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Imagine there’s no countries, it isn’t hard to do.
Nothing to kill or die for, and no religion too.

John Lennon.

A Maria
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Chapter 1

Introduction.

This thesis focuses on the study of social systems through methods ofttbalor
physics, in particular proceedings of statistical physics and complexsysés well

as mathematical tools like game theory and complex networks. There already ex
ists predictive and analysis methods to address these problems in socmlbthe
contribution of physics provides new perspectives and complementdrnyarerful
tools. This approach is particularly useful in problems involving stochaspiects

and nonlinear dynamics. The contribution of physics to social systemglpsoriot

only prediction procedures, but new insights, especially in the study ofgemte
properties that arise from holistic approaches.

We study social systems by introducing different agent-based models1\AB
When possible, the models are analyzed using mathematical methods of pimysics,
order to achieve analytical solutions. In addition to a theoretical appyexgeri-
mental treatment is performed via computer simulations both through Monte Carlo
methods and deterministic or mixed procedures. This working method hasdprov
very fruitful for the study of several open problems.

The book is structured as follows. This introduction presents the mathematical
formalisms used in the investigations, which are structured in two parts: imh\part
deal with the emergence of cooperation, while in part Il we analyze cluttynamics
under the perspective of tolerance.

1.1 Game theory.

In 1944, mathematician John von Neumann and economist Oskar Morgeaster
tablished a definition of game and its components [1]:
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“First, one must distinguish between the abstract concégt game, and the individual
plays of that game. The game is simply the totality of thesrwiich describe it. Every
particular instance at which the game is played — in a patacway — from beginning to
end, is a play. Second, the corresponding distinction shbel made for the moves, which
are the component elements of the game. A move is the occdsiamoice between various
alternatives, to be made either by one of the players, or Inyesdevice subject to chance,
under conditions precisely prescribed by the rules of themgaThe move is nothing but this
abstract 'occasion’, with the attendant details of destidp, — i.e. a component of the game.
The specific alternative chosen in a concrete instance +i&concrete play — is the choice.
Thus the moves are related to the choices in the same way @mthe is to the play. The
game consists of a sequence of moves, and the play of a sequfeciwoices. Finally, the
rules of the game should not be confused with the stratedigwelayers.[...] Each player
selects his strategy —i.e. the general principles goverhiis choices — freely. [...] The rules
of the game, however, are absolute commands. If they areimiverged, then the whole
transaction by definition ceases to be the game describeddsetrules.” (von Neumann
and Morgenstern. Theory of Games and Economic Behavior (1944))

Game theory (GT) is an area of applied mathematics that uses models to study
interactions with formalized incentive structurég(games), and is therefore a field
closely related to decision theory. The origins of game theory go far baakén In
1713, James Waldegrave proposed a solution for a two player gamesi@rtNeless,
GT as a specific field did not appear until 1928 through a series of papétished
by John von Neumann [3]. Modern game theory was comprehensivehafized
in 1944 by John von Neumann and Oskar Morgenstern [1], and erpedea very
important step forward with John Nash’s contribution of strategic equilibrithma:
Nash equilibrium [4]. GT was firstly developed as a tool for understaneaonomic
behavior, but now is applied in many fields such as biology, physics,lsggidraffic
control, etcetera; in fact, it applies to a wide variety of agents including haman
microorganism and nonhuman animals. Further refinements to game theoneinclu
evolving populations and underlying topologies, among others.

1.1.1 Definitions.

In this section is a brief introduction to game theory related to the focus of thEsthe

a deeper study can be found in [5, 6, 7].

A game is a mathematical representation of a conflict situation. The outcome (pay
off) results from mutual interaction between different agents or playeidayer is
defined as a decision maker: a person, a people group, an animalteverieand of
element. Based on the number of playdrs> 2, games are classified as two-person
games, three-person games, and in general as N-person gamestefagions be-
tween the players are governed by rules that state the actions eachgaaytake,
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the information each player has available and the outcomes of the actionateggtr
defines the actions that a player will follow in every scenario.

There is a distinction between games wpigrfect completeandincompletein-
formation. Perfectinformation describes the situation when each player has available
the information to determine all of the possible scenarios, strategies, aatidosit
comes all game long: so, players have full information about the action$ialat
already taken place. In games witbmpleteinformation, each player knows the
rules of the game and the payoff functions of all the players, but plagaysnot see
all of the actions chosen by other playersirinompletanformation games, players
may not know some information about the other players (actions, stratpgiefs)
or about the rulesg(g.game’s length).

According to the updating, games can be classifiesirasltaneousindsequen-
tial games. Insimultaneousgyames, players choose their actions simultaneously,
therefore, players may predict other players’ action but don't kno®yitextension,
a game can be classified sisnultaneousf decisions are not taken simultaneously
but players’ actions are in ignorance of others players’ actions. Ondhiary, in
sequentialgames players make decisions in sequential order and later players have
some knowledge on actions already taken by earlier players.

Based on the total outcome, there aezo-sungames anehon-zero-sungames.
In a zero-sungame, a player’s gain (or loss) is balanced by the losses (or gains) of
the other players(s),e. the total pay-offs for the players, for every combination of
the available actions, sum to zero. Otherwisajdn-zero-sungames, total payoff is
different from zero. Attending the indiscernibility of players, games aaaolassified
betweersymmetricor asymmetriggames. Irsymmetrigames, payoffs depend only
on the actions, not on who is chosen them. Otherwise, the gaasgiismetric

1.1.2 Normal form.

A game can be can be represented through different forms, sucheasigre and
normal form. Normal form is a description of a game by way of a matrix thategla
players’ actions to payoff functions. In order to have a normal forstdption of a
game, we take in consideration the following data:

i) AsetN of players,N = {1,2,...,n}.

i) Each playeru has a finite number of actions, represented by the action$,set
{1,2,...,my}.

iii) Each playeru has a payoff function associatet,(: A1 x As x ... x A, = R)
that provides the payoff of player.
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Definition: A game in normal form is a structur@ = (N, A,F), whereN =
{1,2,...,n}is asetof playersA = {4, As, ..., A,} is an n-tuple of actions sets,
one for each player, arld = {F}, Fy, ..., F,,} is an n-tuple of payoff functions.

The normal form of a two-person symmetric game is given by a Q&irP),
whereA is a nonempty set, the set of actions, @i a real-valued function defined
onA x A, (i.e, P(ij) € R, ¥V i,j € A.). Thepayoff matrixP, defined asP;; =
P(i,7), represents the payoff of player I, given the actions chosen by nsldynd
Il are i and;j respectively. Note thdP is am x m matrix, wherem is the number
of possible actions. Inasmuch as the game is symmetric, player II's paygiffda
by P(j,i). In particular, a two-player m-action symmetric game is defined by the
matrix:

Pn P2 ... Pip P(1,1)  P(1,2) P(1,m)
Py Psy ... Pa P(2,1) P(2,2) P(2,m
Pni Pm2 ... Pom P(m,1) P(m,1) ... P(m,m)

1.1.3 Pure and mixed strategies.

A player’s strategy determine the action the player will take at any stage géthe.

A strategy profile or strategy combination is a set of strategies for eacarpldyich
fully specifies all actions in a game. A strategy profile consists of one alyd on
one strategy for every player. Then, strategy and move are diffecemdepts: A
move is an action taken by a player at some point of the game. On the othemhand
strategy is a player’s algorithm that relates every scenario to the plagtioss [8, 9].
Although the terms action and strategy represent different conceptstisees have
been used interchangeably, especially for the last twenty years. Thigitodhe
use of repeated one-round games in evolutionary dynamics, where yleespdeation
change is sometimes studied according to updating rules. In this thesis we try to
recover the original meaning of such terms; nevertheless, in chapterudavthe
notationstrategy, updating rule Note that original notation provides more levels:
move, action, strategy, updating rule

A pure strategyR determines the move a player will make for any scenario. A
player's strategy setRi, Rs, ..., Ry} is the set of pure strategies available to that
player. The convex linear combination $of pure strategies
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S = {p=(1,....pm) ER™ : p; >0, Y p;=1} (1.2)
=1

is the set of mixed strategies. Therefore, a mixed strapegyan assignment of a
probability p; to each pure strateghy;.

1.1.4 Minimax rule.

Minimax is a decision algorithm for minimize losses under the maximum loss sce-
nario; similarly, maximin rule consists in maximizing the minimum payoff. John
von Neumann proved the minimax theorem in 1928 [3]: He stated that in every tw
person zero-sum game with finitely many pure strategies, there exists avaine

a mixed strategy’ for each playey, such that:

i) Given player 2’s strategy?, the best payoff possible for player 115 and
ii) Given player 1's strategp', the best payoff possible for player 2-i4/.

Subsequently, it has been extended to other types of games. A gerienalofa
Neumann’s minimax theorem is the Sion’s minimax theorem that states [10]:

Let X be a compact convex subset of a linear topological spac& amdonvex
subset of a linear topological space. lfebe a real-valued function oF x Y such
that f(x, -) is upper semicontinuous and quasiconcav& oz € X, andf(-,y) is
lower semicontinuous and quasi-convexXnvy € Y. Then:

minsup f(z,y) = supmin f(z,y). 1.3
xeXy@I;f( y) y@gweXf( y) (1.3)

In two-person zero-sum games, the minimax algorithm can be summarized as
choosing the best move for yourself (higher payoff) assuming that gpponent
will choose the worse for you (lower payoff). In an iterated game, minimathatke
implies considering all possible moves for all players and rounds.

1.1.5 Dominant strategy. Nash equilibrium. Stability.

A strategy is a stric{resp. weak)dominant strategy if it provides greatéesp.
greater or equal)payoff to a given player than any other strategy, no matter other



6 Introduction.

players’ strategies. LB be the set of strategies for which the function— vPw
gets its maximum value; thadis called set of best responsesio

A set of strategies is Blash equilibriumif no player can get greater payoff by
unilaterally changing its strategy. L&t be the strategy set for playérS = S; x
Sy x ... x S, be the set of strategy profiles afidz) be theplayer-is payoff function
for x € S. Letx; be a strategy profile of playeérandx_; be a strategy profile of all
players except for player A strategy profiler* € S is a weak Nash equilibrium if:

filxi, 22y) = fizi,aly), YVix; € Sy # af (1.4)

In the same way, a strategy profit& € S is a strict Nash equilibrium if:

filxy,x2y) > filws, %), Vi,o; € Si, s # x) . (1.5)

A game is finite if the number of players and the number of pure strategies each
player has are both finite. Nash proved that, taking into account mixedgsésitat
least one Nash equilibrium exists for all finite games [4].

There is a intermediate equilibrium between strict and weak Nash equilibria. A
Nash equilibrium isstableif an infinitesimal change in probabilities for any player
w implies: i) Any other playern # u do not gets a higher payoff) Playeru gets a
lower payoff.

1.1.6 Evolutionary game theory.

Evolutionary game theor{EGT) is defined as the application of game theory to
evolving populations, providing a useful framework to model Darwiniangetition.
The origins of EGT can be found in John Maynard Smith and George R'®sitidy
about the way in which animal conflict can be modeled through surviatksfies in
hostile scenarios [11]. Evolutionary game theory has been successfatiynot only

in many aspects of biologye(g. the basis of altruistic behaviors, the emergence of
multicellular organisms, group selection, sexual selection, parentalcmseylution

or ecological dynamics), but also in other sciences such as econongosiology
[12, 13, 14, 15, 16].
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Replicator equations.

The usual method for studying evolutionary dynamics in GT is through reptica
equations. These replicator equations establish a relation between tha gawof

the proportion of players using a certain strategy (that can be interpfetesample,

as a specie’s population growth or a behavior evolution) and the difereatween
the average payoff of that strategy and the average payoff of théevpopulation
(respectively the specie’s fithess or the behavior reward) [12 Rejjlicator equation
assume infinite and well-mixed populations and continuous time. Usually, thesintere
is not in the transient but in the steady-state solutions: the stable states.

The replicator equation can be obtained from Darwinian arguments. Qrsce p
tulated that expected offspring of a kind (mutation, race, specie, ...) i®giopal
to the fitness (that provides food, welfare, safety, ...), the growth #afie; of that
kind 7 can be assumed as the difference between kind's fithess and meartipopula

fitness, that isg;/z; = fi(x) — f(x). Assuming continuous time, the evolution of a
population distributed im (finite) kinds is given by:

B =il fi(x) — ()], pla) =D wifix) (1.6)
=1

wherez; (i = 1,2,...,n) is the ratio of kindi in the population f;(z) is the fithess
of types, andu(x) is the average population fitness. Sifcez; = 1, the population
vectorx = (x1,...,x,) evolves in the (n-1)-simplex defined by theverticesz; =
dij, 7 =1,...,n. Eq. 1.6 is the most general form of replicator equation.

Under the assumption that kind’s fithess is a linear function of population ratio
the replicator equation can be written as:

z; = z; ((Px), — XTPX) ) (1.7)

whereP is the payoff matrix and contain the fitness informati@dx), represents the
expected payoff of-kind andxTPx stands for the whole population’s mean payoff.

Replicator dynamics.

An alternative way to get the replicator equation, often used in social csens
based on the concept of imitation, rather than offspring, most related togliolo
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[15, 17, 18]. Consider a iterated two-player n-action symmetric game amg-a p
ulation of N players. Let be the round number, = 1,2,...,n the actionsz! the
proportion of population choosing actierand P! = P;(z') is the expected payoff
of a player choosing at time (round). The evolutionary dynamics can be model in
the following way (replicator dynamics): assume that each time légserandomly
and equiprobably player (the past action of wasi) chooses a random playe(the
past action ob» wasj) andu changes its action tg, if the payoffP; of v is greater
than his payoffP!, with a probability proportional to the payoff differen;E§ — Pl
That s, once two players with past actiarend;j have been chosen, the first player’s
change probability is given by:

IL;,; = B(P} = PO(F} - P)) (1.8)

whereO(y) is the Heaviside functiond(y) = 1 if y > 0 and0 otherwise).

If the actions are ordered (without loss of generality), suchBiat P < ... <
P!, the expected ratio of players choosing acti@t timet + dt will be given by:

n

1 ‘1
Fitd = gt i) > s - p;)+zﬁmgx§(dt)5(gt_ P
J=i+1 j=1

zt + xﬁ%dt) (P! - PY) | (1.9)

where P! = >_; Piz! is the whole population mean payoff. Under the assumption

of large population size, we can replace™ by =%, getting:
it= Dot~ pty (1.10)
1 N 1 K2

and making3 = N (time rescaling), we get the replicator equation:

The strategy above describedplicator dynamics, has been used extensively to
describe a large variety of problems. The main advantage is that it carplecdsip
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finite and non-well-mixed populations but, unfortunately, the mean-fieldrigien
is not valid anymore and those problems must be numerically solved, usuallgthr
extensive numerical simulations. In fact, the first part of this thesis is&gtin such
kind of problems.

Other update rules.

A necessary ingredient of evolutionary game models is the way in whichtsagen
choose their actions. In order to frame the thesis’ subject of study, thisiggon is
focused on repeated two-player symmetric games. In simultaneous gameday-

ers choose their actions simultaneously), at a given time step, every playsrthe
game with all her neighbors, usually using the same strategy in all pairinteer#

is an underlying topology, the neighbors of each player are given bydtveork(s)

of the model [16]. Once all the games are played each agent collects theetyoé.
Subsequently, players decide the action they will take in the next rounid: deh
cision constitutes the strategy (update rule). Besides the aforementipi@dtor
dynamics some of the most used strategies are:

Unconditional imitation: A randomly chosen playercompares its payoff; with
its neighbor with the largest payoff, say playenf P; > P; player: will imitate in
the next round the last action taken fayOtherwise, player will repeat action [19].

Moran rule : A randomly chosen playerchooses one of its neighbojproportion-
ally to its payoff P;. In the next round ageritwill chose the last action taken by
[20].

Fermirule: Arandomly chosen playércompares its payoff; with a random neigh-
borj. If P; > P; player: will imitate in the next round the last action taken py
with a probability proportional to:

1

m . (1.12)

IL;; =

Otherwise, playet will repeat action [21].

Best-responseThe best response is the strategy consisting on choosing, for the next
round, the action which would have produced the higher payoff in therpasad,
once each player knows the chosen action by its neighbors. [22].

In some kind of problems, instead of considering that the strategies dejpend
rectly on the payoff, it is more realistic to consider the fithess as a functipayf
off. For instanceweak selectiondescribes situations in which the effects of payoff
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Figure 1.1:Examples of graphsAlthough the three graphs have a similar number of nodes,
only the one on the right can be considered a complex netwgrRegular lattice of 25x25
(625 nodes). B) Regular lattice of 25x25 (625 nodes) withgaécal boundary conditions.
C) Complex network consisting of 700 nodes and a heterogsneannectivity according to

a binomial distribution. The diameter of each node is propoal to its connectivity.

differences are small. Weak selection has been extensively studiedlutievary
biology, and recently in evolutionary game dynamics [24]. Neverthelegsalhthe
usual strategies take into consideration the payd¥sjority rule consists on the
imitation of most common action in the neighborhood, andlysis players’ strate-
gies described in chapters 5 and 6, consists on the imitation of neighborhtiodsac
with a probability proportional to their frequency [23].

1.2 Complex networks.

The study of the relations among elements of different systems unveil lyimger
networks: Regardless of its origins, many networks of different ateasbe char-
acterized through common schemes, showing similar properties [25, 2@8P7,
Examples of this can be found in biologg.¢, regulatory, metabolic, signaling or
neuronal networks), sociologg.g, scientific colaborations, coworking relations or
information exchange networks) and technology( internet). The topology of the
interaction network may provide the key to understanding many complex systems
and, in fact, complex networks have become a new paradigm for compl2Qity [

1.2.1 Definitions.

A graphG = {N, L} consists of two set&’ and L, such thatV is not empty and

L is a set of couples of elements &f. If L is ordered (unordered), then the graph
is directed (undirected). The elementsof NV are called vertices or nodes and the
elementd; of L are the links or edges. Let N and K be the number of elements in
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N and L, respectively. We can refer to a node by its order number i, then d link
consisting of coupl€i, j) can be referred by; or by, wherek is the order number
of the link / in setL. The link/;; is said to be incident in nodes i and j, or to join i
and j. Two nodes (i,j) are adjacent, connected or neighbors if there exiistis /;;
incident in nodes i and jG’ = {N’, L'} is a subgraph off = {N,L} if NV C N
andL’ c L. In order to get a matricial representation of graphwe consider the
adjacency matrix A: a NxN square matrix with componentssuch that;; = 1 if
and only ifthe link;; exists, otherwise,;; = 0. The components;; of the diagonal
of the adjacency matrix satisfy;; = 0 and it is a symmetric matrix;; = a;; for
undirected graphs. An alternative matricial representation is given bindigence
matrix B: a NxK matrix with components;, such thab;;, = 1 if and only ifl;, = ;;
for a nodej, otherwiseb;, = 0.

