored the average
level of cooperation in four different network configurations: a well-mixed popula-
tion in which the probability that a player interacts with any other one is the same for
all players, a square lattice, an Erdös-Rényi (ER) graph and a Barabási-Albert (BA)
scale-free (SF) network. It is worth mentioning that the dependence on the payoff
matrix only enters through the parameters describing the players’ behavior(d, γ, a,
β and the fractions of the three types of players). Once these parameters are fixed
the payoffs do not enter anywhere in the evolution, as this is only determinedby the
variablesci, the local fractions of cooperative actions within each player’s neighbor-
hood. Thus there is no possibility to explore the dependence on the payoffs because
we lack a connection between them and the behavioral parameters.

In Figure 5.1 we present our most striking result. The figure represents, in a
color-coded scale, the average level of cooperation as a function of the fraction of
mostly cooperators,ρC , and mostly defectors,ρD, for a BA network of contacts. The
same plots but for the rest of topologies explored (lattice and ER graphs) produce
indistinguishable results with respect to those shown in the figure. We therefore
conclude that the average level of cooperation in the systemdoes notdepend on the
underlying structure. This means that, under the assumption that the playersfollow
the behavior of the experiment in [23],there is no network reciprocity, i.e., no matter
what the network of contacts looks like, the observed level of cooperation is the
same. This latter finding is in stark contrast to most previous results coming outfrom
numerical simulations of models in which many different updating rules —all of them
based upon the relative payoffs obtained by the players— have been explored.

Mean-field Approach. The previous numerical findings can be recovered using
a simple mean-field approach to the problem. Let the fractions of the three types
of players beρC , ρD andρX , for mostly cooperators, mostly defectors, and moody
conditional cooperators, respectively, with the obvious constraintρX = 1−ρD−ρC .
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Figure 5.1:Dependency of the average level of cooperation on the density of strategists.
Density plot of〈c〉, as a function of the fractions of the three strategies -mostly cooperators,
C, mostly defectors,D, and moody conditional cooperators,X-. Pannels A), B) and C)
correspond to a regular lattice (k = 8), Erdös-Rényi(〈k〉 = 6) and Barabási-Albert (〈k〉 =

6) network of contacts respectively, but independence of cooperation level on the topology
make them indistinguishable. The system is made up ofN = 104 players and the rest of
parameters, taken from [23], are:d = 0.38, a = 0.15, γ = 0.62, β = −0.1. The thin lines
represent the mean-field estimations [c.f. Eq. (5.5)] for〈c〉 = 0.32, 0.44, 0.56, 0.68. They
very accurately match the contour lines of the density plot corresponding to those values
of 〈c〉, thus proving that the same outcome is obtained in a completegraph (mean-field).
Simulation results have been averaged over 200 realizations.

Denoting byPt(A) the cooperation probability at timet for strategyA(= C,D,X)

of the repeated PD we have

〈c〉t = ρCP (C) + ρDP (D) + ρXPt(X), (5.2)

wherePt(C) = P (C) andPt(D) = P (D) are known constants [in our caseP (C) =

0.8, P (D) = 0.2]. The probability of cooperation for conditional players in the next
time step can be obtained as

Pt+1(X) = (d+ γ〈c〉t)Pt(X) + (a+ β〈c〉t)[1− Pt(X)], (5.3)

where the first term in the right hand side considers the probability that a conditional
cooperator keeps playing as a cooperator, whereas the second terms stands for the
situation in which a moody conditional cooperator switched from defection to coop-
eration. Asymptotically

lim
t→∞

Pt(X) = P (X), lim
t→∞

〈c〉t = 〈c〉.

From Eq. (5.3),

P (X) =
a+ β〈c〉

1 + a− d+ (β − γ)〈c〉 , (5.4)
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Figure 5.2:Absence of Network Reciprocity. Average cooperation level in the stationary
state,〈c〉, as a function of the densityρC of mostly cooperators and two different values
of the densityρD of mostly defectors, for two different kinds of networks: regular lattice
(k = 8), and Barabási-Albert network (〈k〉 = 8). The network size isN = 104 and the rest
of parameters are as in Figure 5.1. Lines represent the mean-field estimations. Results are
averages over 200 realizations. The inset is a zoom that highlights how the different curves
compare.

thus (5.2) implies (with the replacementρX = 1− ρC − ρD)

AρC +BρD = 1, (5.5)

where

A ≡ P (C)− P (X)

〈c〉 − P (X)
, B ≡ P (D)− P (X)

〈c〉 − P (X)
, (5.6)

are functions of〈c〉. From Eq. (5.5) it follows that the curves of constant〈c〉 are
straight lines in the simplex. Figure 5.1 clearly demonstrates this fact: The straight
lines are plots of Eq. (5.5) for different values of〈c〉. It can be seen that they are
parallel to the color stripes, and that the values of〈c〉 they correspond to accurately
fit those of the simulations.

Figure 5.2 depicts the curve〈c〉 vs.ρC for two different values ofρD, as obtained
from Eq. (5.5) and compared to simulations. This figure illustrates the excellent
quantitative agreement between the mean-field result and the simulation results. The
match between the analytical and numerical results is remarkable, as it is the fact that
the result does not depend on the underlying topology. This is the ultimate conse-
quence of the lack of network reciprocity: the cooperation level on any network can
be accurately modeled as if individuals were playing in a well-mixed population.
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Figure 5.3:Asymptotic level of Cooperation. Time evolution of the cooperation level until
the stationary state is reached. The results have been obtained from numerical simulations
on different networks with different sizes. The Mean-Fieldcurve is the solution of Eq. (5.3).
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d = 0.345, a = 0.224, γ = 0.64, β = −0.072. Averages have been taken over103

realizations.

The steady state is reached after a rather short transient, as illustrated in Figure
5.3. This figure compares the approach of the cooperation level to its stationary state
as obtained iterating Eq. (5.3) and from numerical simulations on different networks
with different sizes. The initial cooperation level has been set to〈c〉0 = 0.592, close
to the value observed in the experiment of Ref. [23]. The transient doesexhibit a
weak dependence on the underlying topology and specially on the networksize, but
for the largest simulated size (N = 104) the curves are all very close to the mean-field
prediction.

Distribution of Payoffs. The only observable on which the topology does have a
strong effect is the payoff distribution among players. Figure 5.4 shows these distri-
butions for the three studied topologies, and at two different times —short and long.
Smooth at short times, this distribution peaks around certain values at long times.
This reflects the fact that payoffs depend on the number of neighbors ofdifferent
types around a given player, which yields a finite set of values for the payoffs (the
centers of the peaks). These numbers occur with different probabilities(determining
the height of the peaks), according to the distribution

Q(k) =
∑

k≥1

(

k

kC kD

)

ρkCC ρkDD ρkXX p(k), (5.7)
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wherep(k) is the degree distribution of the network andk = (kC , kD, kX), but it is
understood thatkX = k − kC − kD. The standard convention is assumed that the
multinomial coefficient

(

k
kC kD

)

= 0 wheneverkC < 0, kD < 0 or kX < 0.

The approach to a stationary distribution of payoffs exhibits a much longer tran-
sient. This is due to the fluctuations in the payoffs arising from the specific actions
(cooperate or defect) taken by the players. These fluctuations damp outas the ac-
cumulated payoffs approach their asymptotic values. Thus, the peak widthsshrink
proportionally tot−1/2. In fact, one can show that the probability density for the
distribution of payoffsΠ for strategyZ can be approximated as

WZ(Π) =
∑

k≥1

G
(

Π− ak(Z)µ(k),
√
tak(Z)σ(k)

)

Q(k), (5.8)

whereG(x, γ) ≡ (2πγ2)−1/2e−x
2/2γ2

, the mean payoff per neighbor received by a
Z strategist against a cooperator is

ak(Z) ≡ 1

k
{P (Z) + T [1− P (Z)]},

with k = kC + kD + kX , and the average cooperation level in the neighborhood of
the focal player and its variance are

µ(k) ≡ kCP (C) + kDP (D) + kXP (X),

σ(k)2 ≡ kCP (C)[1− P (C)] + kDP (D)[1− P (D)]

+kXP (X)[1− P (X)].

The approximate total payoff distribution,W (Π) = ρCWC(Π) + ρDWD(Π) +

ρXWX(Π), is compared in Figure 5.4 with the results of the simulations for the
longest time.

5.3 Discussion

In this work we have shown both analytically and through numerical simulationsthat
if we take into account the way in which humans are experimentally found to be-
have when facing social dilemmas on lattices, no evidence of network reciprocity is
obtained. In particular, we have argued that if the players of a Prisoners’ Dilemma
adopt an update rule that only depends on what they see from their neighborhood,
then cooperation drops to a low level —albeit nonzero— irrespective of the underly-
ing network. Moreover, we have shown that the average level of cooperation obtained
from simulations is very well predicted by a mean-field model, and it is found to de-
pend only on the fractions of different strategists. Additionally, we have also shown
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Figure 5.4:Payoffs Distribution. Distribution of the pay-off per neighbor in the stationary
state for different network topologies: regular lattice (k = 8), Erdös Rényi (〈k〉 = 8) and
Barabási-Albert network (〈k〉 = 8). Solid and dashed lines represent the results of numerical
simulations for two values of time:t = 10 (solid lines) andt = 104 (dashed lines) while
pointed curves represent the theoretical estimations for the density probabilities att = 104,
as obtained from Eq. (5.8).N = 104, ρD = 0.586, ρC = 0.053, and other parameters are as
in Figure 5.1. The simulation results are averages over103 realizations.
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that the underlying network of contacts does manifest itself in the distribution of
payoffs obtained by the players, and has a slight influence on the transient behavior.

To conclude, it is worth mentioning that our results only make sense when applied
to evolutionary game models aimed at mimicking human behavior in social dilem-
mas. The independence on the topology seems to reflect the fact that humans update
their actions according to a rule that ignores relative payoffs. Interestingly, absence
of network reciprocity has also been observed in numerical simulations using best
response dynamics [89], an update rule widely used in economics that does not take
into account the neighbors’s payoffs. This suggests that the result that networks do
not play any role in the repeated PD may be general for any dynamics that does not
take neighbors’ payoffs into account. We want to stress that the same kindof models
thought of in a strict biological context are ruled by completely different mechanisms
which do take into account payoff (fitness) differences. Therefore, in such contexts
lattice reciprocity does play its role. In any case, our results call for further experi-
ments that uncover what rules are actually governing the behavior of players engaged
in this and other social dilemmas.





Chapter 6

Heterogeneous networks do not
promote cooperation when
humans play a Prisoner’s
Dilemma.

It is not fully understood yet why we cooperate with strangers on a daily basis. In
an increasingly global world, where interaction networks and relationships between
individuals are becoming more complex, different hypotheses have beenput forward
to explain the foundations of human cooperation on a large scale and to account for
the true motivations that are behind this phenomenon. In this context, population
structure has been suggested to foster cooperation in social dilemmas,but theoreti-
cal studies of this mechanism have yielded contradictory results so far, and the issue
lacks a proper experimental test in large enough systems. We have performed the
largest experiments to datewith humans playing a spatial Prisoner’s Dilemma on a
lattice and on a scale-free network (1229 subjects). We observed that the level of
cooperation reached in both networks is the same, comparable to that of smaller net-
works or unstructured populations.We have also found that subjects respond to the
cooperation they observe in a reciprocal manner, being more likely to cooperate if
in the previous round many of their neighbors and themselves did so. This implies
that humans do not consider neighbors’ payoffs when making their decisions in this
dilemma, but only their actions. Our results, that are in agreement with recenttheo-
retical predictions based on this behavioral rule, suggest that population structure has
little relevance as a cooperation-promoter or inhibitor among humans.
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6.1 Introduction

The strong cooperative attitude of humans defies the paradigm ofhomo economicus
and poses an evolutionary conundrum [123, 124]. This is so becausemany of our
interactions can be framed as Prisoner’s Dilemmas [93, 125, 126] or PublicGoods
Games [127], famous for bringing about a “tragedy of the commons” [128]. Several
mechanisms have been suggested as putative explanations of cooperative behavior
[129], among which the existence of an underlying network of contacts constraining
who one can interact with has received very much attention. This mechanismwas
first proposed by Nowak and May [19], whose simulations on a square lattice with
agents that imitate the behavior of their neighbor with the highest payoff showed high
levels of cooperation in the Prisoner’s Dilemma. The ensuing two decades have wit-
nessed a wealth of theoretical studies that have concluded that this so-called “network
reciprocity” [129] is indeed possible under a variety of circumstances, but in many
other contexts networks do not promote−or even inhibit− cooperation [16, 88].The
effect of regular and homogeneous networks on cooperation is very sensitive to the
details of the model (e.g., dynamics, clustering),while theoretical results and simula-
tions indicate that heterogeneous networks should be particularly efficient in fostering
cooperation in social dilemmas [108, 109, 88].A natural way to shed some light on
these partially contradictory results would be to test experimentally the predictions of
the different models. Such tests are currently lacking [130], as the few available ex-
perimental works only deal—with some exception [23]— with very small networks
[131, 132, 100]. Interestingly, the only theoretical result [133] that takes into account
the behavioral information extracted from experiments predicts that neitherhomoge-
neous nor heterogeneous networks would influence the cooperative behavior in the
Prisoner’s Dilemma, i.e., the observed cooperation level should be the same as if
every player interacted with every other one.

6.2 The experiments.

Here, we close the cycle by testing the above theoretical predictions [133]and con-
tributing to the current debate on the existence and effects of network reciprocity
by performing experiments on large samples of structured populations of individuals
who interact through a Prisoner’s Dilemma (PD) game. Specifically, we havede-
signed a setup in which1229 human subjects were placed either in a square lattice or
in a scale-free network, and for more than 50 rounds they played a2× 2 multiplayer
PD gamewith each of theirk neighbors, taking only one action, either to cooperate
(C) or to defect (D)—the action being the same against all opponents. The exper-
iment was simultaneously carried out on two different virtual networks: a25 × 25
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Figure 6.1: Players in the experiment were sitting in different physical locations, but
played in two virtual networks. Panel A is a snapshot at round 10 of a graphic animation
illustrating the activity during the experiment. On a map ofAragón the image displays small
buildings representing the schools. Arrows (green for cooperate and red for defect) represent
actual actions taken by players. They travel towards the school where their randomly assigned
neighbors were sitting. Buildings are colored green and red, proportional to the respective
number of cooperative and defective actions taken by the subjects in that school. The height
of the yellow column on top of each building is proportional to the school’s accumulated
payoffs. Panels B and C show snapshots of the two networks at that same round, along
with their degree distributions (in the case of the heterogeneous network, both the theoretical
distribution and the actual realization corresponding to the network of the experiment are
represented). Colors indicate the corresponding player’saction (green for cooperate, red for
defect). The size of a node is proportional to its degree.

regular lattice withk = 4 and periodic boundary conditions (625 subjects), and a
heterogeneous network with a fat-tailed degree distribution (604 subjects,the num-
ber of neighbors varied betweenk = 2 andk = 16). Figure 6.1 depicts a snapshot
of a visual representation of the experiment as well as of the two networks. Subjects
played a repeated (weak) Prisoner’s Dilemma (PD) with all their neighbors for an
initially undetermined number of rounds. Payoffs of the PD were set to be 7 ECUs
for mutual cooperation, 10 ECUs for a defector facing a cooperator, and 0 ECUs for
any player facing a defector (weak PD [19]). We note that thischoice of payoffsis
as in Grujíc et al.’s experiment on a smaller regular lattice [23] (see Figure 6.1) and
such that cooperation should reach a high level according to the availablesimulations
[19, 88, 108, 109]. The size of each network was large enough so that clusters of
cooperators could form (the underlying mechanism by which cooperators may thrive
[134, 115]).