1.2.2 Properties.

Let G = {N, L} be an undirected graph. The connectivityor degree of a node
i € G is defined as:

o= Say (1.13)

jEL

and represents the number of incident links in i. In the same wa&y/, # {N', L'}
is a directed graph, the out-degree and in-degree of ained&’ are defined as:

K =) ay
jeL!
Yo=Y i
jeL’
(1.14)

and represent the number of outgoing and ingoing links respectivalythentotal
degree of the nodgin a directed graph i&; = k%“* + k. In order to characterize
the topology of an undirected graph, the degree distribuktoh) = P; is defined
for k = 0,1,2,... as the fraction of nodes with connectivity k in the graph. Like-
wise, for directed graphB°“!(k), Pi"(k) are defined in the same way. As well, the
n-moments ofP(k), defined agk™) = >, k" P(k), give us information about net-
works’ topology and therefore about their behavior under the dynampicaesses
that we study in this work. To deal the degree correlatidhg;|k) is defined as the
likelihood that a given link connecting a degre@ode i is connected to a node j of
degreet’, and satisfies the normalization equatboly, P(k’|k) = 1 and the detailed
balance conditiok P(k'|k)P(k) = k' P(k|k")P(k"). Nevertheless, in finite size real



12 Introduction.

networks we can obtain clearer results computipg(k), that is, the average degree
of the neighbors of degree k nodes:

N N
) = Z Z ki > KP(KE) . (1.15)
i=1 j=1 k!

Depending ork,,(k), the networks can be uncorrelated, assortativgs (k) in-
creases with k) or dissortativek,(, (k) decreases with k).

The shortest patit;; or geodesic between two nodes (i) is the minimum number
of links required to connect i and j. In order to characterize the sizereftaork
G, beside the values of N (number of nodes) and L (number of links), the tkame
Diam(G) of G is defined as the maximum value of the shortest patlds. iRor fully
connected graphs, the characteristic path length L is defined as:

N N
L = N( Z Z d”, (1.16)

1 NN
E = N(N—z’)z.z dij (.17)

@
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With the purpose of characterizing the connectedness of anadgether with
the degree, the closenes®f i is defined as the inverse of the average distance from
i to all nodes; = N(Zjv 10 i ;)L Besides, the betweennessia$ defined as
the average fraction of shortest paths passing throggh, (7)) over total the shortest

paths ;) for every pair of nodes:

5o (i)
b — k(i) (1.18)
jz;k%#j Nk

Another typical property of complex networks is clustering, it charaasrthe
likelihood that two nodes with a common neighbor are connected. One of the man
measures of clustering is transitivity T, which is defined as the normalizedaftio
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the number of transitive (fully-connected) triples divided by the amounbohected
(fully or simply-connected) triples.

T — 3(#transitive triples in G) (119)

#connected triples in G

When a subgrapl’ = {N’, L'} of G = {N, L} has higher connectivity than
G, i.e. the nodes of7’ are tightly connected;’ is called a cluster. More precise
definitions of cluster are the n-clique and the k-plex. A clique or 1-cliquefidly
connected subgrapf’ of G. More generally, a n-clique is a subgraghsuch that
the largest geodesi¢;; between two nodes (i,j) of’ is n. On the other hand, a
subgraphG’ = {N’,L’} is a k-plex if it is a maximal subgraph such thgt >
N’ —k, Vi € N’,thatis, each node @ has at leasiV’ — k neighbors inG’ and
there is not another graph @ containingG’ that satisfy this property.

1.2.3 Weighted networks.

So far, we have considered unweighted networks, which means thatkb®&étween
nodes are either present or not, without an assigned value. Howeamy, real net-
works exhibit heterogeneity in the links. This feature has been studied in fietos
such as social networks [33, 34, 35, 36, 37], metabolic networks3@8 predator-
prey interactions [40, 41], neural networks [35, 44], traffic of thegengers in airline
networks [42, 43], internet traffic [60], etcetera. Weighted netwdilks networks
in which each link is characterized by a value) provide a very usefulttodéscribe
these systems.

A weighted networkG" = {N, L, W} consists of three sef¥, L andW, such
that N = {ni,ne,...,ny} is a not empty set oV nodes,L = {i1,ls,...,Ix} is a
set of K’ couples of elements oV (the links) andW = {w;,ws,...,wx} IS a set
of real numbers (weights) associated to the links. A Weighted net@&rkcan be
described by & x N matrix W, the weights matrix , such that its compones} is
the weight of the link from nodéto nodej, assumed that;; = 0 if such connection
does not exist. The network is symmetriadf; = wj;, Vi, j .

In a weighted networks"V, the weight distributiorQ (w) is defined as the prob-
ability for a given edge to have weight The node weight (or strength, or weighted
connectivity) is defined as; = ZjGN w;j. If there are not correlations between
weights and connectivity, one obtaisig ~ (w)k. In the same way, measure coeffi-
cients of unweighted networks (such as shortest paths, clusterirficiof etcetera)
can be generalized to weighted networks [28].
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Example of real networkPartial map of the Internet: Each node represents an IP
address while each line symbolizes a link between two nodes, the length ofdke lin
indicate the delay. This graph represents less than 30% of the Class Ckweteach-
able by the data collection program. Different colors represent diffeocations.

The Opte Project (2005).
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1.2.4 Real networks: distributions and topologies.

Complex networks can represent a huge range of real systems cansistinany
highly connected elements that can be found in different fields, suchcasiagy,
biology or technology. Although the use of complex network theory makesnup
approximation that implies loss of information, it provides a holistic approach an
details about emergent phenomena. Different sorts of systems aexiehiamed by
different kinds of networks, with dissimilar properties as degree distribsitipath
lengths, clustering, degree correlations, etc.

Regular graphs.

In graph theory, a regular graph (RG) is a graph where each veatethke same de-
gree connectivity. In addition, in a regular directed graph the indegré@atdegree
of each vertex are equal to each other. A RG with vertices of degisecalled a
k-regular graph. A network is a regular graipand only ifthe vectoru = (1,...,1)

is an eigenvector of its adjacency matrly;. In addition, the eigenvalue of u is the
constant degreg of the graph. Eigenvectors corresponding to other eigenvalues
are orthogonal ta, for such eigenvectors = (v1,...,v,), we haved_" jv; = 0
(seee.q.[78)).

RG of degree¢ = 0, 1, 2 are trivial, but higher degree RG can be complex net-
works. In some parts of this work (. chapter 2) we use a kind of RG, called random
regular graph (RRG), characterized by a random distribution of lintestiSg from a
regular lattice, a RRG can be generated by randomization of links throwayhirang
process.

Random graphs.

Erdos and Rényi initiated in 1959 the study of graphs that grow througtora pro-
cedures [76]. The original Erdos-Rényi gra@%ﬁ( consists of a set of N nodes,
firstly disconnected, and later linked by connecting K pairs of nodesnara. In

the same WayGﬁfz represents a graph generated though a set of N nodes, firstly
disconnected, and later linked by connecting each pair of nodes witlalpitity p
(figure 1.2). Although both processes generate different (but sinkilads of net-
work, for large values of N they provide the same distribution. The geapfj has

on averagd)p edges. The degree distribution of a nade binomial:

P(k; = k) = (" N 1>p’“<1 —pr (1.20)
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Figure 1.2: Random network according to a Poisson distdbutf the connectivity. The
diameter of each node is proportional to its connectivitgtiork sizeN = 800, averaged
degree(k) = 4
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Figure 1.3: Random network generated through Erdés-Réeghanism (left) and its con-
nectivity histogram (right). The diameter of each node igpartional to its connectivity.
Network sizeN = 1000, averaged degreg) = 2

In [77], Erdds and Rényi showed that the topology&ﬁf; depends mainly op,
in fact:

e If p < 1/N, then the sizé,,,, of the greatest connected component of graph
G will be S0, < In N, with a probability increasing with N.

e If p=1/N, then almost surel, ., ~ N?/3.

e If p>1/N, thenG™ will almost surely have a giant component and no other
component will contain more thaf(ln V') nodes.

Small-world networks

Many real networks, such as social networks [62, 63, 64], showptbperty that,
although the mean connectivity is much low that the system size, most nodbe can
reached from every other by a small number of steps. A small-world (®f)ark is

a network where the characteristic path length grows proportionally to tiaeitlogn

of the network size:

L xlogN . (1.212)
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The Watts and Strogatz model consists of an algorithm to make graphs that pro
vides small-world networks with a high clustering coefficient [25]. Startiognfa
ring of NV nodes (that is, a circle of nodes in which each node is connectedmits
nearest nodes), a rewiring process is performed, so that with plibpaleach node
is disconnected from its clockwise neighbor and connected to a randden ri@n
one extreme, fop = 0 the ring remains unchanged and we have a regular lattice; at
the other extreme, fgr = 1 the procedure provides a random graph with minimum
connectivityk, i, = m.

According to the SW definition, most pairs of nodes will be connected byat le
one short path. Furthermore, from the high clustering coefficientgotpollows
that SW networks contain a high number of cliques and many highly conngaited
graphs. Real SW networks usually have high degree nodes thatsamubs of short
paths, and the degree distribution are fat-tailed. Anyway, very diffeypephs (both
real and artificial networks) can be defined as small-world networksnasds they
satisfy the property 1.21.

Scale-free networks

The degree distribution of many real networks follows a power-law, at symp-
totically. That is, P(k) goes for large values of k as

P(k) ~ k7 | (1.22)

where the value of the constamtis usually2 < v < 3. Power-laws are the only
functions f (z) that presents scale invariance: do not change if independent variable
x is multiplied by a common factor, apart from a dilatation. In reference to this-pro
erty, such networks are called scale-free networks. Many netwalksiding to a
wide range of subjects appear to be scale-free: Social networksénypte the col-
laboration networks, as the collaboration of movie actors in films or the coautho
relationships), biological networks as the protein-protein interaction mksyeex-

ual relations in humans (related with the diffusion of sexually transmitted disgas
semantic networks, many technological networks as the World Wide Welertce
Although the average degrég) is bounded, the variance

o2 =<kr>—-<k>?, (1.23)

diverges as the second momenk? >:

kmaz
<k?>= / k2P(k) ~ k377 = k¢

max maxr

(1.24)

kmin

where the exponert > 0.
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The Barabasi-Albert (BA) model

In 1999, A. L. Barabasi and R. Albert mapped of a portion of the Weall, show
that some nodes (hubs), had a connectivity degree very higher thegstlaes, and
that the degree distribution of the whole network follows a power-law digtabu
[45]. They found that other social and biological networks also had simiiap-
erties. Barabasi and Albert proposed a mechanism, the preferentiratat, to
explain the emergence of the power-law distribution. However, this mechamty
produces a specific kind of scale-free networks, and many other misote have
been discovered since (and earlier). The preferential attachmenamschgenerate
a grathﬁj‘}( according to the next rules: starting fromy isolated nodes, a new
node j withm < mg links is added. The likelihood that j will connect to a given node
i is proportional to the i-degree:

P(j —i) = Zk;kz . (1.25)

The operation of addition a node is repeaféd- m, times. At the end, the graph
obtained, known as Barabasi-Albert (BA) network, will havenodes and< ~ mN
links, with < & >= 2m (figure 1.4).

The BA model has been solved in the mean-field approximation [45]: In the
thermodynamic limit — oo, the degree distribution obtainedfk) ~ k=7, with
~ = 3. For the same value a¥ and K, BA graphs have smaller average distance
than ER graphs, resulting ~ logNN/log(logN) [46]. Furthermore, the clustering
coefficient decreases with respect to the size of the syste@ as N 075, that
is, slower than that observed for ER grapfis~ 1/N. Several variations of the
model have been studied, such as directed graphs [47] or alternativemsms for
preferential attachment [48], among many others.

Configuration model

Starting from a set ofV nodes and a given connectivity vectidr(that is, V' is the
connectivities sequendg, ko, . .., ky, andk; the connectivity of linki), the con-
figuration model (CM) provides an algorithm to build up a network [49, 5The
CM takes the se@i‘,’fg of all graphs withN nodes and connectivity vectdf, and

consider all the elements dff(,"g with equal probability. The algorithm consists of
the following steps: firstly aséigris half-edges to each node after this connects
by pairs the half-edges in an equiprobable way. A giant component emehgost
surely whenQ = >, k(k — 2)P(k) > 0 and the maximum degrég,,. is not too
large [49] (figure 1.5).
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T

Figure 1.4: SF network generated through Barabasi-Albexhanism. Red (blue) colored
circles represent the high (low) connectivity nodes. Nekngize N = 2000, averaged
degree(k) = 2. The subgraph (detail) highlights the scale invariancepery of power-
law distributions.

The configuration model proposed by Molloy and Reed provides nesnwitk
degree correlations, in the sense that the expected degree of thearsigha given
nodei is not independent of;. Starting from the CMCatanzaro, Bogufia, and
Pastor-Satorragoroposed the uncorrelated configuration model (UCM), capable to
generate random uncorrelated scale-free networks [51]. The raddsla restriction
on the maximum possible degree of the vertices, governed by the structtoéi

kmaz = VEN.

1.3 Sociophysics.

The use of methods of probability theory and statistics for dealing with large po
ulations in solving physical problems constitutes Statistical Physics as ahbo&nc
physics, and its procedures are successfully used in a wide variegydsf éif physics
involving many interacting entities. In the light of its usefulness, this sucgkessf
framework has recently been extended to other sciences including cherbistr
ogy, neurology, and even some social sciences, such as econooh&scawiogy.

Sociophysics is a multidisciplinary research field that applies theories and meth
ods originally developed by physicists in order to study social topics,llyshase
including uncertainty or stochastic processes and nonlinear dynamigs [h4Sta-
tistical Physics, the elementary components of studied systems usually are simple
objects whose behavior is conditioned by some well-know laws: the statidticil s
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Figure 1.5:Examples of configuration model graphghe C.M. algorithm allows to make a
network according to a given connectivity vector. Both di@pbove consist d¥ nodes and a
heterogeneous connectivity conforming to a truncated pdave distributionP (k) = k=27,
A)N = 600, knin =2, kmaz = 15. B)N = 2000, kpin = 2, kmae = 44. The diameter
of each node is proportional to its connectivity.

focuses on collective effects due to the interactions of a large numbéeroeets.

In contrast, the basic constituents of social phenomena are humansaanihéi-
vidual interacts with a variable number of individuals that, for most indivislaad
problems, is negligible compared to the system size. People are not singtésobje
following simple behavior rules, and modeling of social topics involves at giga
plification of reality. Clearly, this approach does not try to model the complexity
individuals, but focus on the nature of interactions, seeking an holigpimaph and
drawing conclusions about the overall system. These conclusions énthrtsitions
from order to disorder phase, transient and stationary states, scedipgripes, and

so on. Obviously, the limitations in the modeling of agents (people) condition the
validity of the results, and should be taken with caution. However, in mostceolle
tive systems, global properties do not depend on microscopic cortfigutaut on
global features as symmetries, conservation laws, temperature, efteldglnoise,

etc. Following this holistic view, the modeling of social systems includes only the
most important characteristics of individuals, nevertheless criterion contmalth
scientific modeling process.

A high number of scientists and multidisciplinary work teams are involved in
this branch of knowledge and the topics have been dealt in recent wéhrthis
approach are so varied as opinion dynamics, ethnic segregation, tditneanics,
crowd behavior, social hierarchies, language dynamics and spgepbdanomena
among others.
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1.3.1 Agent based models.

An agent-based model (ABM) is a class of numerical models for simulating tie in
actions of autonomous agents with the purpose of studying their effects spgtem

as a whole. Usually ABMs rely Monte Carlo methods to introduce randommeks a
the high numbers of interactions is performed trough specific computergmmsg
The origin of agent based (AB) modeling dates back to the late 1940s whken th
mathematician John von Neumann (starting from the Alan Turing idea) dedigaed
von Neumann machine, a theoretical system based on self replication.ofbept
was then improved by Stanislaw Ulam: Ulam suggested to build the machine as a
set of cells on a grid [30]. The concept was taken up by von Neumaha,one-
ated the first of the devices later termed cellular automata [31]. The devatbpime
computers led to AB modeling widespread since the 1990s. ABMs have lseen u
to deal with a wide range of problems in several fields as biologye(@sspread

of epidemics, population dynamics), biomedical applications, economicandgs

of ancient civilizations, logistics, traffic control, workforce managemeistributed
computing, people’s migrations, language dynamics and social netweidt®ff

One of the firsts ABM designed to explore a social issue was developed by
Thomas Schelling in 1971 [52, 53]. The Schelling’s residential segregatmdel
studies the effects of a preference for people to be in a similar neighdmbrduwd
consists of a regular lattice, with a density of empty sites, whose nodes mimitsagen
of different ethnicities. After an initial distribution of the agents, at eachelgtary
dynamical step an agent is randomly chosen and it moves to a empty site eltosen
random if its ratio of other ethnic neighbors is higher than a tolerance thice3h
After a long enough transition time, he found that the agents remain in a mixeid distr
bution only for very high values of the tolerance threshold, but agentsgegregated
neighborhoods for other values of tolerance (Figure 1.6).

Opinion Dynamics is a social topic very dealt with AB modeling, it studies the
chance for a social group to reach agreement or disagreementsagoestion. Out-
side this framework, in the early 70’s Clifford an Sudbury defined a mfudtgdopu-
lation dynamics [54], the latter named Voter Model has been used in fieldsisa v
such as social dynamics, population genetics, chemistry and probability.tidee
description of Voter Model is not at all complex: each agent is providedvariable
that take two possible values, and at each time step a randomly chosesegets
at random a neighbor and imitates its variable’s value. Although its extremelyesimp
design and the fact that can be solved exactly in any finite dimension [5hdllel
has been and is still studied in many sciences and according to differganttea(as
e.g., different topologies, noise and external fields). Other opinioamjcs model,
the majority rule model [56], explores a similar topic through a different gdace:
Starting from a complete graph whose nodes (agents) are providedidéhle (opin-
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ion) that can take two possible values (-1, +1), at each time step a random of

r agents is selected and they share the majority opinion inside the grouprdupe g
size r is taken at each interaction from a given distribution. The model ieslad
asymmetry: when r is even, a value of opinion (e.g. +1) can be promotedénata
atie. Under the mean field assumption, Krapivsky and Redner [57] stiieadodel
for a fixed value of r. They found three fixed points: one unstable fpa@dt that
corresponds to a situation in which the population is evenly distributed in bhtbs/a
of opinion variable, and two stable fixed points that correspond to omgeogdrozen
states. The majority rule model has been studied under different netwaloties,
multi-state opinion and plurality rule [58], as well as modifications that include mo-
bility, external fields, variable connectivity, etcetera ...

Other context of social research corresponds to the cases in whidbrojs mod-
eled as a vector of variables. These models are usually grouped uedertte of
cultural dynamics. The most representative and studied model in culimahdcs
was introduced by Robert Axelrod in 1997 [59]. The well-known Axdisamodel
for culture dissemination explores the principle of homophily, developing tee id
that a social agent will convince similar people easily than dissimilar onesharet
fore similar people tend to become even more alike. It consists of a regulae lattic
whose nodes mimic cultural agents. Each one of these nodes is providea s&th
of F cultural features that can assum¢ossible integer values. The parameger
represents the possible traits that each feature can assume. Thuseaisuttadeled
as a vector oft” integer variables. After assigning the traits at random, the system
evolves as follow: at each elementary dynamical step, an individaadomly cho-
sen imitates a feature’s trait of a random neighpavith a probability equal to the
cultural overlapw; ; between both agents, definedugs = (25:1 60f(i)7gf(j))/F,
whered,,, is the Kronecker's delta which is 1 if = y and O otherwise. After a
long enough transient, for a low value of the initial cultural diversitghe system
reaches a frozen monocultural state, in which all agents share evier@tmahe other
hand, for high values of the initial cultural diversity, the system camivaro cul-
tural convergence but remains at a multicultural state, characterizegeoysawvho
hardly share features with their neighbors (Figure 1.7). The usual garameter
is the relative size of main culture,,.,)/N, i.e. the maximum number of agents
sharing every trait divided by the total population. Several othersr graiemeters
can be used as the numbgeof different cultural domains in the asymptotic state over
the total populatiory = (N,)/N. Then, the final states above mentioned are char-
acterized by(S;qz)/N ~ 1,0 andg ~ 0,1 respectively. Both states are bounded
by a phase transition at a critical valgedepending orF": this transition is continu-
ous for ' = 2, but discontinuous fof’ > 2. Axelrod model has been studied with
many variants as random noise [147], mass media effects [150] ancediffeetwork
topologies [141, 145] among others.
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Figure 1.6: Dynamics of the Schelling modeThe Schelling’s model of residential segre-
gation studies the effects of intolerance in the populatistribution. People move if their
neighborhood is unfriendly according to a tolerance patam&he model shows segregation
in neighborhoods for intermediate and high values of imtoiee [52, 53]. Colors represent
ethnicities and opposite sides are connected.

Figure 1.7:Dynamics of the Axelrod modeTop panels: For low values of the initial cul-
tural diversity ¢), the system converges to a frozen monocultural stateacteized by a
cultural group shared by all the agents. Bottom panels: i@fke, for high values of the
system remains in a multicultural state in which agents doshare many traits with their
neighborhood [59]. Colors represent different cultured periodic boundary conditions are
applied.



Sociophysics. 25

1.3.2 Topology.

The description of interacting relations (who interacts with whom, how often, in
which way do agents relate), is a key of the modeling process in sociardgsial he
usual tool to describe the relationship between agents is a network in vgeoksaare
represented by the nodes and links represent the interaction chaids.rely on
different network structures, and outcomes usually strongly depeigectopology
chosen. In a society, people are not usually connected everyonerymee but in
several ways. This fact can be modeled through different netwodsKidirected or
indirected, weighted or unweighted, etc) and topologies, including regnthcom-
plex networks €.g. lattice, small-world, RRN, ER or SF). Although real networks,
and particularly social networks, often differ from artificial networksmany fea-
tures, the dependence of model behavior with topology provides a tootierstand

in what way individual relationship influence on society.

A social network is a graph in which the nodes represent individual®a@als
groups and the links symbolize the relationships among them [60, 61].timfaay
of the concepts used in the analysis of complex networks are based ihfsatiges,
such as small-world property [62, 63, 64], as well as theoretical toals as node
centrality or clustering index [65]. Graph theory has provided a veejulisool for
measurement of different social topics as collaboration networksdiheép or so-
cial interdependence. Additionally, new technologies provide new kihdedal
interactions characterized by lower dependence on the physical loeatibhigher
connectivity of individuals [66]. Complex network theory offers a tooktady the
properties of the contacts structure and the dynamics involved in the forming p
cess. Examples of social networks are scientific colaborations (swdaathorship
networks), actors coworking relations, information exchange, onliolseetworks
friendship, etcetera.

The influence of network topology on the behavior of social ABMs mentone
in section 1.3.1 has been studied in the last decades, including sevasakach as
language dynamics, social behavior, rumors spreading, opinion modkigat dy-
namics, etcetera (see.g. [67]). For example, in opinion models, consensus critical
values show a strong dependence on the underlying topology [57]. Syiy#aelrod
model for cultural dissemination displays dependence of the phase trarmitithe
network structure [145, 146]; beyond this dependence, the dynarmite onodel
can be used to build a network through a rewiring process, which in tuwvidas
new system behaviors [166, 167].

In strategic games [12, 17], the role of network topology is usually intreduc
through the condition that, at every time step, one or more individuals intertct w
one or more agents chosen among their network neighbors. The spedaitét ded-
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inition depends, among other parameters, on the kind of synchronizatprsyn-
chronous, serial) and on the strategies and updating rules considenealticular,

the dependence of social observables on the underlying topologyeleasvidely
analyzed through EGT models. For example, prisoner dilemma in complex net-
works has been object of several studies for the last twenty yeanssifg in the
influence of the structure of interactions among people on the level ofecatpn

[16, 94, 18, 109, 95]. The studies showed a strong dependence cbtperation
level on the topology, that is, heterogeneity enhances cooperatioertNeless, this
dependence is very sensitive to the type of strategies and updating oukEdered

[79].
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The emergence of cooperation.






Presentation of Part I.

“First, let it be remembered that we have innumerable inst&s) both in our domestic
productions and in those in a state of nature, of all sortsitietences of inherited structure
which are correlated with certain ages and with either sexe have differences correlated
not only with one sex, but with that short period when theadpctive system is active, as
in the nuptial plumage of many birds, and in the hooked jawt®imale salmon. We have
even slight differences in the horns of different breedsatifecin relation to an artificially
imperfect state of the male sex; for oxen of certain breed® h@nger horns than the oxen
of other breeds, relatively to the length of the horns in dbthbulls and cows of these same
breeds. Hence, | can see no great difficulty in any characgeolming correlated with the
sterile condition of certain members of insect communities difficulty lies in understand-
ing how such correlated modifications of structure couldénhbeen slowly accumulated by
natural selection. This difficulty, though appearing instgble, is lessened, or, as | believe,
disappears, when it is remembered that selection may beeapim the family, as well as
to the individual, and may thus gain the desired end. Breedéicattle wish the flesh and
fat to be well marbled together. An animal thus charactetinas been slaughtered, but the
breeder has gone with confidence to the same stock and haseslett Such faith may be
placed in the power of selection that a breed of cattle, abwaglding oxen with extraordi-
narily long horns, could, it is probable, be formed by caligfuvatching which individual
bulls and cows, when matched, produced oxen with the lorgess; and yet no one ox
would ever have propagated its kind. Here is a better and ilkadtration: According to
M. Verlot, some varieties of the double annual stock, fromirigabeen long and carefully
selected to the right degree, always produce a large propomf seedlings bearing double
and quite sterile flowers, but they likewise yield some siagid fertile plants. These latter,
by which alone the variety can be propagated, may be compaittdthe fertile male and
female ants, and the double sterile plants with the neutetkeosame community. As with
the varieties of the stock, so with social insects, seladias been applied to the family, and
not to the individual, for the sake of gaining a serviceabid.eHence, we may conclude that
slight modifications of structure or of instinct, correldteith the sterile condition of certain
members of the community, have proved advantageous; aoerstigthe fertile males and
females have flourished, and transmitted to their fertifegyfng a tendency to produce ster-
ile members with the same modifications. This process mustlieen repeated many times,
until that prodigious amount of difference between thdléeand sterile females of the same
species has been produced which we see in many social ihséCisarles Darwin. The
Origin of Species by means of Natural Selection. (1859).

Understanding how cooperative behavior emerges in different dsritegne of
the major questions of modern science. The presence of cooperatiostile lem-
vironments, that is, when selfish behavior provides higher individuadttras does
cooperation, has been studied in many areas including microbiology, s @ikl-
tion, population dynamics, economy and sociology.
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Theory of evolution is based on natural selection, which in turn is basedeon
survival-of-the-fittestule. The limited resources available in a habitat promotes com-
petition between organisms of the same or different species that havedglstta
survive; the final purpose of this competition is to provide offspring. dohscom-
petition, cooperation is, at least in the first instance, faced to individtedest of
survival and reproductive success. Nevertheless, cooperatibevaen altruism have
evolved and persist, and evolutionists have studied this question extgrisivthe
last 150 years.

Cooperation between biological entities pursuing their own ends is key &rund
standing biological issues such as the emergence of multicellular organisyres- or
garious behavior, but also to analyze human societies: people form faniles,
cities, nations, coworker networks, companies, research teamsizdissts; etcetera.

Altruism is defined as a form of cooperation in which there is no directfiig¢ne
the organism carrying out the behavior, while mutually beneficial relatipnsifers
to cooperative behavior in which there is a direct benefit to the actor bhasvthe
recipient [68]. There are several proposed mechanisms which helpl&irecooper-
ative behavior; they are not necessarily mutually exclusive, so thahhination of
some of them may be applied to explaining a particular case of cooperaliggibe
The most widely accepted and studied ones are:

Kin selection refers to evolutionary strategies that favor the persistence and repro-
ductive success of an agent’s relatives, even at a cost to the auoviveproduc-

tion of the agent. Kin selection implies cross-generational genetic chamiges d

by interactions between relatives and may be applied when relatives icdl woere
another on survival and offspring. William D. Hamilton established, in 1864ath-
ematic condition to explain altruistic behavior through kin selection [69]. Adiogr

to Hamilton’s rule, an altruistic action from ageinb j may be justified when:

rB>C | (1.26)

wherer is the genetic relatedness ofo j, defined as the probability that two
genes taken at random from the same locus in both individuals are iddnyicike-
scent,B is the reproductive benefit obtained prndC' is the reproductive cost paid
by i.

Group selectionmechanism in biology takes the assumption that genes can spread
into a population because of the benefits they provide to the community [70]. Al-
though group selection is not widely accepted by evolutionists in biologyefaeral
reasons€.g, the different time scales between groups dynamics and reproduction),
it is often applied to other areas such as human behavioral sciences [71]
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Reciprocity refers to situations where cooperation and/or altruism is enhanced by
the probability of future mutual interactions. There are three types ofregtp that
have been deeply studied:

i) Direct reciprocity mechanism was proposed by Robert Trivers in 1971 [72]. If
there is a probability of repeated interactions between the same two playera with
cooperateaction available, then a strategy of mutual cooperation may be favored even
whennon-cooperatactions brings larger short-term benefits. Direct reciprocity can
enhance cooperation only if the probabilityof another encounter between the same
two individuals is higher than the cost-to-benefit ratid of the cooperative action

w > c/b.

i) Indirect reciprocity mechanism do not requires that the same two individuals
interact again. In a mutual interaction, actions are observed by thirdipdityduals
who might inform others. Thus, social approval promotes cooperationdirect
reciprocity [73]. Indirect reciprocity can enhance cooperation ontlggfprobability

p, of knowing a random agent’s reputation is higher than the cost-to-lbegidic/b

of the cooperative actiop > ¢/b.

iii) Network reciprocity . Real populations have spatial structures or underlying net-
works which imply that some individuals interact more often than others. réloug

to the so-calledattice reciprocitymechanism, the cooperative action can take advan-
tage of the topology of the network, so that cooperators clusters arerefigient to
invasion by the defective action [19].

In this part of the thesis, we focus on the emergence of cooperation in com-

plex networks. In the framework of evolutionary game theory, among gf@eres
that provides a satisfactory description of a wide range of situatimgs the Public
Goods Game), the Prisoner’s Dilemma (PD) has become a standard fangttiusy
cooperation. First, in chapters 2-3-4 we investigate in detail the dynamieb a
different artificial networks under the assumption of a widely acceptetégirathe
replicator dynamics. Later, in chapter 5 we take into consideration olusstragte-
gies in human behavior and study the consequences of such rules. kimeligpter
6 we test the predictions by a large-scale experiment.






Chapter 2

The dipole model:
Thermodynamic study of a social
system.

In Evolutionary Dynamics the understanding of cooperative phenomenatumal

and social systems has been the subject of intense research duadgsled/e focus
attention here on the so-called “Lattice Reciprocity” mechanisms that enbeaolte

tionary survival of the cooperative phenotype in the Prisoner’s Dilemamaegvhen
the population of darwinian replicators interact through a fixed networkocfal

contacts. Exact results on a “Dipole Model” are presented, along with a-fiede

analysis as well as results from extensive numerical Monte Carlo simulafidres
theoretical framework used is that of standard Statistical Mechanics agbswpic

systems, but with no energy considerations. We illustrate the power of ttspgue

tive on social modelling, by consistently interpreting the onset of lattice reciyr
as a thermodynamical phase transition that, moreover, cannot be cappaedrely
mean-field approach.

2.1 Introduction.

Is the term “social temperature” just a rhetoric figure (suggestive metgpbr on

the contrary, could it be given a precise meaning? By working out in db&aévolu-
tionary dynamics of the most studied social dilemma (the Prisoner’s Dilemma) on a
simple kind of artificial social networks we will show here that the formaihfesvork

of equilibrium statistical mechanics is, to a large extent, applicable to the rigorou
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description of the asymptotic behavior of strategic evolution, thus providedgek
for a formal quantitative meaning of the term social “temperature” in thestegts.

Evolutionary game theory, in contrast with classical game theory that$esus
on the decision making process of (rational) agents, is concerned witk popu-
lations of agents programmed to use some strategy in their interactions with other
agents. The agents are replicatars, entities which have the means of making
copies of themselves (by inheritance, learning, infection, imitation, etc...)savho
reproductive success depends on the payoff obtained during itiverads the pay-
off depends on the current composition of strategies among the interagemgsa
this yields a feedback loop that drives the evolution of the strategic statesof th
population[12][17][79][80].

This darwinian feedback (frequency-dependent fitness) dynamjpesndls strongly
not only on the particular game, and on the specifics of the way strategéesgisput
also on the (social) structure of connections describing the interactionderlthe
assumption of a well-mixed populatioagcial panmixisassumption), the temporal
evolution of the proportion of strategies among the population is governadiiffgr-
ential equation nameeplicator equatiorn(see below). Well-known celebrated folk’s
theorems (see, e.g. [79]) establish a connection between the asympt@tiiopeti
this equation and the powerful concepts of classical game theory bagkd notion
of best reply (Nash). However, if the social panmixia assumption is avet] and
individuals only interact with their neighbors in a social network, the asytitpod
evolutionary dynamics generically differ in a substantial way from this “weked
population” description. The social structure of strategic interactions tmhto be
of importance regarding the evolutionary outcome of the strategic competition.

We will consider here the Prisoner’s Dilemma (PD), a two-players-twdesfies
game, where each player chooses one of the two available strategipsrat@m or
defection: A cooperator receiveds when playing with a cooperator, arfl when
playing with a defector, while a defector earRsvhen playing with a defector, and
T (temptation) against a cooperator. WHEn> R > P > S, the game is a PD
(whileif 7> R > S > P itis called Snowdrift game, also “Chicken” or “Hawks
and Doves”). Given the payoff’s ordering, whatever the value ofptliar assign of
probability to the co-player’s strategy is, the expected payoff is highatdtaction,
and that is what a rational agent should choose. In the PD game onlyféutive
strategy is a strict best response to itself and to cooperation, thus it isyaexaample
of game with an unbeatable [80] strategy. Still, though there is no difficulty in the
making of the strategic decision from Nash analysis, two cooperatorsettey bff
than two defectors, hence the social dilemma.

In graph-structured populations, a large body of research [L88B83, 84, 85,
86, 87, 16, 90, 101, 102, 103, 104] (and references thereinjautenary dynamics
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of the PD game has convincingly show the so-calitice reciprocityeffects: The
cooperative phenotype can take advantage of the topology of the setjao that
clusters of cooperators are often resilient to invasion by the (continunbeatable)
defective phenotype. This enhancement of asymptotic macroscopic tévadsp-
eration due to the structure and topology of strategic interactions includes,i®

far more general than, the so-called space reciprocity mechanismg sdeal nets
are discretizations (solid state lattices) of the euclidian space, and diffagox-
imations are often useful [105]. In this regard, one should stress theradated
evidence thatij many interesting social nets [27, 28, 45] are far away from being
regular lattices, andi{) freedom of connectivity scales (scale-free complex networks)
enhances [18, 106, 107, 109, 111, 112, 113] the lattice reciprocitiianéms up to
unexpectedly high values of the temptation paramétef the dilemma, where co-
operation is very expensive (but affordable in an evolutionary 3ense

In this chapter we investigate in detail the lattice reciprocity mechanisms in an
artificial network (Dipole Model) that models the competition for influence oo p
ulation of social PD-imitators of two antagonist Big Brothers (nodes cdedéo the
whole population, but with no direct connection between them).

2.2 Natural strategic selection on graphs.

We specify here the evolutionary game dynamics scenario, meaning the geanesgriza-
tion, the microscopic strategic dynamics (replication mechanism or strategtingd
rule), and the social structure of contacts that we will consider alonghieter.

We normalize the PD payoffs to the reward for cooperatiRg= 1, and fix
the null payoff at punishmen? = 0. Note that provided the (differential or rela-
tive) selective advantage among two individuals depends on their pagldference
(see below), one can arbitrarily fix the zero payoff level. Then only tamme-
tersT = b > 1andS = ¢ < 0 are tuned. Note that the range> 0 defines a
game named Hawks and Doves (also Chicken and Snowdrift) where mamsland
sucker’s payoff have the reverse order. We will occasionally comoeithis range
of parameters.