On this general setup, we carried out two treatments, which we willrefer to as
experiment and control. In the experiment, subjects remained at the same positions in
the network with the same neighbors throughout all the rounds played. In the control
treatmentwe removed the effect of the network by shuffling the neighbors of each
subject in every round. Therefore, in this phase, the players were always connected to
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the same number of neighbors, butthese neighbors changed from round to round.On
the screen, subjects saw the actions and normalized payoffs of their neighbors from
the previous round, who in the controltreatmentwere different from their current
neighbors with high probability. Alltreatmentsof the experiment were carried out
in sequence with the same subjects. Players were also fully informed of the different
setups they were going to run through. The number of rounds in eachtreatmentwas
randomly chosen between 50 and 70 in order to avoid subjects knowing in advance
when it was going to finish, resulting in 51 and 59 rounds for the experimental and
controltreatments, respectively.

6.3 Results and Discussions.

Figures 6.2A and 6.2B show the fraction of cooperative actions,c, in each round for
the two networks and for bothtreatments. The first feature worth noticing in this fig-
ure is that, in the experiment phase, the level of cooperation in either network quickly
drops from initial values around 60% to values around 40% and finally settles at a
slower pace around 30%, much lower than theoretical models predict [19,16, 88].
This is especially remarkable for the heterogeneous network, on which noprevious
results are available, and is in stark contrast with the predictions that this kindof net-
works should be particularly efficient in promoting cooperation [108, 109, 88]. In the
control, the initial level of cooperation is already at these low values. This behavior
is consistent with previous findings in experiments with smaller lattices [100, 23]as
well as with unstructured populations [135, 136]. Regarding the slow decay under-
gone by these curves after the first quick drop in the level of cooperation, we believe
that this is associated to a process of learning (see below). However, themost remark-
able result that this figure provides is that, quite unexpectedly, the networkdoes not
have any influence in the evolution of the level of cooperation. In fact, both curves
are nearly identical—the slightly lower values obtained for the lattice are likely to
arise from the small difference in the initial level of cooperation—despite thevery
different nature of the networks of contacts between the players.

The experimental result we have just reported is in very good agreementwith the
theoretical prediction in [133]. This prompts us to investigate in detail what is the
players’ behavior, as the reason why this prediction was different from earlier ones
is the use of the update rule observed in [23].The distributions of subjects by their
individual cooperation levels (averaged over the whole experiment) depicted in Fig-
ures 6.2C and 6.2D show quite some heterogeneity of behavior: a few subjects have
a high level of cooperation (above 70%), a sizable fraction cooperatedless than 20%
of the rounds, whereas the bulk of subjects have intermediate levels of cooperation.
Importantly, the comparison of these distributions of actions, which turn out tobe
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statistically indistinguishable (see Kolmogorov-Smirnov test data on Table 6.1 ofthe
appendix 6.5), provides additional evidence that the behavior observed in the two net-
works is the same.This finding, along with the identical behavior of the cooperation
level, suggests that subjects use the same strategies in the lattice and in the hetero-
geneous network, regardless of the fact that in the latter the number of neighbors of
each individual is heterogeneously distributed.

Figure 6.4 provides further evidence of the significance of the moody conditional
cooperation by means of a nonparametric bootstrap check. The series ofactions
taken by every individual are randomly reassigned to other positions in thelattice or
the network and the probability of cooperation is recomputed. This is done 106 times
and the results show that the two probabilities become independent of the context.
Of course, such a reshuffling will not change the dependence on the player’s own
previous action, as the order of the actions is not altered, and consequently there
are still two distinct lines corresponding to the probability of cooperation following
cooperation or defection, but thedependence on the number of cooperators in the
previous round is fully removed.

The existence of(almost pure)cooperators and defectors aside from moody con-
ditional cooperators can be further supported through a comparison withthe same
histograms but for the control condition (see Figure 6.6 of the appendix),since for
the latter a larger number of subjects are in the region that would correspond to defec-
tors. This can be interpreted as an indication that a fraction of—probably—moody
conditional cooperators changed to a defective strategy, given that retaliation is in-
effective in the control condition. Furthermore, performing running averages of the
levels of cooperation during the experiment condition (see Figures 6.7 and6.8 of the
appendix) shows that the number of subjects whose level of cooperationis below a
given threshold increases with time—irrespective of the precise value of the thresh-
old. Not only this gives support to the existence of this kind of players, but it is
consistent with a continuous(albeit small)flow of players who change from moody
conditional cooperation to defection—a behavior that could be understood as a gen-
eralized form of a grim strategy. Notice that this flow can account for the slow decay
observed all along the run of the experiment and control observed in Figures 6.2A
and 6.2B.

Finally, another important point that our experiment allows to address to some
extent is the dependence of the actions on the connectivity of the participants for the
heterogeneous network. The results are displayed in Figure 6.5, wherewe represent
the average cooperation levelc as a function of the connectivity of the players,k,
for both treatments: experiment and control. As can be seen from the plots,there
might be some trend towards lower levels of cooperation with increasing degree for
small connectivities, particularly in the control (the levels for the first threevalues
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of the degree in the experiment are not statistically different). However, looking at
the figure as a whole it becomes clear that there does not seem to be any statistically
significant trend. It has to be borne in mind that in this type of networks the number
of hubs or large-degree nodes is intrinsically small, and therefore the statistics for
them is not very accurate (notice the size of the error bars). Going beyond this results
would require much larger networks (which would still have the same problemfor
their higher degree nodes). Additionally, the bottom panels of Figure 6.5 show the
frequency of cooperative actions of nodes with degreek after playing as C or D
with respect to the fraction of their neighbors that cooperated in the previous round.
The results are a clear evidence that moody conditional cooperation is indeed the
general behavior even if one disaggregates the data in terms of their degree. As we
have already stated above for the total level of cooperation, for higherdegrees the
statistics is poorer and the analysis does not lead to such clear-cut results.

6.4 Conclusions

To sum up,we have performed a large-scale experimental test of the hypothesis of
network reciprocity, i.e., that the existence of a structure in the population mayaf-
fect cooperation in social dilemmas. Our experiment shows that, when it comes to
human behavior, the existence of an underlying network of contacts doesnot seem
to have any influence in the global outcome. We want to stress that this conclusion
applies only to human cooperation, and network reciprocity may still be relevant in
other contexts, e.g., in microbiology [137]. Players seem to act by responding to
the level of cooperation in their neighborhood, and this renders the network irrele-
vant. In addition, players behave in a ‘moody’ manner, being significantly less likely
to cooperate following a defection of their own.The levels of cooperation attained
in a regular lattice and in a highly heterogeneous network (hitherto thought tobe a
cooperation enhancer) are indistinguishable, and the responsive behavior of subjects
appears to be independent of the number of neighbors they have or on the payoff
differences they observe.The results are in full agreement with the theoretical pre-
diction in [133]; the fact that the key hypothesis in that model is that people behave
in the way we have just described, provides further support to our finding of moody
conditional cooperation in networked Prisoner’s Dilemmas.

Our results have implications for policy making when cooperation is a desired
behavior. Although further experiments with other social dilemmas still need to as-
sess the range of applicability of our conclusions, the present study suggests that
imposing a network structure might be a sterile effort.It should be noted, however,
that this caveatdoes not imply that networking is useless to achieve cooperation—
results would probably be very different if the network is allowed to be formed by
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Figure 6.2:The level of cooperation declines and is independent of the network of con-
tacts. Fraction of cooperative actions (level of cooperation) perround during the experiment
(panel A) and the control (panel B) for both networks, and histograms of cooperative actions
in the lattice (panel C) and in the heterogeneous network (panel D). The histograms (panels
C and D) show the number of subjects ranked according to the fraction of cooperative actions
they perform along the experiment in the two networks. A Kolmogorov-Smirnov test shows
that the distributions are statistically indistinguishable (see appendix 6.5). They illustrate the
high heterogeneity in subjects’ behavior, their levels of cooperation ranging from nearly zero
to almost one in a practically continuous distribution. Thecorresponding histograms for the
control (Figureexp.figS4 of the appendix) show that a sizable group of subjects lowered their
levels of cooperation hence becoming mostly defectors. Actually, the decline in the level of
cooperation observed in the experiment (panelsA and B) can be explained as a constant flow
of subjects to more defective strategies (for evidence supporting this hypothesis see Figures
6.7 and 6.8 of the appendix).
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Figure 6.3:Players’ behaviour depends both on the level of cooperationin the neigh-
borhood and on their previous action. Frequency of cooperative actions after a coop-
erative/defective action, conditioned to the context (fraction of cooperative actions in the
neighborhood in the previous round) observed in the lattice(A) and in the heterogeneous
network (B). Details of the linear fits and comparison with randomizations to prove statisti-
cal significance can be found in the appendix. The plots demonstrate that there is a relevant
dependence on the context for subjects that cooperated in the previous round (i.e., were in a
“cooperative mood”), the cooperation probability increasing with the fraction of cooperative
neighbors much as for the conditional cooperators found by Fischbacheret al.[99]. However,
after having defected, this dependence is less clear, and ifanything, it suggest an exploit-
ing behavior—subjects who defected are less prone to cooperate the more cooperation they
find around. Panels C and D show how subjects who cooperated ordefected are distributed
according to the largest payoff-per-link difference in their neighborhoods between the two
actions. These plots reveal that a player’s decision to cooperate or defect was independent
on the payoffs-per-link they observed (an information thatwas explicitly provided during the
experiment).
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Figure 6.4: Null hypothesis statistical significance test.Probability of cooperating after
playing C or D, conditioned to the context (fraction of cooperative actions in the neigh-
borhood in the previous round), averaged over106 random shuffling of players. Panel A)
corresponds to the experimentaltreatmentin the lattice, panel B) to the sametreatmentbut
for the heterogeneous network, panel C) to the control phasein the lattice and panel D) to
the same controltreatmentfor the heterogeneous network. The results show that there is no
dependence on the context and hence that the results of panels A and B of Figure 3 are sta-
tistically relevant. The anomalous variance (or even absence of data) observed at a fraction
of C’s in the neighborhood close to0.9 is not a relevant feature of the experimental results
but a consequence of the very low probability of having events contributing to that bin of the
histogram in the heterogeneous network. This anomaly can also be noticed in Figure 3.
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Figure 6.5: Dependence of the strategies on the connectivity.The upper panels show
the cooperation levelc as a function of the connectivityki in the heterogeneous network,
averaged over all rounds of the experiment (upper left panel) and the control (upper right) of
the experiment. In the lower panels, we plot the frequency ofcooperative actions of players
with degree as indicated, after they have cooperated or defected, as a function of the fraction
of cooperative actions in their neighborhood during the previous round, along the experiment
treatment in the heterogeneous network. Statistics is restricted to nodes of connectivityk = 2

(lower left panel),k = 3 (lower center) andk = 4 (lower right).
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the subjects as part of the game. Recent experiments on groups of up to 20peo-
ple [138, 139] strongly suggest this, but to the best of our knowledge no large-scale
experiments have been carried out to test this issue.On the other hand, the theoreti-
cal work in [133] does not predict the slow decay of the cooperation level observed
in the experiments, which we have conjectured that arises from moody conditional
cooperators becoming defectors in a generalized grim behavior. Such achange in
the percentage of players using different strategies is not included in thetheoretical
model, and therefore a next step would require to account for such changes and, if
possible, to justify them within an evolutionary framework.Finally, given that in our
setup players have to play the same action with all their neighbors, it is clear that
our results should be related to those of public goods experiments. In fact,condi-
tional cooperation was first observed in that context [99]. Our findings suggest that
the “moody” version we have found can also arise in public goods games. If that is
the case, it is likely that network reciprocity does not apply to public goods games
on networks. Hopefully our experiment will encourage further research in all these
directions.

6.5 Appendix 1: Additional material about the experimen-
tal results

Here we present further results aimed at supporting the findings shown inthe pre-
vious sections. As there, we will refer to the basic types of individuals found in
the experiment as mostly cooperators (players who cooperate with a high probability
regardless of the context), mostly defectors (players who defect with a high proba-
bility regardless of the context) and “moody” conditional cooperators (players whose
action depends on their previous action as well as the level of cooperationin their
neighbourhood, see Fig. 6.3 A and B).

Figure 6.6 shows the histograms of the number of players ranked according to
the fraction of cooperative actions they performed along the control phase, in the
lattice (panelA) and in the heterogeneous network (panelB). The same results but
for the experimental phase can be found in panelsC andD of Figureexp.fig:2. The
comparison between the plots shows a large increase in the fraction of individuals
that never or almost never cooperated in the control with respect to the experiment.
This is likely to be a consequence of the fact that in the experiment there is aninitial
amount of cooperation well above 50%, which is not the case in the control.At the
other extreme of the plots, the (small) amount of highly cooperative players remains
approximately the same, indicating that their motivation has nothing to do with hav-
ing or not a fixed environment for their interactions. The general picturethus arising
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Figure 6.6:Distribution of cooperative actions in the control. We represent the number of
players that cooperated during the given number of rounds (normalized by the total number
of rounds played). The results correspond to the control phase. Similar results were presented
Fig.6.2.

from the control part is that there is not much cooperation, and the majority of players
do not cooperate other than occasionally.

On the other hand, Figure 6.7 displays the time evolution of the distribution of
cooperative actions in the experimental part. The histograms show the players’ fre-
quency as a function of the fraction of cooperative actions along successive 10-round
periods corresponding to the experimental phase in the lattice (left column) and in the
heterogeneous network (right column). The results show evidence of some degree of
learning as the experiment progresses: Indeed, the number of people who cooperate
never or rarely increases with time. This would be consistent with the decay of co-
operation shown in Fig. 6.2 A; while the first, quick drop in cooperation wouldbe
explicable within a computer model with a fixed proportion of defectors, cooperators
and moody conditional cooperators, the second part of the evolution, a much slower
decay, is inconsistent with such a model and must then come from changes inthe
proportion of the different types of players.

The phenomenon we have just described can also be shown in a different manner,
namely by monitoring the evolution of mostly defectors both during the experimental
and control parts of the experiment. Figure 6.8 represents the fraction ofagents
whose probability to cooperate is below a given threshold (indicated in the rightmost
legend) at every round (timet). To calculate this quantity, we have taken into account
the actions of the players during the previous 10 rounds. The results obtained show
an increasing trend (more evident for the experimental phase, top panels) for both
the square lattice and the heterogeneous network, which confirms the tendency of the
players to learn that they should defect as time goes on.
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Figure 6.7:Time evolution of the distribution of cooperative actions.The different panels
show how frequently players cooperated in different time periods. The results correspond to
the first treatment (experiment). Rows represent periods 1-10(t0 = 0, top), 11-20(t0 = 10),
21-30(t0 = 20), 31-40(t0 = 30) and 41-50(t0 = 40, bottom) as indicated.

We also report on the statistical analysis we carried out about the experimental
data. First, in order to determine whether or not the likelihood to cooperate differs
significantly in the two studied networks, we use the Kolmogorov-Smirnov (KS)test
for the two data sets. We take as a first sample the distribution of the probability to
cooperate in the lattice, cumulated over all rounds of the experimental phase. The
second sample used as input for the KS test corresponds to the same distribution but
for the heterogeneous network. These are the distributions represented on Figure 6.2.
The maximum difference between the cumulative distributions for the experimental
phase is0.1071 with a corresponding value forPKS = 0.995. The statistics of
both samples, together with the ones corresponding to the control phase Fig. 6.6 are
summarized in Table 6.1.