Moreover, we do not restrict our computationi® > 7" + S. This restriction
means that the total payoff for the two players is higher if both coopetatethan if
one cooperates and the other defe@tsHS), and is usually incorporated in iterated
games studies of the PD to prevent agents taking turns at defection arghtréry
the payoffs. For the specifics of the replicator dynamics (memory-les&omian)
in the next paragraph, one should not expect that this restriction quegijatnatters.
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Regarding the replication mechanism, we implement the finite population (size
N > 1) analogue of replicator dynamics [15, 18]. At each time gtephich repre-
sents one generation of the discrete evolutionary time, each agéys once with
each one of the agents in its neighborhood and accumulates the obtairadfs pay
P;. Then, the individualsj, update synchronously their strategies by picking up at
random a neighboy,, and comparing their respective payoffsand P;. If P; > P;,
nothing happens andkeeps the same strategy for the next generation. On the con-
trary, if P; > P;, with probabilityIT;_,; = n(P; — F;), ¢ adopts the strategy of its
neighbor; for the next round robin with its neighbors, before which all payofts ar
reset to zero. Hergis a number small enough to maKe., ; an acceptable probabil-
ity; its physical meaning is related to the characteristic inverse time scale: tiee larg
it is, the faster evolution takes place.

From a theoretical point of view, this specific choice of the dynamics has the
virtue of leading directly (see.g.[17]), under the hypothesis of a well-mixed pop-
ulation and very large population size, to the celebrated replicator equatidhef
frequencie9,, of strategiesx(= C or D) in the population:

pa:pa(fa_f) (21)

where f,, is the payoff of am-strategist andf is the average payoff for the whole
population. Note that time unit in equation (2.1) is scalegté.

For the payoffs of the Prisoner’s Dilemma the asymptotic frequency oferaep
tors, from the replicator equation, is driven to extinctipn= 0, while for the Hawks
and Doves game, its asymptotic valuei$b — 1 + €) . As stated in the introductory
section, we will be concerned here mainly with populations that are not we#tamix
where predictions based on this nonlinear differential equation are afftétie use.

Regarding the structure of connections between interacting agents, weomll
sider here that it is given by a fixed grapihe( connections between players do
not change by rewiring) where agents are represented by nodka, ek between
nodes indicates that they interact (play) kfis the number of neighbors of agent
(connectivity or degree), and is the maximal possible one-shot-payoff difference
(A = max{b,b—e}), we will assume) = (max{k;, k; } A)~! for the specification of
the probabilityll;_, ; of invasion of nodée by the strategy of neighbgt This simple
choice, introduced in [18], assures thit,; < 1; in heterogeneous networks it has
also the effect of slowing down the invasion processes from or to higiipected
nodes, with respect to the rate of invasion processes between poonigated nodes,
a feature not without consequences [114].

We now introduce some notation, which is familiar to statistical physicists: The
configuration gtrategic microstaté) of a population ofV agents at timeis specified
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by the sequence= {s;(¢)} (: =1, ..., N), wheres;(t) = 1 (or 0) denotes that node
is at this time a cooperator (resp. defector). The set of all posaibleonfigurations
is called the phase space. Stationary probability densities of microféte§l =
1,...2Y) are then representatives sifategic macro-statesThe average cooperation
¢; of microstatd is defined as

= 1 Z S; (2.2)

We denote byil;; the probability that the strategic microstate of the population
attimet + 1 is !, provided that it i at timet. Note that) _,, IT;; = 1. A microstate
| is afrozenequilibrium configuration if the probability that it changes in one time
step is null, and thedl; = 1 andIl,; = 0if I’ # [. We will assume generic
real values (irrational) of the payoff parameters, so that if a configuraontains a
C-D link it cannot be a frozen configuration. The only possible frozguildrium
configurations arall-C andall-D. However, for a very wide class of graphs, and a
wide range of model parameters they are not the only possible stationdghiity
measures.

We now illustrate by means of easy examples the evolution of PD on graphs.
Our first and simplest example is a star-shaped graph consisting of alasmdie
connected taV — 1 peripheral nodes. It is straightforward to check that any initial
condition with cooperators at the central node and (at lea§t) ate(N —1))/(1 —
€)] + 1 peripheral nodes has a positive probability of evolving in one time step to a
configuration with a higher number of cooperators, and a null probabflgyalving
towards less cooperators. Thus, all those configurations evolve sstyeafly to the
all-C equilibrium. The rest of configurations evolve towards @leD equilibrium.
Therefore, ifN > (b — € + 2) both equilibria are attractors (absorbing states), in the
sense that some configurations different from themselves evolve to themphése
space is partitioned into two basins of attractionMf< b — ¢ + 2, only theall-D
frozen equilibrium is attractor. The stationary probability densifégl) of the star
are pure point measures (two- or one- Dirac delta peaks) in the thermmityfimit
N — oo.

Now take a star and add some arbitrary number of links between its petiphera
nodes. We call this network a crown, whose head is the central nodke Head
is occupied at, by a defector, it will remain so forever, because the payoff of a
peripheral cooperator is strictly lower than head’s payoff. Soonédater the head
(center) of the crown will be imitated by the whole crown, and the evolution will
stop when everybody be defecting. But, what happens to a cooperatbe head?
The answer is dependent on both, the net topology of the crown peyiphd the
cooperators disposition there: To ensure fixation of cooperation atethe tode, it



38 The dipole model: Thermodynamic study of a social system.

suffices that a subsét of peripheral nodes occupied by cooperators, and with no
direct links to the rest of the periphery, have a size > bk,q; — €(N — ne — 1),
wherek,,., is the maximal degree in the rest of the periphery. Under this proviso
all-C' is the unique absorbing microstate of all corresponding initial conditions.

Finally consider the graph schematized in Fig. 2.1, composed of the following:

(8 A componentF of ny nodes with arbitrary connections among them.

(b) A node, say node 1, that is connected to all the nodes and has no other
links.

(c) A component of nc nodes with arbitrary connections among them.

(d) A node, say node 2, that is connected to all the nodes andC, but not to
node 1.

This is what we will call a Dipole Model network. It is a two-headed (nodes
1 and 2) crown (with peripheryr) plus a tailC hanging on head 2. To strength
the special status of the head nodes, let us nickname them as “Big Bfotheey
certainly enjoy a sort of omnipresence that fits well with the character wklDs
famous social sci-fiction novaldg4. In the following section we prove that for this
simple network there exists a non-trivial stationary probability density of refates
P*(1) for the strategic evolution of the PD game.

2.3 The Dipole Model.

The analysis of evolutionary dynamics of the PD on the Dipole network skivats
there is a non-trivial invariant measure in phase space. Let us cotisasetZ of
initial conditions defined by: i)Y Big Brother 1 is a defector,iij Big Brother 2 is

a cooperator, andii) all nodes in componeri are cooperators. Note that this set
contains2™# different configurations. We now prove that, provided some sufficient
conditions, this is a minimally invariant set of the evolutionary dynamics.

First, one realizes that Big Brother 1 cannot be invaded by the coopesitat-
egy: The payoff of a cooperator noden F is P¢ = kf + 1 + e(k; — kf + 1), where
k; is the number of its neighbors iR andk{ < k; is the number of those that are
cooperators. The payoff of Big Brother 1 (BB1) is then> (k{ + 1)b. For the PD
game, where < 0, the inequality”; > Pf always holds, so that BB1 will always
be a defector. (Note also that for the Hawks and Doves game, a sufticiedition
for Py > Pfisb > 1+ e(kp + 1), wherekp (< np) is the maximal degree in
componentF, i.e. the maximal number of links that a node shares withinF.)
We thus conclude that defection is fixed at BB1.
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Figure 2.1: Structure of the Dipole Network. Two nodés(d2) are connected to all nodes
in 7, whose elements can be arbitrarily linked to each other.elgeer, node is also linked
to a setC (with arbitrary internal connections as well). Initial abitions are indicated by
colors: red for cooperators (no@eand seC), blue for defectors (nodg), and green means
arbitrary (setF). See the text for further details.

Second, thanks to its interaction with gktBig Brother 2 resists invasion, pro-
vided its sizenc is above a threshold: The payoff of a defector néda F is
Pd = (k¢ + 1)b, wherek¢ is the number of its cooperator neighborsAi while
the payoff of Big Brother 2 (BB2) i$% = nc + npe + n%.(1 — €), wheren%, < np
is the number of cooperators iA. Thus, a sufficient condition foP, > Pz-d is
nc > b(kr + 1) — npe. With this proviso, BB2 will always be a cooperator, which
in turn implies that all the nodes in the componéntill remain always cooperators.
Note that fore < 0 andb > 1, the absence of the componéntould imply invasion
of node2, that would lead to fixation of the defective strategy on the whole network.

The previous argument proves that provided the sufficient conditions b(kr+
1) — enp andb > 1 + e(kp + 1) hold, the subsef of phase space defined hy, (
(i), and (i) is an invariant set. As this set does not contain equilibria, no stochastic
trajectory evolves from it to a frozen equilibrium configuration.

Finally, one realizes thaf is indeed minimal, because at any time, a defector
in F has a positive probability to be invaded by the cooperation strategy (&t leas
from BB2), and a cooperator iA has a positive probability of being invaded by the
defection strategy (at least from BB1). Therefore, any strategiigraation of the
setZ is reachable in one time step from any othex,for all pairs (, I') of microstates
in Z, the transition probabilityl;; > 0. ConsequentlyZ does not contain proper
invariant subsets: it is minimally invariant. Moreover, following Perrondemius
theorem, there exists a unique stationary macro-$taté). This provides a rigorous
framework for the interpretation of results from numerical Monte Carlo sitimra
studies in evolutionary dynamics on dipole models, provided the sufficiewlittans
above.
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While nodes irC and Big Brother 2 are permanent cooperators, and Big Brother
1 is a permanent defector, nodes#nare forced to fluctuate. This partition of the
network into sets of nodes where each particular strategy is fixed foesa set of
fluctuating nodes, turns out to be a generic feature of the discrete teplizaam-
ics (neighbor imitation proportional to payoffs difference) on many nekwettings
[109, 112]. The simplicity of the Dipole Network model allows on it an easynfr
proof of existence of this partition, so providing an illustration of both, itsinsg
and generic character. It also shows the formal applicability of equilibstatistical
physics formalism to characterize the asymptotic behavior of evolutionargimy
ics on these graphs. This will be made in the next section for specific chofce
structural traits for the subgraph.

Let us note that if a direct link between BB1 and BB2 is added, then (gesndjx
2.4.3) asymptotic fixation in the whole network of either cooperation or defewtiid
occur, depending on the relative size /nr of componentg and.F.

The name dipole for this structure of connections is suggested by the girateg
polar C — F — D) aspect of the whole graph. Note also that the numbér-ef and
F — D connections scales linearly with the sizg of the fluctuating interior, that is
to say that the poles (C and D) act as an externally imposed (AC) field, evhose
strength is proportional to the internal levels of cooperation. As the catipe (and
then the fitness) levels are self-sustained (as proved by the previousrthethis
is a closed macroscopic system with a non-trivial self-sustained sodiaityaof
cooperation at evolutionary equilibrium.

The interest of the Dipole Model is by no means restricted to a mere academic il-
lustration: First of all, we can make a technical use of itin macroscopic staduiléiy
ysis studies of PD-evolution on highly heterogeneous complex netwartteed, the
fluctuations inside the subsgtare the effect of the competition for invasion among
two non-neighboring hubs (hugely connected nodes), where opposgestrategies
have reached fixation, in their common neighborhood. This is a local Straeg-
figuration that mimics those that are often observed in stochastic simulations-of e
lutionary dynamics in highly heterogeneous (scale-free) networks 3. Simple
multipolar network models can easily be constructed (e.g. by establishingldhikec
from C to F in a way that simple sufficient conditions guarantee that the theorem still
holds), that are indeed indistinguishable from typical strategic patteumsifm the
numerical simulations on scale-free networks. This makes the Dipole nef ase>
ful technical device to analyze the stability mechanisms of the cooperatderslus
[109, 112] in scale-free structured populations, as well as the kindmjdeal fluc-
tuations of cooperation that one should expect in the fluctuating set eénod

Regarding potentialities for econo-socio-physics applications of the Dipotkel,
it could be viewed as a sort of schematic (then simplistic, cartoon-like) model f
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the competition for influence of two powerful superstructural institutiang. (like
“mass media”, political parties, or lobbies) on a target population, in stromgly
larized strategic contexts. The analysis rigorously provides suffic@rditons for
the parameter values where fixation of strategic traits is proved impossibieatso
temporal fluctuations dominate forever the target population of social imit#ors
The influence on each individual of the two competing institutions is simulated her
through the omnipresent (“Big Brother” nodes 1 and 2) neighbors se/loavn high
appeal for imitation (the strength of Big Brother’s influence) is in turn conakttb
by the strategic composition of the target population. Here the interest celildav
the study of the influence that metric and topological network characteridtibe
social structure have on the strategic macro-state, and thus on the queantisiies
of social indicators We address some aspects of this issue in the next section.

At a more general level, the design of experiments in social sciencesllaaswe
theoretical studies of artificial societies could greatly benefit from hasinigand
simple but non-trivial “exactly soluble statistical-mechanical models” that nmay p
vide safe guides to develop further intuitions on social phenomena thahdsmeore
comprehension.

2.4 The role of social structure in Big Brothers competition.

In this section we present some analytical and numerical results on theienahy
dynamics of games in the Dipole Model for different choices of topologieh®
fluctuating sefF. The sufficient conditions stated in the previous section are assumed
hereafter. We are interested in the situation where>> 1, i.e. large size of the
fluctuating population.

First we will briefly comment on the straightforward limiting case when the
macroscopic sefr is a fully connected set, so th&w = nrp — 1. This is the
well-mixed population limit, for which it is easy to show that the replicator equa-
tion (2.1) is an exact description. The payoffs of polar nodes BB1 @&ide given
by P, = benp and Py = ne + enp + €(1 — ¢)np, while the payoffs of a cooperator
node and a defector nodefareP, = cnp+e(np—cnp+1)andPy = (enp+1)b.
One easily realizes th&. < P, provided the sufficient conditio (> 1 + eny) for
fixation of defection at node 1. Thus the (one time step) probabitiieg (invasion
of a cooperator node i) and@¢p (invasion of a defector node iR) are
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1 P1 —Pc (1 —c)nF Pd—Pc
mp+1)AMnp+1)  (np+1) AMnp+1)
1 P, — Py

Qo = (np+1) A(np + ne) ’ (2.3)

Qpc =

Assuming that the size of is macroscopicpr > 1, the fraction of cooperators
¢ in F evolves according to

¢=(1-c)Qcp —cQpc - (2.4)

Now, if ny > 1, andnc/(ng)? — 0, then bothQcp and the first term in the
right-hand side of) ¢ vanish, and we arrive to the differential equation

(e(l—c)—(b—1)c) . (2.5)

This is, with a simple re-scaling of time, the replicator equation (2.1): note that in
the limitnp > 1 that we have considered, the probability that a nodé& ipicks up
a Big Brother when updating its strategy is negligible, and then the evolutioreinsid
the complete graplt is overwhelmingly determined by the internal connections, and
thus by the replicator equation. In other words, in this limit of maximal possibie co
nectivity, BB1 and BB2 are no longer bigger than the nodes end their influence
on the fluctuating set is negligibly small in the thermodynamic limit.

We now turn attention to situations wheke < np, far from the social pan-
mixia. In subsection 2.4.1 we will explicitly solve the opposite trivial case of dis-
connectedF set ¢z = 0), which turns out to reduce to the standard textbook ideal
two-states model of Statistical Physics. After that, in subsection 2.4.2, thddna
regular” network structure foiF is seen to be amenable to a plausible mean-field
approach, but insufficient to explain the phenomenology shown by Moat® nu-
merical results. These show beyond any doubt a critical behaviomsittcen point
separating two qualitatively different types of social macro-states. Tdmsition is
sensibly interpreted as the onset of lattice reciprocity. In other wdatige reci-
procity is a true critical social phenomenon

2.4.1 Fis adisconnected graph (ideal-gas).

Let us now obtain some explicit results for one of the simplest choices fdotod-
ogy of connections inside the fluctuating set, namigly= 0. In this case each node
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in F is only connected to Big Brothers. This is in fact an effective single node-p
lem, where homogeneity.¢., mean field assumption) i is exact; in other words,
the absence of internal interactions in the 8ds a sort of ideal-gas condition easy
to exactly deal with in the large size limit.

Note that the sufficient conditions for fixation of defection at BB1 and@f ¢
operation at BB2 are respectively,> 1 + ¢, andnc > b — enp. Denoting by
¢(t) the instantaneous fraction of cooperatorsFinone finds for the (one time step)
probability @ pc of invasion of a cooperator node i

_cb—(1+4+¢€)/np
Qpc = 5A , (2.6)

and using the notatioA = ¢ + (n¢ — b)/np andB =1+ n¢/np

At c(l-¢)

Qcp = SAD , (2.7)

for the probability of invasion of a defector nodeJjn Note thatA > 0 due to the
non-invasion of BB2 (sufficient) condition.

Providedny > 1, the fraction of cooperatorsin F evolves according to the
differential equation (2.4), which after insertion of expressions (206) @.7), and
re-scaling of time, becomes

¢=fc)=Ag+ Arc+ Ay? | (2.8)

where the coefficients are

Ay = A, (2.9)
Al = 1—e—A+B(+6/np , (2.10)
Ay = —(1—€+bB) , (2.11)

One can easily checkd(, > 0 and A5 < 0) that there is always one positive root
c* of f(c), which is the asymptotic value for any initial condition< ¢(0) < 1 of
equation (2.8).

Fore = 0, in the so called weak PD gamiee( at the border between the PD and
the Hawks and Doves game), if one further assumes that the relative (dizeof
the component F is large enougle. ;.(F) — 1, andu(C) — 0, one easily obtains
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that the stationary solution of equation (2.8) behaves as (b+ 1)~! near the limit
w(F) — 1.

From the point of view of the sef, whenny > 1, the model corresponds to a
non-interacting (ideal) set of independent phenotypic strategists thatdhe due to a
polar field (Big Brothers influence) whose strength is self-consistentgriaséned by
the average cooperatian This problem is equivalent to the equilibrium of an ideal
paramagnetic salt in a noisy (telegraphic) magnetic AC field of intensity propattio
to the average magnetization.

A typical and correct statistical-physicists approach “from scratch” i ttko-
states model is the familiar micro-canonical setting: At (dynamical) macroscopic
equilibrium, the probability of each strategic micro-state {s;} of fixed value of
¢; = cis uniform

=" (2.12)

whereQ) = np!/((enp)!(np — cnp)!)) is their number. The lack of information

S = In ) of the macro-state as a function of global cooperatig, i.e. the rela-

tion S(nrc), can be regarded as the analogue of the micro-canonical fundamental
“thermodynamical” relation, and its first derivative is the intensive parantetdus

the analogue of the inverse thermodynamical temperature), that afterStgiimg’s
approximation is easily obtained as

B=m<Lﬂ>. (2.13)

C

This relation is the analogue of a thermodynamical equation of state, which sim-
ply expresses the connection of the equilibrium value of the macroscaopecation
level ¢ to the “entropic” intensive parametér Note thatc is determined by the bal-
ance conditiond = 0):

l—c @pc

oo (2.14)

from where the equation of state (2.13) determifies a function of model param-
eters {.e. b, ¢, andnc/nr). For example, whea = 0, 8 = Inb > 0, indicating
that the disorder of the activity increases with increasing cooperatiommeximal
value of 3 — oo corresponds to zero disordér-& oc), while its minimal zero value
corresponds to highest possible value(at 1) of cooperationd = (1/2)). Note
that values ob < 1 correspond to negative values, where entropy decreases with
increasing values of cooperation, outside the PD dontain.