Finally, Table 6.2 summarizes the statistical fits (obtained from a weighted least
squares regression) of the conditional probabilityP to cooperate, conditioned on the
player’s action in the previous round (X=afterC, afterD) and on the densityρ of
cooperators in the players’ neighborhoods during the previous round. Fits are defined
by P (C|X, ρ) = a + bρ. The data fitted correspond to the results shown in Figure
6.3A,B.
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Figure 6.8: Evolution of the fraction of mostly defectors. Fraction of agents with a
cooperation probability lower than a giventhreshold as a function oft(=round), accord-
ing to their cooperative actions through the previous 10 rounds, for different values of the
threshold = 0, 0.1, 0.2, 0.3, 0.4. Columns represent results for the lattice (left) and the
heterogeneous network (right), while rows correspond to the two treatments: experiment
(top) and control (bottom).

6.6 Appendix 2: Experimental setup.

6.6.1 Volunteer recruitment and treatment

The experiment was carried out with1229 volunteers chosen among last year high-
school students (17-18 years old) of42 different High Schools located throughout the
geography of the Autonomous Region of Aragón, Spain, whose capital isZaragoza,
where the University of Zaragoza is. 34 High Schools were in the province of
Zaragoza, 5 in the province Huesca, and 3 in the province of Teruel. For the re-
cruitment of the students, we contacted the coordinators of a program (Ciencia Viva,
“Living Science”) of the local government that supports the disseminationof Science
among public high schools of Aragón. Moreover, we also contacted many of the
private schools of Zaragoza City also offering them the possibility of takingpart in
the experiment. In all cases, the experiment was referred to as “a socialexperiment”
and nobody (including the high-school teachers in charge of the coordination) knew
in advance what the experiment was about (see below).
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experiment control
lattice heterogeneous lattice heterogeneous

mean 0.03703 0.03703 0.03226 0.03226
95% confidence (0.02434,0.04974) (0.02335,0.05072) (0.02549,0.04858) (0.02607,0.04800)
standard deviation 0.03210 0.03459 0.02918 0.02772
high 0.0976 0.104 0.106 0.0878
low 0 0 0 0
third quartile 0.06560 0.06126 0.05440 0.05795
first quartile 0.006400 0.006623 0.006400 0.01159
median 0.04000 0.03146 0.0448 0.03808
Median absolute deviation 0.02844 0.02937 0.02495 0.02275

Table 6.1:Statistics of the distribution of the probability to cooperate cumulated over all rounds of the experi-
mental and control phases in both networks. See the text for further details.

lattice heterogeneous
a b a b

afterC 0.457± 0.015 0.122± 0.034 0.475± 0.016 0.126± 0.039

afterD 0.350± 0.021 −0.149± 0.050 0.309± 0.069 −0.0269± 0.035

Table 6.2: Values of the fitting parameters for the results shown in Figure 6.3 A,B. Fits are defined by
P (C|X, ρ) = a+ bρ, beingX=afterC, or afterD. See the text for more details.

Following the call for participation, we selected 1300 volunteers. In orderto
satisfy ethical procedures, all personal data about the participants were anonymized
and treated as confidential. Moreover, the Ethical Committee of the Universityof
Zaragoza approved all procedures. On the day of the experiment, the aforementioned
1229 volunteers showed up, with 541 males and 688 females representing the 44.02%
and 55.98% of the total number of players, respectively. Out of the 1229students,
625 played the game on a square lattice (274 males and 351 females keeping themale
to female ratio) and 604 on an heterogeneous network. In the first topology, every
player hadk = 4 neighbors while in the second, the connectivity varied between 2
and 16 following a distributionN(k)

N = P (k) = Ak−2.7, with A = (
∑

k P (k))−1.

All the students played via a web interface specifically created for the experi-
ment (see below) that was accessible through the computers available in the computer
rooms of their respective schools. At least one teacher supervised theexperiment in
each computer room (which at most had a maximum capacity of 20 students), pre-
venting any interaction among the students. To further guarantee that potential in-
teractions among students seating next to each other in the class do not influence the
results of the experiment, the assignment of players to the different topologies was
completely random. Hence, the odds of having two participants geographically close
(i.e., of the same school and seating next to each other) who were also neighbors in
the virtual topology was quite small. In addition, as described below, the colors used
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to code the two available actions of the game were also selected randomly, further
decreasing the likelihood that neighboring participants could influence each other.

We describe in the following section the steps followed by each participant dur-
ing the experiments. In short, all participants went through a tutorial on the screen,
including questions to check their understanding of the game. When everybody had
gone through the tutorial, the experiment began, lasting for approximately anhour.
At the end of the experiments volunteers were presented a small questionnaire to fill
in. Immediately after, all participants received their earnings and their show-up fee.
Total earnings in the experiment ranged from2.49 to 40.48 euros.

6.6.2 Experimental platform and interface

The experiment was run using a fairly sophisticated web application specifically de-
veloped to this purpose. The application was made entirely using free software. It
was developed in Ruby On Rails, a technology used by other popular websites like
Twitter, and has a MySQL database that stores all data needed to carry out the experi-
ment and the subsequent analysis. MySQL is a freely available open source relational
database management system based on Structured Query Language (SQL), the most
popular language for adding, accessing and managing content in a database.

The application was designed to be used by three different user profiles. First of
all, we have the players, who were shown at the beginning a detailed tutorialfor a
better understanding of the interface and basis of the experiment. Secondly, there are
teachers who were responsible for supervising students through their dedicated web
monitors, facilitating the work of the central administrator work and contributing
to the success of the experiment. Finally, the administrators were responsiblefor
controlling the game and everything that was happening in real time. The application,
which was designed using technologies compatible with all platforms, was managed
from a standard web browser. There was a last participant, a daemon orprocess
running in the background whose function was to update the results and play instead
of players who do not play within the specified time frame for each action.

Considering that the experiment required that around1300 students could play
online simultaneously, we used a server with enough power, and many optimizations
were performed in terms of connections to the server, access to database, client-server
data exchange, lightness of the interface, control logic, etc. The experiment started
on December 20, 2011 at 10:00 CET. The steps followed during the development of
the experiment were:

1. Administrators opened the registration process.

2. Players (students) gradually registered.



Appendix 2: Experimental setup. 117

3. Once all students had registered, teachers informed the administrators via their
screen.

4. As soon as the required number of participants have registered (this took around
20 minutes), administrators blocked further registrations and initiated the read-
ing of the tutorial.

5. Students and teachers read the tutorial.

6. Teachers informed (also via their screens) administrators that the reading was
completed.

7. The experiment treatment began, which lasted 51 rounds.

8. Students played according to some predefined times (a maximum of 20 sec-
onds per round to choose an action). During these steps, teachers controlled
for any potential problem using a chat channel that connected them to thead-
ministrators. As mentioned above, if one student did not play within the 20
seconds given for each action, the daemon played automatically (see below).
The administrators were able to identify who was not playing and to contact
the teachers if the situation persisted. However, the experiment went smoothly
and no feedback to the professors for misbehavior was needed.

9. The experiment treatment finished and a brief tutorial on the second one(con-
trol) was shown.

10. Once teachers and students had read the tutorial, the former notified theadmin-
istrators.

11. Administrators started the control treatment, which lasted 59 rounds.

12. Students played as in the previous treatment.

13. Once the control treatment finished, volunteers were presented a short ques-
tionnaire to fill in.

14. All participants checked their earnings and were given their show-up fee.

6.6.3 Synchronous play and automatic actions

The experiment assumes synchronous play, thus we had to make sure thatevery round
ended in a certain amount of time. This playing time was set to 20 seconds, whichwas
checked during the testing phase of the programs to be enough to make a decision,
while at the same time not too long to make the experiment boring to fast players.
If a player did not choose an action within these 20 seconds, the computer made the
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decision instead. This automatic decision was randomly chosen to be the player’s
previous action 90% of the times and the opposite action 10% of the times. We
chose this protocol following previous testings performed by the authors of a similar
experiment (see [23]). Volunteers were informed that the computer wouldplay for
them if their decision took more than the prescribed time-out. However, they were
not informed of the precise strategy used by the computer in order to avoid any bias
in their own choices of strategy. In any case, for the reliability of the experiment it is
important that a huge majority of actions were actually played by humans, not by the
computer. This quantity, when averaged over all rounds, yields that the 90% of the
actions were chosen by humans, regardless of the underlying network of contacts.

6.6.4 Questionnaires

At the end of the experiments volunteers were presented a small questionnaire to fill
in. The list of questions (translated into English) was the following:

1. Describe briefly how you made your decisions in part I (Experiment).

2. Describe briefly how you made your decisions in part II (Control).

3. Did you take into account your neighbors’ actions?

4. Is something in the experiment familiar to you? (yes/no).

5. If so, please point out what it reminds you of.

6. If you want to make any comment, please do so below.

The first three questions have a clear motivation, namely to see whether (possibly
some) players did have a strategy to decide on their actions. Question 3 was intended
to check whether players decided on their own or did look at their environment, be-
cause only in this last case imitative or conditionally cooperative strategies make any
sense. Questions 4 and 5 focused on the possibility that some of the playersrecog-
nized the game as a Prisoner’s Dilemma because they had a prior knowledge of the
basics of game theory. The final question just allowed them to enter any additional
comment they would like to make. We did not carry out a more detailed question-
naire to avoid the risk of many players’ leaving it blank (the whole experimentwas
already very long).
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Presentation of Part II.

In this part of the thesis, we address the second research theme: the tolerance
under the framework of social dynamics. The concepts of tolerance andintolerance
have been approached from many perspectives including biology, sociology and phi-
losophy [74]. For the purposes of this thesis, we consider tolerance as“a permissive
and indulgent attitude in relation to those subjects whose characters, opinions or be-
haviors differ from one’s own” and, complementarily, intolerance or bigotry as “the
refusal to accept subjects with different characters, opinions or behaviors from one’s
own”.

Despite antecedents in classical greek (as well as from the hellenistic, andro-
man period) philosophers (e.g. Socrates, Epictetus, Marc Aurellius), toleration does
not become a serious subject of philosophical and political concern in Europe until
the 16th and 17th Centuries. Motivated by the Religion’s Wars which followedRef-
ormation and Counter-Reformation, thinkers as Milton, Bayle, Spinoza and Locke
defended religious tolerance. Among the Enlightenment’s philosophers, perhaps
Voltaire was the one that most vividly expressed his views in defense of religious
tolerance, and surely Kant was the most rigorous one.

At the end of the 18th Century one can see tolerant ideas embodied in practice
in the USA Constitution’s Bill of Rights. In the 19th Century at the formulation of
political liberalism, J.S. Mill argues that the only proper limit of liberty is harm (to
others), and that political power should have no authority to regulate thoseactivities
and interests of individuals that are purely private and have no secondary effects on
others.

Already in the 20th Century, toleration became an important component of what
is known as liberal theory. It has been defended by liberal philosophers and political
theorists such as Dewey, Berlin, Popper, Dworkin and Rawls, but also criticized by
Marcuse and other modern marxist thinkers who worry that toleration and itsideal
of state neutrality is merely another hegemonic Western ideology, a useful “super-
structural mask”. After all, some politically neo-liberal practices in Europe politics
are indeed quite far from being tolerant in any ample sense of the term. Nowadays,
a concern for racial equality, gender neutrality, an end of prejudice, respect for cul-
tural and ethnic difference, and a general commitment to multiculturalism has fueled
ongoing debates about the nature of toleration in our age of globalization and homo-
geneization.

To a 21st Century social sciences theorist that might worry about theseissues,
a basic methodological question is wether or not social tolerance can be measured,
or at least semi-quantitatively inferred from observations. What aboutconsider it
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as a parameter in an ABM investigation? The accepted meaning of the “tolerance”
parameter of the Schelling model is but a possible operational use of the concept of
toleration. So we see there is already a half-century old tradition of using tolerance
as a social parameter in social modeling of some phenomena. Moreover, given that
intolerance is the main cause of conflicts at all levels, from two-person disputes to
multipart struggle and wars, and considering that, unfortunately, social rejection and
self-exclusion based on real or perceived characteristics is inherent in the human
condition and has always been present in every culture and time period [74, 75], the
cultural diffusion enhanced by development of mass media and new technologies
leads to an increasing need to address tolerance under the perspectives of social and
cultural dynamics.

Tolerance and intolerance are issues that can be properly addressedthrough ABMs,
as shown, for example, the fact that one of the first social ABM was the residen-
tial segregation model developed by Thomas C. Schelling in 1971 [52, 53].The
Schelling’s model shows how a preference to have similar neighbors can lead to seg-
regation for relatively small values of intolerance (see Introduction 1.3.1). Neverthe-
less, ABM have not paid much attention to the study of tolerance, in contrast toother
related topics such as homophily [59], opinion formation [153] or rumor spreading
[155].

In the Axelrod model (see Introduction 1.3.1 for a basic presentation) theso-
cial influenceon the “cultural” individual characteristics defining the cultural state,
appears itself ashomophile satisfaction, the driving force of cultural change (or cul-
tural evolution). One might say that the “incentive” to modify a cultural trait (e.g.
conversion to a new, non-inborn faith, changing of musical taste, or going into bio-
organic food consumption) is the aspiration to a greater share of cultural features
with nearby agents. Simple and of general appealing, homophile satisfactionis the
“benefit function” in an economic framework formulation of the model. Economic
language is well-fitted to permeate Political Sciences modeling, and human social
behavior, though not always, can sometimes be understood in terms of economy of
“moral feelings” and/or other categories.

Importantly, the Axelrod’s dynamics assumption, namely “the more similar two
cultural agents are, the more similar they’ll likely become in the future”, seems also
be rooted on a sensible theorist’s inference from social experiences and observations.
Note that this assumption leads naturally, for a dimer of cultural automata, to a self-
sustained increase of cultural similarity. Though this may suggest that the dynamics
is just a trivial accelerated tendency to cultural consensus, when passing from the cul-
tural dimer analysis to the neighborhood’s state analysis of a focal agent,one realizes
that the (ensemble averaged) mean similarity of the focal isn’t forcefully anincreas-
ing function of time dynamics: it could decrease in time, so dynamics is not that
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trivial. Despite that, the tension between the two extreme macroscopic states, global-
ization and multiculturalism, is regulated by the (initial) degreeq of cultural diversity,
as in the dimer analysis: Providedq is so large as to render negligible the probability
of sharing some cultural feature, no option other that multiculturalism prevailsfor the
dimer, as well as for the whole macroscopic population, where frozen multicultural
patterns dominate the asymptotic states for large initial cultural diversity.

Another basic feature of this modeling framework of cultural dynamics is its
highly non-biasedsetting respect to trait values: There is no advantage of particular
traits regarding “socio-cultural ineffectiveness” power. A physicists’ term for this
basic feature istrait symmetry. The complete invariance under interchangeability of
traits imposes that the homogeneously cultural macroscopic state containsqF micro-
scopic states, that are equally likely provided traits are uniformly distributed inthe
initial conditions. Along any particular stochastic trajectory, the macroscopicconsen-
sus reaches fixation (thus irreversibly breaking trait’s symmetry) throughan unbiased
random walk, as it occurs in Evolutionary Genetics where neutral characters are fixed
in some populations. The same occurs regarding traits frequencies in multicultural
macroscopic states.

Our daily experience would easily sanction as too simplistic both (homophily and
exact symmetry) basic features of this cultural dynamics: to put it crudely,during the
early eighties of last century, when I became more a reggae than heavy metal rocker
tasted young Spaniard, is a different socio-economic situation from the coetaneous
conversion of a young Mexican “catholic”-born to the “Jehovah’s witnesses” faith,
that are treated as indistinguishable processes inside this framework. Themodel,
however, is not aimed to address individuals’ cultural issues. Also, fora field an-
thropologist interested, say, in the cultural decline of Patagonia populations, such a
bareness of details in the description of cultural dynamics could seem useless, likely
a mere kidding exercise. However, no particular cases of important cultural processes
(as culture extinction) motivate this model.