!Note: The Stag Hunt game corresponds to 1 ande < 0, and it is the archetype of coordination
games. A clear case for the deep importance of this game in Social Stadiég found in [116].
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An alternative (and equivalent in the thermodynamic limit) setting is to consider
the whole space df"# configurationd = {s;}.'*}, of unrestricted;, but under the
condition that the average value= ), Pi¢; is fixed. This is the analogue of the
canonical setting. The normalization factér= ), exp(—fc¢;) is the analogue of
the familiar canonical partition function (Boltzmann’s Zustandsumme), thataue
the agents independende= 0) is easily factorized a& = (1 + exp(—f))"*.

In the canonical setting a most informative macroscopic quantity is the “heat c
pacity” analogue: The fluctuations afalong representative (typical) stochastic tra-
jectories at equilibrium under the evolutionary dynamics of the game arewfotio
the standard thermodynamical formalism, givendayd(3~1), so that this quan-
titative social indicator detects very precisely sudden variations of theos@mpic
cooperation with payoff's parameters. In this ideal-gas kind of case #rerno crit-
ical points and fluctuations do not diverge. For example¢fer0 they are given by
the (Bernouillian) binomial variancerc(1 — ¢) = npb/(b+ 1)2.

2.4.2 Fisarandom regular graph.

Random regular networks are random networks of fixed defgrefl nodes being
thus equivalent, a sensible approach is to assume (mean-field like,gs@&17])
that the fraction of instantaneous cooperators in the neighborhood adais the
fractionc of the whole sefF. In other words, one neglects local fluctuations.ofhe
contribution of the internal interactions to the variation:@$ then of the “replicator
equation” type, as discussed above for the complete graph case. Terertie here

is that if kp < np the contribution of the interactions with Big Brothers cannot be
longer neglected.

Mean-field approximation.

The payoffs of Big Brothers BB1 and BB2 are given By = benp and P, =
nc + enp + €(1 — ¢)np, while the payoffs of a cooperator node and a defector node
at F under the mean-field assumption are:

P.=ck+1+4+ek(l—c)+1) , Pi=(ck+1)b . (2.15)
The differential equation for is then

. _ (= —P) _c(P—P)
N (k} + 2)BHFA (k + 2)71FA
(1 —c)ck(P, — Py)

(k +2)2A ’

(2.16)
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Figure 2.2: Macroscopic cooperation in a random regulgplgstructure for the sef, with

k = 4, andnp = 4000, ande = 0. A decreasing sequence of /np, as indicated in
figure, has been used. Symbols represent numerical Monte @sults, and the different
lines represent the mean-field predictions as given by theiso (¢ = 0) of Eq. (2.17).

which under the assumptidb < ng, takes the form

1

¢=flc)= m(f% + Aje+ Ay + A5e) (2.17)
where the coefficients are
b = (k+2)(B—-1+e) , (2.18)
' = 22(1—¢)—B)+k(2(1—¢)— B(b—¢))
+k2Be (2.19)
Ay = 2(e—1-Bb)+k(e—1—B(l1+¢))
+k*B(1 —b—2¢) , (2.20)
Ay = E°Bb—1+e) , (2.21)

Note that the assumption- > b—n e (i.e. the condition for Big Brother 2 to be
a permanent cooperator) implies th#t > 0, so that:(0) > 0 and one positive root,
sayc*, of f(c) is then ensured, in agreement with the theorem of section 2.3. In Fig.
2.2 we show the asymptotic value of the average cooperatiensus the temptation
parameteb, as obtained from (2.17), for several different valuesi@fnr, e = 0,
andk = 4.

Within the mean field approximation, it is possible to obtain explicitly the equi-
librium macro-statei.e. the stationary probability distribution densigj’, which as
expected from section 2.3 turns out to be of the Boltzmann type. Let ugdeonso
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different (arbitrary) strategic microstatés= {s;} (i = 1,...,nr), andl’ = {s;}, of
the fluctuating set. For any pair of microstated’) we define the following numbers:

nir o= Y Ogu0g (2.22)
mo = > (1=0,4)050 - (2.23)
neo = Zz:(Ssi,s;(Ssg,Oa (2.24)
not = Y (1=0,,4)001 (2.25)

i

i.e, n11 is the number of nodes that are cooperators in both microstatg#hat of
the nodes that are cooperatord iout defectors i/, etc... Using equation (2.2) it is
straightforward to obtain

1
cp—Cr = E(nlo — n01) . (2.26)

Now, let us assume that the probabilities that a nodeanges strategy are inde-
pendent of node (homogeneity assumption, mean-field), and denote the@day
(transition from defector to cooperator) afib - (for the transition from coopera-

tor to defector). Then we can easily see that the transition probabilities éetive
microstateg and!’ are given by

Iy = (1-Qpce)" (1 —Qecp)"QptQeD, (2.27)
Oy = (1-Qpe)"™ (1 —Qep)"QpHeQHD, (2.28)

Henceforth, denotingxp(—f) = Qcp/Q pce, one easily obtains the expression:
I i exp(—feynp) =y yexp(—penr) (2.29)
from where the unique solution to the fixed point equation
I P =P, (2.30)

is easily found to be:

P = 2 exp(~Banr) | (2.31)
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whereZ is the analogue of the canonical partition function

7 — [M] " (2.32)

Qpc

Note that Eq. (2.29) expresses the “detailed balance” condition, whicluss th
proved to be satisfied. As it is well-known [118], the canonical probabdisgri-
bution density (2.31) is the unique density that maximizes the lack of information
(entropy),S = — >, P, InP;, among those (compatible) densities that share a com-
mon value for the macroscopic average of cooperatien ) , P;c;. This provides
a “generalized thermodynamic” meaning to the paramegtet is no other than the
intensive entropic parameter associated to cooperation, that is, thengagraulti-
plier [119, 120] associated to the restrictios: ) _, P;c; on the compatible measures
(canonical restricted maximization of entropy), that is:

B = 05 . (2.33)
npoc

The parametef simply measures how fast the entropy of the equilibrium macro-
state increases versus global cooperation variations. Its formal rokatisftan ana-
logue of inverse thermodynamical temperature. Let us note that, at vanetit
many works in evolutionary game dynamics (see [16] and referencesrihamhere
an analogue of temperature is introdueethocas a parameter entering into the def-
inition of the (stochastic) strategic updating rules, the param®{@r33) is a kind
of emergent property that characterizes the equilibrium macro-statehagads a
function of the model parameters (not a model parameter itself).

The fluctuations of the micro-states cooperatipmamely(ng)*(>",(Pic?) —
(3=, Picr)?) are given bynrc(1 — ¢). This is the analogue of the heat capacity. The
dependence on the game and network paraméters./np, k of the fluctuations
of cooperation is obtained by solving for the cooperation equilibrium valged in
(2.17), and plotted in Fig. 2.3(panel b) fbr= 4, ¢ = 0, and decreasing values of the
rationc /np.

Numerical results, and the mean-field failure.

In this subsection we compare the mean-field results with those obtained foore M
Carlo simulations implementing the updating rules on the dipole model with a ran-
dom regular network structure for the fluctuating $et

In order to illustrate the Boltzmannian character of the stationary probability de

sity P*(1), we plot in Fig. 2.4 the numerical estimateslnf(?fjf), whereP(c) is
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Figure 2.3: Fluctuations of cooperation in a random regglaph structure for the s&t. The
upper panel (a) shows, fér= 4, ¢ = 0, np = 4000, and a decreasing sequencewf/np
values as indicated, the fluctuations of cooperation oleskrvMonte Carlo simulations. The
lower panel (b) shows the mean-field predictions. The mesd-&ipproach is shown in text
to be unable to predict the observed phase transition. Takfigs network reciprocity as a
true “critical” social phenomenon.
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Figure 2.4: Plot ofn (58) versus cooperation, showing the Boltzmannian character of

the stationary probability density of microstates, for ad@m regular network structure for
the setF. The parameter values afe= 1.1, ng = 5000, k = 4, nc = 500, ande = 0. The
results shown here correspondstex 10* Monte Carlo steps (after a long enough transient),
for each one of the.5 x 10? different network realizations and/or initial conditions

the probability that a microstate has an average coopera(@12), as inferred from
the simulation results, anglc) = ng!/((cnp)!(nr — cnp)!) is the degeneracy af
(i.e., the number of microstatésuch that; = ¢). The data correspond to a random
regular network structure for the componeéhtwith degreek = 4, and parameter
valuesb = 1.1, np = 5000, nc = 500, ande = 0. As one can see from the per-
fect straight line shape of the plot, the data are fully consistent with the Baltzma
density (2.31).

Though the system evolution is governed by dynamical rules (strategatiogyl
which “a priori” could be thought to lead to non-equilibrium behaviors, fimgs that
the asymptotic regime of the PD evolutionary dynamics in the dipole model is a true
macroscopic equilibrium regime, where the formalism of generalized themaoaly
ics [120] applies.

The results of the asymptotic value of the average cooperatrersus the temp-
tation to defect) are presented in Fig. 2.2 for (relatively small) valuesnef/np
ranging from0.025 down to4 x 10~3, but still satisfying the sufficient condition for
the fixation of cooperation at BB2. The comparison with the mean-field piresc
show that the mean-field approximation overestimates the cooperation vaast. M
notably, for very small values of-/n r, the numerical results show, at abéut 1.4,

a fast decay of cooperation to values close to zero (thus suggestingistenee of
a phase transition), while the corresponding decay for the mean-fiaditioa is
smooth in the whole range.

To which extent the mean-field approximation fails for low values of the pa-
rameternc/np, can be appreciated by confronting its predictiopc(1 — ¢), for
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the fluctuations of cooperation with the results from Monte Carlo simulations. In
Fig. 2.3 (panel a) we see how a peak in cooperation fluctuations is rdyedien
nc/nrp — 0, signaling the occurrence of a phase transition between two qualita-
tively different equilibrium macroscopic behaviors, that corresporidwoand high
temptation regimes. The mean-field assumption is thus qualitatively wrong if the
payoff received fronT by Big Brother 2 becomes negligible versus the size

The reasons for this qualitative failure of the mean-field approximation mely o
the lattice reciprocity of internal interactions, which is totally absent in the mekth fi
approximation. Let us remind here our remark above on the replicatatiequ
type of effect of internal interactions in equation (2.8) because of then+hiel
assumption. The transition signaled by the divergence of fluctuatiobisrateals
the onset of internal lattice reciprocity, a conclusion that we now subdaritae
also appendix 2.4.4 below).

Forb > b*, say in the low-temperature (high temptation) phase, the macro-state
is dominated by fast defection invasions on the relatively few nodes teabhstan-
taneous cooperators due to sporadic interactions with Big Brother 2. apfiendix
2.4.4 we show that, in the low and lowng/np regime, the BB-imitation events
in a given node are typically separated by intervals of time of abotitime units
large. In those large intervals when Big Brother 2’s influence is null, tig fesv
and mostly isolated instantaneous cooperators are quickly invaded bgtatefe
ternal neighbors. In this regime lattice reciprocity has no chance to devatab
cooperation is only weakly sustained by the sporadic influence of BB2.

On the contrary, fob < b* (high temperature, or low temptation phase) the
local fluctuations of the neighbors strategic field favor the building up aftels of
cooperators that resist invasions during time intervals that are comp&vabéchar-
acteristic time intervals between BB-imitation events. Under these circumstaeces th
“extra payoff” that BB2 receives fror@ does not anymore need to be high in order
to sustain high levels of cooperation. Internal lattice reciprocity enhaheegrob-
ability of highly cooperative micro-states, so that the macro-states belogittcan
differs substantially from those of the high-temptation phase. This wasapttired
by the mean-field approximation, for these effects require a sizable likelibboc-
currence for the local fluctuations of the strategic field, and the nedi¢ioem is all
a mean-field approach is based upon.

To summarize the discussion of the results shown in figure, a random regula
structure of interactions insidg is enough to support lattice reciprocity mechanisms
that cannot be captured by a simple mean-field approach. The ons#ic taci-
procity in the dipole model is furthermore interpreted as a “thermodynamicaleh
transition, in a rigorous formal sense (divergence of the fluctuatioas efjuilibrium
extensive parameter, the cooperatiprnOne is then lead to a sensible and precise for-
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mal framework where such a term as “social temperature” is not a vagtaphue,
but it denotes a truly quantitative parameter, a legitimate (measurable, ablegrv
social indicator.

2.4.3 What if BB1 and BB2 are directly connected?

If a direct connection between Big Brothers is added (for the set of icibiatlitions

specified in section 2.3, and the conditions on parameters given ibidemimuaste
compare their respective payoffs to see who can invade the other. a3itg finds

that the payoff of the defector BB1 is higher than that of the cooperd@@r@ovided

the following condition holds:

b—
n—o<c(b—|—e—1)—e—|— ¢ , (2.34)
ng ng

wherec is the (instantaneous) average cooperatioftinin this case, BB2 will be
invaded with a non-zero probability. Once this eventuality occurs, noaratqr (in

F orin(C) can later invade BB2 because all of them have lower payoffs, antibiixa

of defection in the whole network will occur. Note that as the averageearatipn

in F fluctuates, the condition above must be satisfied at the precise time when BB2
has chosen (by chance) to compare its payoff with BB1, and that due tfuighe
connectivity of BB2 (which is nowc + nr + 1) the later event occurs with a very

low probability for macroscopic values afz. In other words, the eventual invasion

of BB2 from BB1 and the subsequent fixation of defection in the whole otwan

take on a very long time.

If the opposite condition holds, say if
b—e

n—c>c(b+e—1)—€+ , (2.35)
ng nrg

when BB1 has chosen to compare its payoff with BB2, then invasion of B81 w
occur with a non-zero probability. After this has occurred, BB1 becanilestuating
node (for it could be eventually invaded by an instantaneous defect®},ibut in
the long term fixation of cooperation in the whole network will occur.

The introduction of a direct connection between Big Brothers in the DipolgeVlo
makes fixation of opposite strategies on them impossible, and then asymptatic fixa
tion on the whole network of either defection or cooperation will occuredepg
on the relative size./np of componentg and.F.
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2.4.4 Lowc approximation.

In order to simplify expressions we assume hereafter 0 andk = 4, and denote

0 = nc/np. For the case of a random regular graph structure of the fluctuating set
F, the probabilityﬂgﬁ p that an instantaneous defector node chooses to imitate Big
Brother 2 (invasion event from BB2) is, to first orderrigl,

HBB _ 1 C+6
CED T (R +2) (1 +0)b

(2.36)

while the probabilitylI2Z ., of an invasion event from BB1 to an instantaneous co-
operator node itF is, to first order im;l,

mBs - __°© 2.37

Thus, foré < ¢, typical intervals between invasion events from Big Brothers in
a node are (of the order of)! time units large. For large values of the temptation,
where the value ot is expected to be very small, the dynamics is consequently
dominated, for typically very large intervals of time, by internal strategic icteras.
Let us analyze them.

The internal neighbors of a cooperat@re overwhelmingly likely instantaneous
defectors in this “lowc” regime, so that will be quickly invaded by them. The
only chance for it to resist invasion would be that its instantaneous neigbhdr
microstate had at least two cooperator neighbors andbtkat(3/2) (note that in
this strategic configuration, the payoff bfs P, = 3 and that of its typical defector
neighbors i2b). These neighborhood microstates (cooperative clusters) areeso rar
fluctuations that low values of the temptatioare necessary for their non-negligible
occurrence. Provideblis below the transition value, the resilience to invasion (lat-
tice reciprocity) of cooperative clusters enhances the likelihood of flhedeations,
which in turn reinforces the clusters resilience, and so on. This posérabick
mechanism of cooperative fluctuations enhancement is thus what tripgeransi-
tion to highly cooperative macro-states, and qualifies lattice reciprocity dscalcr
social phenomenon.

2.4.5 General caseF is a general random graph.

Let us pay attention to the behavior of the model witeis a graph characterized by a
given degree distributioR (k). While the random regular network (RRN) considered
in the previous section corresponds to the distribufitit) = 6(k — k), now we
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Figure 2.5: Fraction of cooperators as a function of the tatign to defect in a ER (BA)
topology for the setF, with np = 4000, nc = 3804 ande = 0, —0.2. Each point is
averaged over 1600 realizations (40 networks, 40 initiadittons).

consider two cases: whehis a Erdos-Rényi (ER) or Barabasi-Albert (BA) network.
While in homogeneous ER graphB(k) follows a Poisson distribution centered at
k., in BA networks the degree distribution follows a power-law, and the differ
connectivity distribution determines the system behavior; as will be detailed/be
the hubs of the sef in the BA case are a deciding factor.

With regard to the roots of cooperation, highly connected nodes are tatica
ements in the intensity of lattice reciprocity mechanism. This is mainly due to the
effect that the network topology has on the distribution of strategies: theatmn of
clusters of cooperators prevents the invasion of the strategy D in thene.dbtinec-
tivity distribution is such that there are very connected vertices, the habedan
initial strategy C are likely to form cooperative clusters, and the changgaitgy of
these hubs is very unlikely. According to this argument, BA networks wilinot
cooperation more than ER ones.

We have numerically studied the system by performing Monte Carlo simulations
after implementing in the fluctuating séta network topology generated by a routine
taken from [140]. This algorithm provides a random network such#i&) depends
on a continuous parameter o = 0 (resp, 1) generates a Scale-Freegp, Poisson
distribution) graph. We have scanned the parameter space, b}, with0 < o <1
(SF to ER). The conditioh > 1 + ¢(kp + 1), in practicee > 0, involves PD. In the
same way, the constrainic > b(krp + 1) — enp implies a large number of BB2
stabilizer agents (s&) for a high connectivity, as in the BA case.