Our kind of theorists’ social modeling is (no more and no less than) an educated
(scientific) attempt to gain insight into basic fundamental mechanisms that operate,
in some sense universally, in the emergence of collective social behaviors. We know
that the Ising model is invaluably useful, far away its strict applicability toe.g.mag-
netic materials experiments. This important message is well-understood inside our
physicists’ culture, and, hopefully, will be increasingly so across otherscientific cul-
tures. It is amply heard, at least in some branches of social and economical sciences
research, in connection to the Schelling model, where residential segregation based
on ethnic (racial, unchangeable agent features) differentiation of individuals, is mod-
eled through a very simple homophile satisfaction driven mobility dynamics (see
Introduction for a basic presentation).
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Although intolerance and homophily are close ideas, the relation between both
concepts is not trivial: while homophily refers to the preference to not interact with
dissimilar people, this preference does not implies social rejection. Nevertheless, the
Axelrod and the Schelling model share the samesocial force, the homophile satisfac-
tion. In the first one it fuels the cultural change (under conditions givenby a cultural
diversity parameter), while in the second it determines moving decisions (conditioned
by a tolerance parameter) in a “geography” of residential neighborhoods. Each model
addresses a different specific social issue, and inside own domain, each one is a basic
archetype model ultimately based on homophile satisfaction as a social force.

Our goal in this part of the thesis is to incorporate intolerance into the culturaldy-
namics through different mechanisms. Starting from the Axelrod’s model, in chapter
7 we introduce intolerance allowing agents to move from a culturally dissimilar en-
vironment to other available places according to a intolerance thresholdT . This is
possible thanks to the introduction of a density of empty sitesh in the lattice of the
original model. We show that, when the densityh of empty sites is low enough and
the agents percolates the lattice, mobility enhances the convergence to monocultural
state. Moreover, the transition valueqc depends linearly with the system size. On
the other hand, for large enough values ofh, when1 − h is below the site perco-
lation threshold, a new multicultural fragmented phase appears at low valuesof the
initial cultural diversityq; however, the monocultural phase of the original Axelrod’s
model is recovered for intermediate values ofq, triggered by mobility, as well as the
disordered (multicultural) phase for large values ofq. In chapter 8, we extend the
previously described model by considering intoleranceT as an individual cultural
feature susceptible of imitation through the cultural dynamics. This asymmetry in-
troduced in the traits of Axelrod dynamics allows to study the preference of tolerant
traits to be present or not in dominant cultures. We consider two options in order to
introduce individual intolerance:social rejection(i.e., the agents move according to
their neighbors’ intolerance) andself-exclusion(agents move incited by its own intol-
erance to their neighbors). In both cases we show that tolerant traits aremore likely
to be present in dominant cultures. Moreover, the advantage of tolerance increases
with the densityh of empty sites, being higher in thesocial rejectionscheme. In or-
der to obtain a more realistic model, given that social networks are heterogeneous, in
Chapter 9 we introduce tolerance into cultural dynamics throughnetwork plasticity,
allowing agents to remove links to its dissimilar neighbors and reconnecting them to
other individuals chosen at random. This method allows to consider heterogeneous
and dynamic networks, with a network dynamics driven by the cultural dynamics.
Starting from the dynamics designed by Vazquezet al. [166], we introduced tol-
erance through a parameterZ that modulates the intensity of rewiring mechanism.
We show that rewiring mechanism induces opposite effects. As expected,for large
values of toleranceZ, rewiring promotes the convergence to globalization. Neverthe-
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less, for intermediate values ofZ, the rewiring mechanism enhances the formation
of disconnected cultural clusters for values of the initial cultural diversity q which
present globalization in non-evolving networks. Further, for low valuesof Z, al-
though clusters are present in transitory states, rewiring promotes cultural spreading
between clusters for large enough values ofq, and monocultural phase is recovered.





Chapter 7

Residential segregation and
cultural dissemination: An
Axelrod-Schelling model.

In the Axelrod’s model of cultural dissemination, we consider mobility of cultural
agents through the introduction of a density of empty sites and the possibility that
agents in a dissimilar neighborhood can move to them if their mean cultural simi-
larity with the neighborhood is below some threshold. While for low values of the
density of empty sites the mobility enhances the convergence to a global culture, for
high enough values of it the dynamics can lead to the coexistence of disconnected
domains of different cultures. In this regime, the increase of initial culturaldiversity
paradoxically increases the convergence to a dominant culture. Furtherincrease of
diversity leads to fragmentation of the dominant culture into domains, foreverchang-
ing in shape and number, as an effect of the never ending eroding activity of cultural
minorities.

7.1 Introduction

The use of agent-based models (ABM) [156] in the study of social phenomena pro-
vides useful insights about the fundamental causal mechanisms at work insocial
systems. The large-scale (macroscopic) effects of simple forms of (microscopic) so-
cial interaction are very often surprising and generally hard to anticipate,as vividly
demonstrated by one of the earliest examples of ABM, the Schelling [52, 53]model
of urban segregation, that shows how residential segregation can emerge from indi-
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vidual choices, even if people have fairly tolerant preferences regarding the share of
like persons in a residential neighborhood.

To gain insights on the question of why cultural differences between individu-
als and groups persist despite tendencies to become more alike as a consequence of
social interactions, Axelrod [59] proposed an ABM for the dissemination of culture,
that has subsequently played a prominent role in the investigation of culturaldynam-
ics. Questions concerning the establishment, spread and sustainability of cultures, as
well as on the “pros and cons” of cultural globalization versus the preservation and
coexistence of cultural diversity, are of central importance both from afundamental
and practical point of view in today’s world.

The Axelrod model implements the idea that social influence is “homophilic”,
i.e. the likelihood that a cultural feature will spread from an individual to another
depends on how many other features they may have already in common[59]. The
resulting dynamics converges to a global monocultural macroscopic state when the
initial cultural diversity is below a critical value, while above it homophilic so-
cial influence is unable to inforce cultural homogeneity, and multicultural patterns
persist asymptotically. This change of macroscopic behavior has been character-
ized [141, 142, 143, 144] as a non-equilibrium phase transition. Subsequent studies
have analyzed the effects on this transition of different lattice or network structures
[145, 146], the presence of different types of noise (“cultural drift”) [147, 148], as
well as the consideration of external fields (influential media, or informationfeed-
back) [149, 150] and global or local non-uniform couplings [151].Along with other
models of social dynamics (ase.g., models of opinion formation [153, 154], rumor
spreading [155], etc) cultural dynamics are of interest in the field of non-equilibrium
phase transitions in lattice models, as other stochastic spatial models motivated by
population dynamics or evolutionary biology [80]. Up to now, no investigationof
the effects of agent mobility on cultural transmission has been carried out, with the
exception of [157], where individuals move following the gradient of a “sugar” land-
scape (that they consume) and interact culturally with agents in their neighborhood,
i.e., mobility is not culturally driven.

In this chapter we incorporate into the Axelrod dynamics of cultural transmission
the possibility that agents living in a culturally dissimilar environment can move to
other available places, much in the spirit of the Schelling model of residential seg-
regation. This requires the introduction of a density of empty sitesh in the discrete
space (lattice) where agents live. As anticipated by [157] the expectationsare that
the agents mobility should enhance the convergence to cultural globalization, inthe
extent that it acts as a sort of global coupling between agents. It turns out that these
expectations are clearly confirmed when the densityh of empty sites is low enough
so that the set of occupied sites percolates the lattice: The transition value depends



The model 129

linearly with the number of agents, so that in an infinite system (thermodynamical
limit) only global cultural states are possible. However, for large enough values of
h, new phenomena appear associated to this mixed Axelrod-Schelling social dynam-
ics, including a new multicultural fragmented phase at very low values of the initial
cultural diversity, a (seemingly first order) transition to cultural globalization that is
triggered by mobility, and the fragmentation of the dominant culture into separated
domains that change continuously as the result of erosive processes caused by the
mobility of cultural minorities.

7.2 The model

In the Axelrod model of cultural dissemination, a culture is modelled as a vectorof
F integer variables{σf} (f = 1, ..., F ), called culturalfeatures, that can assumeq
values,σf = 0, 1, ...q−1, the possibletraits allowed per feature. At each elementary
dynamical step, the culture{σf (i)} of an individuali randomly chosen is allowed to
change (social influence) by imitation of an uncommon feature’s trait of a randomly
chosen neighborj, with a probability proportional to the cultural overlapωij between
both agents, defined as the proportion of shared cultural features,

ωij =
1

F

F
∑

f=1

δσf (i),σf (j), (7.1)

whereδx,y stands for the Kronecker’s delta which is 1 ifx = y and 0 otherwise. Note
that in the Axelrod dynamics the mean cultural overlapω̄i of an agenti with its ki
neighbors, defined as

ω̄i =
1

ki

ki
∑

j=1

ωij , (7.2)

not always increases after an interaction takes place with a neighboring agent: indeed,
it will decrease if the feature whose trait has been changed was previously shared with
at least two other neighbors.

To incorporate the mobility of cultural agents into the Axelrod model, two new
parameters are introduced, say the density of empty sitesh, and a thresholdT (0 ≤
T ≤ 1), that can be calledintolerance. After each elementary step of the Axelrod
dynamics, we perform the following action: If imitation has not occurred andωij 6=
1, we compute the mean overlap (7.2) and ifω̄i < T , then the agenti moves to an
empty site that is randomly chosen. Finally, in the event that the agenti randomly
chosen is isolated (only empty sites in its neighborhood), then it moves directly toan
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empty site. Note, additionally, that in the presence of a density of empty sites, the
sum in equation (7.2) runs over neighboring agents, and not on neighboring sites, so
thatki can take on the values0, 1, . . .4 for a square lattice geometry.

We define the mobilitymi of an agenti as the probability that it moves in one
elementary dynamical step (provided it has been chosen):

mi = (1− ω̄i) Θ(T − ω̄i) , (7.3)

whereΘ(x) is the Heaviside step function, that takes the value 1 ifx > 0, and 0 if
x ≤ 0. For an isolated agent, that moves with certainty, one may convene that its
mean cultural overlap is zero, so that expression (7.3) applies as well. The average
mobility m of a configuration is the average of the mobility of the agents:

m =
1

N

N
∑

i=1

mi , (7.4)

whereN is the total number of cultural agents. We will consider below two-dimensional
square lattices of linear sizeL, so thatN = (1−h)L2, periodic boundary conditions,
and von Neumann neighborhoods, so that the numberki of neighbors of an agenti
is 0 ≤ ki ≤ 4. We fix the number of cultural features toF = 10, and vary the
parametersq, h andT , as well as the linear sizeL of the lattice. As it happens also
for the genuine (i.e., without mobility) Axelrod model, no qualitative differences ap-
pear for different values ofF ≥ 3, the only difference being that larger values ofF

make it easier the convergence to cultural globalization. One can easily realize that
the probability that the overlap between two randomly chosen cultures, sayi andj, is
positiveP (ωij > 0) = 1− ((q − 1)/q)F , is an increasing function of the parameter
F .

Note that forF = 1, no matter how largeq ≥ 2 is, the overlapωij is either0
or 1 so that there is no chance for cultural interaction (imitation). In this limit case
each agent keeps forever its own initial culture, and the size of each culture is fixed
by the initial conditions (no cultural evolution). In this case the model effectively
reduces to a version (one among the many possible variants) of the Schellingmodel
of urban segregation. Specifically, it becomes a Schelling model with myopic long
range move. Some recent papers in the physics literature on the Schelling model
are [158, 159, 160, 161]. See also [162] for some critical comments on the physical
perspective of the Schelling model.
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Figure 7.1: Order parameter〈Smax〉/N versus scaled initial cultural diversityq/N for a very
small density of empty sitesh = 0.05 and different values of the intoleranceT = 0.3, 0.7,
and of the lattice linear sizeL = 20, 30, 40, as indicated in the inset.

7.3 Results and Discussion

For the initial conditions for the cultural dynamics,N cultural agents are randomly
distributed in theL × L sites of the square lattice, and randomly assigned a culture.
The simulation is stopped when the numberna of active links (i.e., links such that
0 < ωij < 1) vanishes. The results shown below are obtained by averaging over a
large number (typically5 · 102 − 104) of different initial conditions.

The usual order parameter for the Axelrod model is〈Smax〉/N , where〈Smax〉 is
the average number of agents of the dominant (most abundant) culture. Large values
(close to unity) of the order parameter are the signature of cultural globalization. In
Fig. 7.1, we plot the order parameter versus the initial cultural diversity scaled to the
population size,q/N , for a small value of the density of empty sitesh = 0.05, and
different values of the intoleranceT and of the linear sizeL. We observe the collapse
in a single curve of the graphs corresponding to different lattice sizes and, moreover,
that the results are rather insensitive to the intolerance values. Figure 7.2 represents
the cultural distribution in both states: ordered phase for low values ofq/N , and
disordered phase for high values ofq/N .

For a fixed value of the initial cultural diversityq, the larger the sizeN of the
population is, the more likely an agent can share a cultural feature with someone else
in the population. Hence, as mobility allows contacts with virtually anybody, the
increase of the population size enhances the tendency towards cultural globalization,
and the monocultural (ordered) phase extends up to higher values of theparameter
q. The critical valueqc of the transition between consensus and a disordered multi-
cultural phase diverges with the system sizeqc ∼ N , so that in the thermodynamical
limit only global cultural states are possible for a small densityh of empty sites.
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Figure 7.2: Cultural distribution when the density of emptysites is below their percolation
threshold: The system is characterized by two phases as in the original Axelrod Model: A
monocultural phase for low values of initial cultural diversity q/N (left chart, q/N=0.1) and
a multicultural phase for high values of q/N (right chart, q/N=5). The center chart (q/N=1)
represents an anomalous state that is present only in some realizations. Each color represents
the cultural group that owns the node. Empty cells are represented in black. Here has been
taken L=30, h=0.05 and T=0.8.

Figure 7.3: Cultural distribution for a empty sites densityabove their percolation threshold.
A new multicultural fragmented phase appears for very low values of the initial cultural
diversity (left chart, q/N=0.1), in adition to the two phases of original Axelrod Model (the
ordered phase of center chart for q/N=1 and the disordered phase of right chart for q/N=5).
Here has been taken L=30, h=0.45 and T=0.8. Colors representthe cultural groups and black
sites the empty cells.
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Figure 7.4: Order parameter〈Smax〉/N versus scaled initial cultural diversityq/N for an
intermediate value of the density of empty sitesh = 0.5. Panel (a) corresponds to a high
value of the intoleranceT = 0.7, and different lattice linear sizesL = 20, 30, 40, 50, while
in panel (b)L = 40, and different values of the intoleranceT = 0.2, 0.4, 0.7, 0.9 are used.
See the text for further details.
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Figure 7.5: Order parameter〈Smax〉/N versus densityh of empty sites, for three different
values of the scaled initial cultural diversityq/N = 0.5, 1.1, 4.0, T = 0.7, and linear lattice
sizeL = 30.

We will focuss hereafter on larger values of the densityh of empty sites, a regime
where the cultural dynamics shows strikingly different features. At very low values
of the initial cultural diversityq (so that cultural convergence is strongly favored), the
asymptotic states are characterized by low values of the order parameter〈Smax〉/N .
The reason for the absence of cultural globalization in this regime is the existence of
disconnected monocultural domains, a fact that requires values of the density 1 − h

of cultural agents at least close to (or below) the site percolation thresholdvalue for
the square lattice (0.593). In Fig. 7.5 we plot the order parameter versus the den-
sity h of empty sites, for three different values ofq/N , intoleranceT = 0.7, and
linear lattice sizeL = 30. For the largest value ofq/N = 4.0 corresponding to
the culturally disordered regime, the order parameter is rather insensitive tothe h

values. This is also the case forq/N = 1.1, a value representative of the cultural
globalization regime. However, for the lowest value ofq/N = 0.5, we observe the
decrease of the order parameter when1− h takes on values close to the site percola-
tion threshold, signaling the appearance of the fragmented multicultural regime. This
new kind of macroscopic multicultural state is thus of a very different naturefrom
the “genuine” multicultural phase of the original Axelrod model (h = 0). Though
cultural convergence is locally achieved inside each geometrical cluster,the absence
of contacts between clusters makes impossible the existence of globalization. The
values of the order parameter in thisfragmentedphase, represented in Fig. 7.4a as a
function ofq/N with h = 0.5 andT = 0.7 and for several values ofL, decrease with
increasing lattice size, and the expectation is that the order parameter vanishes in the
thermodynamical limit, because the largest cluster size below percolation should be
independent of the lattice size. Left chart of figure 7.3 shows the cultural distribution
of this new multicultural fragmented phase, next to the phases of original Axelrod
Model.
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Figure 7.6: Histograms of the values ofSmax/N , nearby the transition from the fragmented
multicultural phase to globalization, for9. × 103 realizations at (from left to right and top
to bottom)q = 100, 150, 250, 400, for L = 30, h = 0.5, andT = 0.7. The histograms
display the characteristic behavior of a discontinuous (first order) phase transition.

The increase inq from the very small values that correspond to the fragmented
multicultural phase has the seemingly paradoxical effect of increasing theorder pa-
rameter〈Smax〉/N values,i.e., the increase of the initial cultural disorder promotes
cultural globalization. To understand this peculiar behavior, one must consider the
effect of the increase ofq in the initial mobility of the agents. One expects that the
higher the value ofq is, the lower the initial values of the cultural overlapωij among
agents are, and then the higher the initial mobility of agents should be. Under condi-
tions of high mobility, the processes of local cultural convergence are slower than the
typical time scales for mobility, so that the agents can easily move before full local
consensus can be achieved, propagating their common features, and enhancing the
social influence among different clusters. In other words, the attainmentof different
local consensus in disconnected domains is much less likely to occur, and one should
expect the coarsening of a dominant culture domain that reaches a highersize.

A straightforward prediction of this argument is that one should observe higher
values of〈Smax〉/N for higher values of the intoleranceT , because agents mobility is
an increasing function of this parameter (see eq. (7.3)). The numerical results shown
in Fig. 7.4b for different values ofT andh = 0.5 nicely confirm this prediction,
in support of the consistency of the previous argument. Interestingly, for very low
values ofT when mobility is not enhanced, multiculturalism prevails for the whole
range ofq values. On the contrary, for high values of the intoleranceT , an almost full
degree of cultural globalization is reached, as indicated by the values〈Smax〉/N ≃ 1

of the order parameter. In those final states almost all agents belong to a single
connected monocultural cluster. One should also note that, for fixed values of the
intoleranceT and the densityh of empty sites, the previous argument indicates that
the relevant variable for this transition is the initial cultural diversityq, and notq/N ,
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Figure 7.7: Average mobilitym versus timet for h = 0.5, L = 30, T = 0.7 and different
values of the scaled initial culture diversityq/N as indicated. Unlike the other figures, in this
case each curve represents the results of a single realization. See the text for further details.

so that the interval of values ofq/N that corresponds to the multicultural fragmented
phase shrinks for increasingN values.

To characterize the passage from the multicultural fragmented phase to global
consensus with increasing initial cultural diversity, we have computed the histograms
of the values ofSmax/N at values ofq where the order parameter increases, see Fig.
7.6. The histograms display the bimodal characteristics of a first-order transition. In a
fraction of realizations, the transient mobility is able to spread social influence among
the clusters so that global consensus is finally reached. This fraction increases with
q, to the expense of the fraction of realizations where fragmented multiculturalityis
reached. Note that no significant change of shape and position of the correspond-
ing part of the histogram is noticeable, apart from its progressive reduction to lower
volumes, whenq increases.

Further increase of the initial cultural diversityq enhances the likelihood of agents
sharing no cultural feature with anybody else in the finite population. The presence
of these culturally “alien” agents decreases the value of the order parameter and the
increase of their number withq is concomitant with the transition to multiculturality
in the original Axelrod model (as well as here, for finite populations). We see in
Fig. 7.4b that the increase of the intolerance parameterT shifts this transition to
higher values ofq/N , in agreement with the enhancement of the convergence to
globalization thatT produces via mobility, as discussed above. Each alien agent has,
at all times, a mobilitymi = 1, and the average mobility cannot decrease in time
to zero value when they appear. In other words, the asymptotic states of thecultural
dynamics are no longer characterized bym = 0. The time evolution of the average
mobility m for particular realizations ath = 0.5, T = 0.7, L = 30 and different
values ofq/N is shown in Fig 7.7. The value ofq/N beyond which the stationary
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Figure 7.8: Cultural minorities continuously erode the dominant culture domain, that breaks
into separate domains and isolated individuals. As a quantitative measure of this erosion
phenomenon we plot here the stationary value of the averagedfractionnD

0 /Smax of isolated
individuals of the dominant culture versusq/N , for h = 0.5, T = 0.7, andL = 30. The inset
shows an illustrative configuration where erosion can take place.

average mobility is larger than zero signals the appearance of these alien cultural
agents.

In addition, the restless character of the alien agents has an important effect on
the geometry of the dominant culture, namely itserosion. As an illustrative example,
let us consider the situation represented in the inset of Fig. 7.8, in which an agenti
of the dominant culture is placed at the frontier of a cluster, having a single neighbor
of his kind, and assume that an alien agentj has moved recently to one of the empty
neighboring sites ofi. When agenti is chosen for an elementary dynamical step,
there is a probability1/2 of choosing agentj for an imitation trial. Asωij = 0,
and thenω̄i = 1/2, the agenti will move from there to a randomly chosen empty
site whenever the intolerance parameter isT > 1/2. We see that, for this particular
situation, the erosion of the dominant culture cluster will occur with probability one
half.

Note that the erosion of the dominant culture cluster does not change the size
Smax of the dominant culture. It simply breaks it up into separate domains, some of
them consisting of single (isolated) individuals. These isolated members of thedom-
inant culture will eventually adhere to domains, to be at a later time again exposed
to erosion, and so on. Therefore the shape and number of domains of thedominant
culture (as well as that of the other ones), fluctuate forever. The number nD

0 of iso-
lated dominant culture agents reaches a stationary value that results from the balance
between erosive and adhesive processes. To quantify the strength of the eroding ac-
tivity of cultural minorities we show in Fig. 7.8 the stationary value of the averaged

fraction〈 nD
0

Smax
〉 of isolated individuals of the dominant culture versus the scaled ini-
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Figure 7.9: Order parameterSmax/N versus intolerance T, for differents values of h, q/N=1.1
and L=30. The shape corresponds to discrete and continuous aspects of the algorithm. Results
have been averaged for103 different initial conditions. See the text for further details.

tial cultural diversity, forh = 0.5, T = 0.7, andL = 30. Soon after the transition
from the fragmented multicultural phase to globalization occurs, erosion increases
dramatically, largely contributing to the large values of the stationary mobilitym that
characterize the multicultural states in the model here introduced.

Figure 7.9 shows the order parameterSmax/N versus intolerance T, for a scaled
diversity initial q/N = 1.1 and different densities of empty sites h. This value of
q/N is high enough to avoid cultural globalization in the Axelrod limit, but low
enough to allow the overlap. There exists a threshold of intoleranceTc, below which
the order parameter isSmax/N ≈ 0. If T < Tc the mobility is low and can not
promote cultural convergence. Although empty sites enhance mobility, paradoxically
it is found thatTc increases with h. The explanation for this phenomenon is that
the influence of h on the mobility is small, but the increase of h implies a decrease
of N, therefore also a decrease of q ifq/N had been fixed. This in turn implies a
increase of mean overlapωi, a decrease of mobilitymi and finally the incerase ofTc

as observed. For low values of h, ifT > Tc the order parameter is foundSmax/N ≈
1, that is, above a critical value of mobility the system reaches monocultural state.
By contrast, when h is high enough to allow the formation of site clusters, it canbe
seen a discontinuous behavior: Now a node can havem = 0, 1, 2, 3 or 4 neighbors,
andSmax(T ) presents steps forT = n/m.
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7.4 Theorical analysis

Let i be a node of dominant culture D, andκ its number of links to his cultural
domain. If i has an allien neighbor of culture O, every time step the probabilityPsu

for i to stay unchanged, ie, to preserve his features and rest in D-group is:

Psu =
k + (1− ωDO)H(k+ωDO

k+1 − T )

k + 1
, (7.5)

where H represents the Heaviside function. The probabilityPsc for i to change, that
is, to leave the group D is:

Psc =
ωDO

k + 1
, (7.6)

and the probabilityPsu for i to move is:

Pm =
1− ωDO

k + 1
H(T − k − ωDO

k + 1
) , (7.7)

From now on, we deal with stationary state, and therefore we takeωDO = 0.

In order to calculate an estimate ofnD
0 , we consider:

nu: number of D-agents exposed to real erosion, ie, having an allien-neighbour they
belong to a D-cluster with at least three elements.nu is the sum of nodes like that,
with κ links to D-agents:
nu =

∑3
κ=1 n

u(κ).
nu
2 : D-agents exposed to erosion that belong to a 2-agents domain.

nE : number of empty sites adjacent to a D-domain.
HD

0 : number of empty sites adjacent to isolated D-agents.

We take into account the useful time step, ie, we only consider a step when a
event occurs. That only implies a time translation and does not affect fixedpoints.
We study the most likely events of erosion and adhesion:

• a1: Simple adhesion event:nD
0 → nD

0 − 1 , ∆Nu ≥ 0 ,

• e1: Simple erosion event:nD
0 → nD

0 + 1 , ∆Nu = −1 ,

• a2: Double adhesion event:nD
0 → nD

0 − 2 ,

• e2: Double erosion event:nD
0 → nD

0 + 2 ,
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and, their respectives probabilities are:

P (a1) =
nD
0 n

E

hL2(n0 + nD
0 + nu)

,

P (e1) =
(

1− nE

hL2

) 1

n0 + nD
0 + nu

3
∑

κ=1

nU (κ)
1

κ+ 1
H
(

T − κ

κ+ 1

)

,

P (a2) ≃ nD
0

n0 + nD
0 + nu

HD
0

hL2
,

P (e1) =
(

1− nE

hL2

)nU
2

1
2H(T − 1

2)

n0 + nD
0 + nu

.

(7.8)

A necessary condition for equilibrium is:

P (a1) + 2P (a2) = P (e1) + 2P (e2)

(7.9)

Therefore, under this assumptions (we are not taking into account all possible
events), we can replace 7.8 in 7.9 to estimatenD

0 :

T < 1/2 : nD
0 = 0 ,

1/2 ≤ T < 2/3 : nD
0 =

(hL2 − ne −HD
0
)(nu(1) + nu

2
)

2(nE +HD
0
)

,

2/3 ≤ T < 3/4 : nD
0 =

(hL2 − ne −HD
0
)( 1

2
nu(1) + 1

3
nu(2) + 1

2
nu
2

nE +HD
0

,

T ≥ 3/4 : nD
0 =

(hL2 − ne −HD
0
)( 1

2
nu(1) + 1

3
nu(2) + 1

4
nu(3) + 1

2
nu
2

nE +HD
0

(7.10)

Figure 7.10 shows the comparison between theorical estimate for the isolated
dominant culture agentsnD

0 and experimental results. As one can see, although the-
ory underestimates the value of isolated agents, adjustment is quite good. Theex-
planation for this deviation is that we have ignored some kinds of events. However,
nD
0 estimate is rooted not only in system parameters, but also in other observables

related to the spatial distribution (perimeter, location of aliens), so that ratherthan a
prediction is a check of the analytical method.
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Figure 7.10: Isolated dominant culture agentsnD
0 versus the scaled initial cultural diversity

q/N , for T=0.8, h=0.3 and L=30. Circles represent simulation results for104 realizations,
and lines theorical estimation.

7.5 Conclusions

We have introduced a model of cultural dynamics in which agents can move driven
by cultural dissimilarities with their environments, at the style of the Schelling model
of urban segregation. The introduction of agents mobility through this segregation
mechanism into the Axelrod cultural dynamics leads to an enhancement of the con-
vergence to cultural globalization for small densities of empty sites, so that thebe-
havior of the order parameter (i.e., the relative size of the dominant culture)scales
with the numberN of cultural agents. That is, the transition to multiculturalism only
occurs for finite populations.

Furthermore, for larger densities of empty sites, when cultural agents cannot per-
colate the lattice, a new type of multicultural fragmented phase appears at low values
of the initial cultural diversityq. Though the initial cultural overlap is enough to trig-
ger the local cultural convergence inside each geometrical cluster of agents, cultural
globalization is no longer possible due to the lack of cultural transmission between
monocultural isolated domains. Provided the values of the intoleranceT are high
enough, this regime is followed by a new transition to globalization for increasing
values ofq, that is triggered by the increase in the initial mobility. Moreover, in the
genuine Axelrod transition from global consensus to polarization, the shape and num-
ber of cultural domains are here dynamically fluctuating by the competitive balance
of erosive and adhesive processes associated to the agents mobility.





Chapter 8

Selective advantage of tolerant
cultural traits in the
Axelrod-Schelling model.

In the previous chapter 7 we introduced the Axelrod-Schelling model, that incorpo-
rates into the original Axelrod’s model of cultural dissemination the possibility that
cultural agents placed in culturally dissimilar environments move to other places,the
strength of this mobility being controlled by an intolerance parameter. By allowing
heterogeneity in the intolerance of cultural agents, and considering it as acultural
feature,i.e., susceptible of cultural transmission (thus breaking the original symme-
try of Axelrod-Schelling dynamics), we address here the question of whether tolerant
or intolerant traits are more likely to become dominant in the long term cultural dy-
namics. Our results show that tolerant traits possess a clear selective advantage in
the framework of the Axelrod-Schelling model. We show that the reason forthis
selective advantage is the development, as time evolves, of a positive correlation be-
tween the number of neighbors that an agent has in its environment and its tolerant
character.

8.1 Introduction

In the Axelrod-Schelling model introduced in chapter 7, we focused on mobility, con-
sidering the driving force of mobility is the agents’ cultural dissimilarity with their
environment,i.e., homophile (dis)satisfaction, the same that drives cultural transmis-
sion. Starting from the Axelrod model for culture dissemination and the residential
segregation model of Schelling, two new parameters where introduced, namely the
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densityh of empty lattice sites (places that are available to moving agents), and an
intolerance parameterT that controls the strength of the mobility: If an attempt to
cultural interaction (imitation) fails, then the agenti moves to a randomly chosen
empty lattice site if its mean cultural similaritȳωi < T . T here is a threshold for
tolerance, in such a way that high values ofT characterize intolerant societies.

In this chapter, we extend the Axelrod-Schelling model by considering intoler-
anceT as a cultural feature, and then it is no longer a parameter (a property of the
whole population) but an individual property of agents subjected to cultural transmis-
sion. Due to its influence on the dynamics through the rule of mobility, the question
of whether or not certain traits of this feature are more likely to be present inthe
dominant culture makes sense, contrary to what occurs with the rest of cultural fea-
tures, whose particular traits do not influence the dynamics, and are thus selectively
neutral.