Regarding macroscopic cooperation, the numerical results obtained dbaveo
any abrupt transition when the parametevaries: the gradual change fra= 0
(SF) to 1 (ER) implies a gradual changedn The results of the asymptotic value
of the average cooperatiancan be seen in figure 2.5. The figure shows greater
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Figure 2.6: The main panel shows the probability for a fluthganode to remain as a co-
operator for a period, for e = —0.2 (PD),b = 2 and a BA structure for the set. The
permanence probability follows a power law. The inside pahews the slopes of the main
panel, for all connectivity classes. Nodes with higher @mtivity are more resilient to strat-
egy change, which provides a microscopic basis for latécgrocity. See the text for further
details.

cooperationc in BA graphs than in ER ones, as we argued above. Moreover, the
dependence afon e (always fore < 0, i.e., PD game) turns out to be approximately
linear for all values ob, depending very little on the type of network:

cle) =cle=0)(1+ ke), (e<0), kK=~ 1.
This relation is valid for all values df, as verified by low variance of
be(b) = cf}f’)‘e’ (e.9.02(¢) = 0.004 for € = —0.2).

)‘5:0’

Fluctuations.

Given that the elements of the sEtalways have a non-zero probability of strategy
change, we have studied the distribution of theracteristic cooperation time.,
which is defined as the average period that a node remains as coop€hs@imu-
lations showed that, is independent af, that is, the characteristic cooperation time
for a given connectivity is independent of the network topology. Figuéeshows
the probability P(7)that a node of the sef keeps strategy C during a periadin

a BA graph, fore = 0, b = 2 and different connectivity classes. The probability of
permanence decreases exponentially over time and, as expectedwithdeigher
connectivity have higher characteristic cooperation time, whafstitutes a man-
ifestation of the microscopics roots of lattice reciprocity and explains why BA
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Figure 2.7: Fluctuations of cooperation in a ER (BA) topolégr the setF, with nx = 4000,
ne = 3804 ande = —0.2, 0.2.

networks show higher cooperation rates than ER ones. The inset id fighishows
the slopes of main figure, and represents the coefficiarithe relation:

P(1) ox e (2.38)

As shown,\(k) is monotonically decreasing, which highlights the relationship
between connectivity and network reciprocity.

As in the previous sections, we study the fluctuations of cooperation alociyes-
tic trajectories. Nevertheless, for a ER or BA structure for the/ethe analogy
between the cooperation rate variance and the heat capacity is not asduesifin
the random regular structure and, therefore, the study is restricted nteMNGarlo
simulations. As shown in figure 2.7, BA structures presents more fluctudtians
ER ones.

2.5 Heat transfer: Two dipoles in contact.

The system shown so far constitutes a Markov process. We have sseaqtion
(2.4.2) that, in the scope of applicability of mean field approximation (as when
a RRN), the model satisfies detailed balance condition (2.29). Ther@idies sta-
tionary state we deal with a reversible Markov process described bydheniann
distribution (2.30). However, the analogy of the model with a real particdtesy has
a drawback: the equivalent of energy is the total number of coopsrater, which

means that the model is not conservative. Despite that, it's hard not toawbod
two dipoles behave when they come into contact. The interest of this exterigion
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original model is wide: On one hand, we can study the validity of the socialdemp
ature concept and evaluate its relation to the physical temperature. Ruotieethe
expanded model allows to study the interaction between two evolutionaryrigsia
both with two pure strategies.

2.5.1 The double dipole model.

In order to simulate the heat transfer, we consider two dipbleand Do, composed

by respective fluctuating sefs, the hubsB B1; and BB2; and the cooperating sets
C;. The subscript indicates the dipole subsystem to which it belongss 1, 2.

Both dipole subsystems have the same sizg: = nc, = nc, np, = np, = nr.
Therefore, from now on, these sizes will be denotedhpyandn . The parameter

e is common for both dipoles, and the difference in payoffs is determined by the
respective parametets. The definition of temperatured—! = —(lng%)_l =

f(b), leading to the Boltzmann distribution (2.30), takes us toiesean independent
variable. This procedure allows to control the temperature of each of thdipsles

when they reach their respective stationary states.

Let I' be the set of initial conditions: the Big BrothefsB1; are defectors, Big
BrothersBB2; are cooperators, and all nodes in getsare also cooperators. There
is not constraint to initial strategies for elements in s&ts To ensure that I is a
invariant set of the evolutionary dynamics, we maintain the restrictions ¢ibsec
2.3, now take the formac > bz (kp + 1) — enp andb; > 1+ e(kp + 1), where
bma:r: = Sup{bi}'

2.5.2 Dynamics.

The subsystemb®; and D, after setting their parameters, are left to evolve according
to the usual dynamic to reach equilibrium. Once reached their respectii@ats
states(t = 0), we connect both fluctuating sets as follow: We choose at random
a nodei; of F; and a neighboy, in the same way, we choose another nogef

F5 and his neighboy,. Subsequently, we remove links connecting those nodes, and
connecti; to ig, andj; to jo. We repeat this procegsiny /2 times, wherex is a
coupling parameter. After that, the system will evolve again according tcethieual
dynamics. When a nodeof dipolen choose a neighbgr of dipolem to play, both
agents takeu's pay-off matrix, i.e. the temptation to defecttis. We have studied

the evolution of the system, the observables and stationary states.
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Figure 2.8: Structure of the Double Dipole Network. On thft $&de is represented the
model before thermal contact: Without any link between s 8, and 5. On the right,
after the thermal contact: With links connecting node¢'pto nodes ofF,;. Nodesl; and

2, (Big Brothers) are linked to all nodes . Furthermore, node; are also connected to
all nodes inC;. Nodes in setd;, C; are internally connected, forming a defined network.
Initial conditions (on left side) are indicated by colorsdrfor cooperators (nodes and set
C,), blue for defectors (nodds), and green means arbitrary (sét3. See the text for further
details.

2.5.3 Effective temperature.

The intrinsic observables of the extended model areHowever, it is possible to
study the final temperature of each subsystem by introducing the carfaffective
temperature.

By exp(—f) = Qcp/Q pc, we know that stationary state temperature in an iso-
lated dipole, wherF is a RRN, is a functiorf (b, e, nc, nr). Besides, if all other pa-
rameters keep fixed, the cooperation is given by a monotonically deagdasiction
c(b). Therefore, if we keep constant all other parameters, each vatueoofesponds
to a value ob.

We define the effective temperature of a subsyst&(;, ¢, nc, nr) as the value
of 3! that would fall to his levet; of cooperation in an isolated dipol(b;, €, nc, nr)
in stationary state. The effective temperature is applicable to each subhsystee
put in thermal contact and reached a new stationary state.

We can study now the temperatures of the subsystems before and afteg puttin
them in contact. The problem is that, knowing the asymptotic valug @fe can not
infer 3 for any topology in sef, unless we use an approximation as MF. Therefore,
we use the observed value of ¢ as relatives of the temperature. The &igeBy’
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influence on fluctuating setg; is determined by its payoffs, which in turn are a
function of ¢;, b;, nc, np ande. An interpretation of the influence of BBs afj is

that the setg; are thermodynamic systems in contact with respective heat baths. The
influence of the heat baths remains after putting the dipoles in contact,dreetké
effective temperature of both subsystems need not be equal oncerédwmed the

new stationary state, unless the coupling parametetis).5.

In the model, there are only two strategies or accessible levels by element, and
there exists a extern source of cooperation: The Ggtdt is therefore possible to
have configurations in which there are more elements adopting coopenatiteyy
than defect one and the system can be characterized by a neganteveftempera-
ture. This is only possible if the external field (heat bath) has enougleimfly that
is, for high values ohi. Negative temperatures are possible in both dipole, before
and after heat contact, for high enough values of

2.5.4 Mean-field approximation.

For an isolated dipole, in subsection 2.4.2 we assumed that the fraction afténsta
neous cooperatoksi| in the neighborhood of a node i, is the fractionf the whole
setF. In order to generalize MF approximation, now we maléto correspond to
the weighted average of the cooperation: We assume that for a fluctodei;nn

the dipoleD,, in thermal contack with another dipoleD,, the fraction of coopera-
tors in the neighborhood af is c[i1] = (1 — k)c1 + kea. In the same way, we take
clie] = ke1 + (1 — k). In the model, according to 2.5.2, when a node of dipole n
chooses a neighbor to play, they takein this approximation we assume the average
temptation to defedi = (b; + b2)/2 for heat interactions (between two fluctuating
sets).

Under these assumption, the payoffs of Big BrothBi31; and BB2; are given
by Pi; = bicing and Py; = ne + ¢inp + €(1 — ¢;)np, while the payoffs of a
cooperator node and a defector nodé aare:

Py =k(Aey + ke2) + 14+ €e(B(AM1 —c1) + k(1 —c2))+1) ,
Py =k(ker +Aea) + 1+ e(k(k(l —c1) + A1 —¢2)) +1)
Py = (kXey + 1)by + kresb |
Pgy = kkeib + (khcg + 1)by

(2.39)

wherel =1 — k.
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b; > 1 implies P; > P,;. Without loss of generality, we assume that> b,.
If there is not constraint ta, can not ensure that,; > P.; nor Py; > Py for any
i # j. For nodes inf;, each time step, the probabiliti€s,; (a cooperator changes
its strategy to defector) ar@d-p; (a defector changes its strategy to cooperator) are:

Qpc

Qcp1 =

Qpc2 =

Qcp2 =

P11 — Pa
(k + Q)RFA
—|—l€>\(1 — Cl)(Pdl — Pcl) + Ii(l — CQ)(PdQ — Pcl)H(PdQ — Pcl)
(k+2)2A !
Py — Py kca(Peg — Py )H (Pea — Pa1)
(k + 2)BnpA (k + 2)2A !
Py — Peo
(k + Q)NFA
—I—kﬂ(l — Cl)(Pdl — PCQ)H(Pdl — PCQ) + )\(1 — CQ)(PdQ — ch)
(k+ 2)2A !
Pyy — Pyo n k/icl(Pcl — Pgo)H (P — Py2)
(k + 2)BnpA (k +2)2A ’

(2.40)

where H (x) represents Heaviside’s step function, that takes valuer 1 0, O

otherwise.

After a time step, the fraction of cooperators in Bets given by:

ci(t +1) = ci(t) + (1 — ¢i(t))Qecpi — ci(t)Qpci - (2.41)

Now, we can replace (2.39) and (2.40) in (2.41) to achieve two coupléd fin
difference equations faf;. These equations provide the evolution of the system and
the stationary state, according to MF approximation.

2.5.5 Numerical results.

We compare the mean-field results, obtained by evaluating the expresgibhi(er-
atively, with experimental ones obtained from Monte Carlo simulations. Theya
of ¢;, once stationary state is reached, are related to the effective tempgrature

cording to 2.5.3.

In order to study transition phenomena, we measure the cooperation ewolutio
from the stationary states for the isolated dipadlggo the stationary state after ther-
mal contact. Fig. 2.9 shows the evolution of cooperation, by comparing sirmgatio
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Figure 2.9: Evolution of macroscopic cooperation aftetipgtin contact two dipoleg (= 0),
with k = 4, np = 4000, ¢ = 0, nc = 100, by = 1.1, and for different values df; = 1.5
(A,B), b2 = 1.8 (C,D) and coupling parametex: = 0.25 (A,C), x = 0.5 (B,D). Solid lines
represent the results of the simulations, while dottedslipresent the MF approximation.
Black lines represent to dipol®; and red lines to dipold,. Time unit corresponds to a
Monte Carlo step. See the text for further details.
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Figure 2.10: Macroscopic cooperation level®r both subsystems, versus the sizge of
pure cooperators sets, with= 4, np = 4000, ¢ = 0, k = 0.5 and RRN structures in
fluctuating sets;. Upper panelsshow the results of Monte Carlo simulations, after a long
enough transient, averaged ovex 10* steps ands x 10* different network realizations.
The temptation parameters of both sybsystems are fixéd-at1.1 (blue, +) and, = 1.5
(red, x). The upper-left panel corresponds to the statios@te before putting in contact the
dipoles, and the upper-right panel corresponds to thestly state after exchangingn
links. Lower panels Mean field estimate for the same values of parameters.
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before contact after contact

Mean field Experiment

Mean field

Figure 2.11:Upper panels Cooperation levels in dipole®; (symbols +) and); (X) versus
the differenceby — by of temptation parameters. The rest of parameters have beshté

by = 1.1,k = 4, nr = 4000, nc = 100, ¢ = 0 andx = 0.5. SetsF; are endowed with a
random regular graph structure. Symbols correspond toetbue wf ¢ once reached stationary
state, averaged ovérx 10* Monte Carlo steps and fdr x 10? different networks, before
(left) and after (right) putting in contact the dipolddiddle panels: Mean-field estimation
of cooperation levels in dipole®; (solid lines) andD, (dashed lines), before (left) and after
(right) contact, for the same values of parametémver panels Mean-field estimation of
effective temperatures, s, of dipolesD; (solid lines) andD, (dashed lines), before (left)
and after (right) contact, for the same values of parameters

In all panels, the temptation parameieof dipole D, remains constant (+, solid lines), while
varying the respective parametgrof dipole D, (X, dashed lines).
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results with MF estimate, for different values of coupling parametandby, — by

(in monotone bijection to initial temperature difference). One can obsertvehiba
mean-field predictions provide higher cooperation values. This failutdFofap-
proximation, as in the section 2.4.2, highlights the importance of lattice reciprocity,
which is ignored in MF approximation. As expected, this MF estimate, proviged b
the finite difference equations (2.41), is coherent at 0 with the MF estimate of

the section 2.4.2, provided by the fixed point of the differential equatidr6§2

The results for the asymptotic values of the average cooperation, that islth
ues ofe; at the stationary states before and after the thermal contact, versusethe siz
of fluctuating setg”; are represented in figure (2.10). As shown, for low values of
nc the difference in cooperation between the dipoles is smaller than for higasvalu
of nc. This is a consequence of the BB’s influence, which grows as do thekize
the set of cooperating nodes. Put another way, the influence of a#airtcreases
with nc /nr. This has a direct explanation because the size-ofloes not affect the
payoff of fluctuating nodes, but it does increase the payoff of capehubsB B2;.

The upper panel of figure 2.11 shows the average cooperationusvliesdiffer-
ence in the temptation to defefgt — b1, once fixednc = 100, np = 4000, € = 0,
k = 0.5, by = 1.1 and takingb, as independent variable. For high value$gfthe
proportion of cooperators of both subsystems after heat transfemrenedeached the
new stationary state tend to equate: The heat bath effect decreasés,withand
cooperation final ratios tend to be equal whigrincreases. When we use the MF
approximation, the same results can be analyzed from the perspectiffeative
temperature, as shown in the lower panel of figure 2.11. Effective teryperde-
creases ag increases, and then it increases whgincreases. The final temperature
difference depends on the value of the coupling paramegehighers implies lower
difference. Howeverx > 0.5 means that in average, nodes have more links to the
other fluctuating set than to his. Therefore, for small enaugéize and< > 0.5, the
final temperature of initially hotter dipole will be lower than the opposite dipole final
temperature.

2.6 Prospective remarks

The plausibility of a thermodynamical perspective on evolutionary gamendigsa
studies is not a new issue, for it is somehow implicit (or at least connatural) to
body of research literature on statistical mechanics of strategic interaft@rs21].
What our simple analysis here shows is that it can sometimes be strengtipeioeal u
formal interpretation of quantitative macroscopic social indicators as titymaonic
guantities. In the extent that it helps to understand and to quantitativelgatbere
the phenomenology of social and economical models, it should be reedgag&
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a powerful theoretical perspective. What is even more important, thipeetive
emphasizes the central role of quantitative (experimental, observatidndig¢s in
social sciences, and could provide, in those contexts, alternate vatneblgngs to
guantitative social indicators and even suggestions for new and be¢tgr on

Any “general-physics” trained scientist recognizes that entropyoreag is an
extraordinary powerful tool for the analysis of macroscopic behavigmaterial)
traditional-physics systems. It turns out that some of the models (at leasica b
of interesting ones) of social phenomena are to a large extent amenabiesicra
scopic description where thermodynamical concepts have proved tcdrties Of
course, some notions like.g. “First Law of Thermodynamics” could be often ab-
sent in these new contexts. However we emphasize that the absen@gf as a
variable in social models is not a shortcoming for the applicahbilitytatis mutandi
of many aspects of the thermodynamical formalism to these models. A wordi-of ca
tion is nevertheless worth here regarding typical system sizes in contsulgdl
experiments, where finite size effects could be hugely determinant. Alestauld
not expect always social processes to be amenable to equilibriunpdiescs, what
makes them even more interesting from the physicists point of view.

Nowadays, it is somewhat generally accepted that physics in genedatatis-
tical physics in particular, offers a powerful tool-box for problem gaivin social
sciences and many other areas. Recent trends in cognitive scierjeénfil/2 cor-
rectly emphasized the power of the “diversity of perspectives” in prokgelving,
so it does not come as a surprise that adding physical perspectivesidbraodels
may sometimes pave the way to the needed breakthrough. Perhaps oldeatdmu
wonder about the possibility of reverse flow in these interdisciplinarycaares to
social sciences. After all, the proper use of a tool helps to its reshagridgyne could
perhaps expect some kind of feedback. In other words, is thereaamplmysics that
we can learn from the study of social and economic complex systems? Only-the
course to empirical and quantitative methods in the study of social phenamsna
likely give clues for sensible answers to this question.




Chapter 3

Cooperation in changing
environments: Irreversibility in
the transition to cooperation in
complex networks.

In this chapter, we study the evolutionary dynamics of the prisoner’s dilerama @n
differents complex networks, focusing on its reversibility under adiabati@trons

of the payoff matrix parametértemptation to defect). We find that, for the networks
considered, the process is reversible provided it is kept away fronaliberbing
states. Nevertheless, irreversibility appears when the level of cdaperaaches a
tipping point, emerging a hysteresis cycle whose shape depends on tyind

topology.

3.1 Introduction.

Evolutionary dynamics has been widely used to describe the evolution ofjlmalp
economic and social systems [12]. The replicator dynamiasvofutionary game
theory (EGT) provides a powerful tool to study the progress of strategiesigfro
the lens of evolution [79, 17]. In this respect, one of the hot topics of totue
tionary game dynamics is the understanding of the observed evolutiornaiyed of
cooperative behavior among individuals despite selfish actions proigHertfitness
(reproductive success). Possibly, the most used EGT model to forntia¢izemer-
gence of cooperation is iterat@&tisoner’'s DilemmaPD), a symmetric two-player
two-actions game where each player choose one of the two available actaps
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eration or defection: A cooperator receivBsfrom another cooperator ansl from
a defector; a defector receivdsfrom a cooperator and® from another defector;
payoffs satisfyI" > R > P > S. Several studies on the iterated PD on com-
plex networks [19, 81, 82, 83, 84, 85, 86, 87, 16, 90, 101, 102, 104] show that
the cooperation level depends strongly on the topology of the network. eXis-
tence of cooperation enhancing mechanisms based on the interactionretnasu
is widely accepted: The clustering of cooperators could provide highgimpayoff
to the cooperator nodes to resist invasion of defectors, even whentidef is fa-
vored by the one-round two-players game analysis. For small valuBs-of (i.e,
P — S <« T — R), cooperation decreases slowly wHBn- R increases from zero,
and becomes zero at a valuelofR > 1 that depends on the network considered.