We have performed extensive numerical simulations that implement different
rules for the mobility of agents, whose results show unambiguously that tolerant
traits possess a selective advantage over intolerant ones,i.e., they are better adapted
for survival in the long term dynamics. Furthermore, by a stochastic analysis we
present arguments showing that the reason of this cultural evolutionary success of
tolerant traits is the establishment in the population of a negative correlation between
the numberki of neighboring agents, and the valueTi of the agent intolerance. This
is presented in section 8.3. Before, in section 8.2, we reconsider the transition be-
tween fragmented multiculturalism and globalization, first analyzed in chapter 7, by
using an alternative scheme for mobility with homogeneous intolerance. This new
scheme corresponds to the homogeneous version of one of the rules of mobility used
in section 8.3 (mobility by social rejection), so that this helps in the interpretation of
some of these results, and at the same time, it throws a new light on the understanding
of the mechanisms triggering this transition. Finally, we summarize our results in the
concluding chapter 10.

8.2 The transition from fragmented multiculturalism to glob-
alization revisited

One of the new phenomena that appear associated to the mixed Axelrod-Schelling
social dynamics is the existence, for values of the density(1 − h) of agents below
the lattice percolation threshold, of a multicultural macroscopic phase at verylow
values of the initial cultural diversityq. In this regime, the processes of local cultural
convergence are faster that the typical time scales at which mobility is able to induce
global convergence to a monocultural state. In this multicultural state agents are ag-
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gregated into disconnected (monocultural) clusters where different cultural consensus
have been achieved. Hence the namefragmentedfor this multicultural phase.

If the value ofq is increased (see figure 1a), the behavior for the order parameter
〈Smax〉/N , becomes rather sensitive to the value of the intolerance parameterT : For
very low values ofT multiculturalism persists, while for very high values, a first
order transition to complete globalization is observed. At intermediate values ofT ,
the order parameter increases versusq but complete globalization is not reached.
The observation that the increase of the initial cultural diversity promotes cultural
globalization may seem paradoxical at a first sight, but it is not difficult to rationalize
it by noting that an increase inq has also the effect of enhancing mobility, which is
in turn an important driving force towards globalization. Moreover, insofar as higher
values ofT enhance agents’ mobility, the different behaviors that are observed for
different values of the intolerance are consistent with this interpretation.

To deepen further our current understanding of the complex competing effects of
different parameter variations that lead to the transitionfragmented multiculturalism-
globalization, we study here this transition in a different scheme for the mobility of
cultural agents. We remind here that in the original scheme of chapter 7, after an
elementary step of the Axelrod dynamics, if imitation has not occurred andωij 6= 1,
the agenti moves to a randomly chosen empty site wheneverω̄i < T . If the agent
i turns out to be isolated, then it moves with certainty. We refer hereafter to this
scheme as A. The mobilitymi of an agenti is defined as the probability that it moves
in one elementary dynamical step (provided it has been chosen). Thus in the scheme
A:

mA
i = (1− ω̄i) Θ(T − ω̄i) , (8.1)

whereΘ(x) is the Heaviside step function, that takes the value 1 ifx > 0, and 0 if
x ≤ 0.

In the new scheme, hereafter referred to as B, after an elementary step of the
Axelrod dynamics, if imitation has not occurred andωij 6= 1, the agenti moves to
a randomly chosen empty site with probability(1 − ω̄i) T . In the case that agenti
is isolated, then it moves with certainty, as in the previous scheme. The mobility of
agenti in the scheme B is thus given by

mB
i = (1− ω̄i)

2 T . (8.2)

As shown in the figure 8.2, in both schemes the mobility is a decreasing function
of ω̄. However in the scheme A the mobility vanishes in the intervalω̄ > T (being
independent onT for ω̄ < T ), while it does not vanish in the scheme B, provided
ω̄ 6= 1 (andT > 0), though it takes lower values than in the scheme A forω̄ < T

where it depends linearly onT .
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Figure 8.1: Order parameter〈Smax〉/N versus scaled initial cultural diversityq/N for a
density of empty sitesh = 0.5 and lattice linear sizeL = 40. Panel (a) corresponds to
scheme A for different values of the intolerance parameter.Panel (b) corresponds to scheme
B. See the text for further details.
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Figure 8.2: Mobilitymi for a nodei as a function of his mean overlap̄ωi in schemes A and
B. In the scheme A the mobility vanishes forω̄ > T . Otherwise, whenever̄ω 6= 1 andT > 0,
it does not vanish in the scheme B.

In figure 8.1(b) we plot the order parameter versus the scaled initial cultural di-
versity q/N for h = 0.5 and different values of the intoleranceT , for the scheme
B and a two-dimensional square lattice geometry. In contrast with the results for the
scheme A (shown in figure 8.1(a)), the behavior of the order parameter turns out to be
rather insensitive to the values of the intoleranceT , and the transition from the frag-
mented multicultural phase to globalization takes place for all the values ofT that we
have used. How to fit these observations into the interpretation framework given in
chapter 7 (succintly reproduced above in a previous paragraph) forthe transition?

To have a better picture of the speed at which the processes of cultural conver-
gence take place and what parameters are more influential on them, we haveinspected
the time evolution of the histograms ofω̄, namelyP (ω̄, t), at values of the initial cul-
tural diversity close (below and above) to the transition. In all cases andfor both
schemes, this probability density evolves always from being sharply concentrated
nearω̄ = 0 at t = 0, to become later widespread, the centroid shifting to progres-
sively higher values of̄ω as time goes by, until it concentrates nearω̄ = 1, finally
becoming a Dirac delta functionδ(ω̄ − 1). The time scale at which this evolution
occurs seems not to be influenced by the scheme (A or B) adopted and the influence
of the value ofT is also minor. The important parameter that mainly determines the
time scale of local cultural convergence is the initial cultural diversityq: The lower
its value the faster this process takes place. Then, what makes a truly meaningful
difference between, on one side, both scheme A at highT values and scheme B at all
T values and, on the other side, scheme A at lowT values (where the transition to
globalization is absent), is that agents with high cultural overlap do not move inthe
latter.
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These results throw a new light over the mechanisms that trigger the transition
from the fragmented multicultural phase to cultural globalization. The increase of
the initial cultural diversity slows down the local cultural convergence, giving then
a chance to mobility to induce global cultural consensus. But it is the mobility of
agents with a significant high local cultural overlap (however small its mobility could
be, as it is the case for the scheme B at lowT values), and not just the amount of over-
all mobility, what allows the effective cultural transmission among the disconnected
clusters of the fragmented states so making possible the coalescence of the giant
monocultural cluster characteristic of the globalization state. If mobility is strictly
limited to culturally marginal agents, its power of cultural transmission is unable to
overcome the fragmentation into disconnected cultural clusters.

8.3 Heterogeneous intolerance.

As we have already mentioned in the introductory section, the mobility of cultural
agents in the Axelrod-Schelling model is driven by the same utility (or social driv-
ing force) that underlies the cultural dynamics of the Axelrod model (as well as the
dynamics of the Schelling model), namely “homophile satisfaction”. In the model,
those agents that are placed inside fully homogeneous cultural environments don’t
move. Cultural dissimilarities are the only source of mobility, and the parameterT ,
that controls the strength of mobility, quantifies the degree of (in)tolerance tocultural
dissimilarities. Being a model parameter, tolerance is a quantity characteristic ofthe
whole (artificial) society. In other words, in this context one can speak oftolerant
(low value ofT ) or intolerant societies. However, it seems to us rather natural to
consider (artificial) societies where different agents have different degrees of toler-
ance to cultural dissimilarities. This certainly opens the possibility of new interesting
questions to be investigated inside the model.

In what follows, we consider that each cultural agenti has assigned a real number
0 ≤ Ti ≤ 1, called intolerance. Moreover, we are going to consider the intolerance of
agents as a quantity associated to acultural feature, i.e. a component of the cultural
vector, and then subjected to temporal changes as a result of cultural interactions.
Without loss of generality, one can associate the agents’ intolerance to the first com-
ponentσ1 of the cultural vector{σf}. As this variable takes on integer (0, 1, ..., q−1)
values, one has to choose some functionf(x) that takes values in the interval[0, 1],
and define the intoleranceTi of agenti to be

Ti = f(σ1(i)) . (8.3)

Next we have to specify the particular way in which the agents’ intolerancesenter
into the dynamical rules. Many alternatives can indeed be considered forit, and our
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first choice will be the following: After an elementary step of the Axelrod dynamics,
if imitation has not occurred andωij 6= 1, the agenti moves to a randomly chosen
empty site with probability

1

ki

ki
∑

j=1

(1− ωij)Tj , (8.4)

where the sum extends to theki neighbors ofi, and if the agenti is isolated (ki = 0)
it moves with certainty. In this choice, the intolerancethetaj of a cultural agentj
is seen as its degree of hostility towards a culturally dissimilar neighbori, and is
weighted by the cultural dissimilarity(1 − ωij). The mobility of an agenti is here
the result of thesocial rejectionof its neighbors, due to cultural dissimilarities.

The Axelrod-Schelling model with homogeneous tolerance, as the original Ax-
elrod’s model does, assumes an unbiased scenario in the sense that the traits of a
cultural feature are completely interchangeable: Nothing in the dynamical rules dis-
tinguishes among different traits, and then the likelihood that each particulartrait is
present in the dominant culture of a realization is the same for all of them, provided
they are uniformly distributed in the initial conditions for the dynamics. The particu-
lar traits that survive in the dominant culture of a given realization reach fixation by
neutral selection, so that averaging over many independent realizations, one obtains
a uniform distribution of traits in a large enough sample of dominant cultures.

However this symmetry of the model is broken in our current case of heteroge-
neous intolerance regarding the cultural featureσ1, for its particular values do influ-
ence the local dynamics through the dynamical rule of mobility. Then, the question
of how likely are different traits to prevail and be present in the dominant culture
makes now sense in this new symmetry-breaking scenario. Do tolerant traits possess
a cultural selective advantage? or, on the contrary, are intolerant traitsbetter adapted
to survive? Moreover, by which dynamical mechanisms the “natural” selection of
particularT values is built up in the time evolution of the populations of cultural
agents?

Note that if one takes forf(x) in equation (8.3) a constant function, so thatTi =

T independent ofi, one recovers the scheme B introduced in the previous section
8.2. In the extent that the behavior of the order parameter〈Smax〉/N (for a density
of empty sitesh = 0.5) in scheme B was seen to be rather insensitive to the value of
T , one should expect in the present case of heterogeneous intolerance, that the order
parameter for a density of empty sitesh = 0.5 will be as shown in figure 8.1(b). Thus
the choice made above in equation (8.4) is technically convenient for the purpose of
investigating the question on the selective advantage of tolerant traits, just because it
is expected that it leads to states of cultural globalization in some ranges of theinitial
cultural diversity, when the very term “dominant culture” is most meaningful.
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We consider two-dimensional square lattices of linear sizeL, with periodic bound-
ary conditions. The numberF of cultural features is fixed toF = 10, and we have
used two values of the density of empty sites, namelyh = 0.05, representative of the
situation in which agents percolate the lattice, andh = 0.5 as representative of the
opposite case. Forf(x) we will consider a simple linear function:

Ti = q−1σ1(i) . (8.5)

For the initial conditions,N = (1−h)L2 agents are randomly distributed on theL×L

lattice sites and randomly assigned a culture. The simulation of the cultural dynamics
is stopped when the number of links for which0 < ωij < 1, commonly called
active links, vanishes. Besides the order parameter, we compute the intoleranceTD

of the dominant culture, the average intolerance〈T 〉, and sometimes, the histogram
of intolerance values of the final state. The results that we show below areobtained
by averaging over a large number (typically103− 104) of different initial conditions.

In the two panels of Figure 8.3 we show our numerical results forh = 0.05 (panel
a) andh = 0.5 (panel b). First, we confirm the expectations on the behavior of the
order parameter discussed above: Given the insensitive character ofthe order param-
eter in the scheme B to the value of the intolerance parameterT for both values ofh,
no effect on〈Smax〉/N due to the heterogeneity of agents’ intolerance is observed.

The numerical results for the intolerance valuesTD of the dominant culture for
both values of the density of empty sites clearly show that very tolerant traits are
better adapted to survive and become a part of the dominant culture. This occurs in
the whole range of values of the initial cultural diversity that leads to valuesof the
order parameter much larger thanN−1 (so as the term dominant possess a meaning).
By comparing the graphs ofTD shown in Figs. 8.3a and 8.3b, we observe that the
TD values are significantly lower forh = 0.5 than forh = 0.05, so that the strength
of the selective advantage of tolerant traits increases when the densityh of empty
sites is higher. The fact that the average intolerance〈T 〉 of the final configurations
is higher thanTD, provided the order parameterN−1 ≪ 〈Smax〉/N < 1, indicates
that the non-dominant surviving values of the intolerance are typically larger than the
dominant one. We further show in Fig. 8.4 that the results regarding the behavior of
TD and〈T 〉 for L = 40, are essentially unchanged for lattice of size100× 100.

In Fig. 8.5 we show the histogram ofTD values, obtained from2 × 103 real-
izations, at fixed value ofq/N = 1.1, for a density of empty sitesh = 0.05. One
should note that though the mean value of the dominant intolerance is atTD = 0.07,
the probability density is sharply peaked atTD = 0 and quickly decays to negligible
values asTD increases. In other words, the lower the value ofTD, the more probable,
so that the mean value is only indicative of the dispersion scale of the density.
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Figure 8.3: Order parameter〈Smax〉/N (stars), intoleranceTD of the dominant culture (cir-
cles), and average intolerance〈T 〉 (squares) versus scaled initial cultural diversityq/N for a
lattice linear sizeL = 40, for the scheme of mobility corresponding to equation (8.4). Panel
(a) corresponds to a density of empty sitesh = 0.05. Panel (b) corresponds toh = 0.5. See
the text for further details.
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In order to explain why tolerant traits are better adapted to prevail in the long
term of the dynamics, let us consider the subsetA(T, t) of those cultural agentsi for
which, at timet, Ti ≤ T , whereT is an arbitrarily chosen value of the intolerance
(e.g., T = 0.3 or more, or less). Let us denote byn(T, t) the cardinal ofA(T, t), and
call L(T, t) the set of lattice links(i, j), such that the agenti belongs toA(T, t) and
the agentj is not in this set (soTj > T ). If time is measured in elementary step units,
the difference

∆n(T, t) = n(T, t+ 1)− n(T, t) (8.6)

can only take on the values0,±1. To compute the probabilityP+ that ∆n(T, t)

takes on the value+1, one has to sum over all links(i, j) ∈ L(T, t) the product of
the following factors:

a) the probability (N−1) of choosing agentj for a cultural imitation trial,

b) the probability (k−1j ) that its neighbori is chosen,

c) the probability (ωij) that agentj imitates an uncommon feature’s trait ofi, and

d) the probability
(

1
(1−ωij)F

)

that the chosen uncommon feature isσ1.

Note that for a link(i, j) in the setL(T, t), the strict inequalityωij < 1 holds.
Then we obtain

P+ =
1

NF

∑

(i,j)∈L(T,t)

1

kj

ωij

(1− ωij)
. (8.7)

In a similar way, the probabilityP− that∆n(T, t) takes on the value−1 is

P− =
1

NF

∑

(i,j)∈L(T,t)

1

ki

ωij

(1− ωij)
. (8.8)

We see that the number of agents in the setA(T, t) performs a complicated
random walk with left- and right-step probabilities changing in time as dictated by
the model dynamics. The expected value of∆n(T, t) is given by the difference
(P+ − P−), then

E[∆n(T, t)] =
1

NF

∑

(i,j)∈L(T,t)

(ki − kj)

kikj

ωij

(1− ωij)
. (8.9)

This equation is the basis for an understanding of the selective advantageof tol-
erant traits. Indeed, following equation (8.4), agents with highTi values promote the
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mobility of their neighbors (leaving empty sites in their neighborhoods) more than
tolerant agents do, so that one should expect that a negative correlation between val-
ues ofki andTi may be easily developed in the population, and tolerant agents may
likely have larger values ofki than those of intolerant agents. If this is the case, then
equation (8.9) indicates that the random walk performed byn(T, t) will be biased
to the right, and the number of tolerant agents will likely increase as time evolves.
The cultural selective advantage of tolerant traits has its origin on the bias produced
by the negative correlation degree-intolerance (ki, Ti) that is directly induced by the
dynamical rule of social rejection.

The equation (8.9) allows also to rationalize the observation that the selective
advantage of tolerant traits is strengthened by higher values of the densityh of empty
sites, because higherh values easily allow for higher values of the degree differences
(ki − kj) for (i, j) ∈ L(T, t), and so the bias favoring the increase ofn(T, t) can be
stronger.

We have also considered a second way in which agents’ intolerance enterinto the
mobility rule of the dynamics: After an elementary step of the Axelrod dynamics,
if imitation has not occurred andωij 6= 1, the agenti moves to a randomly chosen
empty site provided

ω̄i < Ti . (8.10)

Note that if one takes forf(x) in equation (8.3) a constant function, so thatTi = T

independent ofi, one recovers the scheme A for homogeneous intolerance, that was
used in chapter 7: Intolerance value is a threshold for the cultural overlap. But there
is also here an important difference with respect to equation (8.4) regarding the inter-
pretation, or meaning, of the intolerance. In (8.10) what determines whether an agent
i moves or not, is its own intolerance valueTi, instead of that of its neighbors, as in
the previous case. Though both dynamical rules are based on homophile dissatisfac-
tion, they in fact implement different plausible mechanisms for mobility. Whether the
average social rejection (hostility) of my neighbors is more important than my own
degree of tolerance with a dissimilar environment or not, in the decision of moving,
may be a question with widely different (as well as context-dependent) individual
answers, and it is certainly not inside the scope of this work to enter into such a
discussion. We regard here both as alternative plausible mechanisms for mobility,
which may lead to differences regarding the selective advantage of tolerant traits in
the Axelrod-Schelling model with heterogeneous intolerance.

We show in figure 8.6 the results obtained for the dynamical rule associated to
equation (8.10). Though the values ofTD are in this scheme higher than those char-
acteristic of the scheme analyzed before, certain degree of selective advantage of
tolerant traits is unambiguously observed. Also, the selective advantage isstronger
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Figure 8.6: Order parameter〈Smax〉/N (stars), intoleranceTD of the dominant culture (cir-
cles), and average intolerance〈T 〉 (squares) versus scaled initial cultural diversityq/N for a
lattice linear sizeL = 40, for the scheme of mobility corresponding to equation (8.10). Panel
(a) corresponds to a density of empty sitesh = 0.05. Panel (b) corresponds toh = 0.5. See
the text for further details.
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scheme of equation (8.10).

Figure 8.8: Time evolution of the tolerance distribution when the density of empty sites is
below their percolation threshold in a representative realization. Each cell represents a node.
The color code is a quasi-continuum, from blue for tolerant nodes to red for intolerant ones.
Left chart represents the initial conditions, center charts the intermediate states and the right
one the stationary state. Here has been taken L=30, h=0.05.

Figure 8.9: Time evolution of the tolerance distribution when the density of empty sites is
above their percolation threshold in a representative realization. Codes are the same that in
figure 8.8. L=30, h=0.5.
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for high densityh of empty sites, as before. Now, however, agents move depending
on their own intolerance values, and then it is not (at least) as clear as before that
a negative correlation degree-intolerance could be established, which would in turn
explain the selective advantage of tolerant traits.

A possibility for this comes from the fact that intolerant agents move to empty
sites more easily than tolerant agents do, so that a negative (ki, Ti) correlation could
appear provided the lattice sites occupied by agents are more likely to have agents
in their neighborhood than empty sites are. To check for this, we have computed the
time evolution of the average number of neighbors〈k〉 of agents. Figure 8.7 shows
that, after some (long) transient, the average degree of agents increases above its
initial value (that is〈k〉 = 4(1 − h), for a square lattice and von Neumann neigh-
borhood). This increase of〈k〉 corresponds to the coalescence of clusters that will
become monocultural in due (short) time. Interestingly, we also see in figure 8.6 the
decrease of the average intolerance〈T 〉 as soon as the average degree increases, so
giving further support to the argument.

Consequently, also in the case that the agents’ mobility is the result of their own
intolerance to cultural dissimilarity, the tolerant traits possess selective advantage
due to the establishment of a negative (ki, Ti) correlation which in this case has
its origin in the agents’ aggregation processes concomitant to the increase of local
cultural overlaps. The observed fact that the selective advantage oftolerant traits is
now weaker than in the case when mobility is induced by social rejection, may likely
be the effect of two confluent factors; on one hand, the development of a negative
degree-intolerance correlation is not now a direct consequence of thedynamical rule,
and on the other, as analyzed in previous section 8.2, agents’ aggregation processes
are much less effective when intolerance enter as a threshold for mobility.

8.4 Summary and concluding remarks.

In the Axelrod-Schelling model for cultural dissemination among mobile agents,we
have considered the intolerance, that was originally (chapter 7) a model parameter
controlling the strength of agents’ mobility, as a variable associated to a cultural fea-
ture, and thus subjected to cultural transmission. We have performed extensive nu-
merical simulations for two different dynamical rules for mobility, whose respective
homogeneous versions are analyzed with respect to the transition from topologically
fragmented local consensus to global cultural consensus that occursat very low val-
ues of the initial cultural diversity. In the first of these dynamical rules (mobility
by social rejection) agents move due to the intolerance of their neighbors, weighted
by their cultural dissimilarity, while in the second one the mobility depends on the
agent’s own intolerance to the cultural dissimilarity with its environment. In both
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cases our results indicate that tolerant traits are selectively advantageous, so that the
intolerance values present in the dominant culture are preferentially low. One then
sees how the breaking of the original symmetry (indifference of the dynamics respect
to particular feature’s trait values, that leads to purely neutral selection of dominant
characters in cultural evolution) effectively allows for the appearance of natural se-
lection of advantageous traits.

The selective advantage of tolerant traits increases with the densityh of empty
lattice sites, and is also higher for the first scheme, where mobility is the result of the
social rejection from the neighborhood. A stochastic analysis allows the rationaliza-
tion of all these numerical observations, and points to the dynamical development of a
negative correlation between the number of neighbors of an agent and itsintolerance
value as the origin of the selective advantage of tolerant traits. We should emphasize
here that regarding the rule of cultural imitation, nothing privileges toleranttraits over
intolerant ones,i.e., Axelrod’s cultural interactions are completely unbiased, so the
bias towards tolerant traits can only come from the influence of the tolerancecultural
feature on the mobility of agents, that shapes the instantaneous network of interac-
tions among cultural agents. One should expect analogous findings for other network
updating dynamics as the one considered (in the symmetric context) by [166, 167],
also showing topologically fragmented phases, provided the trait symmetry is broken
at the network updating rule level.

In this regard, the term tolerance -in the context of the Axelrod-Schelling model-
has a very precise and narrow meaning, much more limited than its usual meaning
in social science and political philosophy, where it certainly means much morethan
just a conditioning factor of the mobility of individuals and groups. However, in-
side the limitations of a simple agent based model like this one, our findings on the
“adaptive to survival” character of tolerant traits in cultural dynamics, point to basic
mechanisms that can be highly influential in cultural evolution.



Chapter 9

Co-evolutionnary network
approach to cultural dynamics
controlled by intolerance.

Starting from Axelrod’s model of cultural dissemination, we introduce a rewiring
probability, enabling agents to cut the links with their unfriendly neighbors if their
cultural similarity is below a tolerance parameter. For low values of tolerance,rewiring
promotes the convergence to a frozen monocultural state. However, intermediate tol-
erance values prevent rewiring once the network is fragmented, resulting in a mul-
ticultural society even for values of initial cultural diversity in which the original
Axelrod model reaches globalization.

9.1 Introduction

The growing interest in the interdisciplinary physics of complex systems, hasfo-
cussed physicists’ attention on agent-based modeling [156, 32] of socialdynamics,
as a very attractive methodological framework for social sciences where concepts and
tools from statistical physics turn out to be very appropriate [142] for theanalysis of
the collective behaviors emerging from the social interactions of the agents. The dy-
namical social phenomena of interest include residential segregation [52, 53], cultural
globalization [59, 141], opinion formation [153, 168], rumor spreading [155, 169]
and others.

The question that motivates the formulation of Axelrod’s model for cultural dis-
semination [59] is how cultural diversity among groups and individuals could survive
despite the tendencies to become more and more alike as a result of social interac-
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tions. The model assumes a highly non-biased scenario, where the cultureof an agent
is defined as a set of equally important cultural features, whose particular values
(traits) can be transmitted (by imitation) among interacting agents. It also assumes
that the driving force of cultural dynamics is the “homophile satisfaction”, the agents’
commitment to become more similar to their neighbors. Moreover, the more cultural
features an agent shares with a neighbor, the more likely the agent will imitate an un-
common feature’s trait of the neighbor agent. In other words, the higher the cultural
similarity, the higher the social influence.

The simulations of the model dynamics show that for low initial cultural diversity,
measured by the numberq of different traits for each cultural feature (see below),
the system converges to a global cultural state, while forq above a critical valueqc
the system freezes in an absorbing state where different cultures persist. The (non-
equilibrium) phase transition [110] between globalization and multiculturalism was
first studied for a square planar geometry [141, 143, 144], but soonother network
structures of social links [145, 146, 152] were considered, as well as the effects of
different types of noise (“cultural drift”) [147, 148], external fields(modelinge.g.
influential media, or information feedback) [149, 150, 163, 164], and global or local
non-uniform couplings [165, 151].

In all those extensions of Axelrod’s model mentioned in the above paragraph,
the cultural dynamics occurs on a network of social contacts that is fixed from the
outset. However, very often social networks are dynamical structuresthat continu-
ously reshape. A simple mechanism of network reshaping is agents’ mobility, and a
scenario (named the Axelrod-Schelling model) where cultural agents placed in cul-
turally dissimilar environments are allowed to move has been analyzed in chapters 7
and 8. In this model, new interesting features of cultural evolution appear depending
on the values of a parameter, the (in-)tolerance, that controls the strengthof agents’
mobility.

A different mechanism of network reshaping has been considered in [166, 167],
where a cultural agent breaks its link to a completely dissimilar neighbor, redirect-
ing it to a randomly chosen agent. At variance with the mobility scenario of the
Axelrod-Schelling model, that limits the scope of network structures to clusters’ con-
figurations on the starting structure (square planar lattice, or others), therewiring
mechanism allows for a wider set of network structures to emerge in the co-evolution
of culture and social ties [170].

In this chapter we introduce in the scenario of network rewiring a tolerancepa-
rameterZ controlling the likelihood of links rewiring, in such a way that the limit
Z = 1− recovers the case analyzed in [166, 167], where only links with an associ-
ated null cultural overlap are broken. Lower values ofZ correspond to less tolerant
attitudes where social links with progressively higher values of the cultural overlap



The model 161

may be broken with some probability that depends on these values. The results show
a counterintuitive dependence of the toleranceZ on the critical valueqc. On one
hand, as expected from [166, 167], rewiring promotes globalization forhigh values
of the tolerance, but on the other hand, very low values ofZ (which enhance the
rewiring probability) show the higher values ofqc. Indeed, a non monotonous behav-
ior is observed inqc(Z): Our results unambiguously show that for some intermediate
values of the toleranceZ, cultural globalization is disfavored with respect to the orig-
inal Axelrod’s model where no rewiring of links is allowed. In other words, rewiring
does not always promote globalization. On the other hand, the resulting network
topology depends onq, changing from a Poisson connectivity distributionP (k) to a
fat tailed distribution forq ∼ qc.

9.2 The model

As in Axelrod’s model, the culture of an agenti is a vector ofF integer variables
{σf (i)} (f = 1, ..., F ), called culturalfeatures, that can take onq values,σf (i) =

0, 1, ..., q− 1, the culturaltraits that the featuref can assume. TheN cultural agents
occupy the nodes of a network of average degree〈k〉 whose links define the social
contacts among them. The dynamics is defined, at each time step, as follows:

• Each agenti imitates an uncommon feature’s trait of a randomly chosen neigh-
bor j with a probability equal to theircultural overlapωij , defined as the pro-
portion of common cultural features,

ωij =
1

F

F
∑

f=1

δσf (i),σf (j), (9.1)

whereδx,y denotes the Kronecker’s delta which is 1 ifx = y and 0 otherwise.
The whole set ofN agents perform this step in parallel.

• Each agenti disconnects its link with a randomly chosen neighbor agentj with
probability equal to itsdissimilarity1−ωij , provided the dissimilarity1−ωij

exceeds a threshold (tolerance) Z,

1− ωij > Z , (9.2)

and rewires it randomly to other non-neighbor agent. The tolerance0 ≤ Z ≤ 1

is a model parameter.
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First we note that the initial total number of links in the network is preserved
in the rewiring process, so the average degree〈k〉 remains constant. However, the
rewiring process allows for substantial modifications of the network topological fea-
tures,e.g. connectedness, degree distribution, etc. In that respect, except forthe
limiting situation of very low initial cultural diversityq and a very high tolerance
Z (where the likelihood of rewiring could be very low), one should expect that the
choices for the initial network of social ties have no influence in the asymptoticbe-
havior of the dynamics.

When the threshold toleranceZ satisfiesF−1F ≤ Z < 1, only those links among
agents with zero cultural overlap are rewired, so the model becomes the one studied
in [166, 167]. On the other hand, when the tolerance takes the valueZ = 1, there
is not rewiring likelihood and the original Axelrod’s model is recovered. WhenZ =

0 rewiring is always possible provided the cultural similarity is not complete,i.e.,
ωij 6= 1, so that it corresponds to the highest intolerance.

The usual order parameter for Axelrod’s model is〈Smax〉/N , where〈Smax〉 is the
average (over a large number of different random initial conditions) ofthe number of
agents sharing the most abundant (dominant) culture, andN is the number of agents
in the population. Large values of the order parameter characterize the globalization
(cultural consensus) regime. We also compute the normalized size〈Stop〉/N of the
largest network component (i.e., the largest connected subgraph of the network).

9.3 Results and discussion

We have studied networks of sizesN = 900, 1600; averaging over50 - 2000 repli-
cas. Checks for robustness of main results with larger size ofN = 2500 were also
made. The considered cultural vectors haveF = 10 cultural features, each one with
a variability q = 5 - 10000. We studied different values of the tolerance threshold
Z ∈ (0, 1) and different values of the average connectivity〈k〉 = 4, 10, 20, 40. Each
simulation is performed forN , F , 〈k〉, Z, andq fixed. For the sake of comparison
with previous results [166, 167], we will present results for〈k〉 = 4.

The behavior of the order parameter for different values ofZ is seen in Fig. 9.1.
Like in [166], three different macroscopic phases are observed with increasing val-
ues ofq, namely a monocultural phase, with a giant cultural cluster, a multicultural
one with disconnected monocultural domains, and finally a multicultural phase with
continuous rewiring. The nature of the latter phase has been successfully explained
in [166]: At very large values of the initial cultural diversityq, the expected number
of pairs of agents sharing at least one cultural trait becomes smaller than the total
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Figure 9.1: Order parameter as a function of the variabilityq for different values of the
tolerance thresholdZ. N = 900, 〈k〉 = 4, average over1000 replicas.

number of links in the network, so that rewiring cannot stop. Here we will focus
attention on the first two phases and the transition between them.