Recent studies of replicator dynamics [109] on graphs show that fixatioo-
operation on certain nodes occurs after transients, in which the trajectoeehar-
acterized by a partition of the network into three sets: the’set pure cooperators
(nodes where cooperation is fixed), the Bebf pure defectors (nodes where defec-
tion is fixed), and the séf of fluctuating nodes (nodes that never reach an unchanging
action). Furthermore, robustness of cooperation in the evolutionarynRidmplex
networks has been recently studied [112], showing that the level gfetation un-
der different network structures is robust against variation of initiad@ons. The
aim of the present study is to investigate evolutionary PD on complex networks
changing environments, in particular its reversibility under variations of tetiopta
to defectl’, and to determine how topology affects reversibility.

3.2 The model.

We consider a two-players two-actions game, where each player choosef the
two available actions, cooperation or defection: A cooperator earnsd play-

ing with a cooperator, and S when playing with a defector, while a defeeatmse

P when playing with a defector, arifl (temptation to defect) against a cooperator.
WhenT > R > P > S, the game is called Prisoner’s Dilemma (PD), while if
T > R > S > Pitis called Snowdrift Game (SG). In this work we study a variant
of PD called weak Prisoner’s Dilemma, placed in its boundary respect tth8Gs

T > R > P = S. In PD (including weak variant), whatever the opponent’s action,
the payoff is never higher for cooperation, and a rational agentidloboose defec-
tion. Still, two cooperator agents receive higher paydf) than two defector ones
(2P), which leads to the dilemma. Provided the relative selective advantage among
two individuals depends on their payoff’s difference (see below)carenormalize
without loss of generality the pay-off matrix takifg) = 1 and fix the punishment
P = 0. Then only a parametér = b > 1 is a system variable.
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In this study we implement the following replication mechanism: At each time
step, each agerntplays once with each one of its neighborg.(agents connected
to i) and accumulates the obtained payoffs, After that, the individuals;, update
synchronously their actions choosing a neighpat random, and comparing their
respective payoff$>; and P;. If P, > P;, nothing happens andpreserves its ac-
tion. Otherwise, ifP; > P;, i adopts the action of its neighbgrwith probability
II;; = n(P; — P;). Next, all payoffs are reset to zero. Hergjs a positive real
number, related to the characteristic inverse time scale: the larger it is, teedas-
lution takes place. We consider that players and connections betweeritbgmen
by a fixed graph where agents are represented by nodes, and atlivéebenodes
indicates that they interact. We choose here the maximum valyehaft preserves
the probabilistic character dij;, that is,n = (max{k;, k;}b)~, wherek; is the
number of neighbors of agefn{connectivity or degree). This choice, introduced in
[18], slows down the invasion processes from or to highly connectdds¢hubs),
with respect to the rate of invasion processes between poorly conmexted.

Our aim is the study of the reversible (or irreversible) character of @@tion
level c under the variation of the temptation to defect paramigtetherec is defined
as the number of cooperator nodes divided by the total populatienN./N. In
order to study the system’s behavior, we choose an initial valbe-of, such that
the asymptotic cooperation valués close to a halfc(by) ~ 0.5. Once the system
has reached stationary state, we decréasea quasi-static way, that is, in steps
Ab < 0 small enough to ensure that the system remains very close to equilibrium.
Along this process, we compute the stationary value of cooperattgnfor each
value ofb. To avoid getting stuck in the absorbing states we deal with large enough
networks sizes{ > 10°), considering that fluctuations decrease according to the
square root of the system size. Once the system has almost reachdsdhigiray
statec = 0, we reverse the sign of the increaséjmne. Ab > 0, to almost reach the
other absorbing state= 1, and then again decrealsé complete the cycle.

3.3 Results.

To study the influence of network topology in the reversibility of the process
consider three different network models: Random Regular Graph&RRdos-
Rényi and Scale-free networks. In the case of RR&, fandom networks of fixed
degreét, which means that every node has the same number of neighbors) tediaba
cycles are identical; that ishe behavior observed in the numerical simulations
with RRG corresponds to a reversible process
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Figure 3.1: Cooperation levét) versus the temptation to defelctaveraged ovet0® ER
networks (solid lines) and envelopes (pointed lines). Reelsl represent semicycles with
increasing and blue lines represent semicycles with decreasifigne network size iV =
1.2 x 10°. See the text for further details.

3.3.1 Erdds-Rényi networks.

Erd6s-Rényi (ER) networks are random graphs characterizedonyoaial degree
distribution of any particular node, this distribution is Poisson for large nuarivoef
nodes. To study the processes reversibility, we have performed nafrgéniilations
in 10 independent networks of sizé = 1.2 x 10° generated through Erdés-Rényi
algorithm. As outcome, for reduced cycles, that is, when the return poatardrom
absorbing stated & N¢(byin) > 1, Ne(bmas) > 1) the processes are reversible and
the level of cooperation is independent of the sign of the increalseNevertheless,
when return points are close enough to the absorbing stdtes () ~ 1, c(bmaz) =~
0), ER networks show a dramatic irreversibility. In fact, once the level opesation
reaches a tipping point, all processes are irreversible. In particudaig th a strong
resilience of cooperation (defection) when increasing (decreasiegydilue ofb.
However, the backward and forward transition curves are identicahfermediate
values of cooperation. The proximigyof the tipping points: (b, ), ¢(bmaz ) to the
absorbent states in both ends of cycle turns out to be similar:c(byin) = € ~
c(bmaz) @and, for the networks size used, it takes on the valse2 x 1073,

As a result, once the population has reached a cooperation level dsoe/) a
tipping point, the system shows a reticence to retrieve the past level oéiaimm

when the parametdr increases (decreases). This phenomenon is independent of

the particular ER network, being observed in all network realizations. r&igul
shows the level of cooperatiafa) versus the temptation to defdgtaveraged over
103 realizations in distinct ER networks. Different realizations show diffefen
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increasing and-decreasing curves, whose envelopes are depicted as dotted lines in
Figure 3.1. Remarkably, the dispersion of the different curves is mucérlé&rgthe
b-decreasing direction.

3.3.2 Scale-free networks.

Scale-free (SF) networks are random graphs whose degree distiB{k) follows

a power law, that isP(k) ~ ck~7. We ran simulations i x 10% independent
networks of sizeV = 1.2 x 10° generated through the Barabasi-Albert algorithm.
Although most of the SF networks show nearly reversible behaviorndi@ié of net-
works show a strong hysteresis. Nevertheless, irreversibility in SF nedvetould

not be considered as a rare event: Increasing the network sizesasttba proportion

of networks that show irreversible behavior. The explanation for thuigathat the
use of larger networks allows to approach closer the absorbing state¥ 1 with-

out getting stuck in them. Based on this argument, we have separated readizatio
showing a reversible behavior from irreversible ones. In these latteschysteresis
shows up only for low values df;, in other words, when cooperation is very small,
backward and forward(b) curves are almost identical. Moreover, the behavior of
the system irb-increasing semicycles is always similar, the cooperation leigl
taking approximately the same value in all realizations, regardless thewarsibde

or irreversible. On the contrary(b) curves are different for different (irreversible)
realizations inb-decreasing semicycles, and show a substantially larger dispersion
that those of ER networks.

The results of the average cooperation lgvlas a function of the temptation to
defectb, for SF networks showing irreversible behavior, are presented inefig2.
The return point$,,,;y,, bimae Were chosen such thatb,,q.) = 1 — ¢(bmin) = €, for
a value ofe = 1073. Note that, despite the small value @fthe network sizeV is
large enough to asses that we are not dealing with pathological casesasialue
¢ = 0.001 involves a number of cooperatols. = 120. In the same way; = 0.999
implies 120 defector nodes. As shown in envelopes (dotted lines), theedefir-
reversibility varies greatly from each realization. Specifically, irrevdisildepends
on the particular network, since for a given network repeated cyck® stpprox-
imately the same(b) curves for a given (forward or backward) direction. A most
remarkable feature of the irreversibility in SF networks is that, for irrébkrset-
work realizations, the value of the temptation to defect needed to reaclparation
level of c = 1073 is b,in < 1, that is to say, outside the PD game range.
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Figure 3.2: Cooperation levét) versus the temptation to defécaveraged ovet00 SF net-
works (solid lines) and envelopes (dotted lines). Red Irepsesent semicycles with increas-
ing b and blue lines represent semicycles with decreasi@nly irreversible realizations are
shown. The network size ¥ = 1.2 x 10°. See the text for further details.
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Figure 3.3: Numbenr,. of cooperator clusters (blue, thick lines) and relativee 9 main
cooperator clustefz./N (red, thin lines) in ER networks. Solid lines represkwlecreasing
half-cycles and dashed lines repres&iicreasing half-cycles. The system sizeNs =
1.2 x 10°. We have averaged over 50 simulations.
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3.4 Microscopic roots.

Previous studies [109, 112, 113] have shown that, in the asymptotic statks of
evolutionary dynamics of the PD game, under the updating of the actionsreegbla
above, the network is generically partitioned into three sets of hodes:cBapera-
tors (nodes where cooperation has reached fixation), pure defeatat fluctuating
strategists (nodes where fixation is impossible so that defection and atiopeal-
ternate forever). Pure cooperators resist invasion by groupinghi@gi@ cooperator
clusters, each of these connected subgraphs keeping around ideo€ltwctuating
strategists. The basis for an understanding of the irreversible behaitR net-
works is found by looking along botl-increasing and-decreasing) branches at the
details of this microscopic organization of cooperation. In particular, irt fetlaws
we pay attention to the number and size of pure cooperator clusters adiariufb.
Figure 3.3 shows the averaged relative size/N) of the largest cooperator cluster,
and the averagén..) of the number of cooperator clusters versus the temptation to
defectb, in both semicycles for ER networks.

Let us first analyze th&-increasing semicycle. In typical configurations near the
absorbent state= 1, the pure cooperators percolate the network conforming a giant
cooperator cluster whose averaged relative §izg/N) ~ 1. As the temptation to
defectb increases, starting from such configurations, the existence of a siegle v
large cluster of pure cooperators allows initially for a very efficient resiigeto in-
vasion by defectors until a value 6f~ 1.16 is reached. From there on, invasion
processes are dramatically enhanced so inducing the fragmentation afyénelles-
ter: (G./N) decreases quickly, the large cluster giving birth to an increasing number
ne. of small clusters of pure cooperators, thak at 1.23 reaches its maximum value
ne. ~ 160 when the large cluster size has been reduce@#9'N) ~ 0.15. Fur-
ther increase ob reduces both the number of pure cooperator clusters and the size
of the largest one: Ak ~ 1.8 basically only the largest cluster remains with a very
small size which keeps decreasing further beyond the tipping point (tiypfoand
atb > 2).

Now we analyze thé-decreasing semicycle. Back from the typical configura-
tion reached past the tipping point near the absorbing state), when decreasing
the temptation valué the very small size of the remaining pure cooperator cluster
cannot benefitife., enlarge its size) enough from cooperative fluctuations nearby;
correspondingly the level of cooperati¢f) remains well below the values observed
for the b-increasing branch. It is not until a valueof- 1.6 is reached, thatG./N)
starts a significant increase. Simultaneously, some cooperative fluctuititmes
cloud of fluctuating agents form separated small cooperator clustetgsg.. also
starts to significantly detach from zero. At aroumd- 1.5 both (G./N) andn..

(as well as the average level of cooperatiel) show already values that are very



72 Cooperation in changing environments: Irreversibility ...

T T TSR T T T T T T T T T
08~ L e
z 0.6;
O 0.4
ol |
0(;‘ SRR EEE \£ SSREES)

b

Figure 3.4: Relative size of the main cooperator clusief N for reversible processes
(dashed line) and irreversible ones (solid line) in th@ecreasing semicycle\p < 0) on

SF networks. Averaged over the0 different networks studied that show irreversible behav-
ior. The system size i&/ = 1.2 x 10°.

close to those exhibited by tthdncreasing branch. However, once reached the value
b ~ 1.23, wheren,. has its maximum value (and, as explained in previous para-
graph, the fragmentation of the large cluster of pure cooperatorsagachend in
theb-increasing branch), though further decreadel@ads to an increase ¢f:./N),

and a concomitant decreasergf due to the connection of small cooperator clusters
to the largest one, these processes take place at a slower pace tharrébpand-

ing fragmentation occurring for thiincreasing branch. The consequence is that
the cooperation level values in this rangebafalues for theé-decreasing branch are
significantly lower than those for theincreasing semicycle. Note that though the
values of(G./N), n.., and(c) in the range of intermediate23 < b < 1.5 values

are very similar in both branches, the system keeps memory of the path fd)lowe
demonstrating the importance of the particular topological details of the oegemz

of cooperator clusters.

A significant difference, regarding the microscopic organization opecation,
between ER and SF networks, is the observation first reported in [188fahSF
networks pure cooperators group together in a single cluster, while ineBiorks
they are disaggregated into several cooperator clusters for gen&rés\ofb. In our
simulations here we are using network sizes that are larger than thosa (j$66]
by a factor 030, and for SF networks we have observed nodes that, though being iso-
lated from the main cooperator cluster, remain cooperators during alisea time
scales. Strictly speaking they are not pure cooperators, for thelpliopaf invasion
by the defective strategy is not strictly zero (in all the cases analyzexdiglhit turns
out to be exceedingly small, due to the large connectivity (degree) of tiaes.
These quasi-pure cooperators appear in both, reversible and sitBeenetwork re-
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alizations. For a network size &f = 1.2 x 10° its number is never larger tharfor
reversible realizations andincreasing branches of irreversible ones, and not larger
than14 for b-decreasing branches of the latter. Their contribution both direct and in-
direct (through the cloud of fluctuating strategists each one keepsyn¢athe level

c of cooperation can be considered as negligible. Still one cannot diagaidri an
eventual role they might play in the reshaping of the main cooperator clustiegd

the hysteresis cycle of particular irreversible realizations.

In figure 3.4 we plot the relative size of the cooperator clugt&r/N) averaged
over 100 irreversible realizations for both forward and backward branchéseoty-
cle. Contrary to what happens for ER networks at high values of the téompta
defect, when starting to decrease it frogy,,, the size of the cooperator cluster in SF
networks initially follows very closely the values of the forward branch unti 2.5.
However, significant differences in the average cooperation ajugsee figure 3.2)
are already noticeable from ~ 3, indicating that the contribution from the cloud
of fluctuating strategies is lower for the backward branch. When futbereasing
b down fromb ~ 2.5, the averaged size of the cooperator cluster takes on values
progressively lower than in thieincreasing branch. This agrees nicely with the ob-
servation just made in the previous sentence on the cloud of fluctuatingystsater
the growth of the cooperator cluster originates from the cooperativieifitions in its
frontier, and thus the strength of these fluctuations determines the paeeabfsher
size growth. The difference between forward and backward besnpérsists down
to the tipping point, which somewhat surprisingly occurs for valuels amftside the
PD game range.







Chapter 4

Evolutionary dynamics on
Interdependent populations.

Although several mechanisms can promote cooperative behavior, thergéneral
consensus about why cooperation survives when the most profitetide &or an
individual is to defect, specially when the population is well mixed. Here vesvsh
that when a replicator like evolutionary game dynamics takes place on inézrdiept
networks, cooperative behavior is fixed on the system. Remarkablynargtizally

and numerically show that this is even the case for well mixed populations. Our
results open the path to new mechanisms able to sustain cooperation andwde pr
hints for controlling its raise and fall in a variety of biological and sociateyss.

4.1 Introduction

The onset of global cooperation in large populations of unrelated agbets defec-
tive actions provide the largest short-term benefits at the individudl ¢ewestitutes
one of the most amazing puzzles for evolutionary dynamics [14, 1711242, Dur-
ing the last decade, the structure of the interactions among individuals sebmse
provided a way out for cooperation to survive in those scenario$, asiche Pris-
oner’s Dilemma (PD) game, in which defective behaviors are evolutiorzagréd
under the well-mixed assumption [16, 88]. Although recent results hawersthat
network reciprocity is not always a viable mechanism to explain cooperatimng
humans (sees.g, chapter 6), larger cooperative levels are achieved if an evolution-
ary game dynamics takes place on top of structured populations and ngtaork
which nodes account for players and links represent the existerganué interac-
tions. Moreover, further including real structural patterns of largeesys [28] (scale-
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free distribution for the number of contacts a player has [108, 109],ntadl-svorld
properties [81], nonzero density of triads [173], etc) provides aigb booperative
outputs.

On the other hand, in most cases, a real populatitre it a biological or a social
system- is notisolated and interactions take place at and between different lewels (
layers) following different rules [174, 175]. Think of for instance im @conomical
system, where different levels account for different competitive maréad their
interdependencies (developers, manufactures, providers). Tésegaverning the
interactions at one layer are not necessarily the same that those drigidgrtamics
at another layer- admittedly, within each layer competition should exist while this
is not necessarily the case for inter-layer interactions. Thus, a nguugation arises
as to whether the observed degree of interdependency in real systamslésant
factor for the emergence and survival of cooperative behavior.

The previous interdependency, which is also referred to as multiplexitybea
easily incorporated into the framework of any dynamical process byliogumao or
more networked populations in which links between individuals of the sameagop
tion involve a different dynamical relationship to those stablished between eremb
of different populations [176, 177, 178]. In this chapter, we foquthe case in which
an evolutionary PD game drives the interactions between agents of the spoia-p
tion. On its turn, the existence of links between agents of different popusaikow
the two networks to interact. We will assume that the latter interactions are ruled
by the Snowdrift (SD) game. In this way, defection is punished when daciher
defectors outside the original population, thus balancing the evolutionaantage
that defectors find by exploiting cooperators in their respective popusation

We henceforth analyze what new emergent behavior results from the nlltile
nature of a system made up by two populations that interact through a nafiings
connecting nodes located at each subsystem. Exact analytical calcilediorbe
carried out for the case in which the population of each layer is well mixeoli¢fn
the nonlinear analysis of the two-coupled-variable replicator equatighdtrategic
densities in both layers. Our results show the emergence of gokanizedstate in
which all the individuals in one of the populations cooperate while all in therothe
population defect. In addition we finguasi-polarizedstates, so that all the agents
in one population are defectors, while most of the other one cooperatesove,
we also numerically show that the previous results hold for the case of riketgvo
populations. As we will discuss later on, our findings provide new mecirenier
the rise and survival of cooperation and for its control.
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Figure 4.1: Phase portrait of replicator equation (4.1)tf@ symmetric case3(= 1) and
weak PD ¢ = 0) intra-population game, for different values of the tentiptab, with p = 0.3,
ande = —0.4. The direction of velocity field is indicated by the arrowadats modulus by
the colors. We also plot the interior nullclines. For lowwead ofb (a), the polarized states A
and B are attractors. They lose stabilitypat P (b), in favor of the quasi-polarized states
A and B'. These in turn destabilize at= b (c) when the nuliclines coincide in a line of
marginally stable equilibria. From there on, the interiquéibrium E becomes the global
attractor(d).