In figure 9.2 we show the size distribution of the dominant culture over differ-
ent realizations, measured for different values ofq, at a particular fixed value of the
toleranceZ = 0.5. In the region ofq values near the transition from globalization
to multiculturalism, the distribution is double peaked, indicating that the transition
is first order, as in the original Axelrod’s model. The transition value,qc, may be
roughly estimated as theq value where the areas below the peaks of the size distri-
bution are equal. The estimates of the transition points for different values of the
toleranceZ are shown in Fig. 9.3. The non monotonous character of the graphqc(Z)

seen in this figure reveals a highly non trivial influence of the tolerance parameter on
the co-evolution of cultural dynamics and the network of social ties.

Let us first consider the (most tolerant) caseZ = 0.9 that, except for the system
sizeN , coincides exactly with the situation considered in [167],i.e., only links with
zero cultural overlap are rewired. As discussed in [167], forq values larger than the
critical value for a fixed network (qc(Z = 1) ≃ 60), rewiring allows redirecting links
with zero overlap to agents with some common cultural trait (compatible agents), so
reinforcing the power of social influence to reach cultural globalization.Once all
links connect compatible agents, rewiring stops (note: the decrease to zero of a posi-
tive cultural overlap cannot be strictly excluded, though it may be considered as a non
typical event). From there on, the network structure will remain fixed, andglobaliza-
tion will be reached with the proviso that the network has so far remained connected.
This is the case for most realizations (forN = 900) up to values ofq ∼ 240. In-
creasing further the cultural diversityq, increases the frequency of rewiring events
and slows down the finding of compatible agents, favoring the topological fragmen-
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tation into network components before rewiring stops. Under these conditions, the
asymptotic state will consist of disconnected monocultural components.

On one hand, network plasticity allows to connect compatible agents, so promot-
ing globalization; but on the other hand it may produce network fragmentation, so
favoring multiculturalism. What we have seen in the previous paragraph is that for
Z = 0.9 the first effect prevails over the second one up toqc(Z = 0.9) ≃ 240.
Going from there to less tolerant situations (decreasingZ), increases the likelihood
of rewiring, making easier that network fragmentation occurs before rewiring stops.
This has the effect of decreasing the critical valueqc. In fact, from Fig. 9.3 we see
that forZ = 0.7, 0.6, and0.5 multiculturalism prevails for cultural diversities where
the original Axelrod’s model shows cultural globalization. In these casesnetwork
plasticity promotes multiculturalism in a very efficient way: Agents segregate from
neighbors with low cultural similarity and form disconnected social groups where
full local cultural consensus is easily achieved, forq values low enough to allow a
global culture in fixed connected networks.

For very low values of the tolerance parameter, though network fragmentation
occurs easily during the evolution, Fig. 9.3 shows that globalization persistsup to
very high values of the initial cultural diversityq. To explain this seemingly paradox-
ical observation, one must realize that network fragmentation is not an irreversible
process, provided links connecting agents with high cultural overlap have a positive
rewiring probability. Under these circumstances, transient connections among differ-
ent components occur so frequently so as to make it possible a progressive cultural
homogenization between components that otherwise would have separately reached
different local consensuses. Fig. 9.4 illustrates the time evolution forq = 100 and



Summary 165

0 0.2 0.4 0.6 0.8 1

Z

10

100

1000

q
c

Figure 9.3: Critical value of the diversityqc versus the tolerance thresholdZ, obtained from
the distribution of sizes of the dominant culture.N = 900, 〈k〉 = 4. See the text for further
details.

different values ofZ. Panel (a) shows an example of cultural evolution where net-
work fragmentation reverts to a connected monocultural network forZ = 0.2. Panel
(b), that corresponds toZ = 0.6, shows that social fragmentation persists during the
whole evolution, while in panel (c), which corresponds to the most tolerantsituation
( Z = 0.9), the network remains connected all the time.

The degree distribution of the network is Poissonian centered about〈k〉 for all q
values, except forq & qc where it becomes fat tailed, with several lowly connected
(and disconnected) sites. For very highq values, in the dynamical phase, the network
rewiring is esentially random, soPq(k) is again Poisson like, centered around〈k〉.

9.4 Summary

In this chapter we have generalized the scenario for co-evolution of Axelrod’s cultural
dynamics and network of social ties that was considered in [166, 167], by introducing
a tolerance parameterZ that controls the strength of network plasticity. Specifically,
Z fixes the fraction of uncommon cultural features above which an agent breaks its
tie with a neighbor (with probability equal to the cultural dissimilarity), so that, the
lower theZ value, the higher the social network plasticity.

Our results show that the network plasticity, when controlled by the tolerance
parameter, has competing effects on the formation of a global culture. When toler-
ance is highest, network plasticity promotes cultural globalization for values of the
initial cultural diversity where multiculturalism would have been the outcome for
fixed networks. On the contrary, for intermediate values of the tolerance,the network
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plasticity produces the fragmentation of the (artificial) society into disconnected cul-
tural groups for values of the initial cultural diversity where global cultural consensus
would have occurred in fixed networks. For very low values of the tolerance, social
fragmentation occurs during the system evolution, but the network plasticity isso
high that it allows the final cultural homogenization of the transient groups for very
high values of the cultural diversity. Intermediate tolerances promote multicultural-
ism, while both extreme intolerance and extreme tolerance favor the formation ofa
global culture, being the former more efficient than the latter.



Chapter 10

Conclusions.

Starting from the idea of many interacting entities, we have addressed different so-
cial and economic issues using procedures and theoretical tools from complex sys-
tems physics, in addition to other fields, such as complex networks and game the-
ory. Although social sciences obviously have their own methods to deal withsuch
kind of problems, this methodology yields new approaches, especially in problems
that involve stochastic and/or nonlinear dynamics aspects, and enhancesthe study of
emergent properties arising from aggregating approaches.

In the first part of the thesis, we address a issue related to different sciences such
as biology, economics or sociology: the evolution of cooperation in hostile environ-
ments, that is, when in the first instance the selfish behavior is more advantageous for
the individual that cooperative action. This problem has been dealt with ina variety
of ways. In this context, the Prisoner’s Dilemma (PD) has become a paradigmfor
studying the emergence of cooperative behavior. Besides, the thermodynamical per-
spective on evolutionary game dynamics studies (used,e.g., in chapter 2) is not a new
issue, as can be found in research literature on game theory [16, 121],and allows us
to interpret the social indicators as physical observables and later to infer analytical
results.

In chapter 2 we investigate in detail the dynamics of PD in an artificial network
(Dipole Model) that models the influence on a population of two antagonist hubs con-
nected to the whole population, but with no direct connection between them. Based
on previous studies [109, 112, 113] that have shown that the asymptotic states of evo-
lutionary PD in complex networks are characterized by three kinds of agents (pure
cooperators, pure defectors and fluctuating agents), we designed themodel so that
the hubs remain as pure strategist; more specifically, we constrained the initialcondi-
tions in order to cancel the probability of strategy change for the hubs. The analytical
formulation enables a thermodynamic approach of the system, which providesa de-
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scription with a range of validity limited by the effects of network topology. The re-
sults, besides providing mathematical meaning to the concept of social temperature,
help to understand the behavior of a population under the influence of two opposite
influential elements (e.g., mass media).

In chapter 3, we study the reversibility of the evolutionary dynamics of PD in dif-
ferent complex networks under adiabatic variations of the temptation to defect. The
results show that, for the topologies analyzed, the process is reversible provided it is
kept away from absorbing states, but when the cooperation reaches atipping point
the system becomes irreversible showing a hysteresis cycle which is a function of
the considered network. The causes of irreversibility vary from one topology to an-
other: the centralization of cooperator clusters around cooperator hubs in scale-free
(SF) networks prevents the onset of irreversibility in most SF networks. However,
the multiple clusterization of cooperators in Erdös-Rényi (ER) networks determines
that, once the tipping-point is reached, irreversible transitions always occur, and irre-
versibility is more evident around the absorbing states.

In chapter 4 we take into consideration a topic that has been deeply studied inthe
last years:multiplex networks. Usually, real populations (regardless of their nature)
are not isolated, but interlinked by interactions between different layers[174, 175]. In
addition, the interactions that take place within a given layer may be governedby dif-
ferent rules that the interactions between elements of different layers [176, 177, 178].
In this context, we study the influence of interdependency between different layers
on the degree of cooperation in stratified systems. In particular, we focuson the case
in which relations within layers are governed by an evolutionary PD, while elements
of different layers interact through the Snowdrift (SD) game. This scheme models a
situation in which defection is punished in interactions withoutsider defectors. Our
model consists of two populations, provided with an internal structure of contacts,
that interact through interpopulation links. When the populations are well-mixed, we
carry out analytical calculations that populations that show, in a region ofthe param-
eter space, apolarizedstate consisting of afull-cooperationcommunity connected
to a full-defectionpopulation. Other regions of the parameter space showquasi-
polarizedstates, characterized by a population where every agent defects linkedto
another where most agents cooperate. In order to deal with networked populations,
we solved the system numerically and found that previous states appear when popu-
lation structure is a complex network of contacts, where network reciprocitypromote
cooperation. The results show that, while for small values of the temptation to de-
fect parameter polarization opposes network reciprocity, for higher temptation values
both mechanisms have the same sign promoting cooperation in a layer. As an appli-
cation, we find that the cooperation level in a target population can be controlled
through a coupled defective population.
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However all the above, the statement that underlying network structure enhances
cooperation in human interactions is based on some assumptions, namely that per-
sonal strategies depends on neighbor’s pay-offs. Althoug network reciprocity mech-
anism in humans has been deeply studied in the last twenty years (see,e.g., [16, 94,
18, 109, 95, 96, 97]), the conclusions are in general contradictory,because the strate-
gies are usually a hypothesis of the models without experimental support [79]. In
chapter 5, instead of assuming that people choose following one of the usal strate-
gies, we analyzed the problem taken as starting point the results of recentexperi-
ments [100, 23] on the behavior of small human populations in iterated PD games.
These works shown that people do not take into account the neighbors’ payoffs, but,
instead, they consider the cooperation level in their neighborhood. We have stud-
ied mathematically the implications of such strategies in heterogeneously-connected
large populations. Specifically, we solved analytically the mean-field case and com-
pared the theoretical results with data obtained from numerical simulations made
in three network topologies: regular lattice, ER and SF. This comparison show that
cooperation level is exactly the same, regardless of the network structure. The con-
sequences of this prediction are very important, because, if eventually confirmed by
experiments, they will allow to discard the network reciprocity mechanism in human
prisoner’s dilemma-like situations. Experimental confirmation implies experiments
in heterogeneous networks, and therefore, large scale experiments.

In chapter 6 we show the results of the large-scale experimental test we have per-
formed to test the conclusions above mentioned. Our experiment shows that,regard-
ing human behavior, the underlying topology does not have influence in theobserved
cooperation level. In particular, the cooperation levels observed in a regular lattice
and in a heterogeneous network are indistinguishable, moreover, the behavior of sub-
jects appears to be independent of their connectivity. This conclusion applies only to
human cooperation in static networks, therefore network reciprocity may stillbe rele-
vant in other contexts (e.g., in microbiology [137] or evolving social networks [179]).
Our experiment confirm that most people follow the strategy shown in previous works
[23], consisting of the imitation of neighbor’s actions with a probability that depends
on their frequency. Accordingly, the results confirm the theoretical prediction made
in chapter 5. These results may be applied to promoting cooperation in real systems,
the study suggests that improving network structure might be an innefectivepolicy
but invites to incentive individual behavior.

In the second part of the thesis, we study some aspects of social dynamics, fo-
cusing our attention in particular on a issue that has been approached from biolog-
ical, sociological and philosophical perspectives: the intolerance [74]. Intolerance,
defined as “the refusal to accept subjects with different characters,opinions or be-
haviors from one’s own”, is amenable to be dealt with agent based models (ABM),
in fact, one of the first ABM designed to explore a social issue was the segregation
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model of Schelling [52]. Despite this, ABM have not paid much attention to the in-
tolerance in itself, while related issues of social dynamics -such as homophily[59]
, opinion formation [153] or rumor spreading [155]- have been deeply and widely
studied.

In chapter 7, we have introduced a model of cultural dynamics allowing agents
to move according to their degree of cultural disagreement with their neighborhood.
For small density of empty sites, the introduction of mobility into the Axelrod cul-
tural dynamics promotes the convergence to cultural globalization, with the conse-
quence that the order parameter scales with the system size. Therefore,the transition
to multicultural population only occurs for finite populations (i.e., in the thermody-
namic limit there exists only monocultural phase). Furthermore, for larger densities
of empty sites (i.e., when population density is below the percolation threshold), a
new phase (that we callmulticultural fragmented phase) appears at low values of the
initial cultural diversityq. The causes of this new phase can be founded in the early
stages of the dynamics: for low values ofq, the initial cultural overlap is enough
to promote local cultural convergence enhancing the formation of isolated clusters
of agents, wich isolation prevents cultural diffusion between different domains. For
high enough values of the intolerance thresholdT , the increase ofq has the effect
of increasing the initial mobility, and the monocultural phase of the original Axelrod
model is recovered, followed by the multicultural phase for high enough values ofq
and finite populations. Moreover, in the last transition from order to disordered phase,
the dynamics showerosion-adhesionprocesses associated to the agents mobility; in
fact, the increase inq enhances the probability of agents without a common cultural
feature with anyone else (aliens).

In chapter 8, we refined the Axelrod-Schelling model by considering the intol-
eranceT as a variable associated to a cultural feature, and thus subjected to cultural
transmission. There are (at least) two natural ways of relating mobility and individual
intolerance: agents can move due to the intolerance of their neighbors (social rejec-
tion) or agents can move motivated by its own intolerance to the cultural dissimilarity
with its environment (self-exclusion). In both cases our results indicate that tolerant
traits are more likely to spread, so that the dominant culture tends to have low values
of intolerance. In addition, the selective advantage of tolerant traits increases with
the densityh of empty sites, and is also higher for thesocial rejectionscheme.

While in chapters 7 and 8 we introduced tolerance into the original Axelrod’s
model through mobility, in Chapter 9 we consider network plasticity, allowing agents
to remove links to its dissimilar neighbors. Rewiring mechanism into Axelrod dy-
namics was considered by Vazquez, González-Avella, Eguíluz and San Miguel [166];
in their model, an agent was able to break its link to an antithetical neighbor (i.e., they
do not share any trait), redirecting it to another agent at random. In ourresearch, we
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have generalized the model proposed in Refs. [166, 167], by introducing a toler-
ance parameterZ which modulates the intensity of plasticity. We show that rewiring
mechanism can produce opposite effects, depending on the tolerance valueZ: while
for large values ofZ, rewiring enhances monoculturalism compared to non-evolving
networks, for intermediate values of theZ, rewiring mechanism promotes clusteri-
zation into disconnected cultural groups for values of the initial cultural diversity q
which would show monoculturalism in fixed networks. Finally, for low values of
Z, transient states show clusterization phenomena, but rewiring (encouraged by low
tolerance) enhances cultural transmision between groups for very highvalues ofq,
yielding monocultural states. In conclusion, intermediate tolerance values enhance
diversity, high values of tolerance greatly promote globalization while low values
of tolerance weakly promote it. Note that, unlike the Axelrod-Schelling described
in chapters 7-8, the networks used are heterogeneous and dynamic, witha network
dynamics given by the cultural dynamics.
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