4.2 The model: Evolutionary dynamics on two interacting
populations.

Let us first describe the evolutionary dynamics of two interacting popukbbrize

N; and N,. Two agents belonging to the same populatioi= 1, 2) play a PD
game so that a cooperator facing a cooperator (defector) in populatiairtains a
payoff R = 1 (S = 0). On the other hand, a defector facing a cooperator (defector)
obtains a benefitof’ = b > 1 (P = r > 0). The games played between agents
of different populations follow the same parameterization except for thatisituin
which two defectors meet. In this case, the associated punishment is Beffativ

e < 0 — thus, inter-populations games follow the SD formulation. Importantly, the
strategists’ competition for replication only occurs among own-populatiorepgay
That is to say that there is no “interbreeding” (as it happens for diffespecies, in
biological contexts) or “strategic diffusion” (as for functionally hetezngous layers

in social or economical contexts) among the individuals of different [adjoms. In
terms of imperfect (or/and irrelevant) knowledge, the strategists fronpalation

are unaware of the replicating success of strategies in the other popylatiand
this information is irrelevant for its replication).

4.3 Well-mixed populations: Analytical formulation.

To start with, consider the case in which agents of the same population) (kger
well-mixed. Let us also assume that bdfhand N, are large enough.e., N1, No >
1. Under these simple assumptions, an exact analytical description via tysisna
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of the phase portrait of the two-dimensional replicator equation for twoaloyma-
trix games is possible. In our well-mixed population approximation an indivigual
populationa hasN,, — 1 neighbors inside this population. Moreover, for interactions
between the two layers, we suppose that any pair of nodes (each andiftérent
population) is present with probabiliy Thus, the number of inter-population links
is equal top - Ny - No.

Let us callz,, the fraction of cooperators in the population The replicator
equations for the evolutionary game dynamics are

i1 = a1 —x)[(Ny = D)z (1 =b+7)—7)+
Nop(z2(1 —b+¢€) — €)]
m'g = 1’2(1 — SCQ)[(NQ — 1)(332(1 —b+ T) - T) +
Nip(z1(1—b+¢€) —¢)]. (4.1)

The results of the theoretical analysis (see section 4.4 for details) ofdbepked de-
terministic equations are illustrated in Fig. 4.1 for the symmetric (thus non-ggneric
caseN; = N, and the simple weak-(= 0) PD game for those intra-population
encounters. Below we will comment on the main qualitative changes for thexigen
casej.e,, whenever both the size proportion= N; /N, # 1 and general PDr(> 0)
game for intra-population interactions apply.

The analysis of Fig. 4.1 shows a rather natural non-linear resolutioreafah-
flict introduced by fitness-punishmer#) to inter-populations defective encounters.
Briefly said, even-symmetrice{ = x2) states D (both populations are fully defec-
tive) and C (fully cooperative populations) are both, for &ny 17, unstable against
perturbations in all directions, and stability resides instead on odd-symmetlaic p
ized states [A (all-D in populatiot and all-C in populatior2) and its symmetric
transformed B (all-C in populatioh and all-D in populatior)] for strictly positive
temptatiorb less than a bount” (¢; p) = 1 — pe (see Fig. 4.1.a). At this critical (bi-
furcation) value ob the interior nullclinest; = 0 andis = 0 (see Fig. 4.1.b) touch
states A and B respectively. Increasing the value of the temptataoveb™? the
polarized states lose their stability in favor of the quasi-polarized stategl]AD(in
1 and mostly C ir2) and its symmetric B’ ], which detach from A and B and become
attractors. Ab = b¢ = 1—11’%}7 the interior nullclines coincide (see Fig. 4.1.c) becom-
ing a line (AB’) of marginally stable equilibria. Finally, far > ¢ (see Fig. 4.1.d)
the global attractor is the interior even-symmetric state E, the intersection of-the in
terior nullclines, which keeps approaching,taiscreases, the neighborhood of the
high b limit attractor, say the state D of fully defective populations.
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This scenario remains qualitatively unchanged for strictly positive valtidseo
parameter, providedd < r < —pe, the only change being that the bifurcation value
b, where the quasi-polarized states loose stability, becomes:

r — pe
1—p

14 (4.2)

In other words, the weak PD limit (= 0) for the intra-population game is structurally
stable respect to (small enough) positive parametric variations of the gaanagter

r. Forr > —pe, the scenario changes drastically: D is now a stable equilibrium, but
still, for b < b“P (which doesn’t depend on), the polarized states are also stable
equilibria. Only for large > b“P values of the temptation, D becomes the unique

global attractor. Summarizing the results for the symmetric case, the attracésr sta
for increasing values dffrom b = 17 follow the sequence:

AB Y aB % E. (4.3)
when0 < r < —pe while, whenr > —pe, the sequence is:
bup
D,A,B — D. (4.4)

For the general casl; # N, the lack of the population interchange symmetry
modifies some of the features seen in the symmetric case. Without loss odlifgner

@ D,ABS DA D
(b) ABE A A ME
© ABE A K

(d) AB AB EAY A

buP be buP be
e ABA2AB EAAAAZE
up up C
® AB A AB A AB A
up up c C
@ ABE AR X AB BaBE

Table 4.1: Sequence of attractors in phase space for equdtib), ash increases fronb =

1*. The arrow indicates a bifurcation at thealue that appears over the arrow. The scenarios
(a)-(g) correspond to different ranges of values of thepatarsr, 8, p ande, that are made
explicit in section 4.4. Note that except for the scenarjo tfaat corresponds to > — Spe,
polarized and quasi-polarized states dominate the asyinpthavior.
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we assume that = N;/N, > 1. On one hand, the lower bound effor the
stability of the fully defective state D becomes now —Spe. On the other hand, the
bifurcation values at which the polarized states lose their stability are nosvetiff,

blg’:1—%<bjp=1—ﬁpe, (4.5)

as well as the bifurcation values (provided they exist) at which quasripethstates
destabilizepy < b9, where

. % — (pe)?

Vo =1+ (r 4 Bpe) — p(Br + pe) (4.6)
B(r? — (pe)?)

(Br + pe) — p(r + Bpe)

by =1+ 4.7

Let us note that the polarized state A, where the defective population igyef la
size, turns out to have a wider range of stability, as well as a larger bieaitnaxction,
than the state B. The results of the complete analysis of the replicator equafidpn (
are summarized in Table 4.1, where we show the sequences of attra@gistiog
in phase space. The seven scenarios (a)-(g) correspond tediffanges of values
of the parameters, (3, p ande (see section 4.4 for further details).

From the previous analysis of well mixed populations, one sees that fmmlariz
and quasi-polarized states appear as generic attractors of the evalutignamics
for wide ranges of model parameters, which in turn has the effect afreiig in a
remarkable way the asymptotic levels of cooperation in the two-populatiotensys

4.4 Phase portrait analysis of the two-variable replicator
equation

The replicator equation that describes the continuum time evolution of theop
fractionsz(t), z2(t) in subpopulations 1 and 2 can be written as:

iy = Fi(z1,72) , (4.8)
Iy = Fo(x1,12) , (4.9)
where the velocitieF; o, after time rescaling, are explicitly given as:

Fi(xy,xe) = 21 (1 — ) [B(x1(1 —=b+7) — 1)+ p(a2(1 —b+€) —€)] ,(4.10)
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Fo(x1,22) = xo(1 —x2)[(x2(1 —b+7) —7) 4+ Bp(x1(1 —b+€) —¢€)] .(4.11)

The unit squard® < x1,z5 < 1 is the invariant set of interest here. To follow
the phase portrait variation of a two-degrees of freedom nonlinetamyige equa-
tion (4.9) is pretty straightforward for one-parameter variations. We eaérdy with
a model where, r, ¢, 3, andp are free model parameters, each one inside their
natural rangé,e.,b > 17,0<r <1,e< 07,3 > 1,and0 < p < 1. In our system-
atics below, we will consider continuum variationtgffrom b = 1 up to infinity, at
fixed values of the other parameters and so we will obtain the “critical” (téftion)
pointsb*(e, r; 3, p), where the phase portrait of the evolution experiemgesitative
changesSomewnhat, the direction of increasing temptatiésmoften most considered
in recent literature on PD games. But we will pay due attention also to variaifons
the parameter, and find two important critical values that do not depend on the
value of the temptatioh, so that different scenarios of phase transitions (inside the
well-mixed population approximation to the thermodynamical lifdit No — o)
asb varies do appear. Finally, we choose alsas an interestinge(g, for control
applications) parameter to vary, and find also two critical values that areagaom
independent, that in turns, increase the number of those scenarios.

The best visualization of the velocity field is a phase portrait where fixaul{le-
rium) points and nuliclines are also plotted, as in Fig. 1 in the main text. A nullcline
is the locus of points defined hy;(x1,22) = 0 for somei. The nuliclines that
correspond toF; (z1, z2) = 0 are the straight lines

5 =0, (4.12)
2 =1, (4.13)
vy — —x18(b—1—7) = (Br + pe) ’ (4.14)

p(b—1—¢€)
while those that correspond %, (1, z2) = 0 are
22 =0, (4.15)
zo=1, (4.16)

—218p(b—1—¢€) — (r + fBpe)
(b—1-r) '

zg = (4.17)

The possible equilibria are the crossing points of any line from the firstpgro
with any other line from the second one, so there are nine candidatesooyonly
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solutions in the unit squar®, < z1,2, < 1, interest us, and this exclude two of
the crossing points (see below), leaving the following seven possibilitieslyahe
four corners of the unit square:

o A=(0,1),
e B=(1,0),
o C=(1,1),
e D=(0,0),

and those whose location depends on parameter values:

e We call A’ the crossing point of nullclines (4.12) and (4.17), whose coordinates
arer,(A’) =0and

—(r + Bpe)

M) =G

(4.18)

e We call B’ the crossing point of nullclines (4.14) and (4.15), so th&B3’') = 0
and

2 (B) = m . (4.19)

¢ Finally, we callF the crossing of (4.14) and (4.17). Its coordinates are obtained
as:

_ (b—=1=7)(Br+pe) —plb—1—¢)(fr+ pe)
(7 s ok I

b—1—r)(r+pBpe) —plb—1—¢)(r €
ea(E) = ¢ (p)(é_ 151))2 _p((b_ : —7?)(2 9 42
The (missing in the list) crossings of (4.13) - (4.17), and of (4.14) - (4 d&) easily
seen to be always outside the unit square for the range of parametsigared. Also
inside this range, the non-generic evennolficlines’ coincidencenly could happen
providedg = 1 andr > —pe, at avalue(e,r;8 = 1,p) = 1 + Tf_f;f. Only then,
the exotic (forced by symmetry) situation in which there is a segment of marginally
stable equilibria occurs.
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To determine the bifurcation points, one uses the spectral analysis ohtange
space perturbations around equilibria. The linearized evolution of snralirpations
around the fixed point* is given by the matrix:

oF1 O0F1
Ox1 Oxo
(4.22)
OF2 0F2
ox1 0o x—x*

In what follows, the presentation of the results from the phase portraliysia of
the nonlinear coupled ODE (4.11) tries to rationalize them in terms of evoluyionar
game theoretic concepts, within a thermodynamical limit (statistical physics) per-
spective.

4.4.1 Symmetric caseN; = Ny(= N).

For simplicity, as well as for illustrate neatly the systematics that we follow, we an-
alyze first the case of equal population sizes. For this case, whetdatiops are
identical (though distinguishable), the population interchange symmetry i itete
phase portrait is invariant under permutation of coordinates+£ xz-), a non-generic
property that limits severely the possible scenarios. The stability analysis egthi-
libria shows that there are two generic scenarios for the sequenceiafdiibns that
appear whei increases from™ up to infinity:

(s1) If » > r. = —pe there is only one bifurcation &t?(r,e, 5 = 1,p) = 1 — pe.
Forb < b"P, the phase portrait has three stable equilibria with their own basins
of attraction: D, A, and B. The equilibria C, A' and B’ are unstable, and E is
outside the unit square. At= b"?, A and B destabilize (through collision with
A and B’ that exit the unit square) becoming saddle equilibria, and D ineso
the unique global attractor fdr > b“P. This translates into the following
sequence of attractors when temptation increases fram

D,AB Y D. (4.23)

(s2) If r < rc(p,€), however, D is always unstable, and there are two bifurcations
atb“? andb© (and note thab"? < b¢). Forb < b"P the equilibria C, D are
sources, E is a saddle, and A and B are attractors, becoming saddlerequilib
atb“? where A and B’ enter into the unit square. FH8P < b < b A and B’
are the only attractors. At the segment AB’ of marginally stable equilibria is
the limit set for all trajectories (nullcline’s coincidence). Bas b“ E becomes
the unique (and even-symmetric) global attractor. This last bifurcatiooress
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the symmetry of the asymptotic evolution that was spontaneously broken at
lower b values. The sequence of stationary limiting (point) densities is:

AB Y AR ¥ E. (4.24)

Note that the conditiom = r.(p, €) that separates the regimes where the equi-
librium D is unstable{ < —pe) or attractor £ > —pe), corresponds to the exact
compensation of the surplusV of defective intra-population interactions of a de-
fector and the punishmeptN it receives from inter-population interactions. Below
this critical value, full defection is unstable to cooperative fluctuations, &iwe
have just seen, even in case the punishment from coupling is weakesuhauos,
polarized states have their own basins of attraction, away from wholetaefeat
low values ofb > 1. This can be rationalized from the role that punishment plays in
our -no interbreeding, punishing defective coupling- setting. Popukitgirategic
polarization emerges as stable generic asymptotic state of evolution, evardethe
fectors can afford external punishment (D being then fully stable): dilpdex (two
coupled populations) has always the option to become polarized or qulasizpd
provided the initial conditions belong to its basin of attraction.

4.4.2 General caseN; # N.

The parametep determines the fraction of inter-to-intra-population interactions any
agent plays per unit time in the symmetri¥;( = N,) case. This fraction changes
to Sp andp/p (6 > 1) for small and large populations respectively, when symmetry
of population interchange is absent. This combination of parameters reghtate
important to the replicating power (fitness) of an individual the inter-pdjmuiaou-
pling is, and we then see that for the largest population the effectivdiogup/ 5 is
smaller. This makes the polarized state A (where population 1 is defective)nmor
bust than the polarized state B, and provided both are attractors, thebaghaction

of A is correspondingly larger. This is a major qualitative change in thegpas
trait of the velocity field of evolution in the absence of symmetry. The concomitan
change is the shift, and in more extreme cases the disappearance, ofithatluhs
associated to the quasi-polarized equilibria A" andiE’, b%’B andb, 5

b (re:8.p) =1~ (p/B)e , (4.25)
by (r,€ 8,p) = 1 — Bpe (4.26)

r? — (pe)?
(r 4 Bpe) — p(Br + pe) ’

bp(r € 6,p) =1+ (4.27)
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B(r? — (pe)?)
(Br + pe) — p(r + Bpe)

Va(r,e B,p) =1+ (4.28)

Note that the minimum of this set of valuesb%p, its maximum isb§;, and that the
relative order of the other two values is parameter dependent. Seesvaleneric
scenarios of phase portrait variations naturally follows from these migmte, when
the “population interchange” symmetry is absent. Still, let us remark that the-evo
tionary attractiveness of the odd-symmetric polarized (A and B) and quéasiized
(A and B’) asymptotic densities still dominates ample regions of parameteespac

A first scenario, similar to the first one seen above for the symmetric case, is
found whenr > r4(e; 8,p) = —Bpe. In this scenario, the fully defective state D is
stable for allb > 1 values. For very low values &f A and B are also stable. Due to
asymmetry, the instabilities of A and B occur at different bifurcation valb%vs,<
by, so that state B destabilizes first wheimcreases frond = 17, as expected,e.,

(i) If r2 < r there are only two bifurcations &ty < »%’. For allb > 1%,
C is unstable and E is outside the unit square. #Fer b, the states D, A
and B are attractors. At;), B collides with the unstable B’ that exits the
unit square, then becoming a saddle with unstable direction correspaoding
defective fluctuations in cooperative population 1. The same happetatis
mutandi(l <+ 2 interchange) to A ali'{”, leaving finally D (forb > b'[") as the

global attractor.

buP buP
D,A/B 5 DA AD (4.29)

At r = rg‘, for a defective individual in population 2, and state D, the “inter-
nal surplus - coupling punishment” balance exactly compensates. Thissrtiesn
changing to cooperator makes no difference to its replicating power, asdthero
eigenvalue appears in the spectrum of the Jacobian (linear stability) matitive of
fully defective state D. Inside the range< rZ', D is always unstable face to coop-
erative fluctuations in the smaller population. Further down in surplugajues, at
r =rB = —(p/B)e, D becomes also unstable face to cooperative fluctuations in the
large population. In other words, when decreasirfgom large (compared to?')
positive values of intra-population surplus,0to (weak PDlimit), there are two crit-
ical values, where qualitative changes of the phase portrait occtdimeide with
the change of stability of D from stable ¢ ) to saddle (2 < r < ), to source
(r <rB).

Providedr < 4, if one consider the high (— oo) limit, one easily finds that it
can be either “mixed type” (state E, interior to the unit square) or “qudsirfized”
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(state A, on the verticak; = 0) regarding its convergence to virtually full defec-
tion. The transition between these two qualitatively different “high temptation limit
behaviors”, for given values ef p, andr, is controlled by the value of the population
ratio 5 and it occurs at the critical value:

B (e,r; p) = Z;(i;z? . (4.30)

At this value of the population ratio, the bifurcation vahig(where A collides with
state E, this one entering into the unit square) formally diverges, so thepliison

occurs (or doesn't), depending on the value of the population fatior fixed value
of p, r, ande.

On the other side, the bifurcation valuebgt only occurs provided < rZ, but
its relative order with respect td;” depends also on the value gfwith a critical
value at:

—pe(p?e — 1) — \/P2e2(p2e — )2 — 4p2e(r — €)(p2e? — 72)

2p2e(r — ¢€) (4-31)

BE (e,75 p) =

The different possible combinations of all the previous possibilities givéaihe
lowing scenarios:

(i) If rB < r < rZ, then the stable linear manifold of the saddle point:R 4 0)
does not allow B’ to be a stable equilibrium, while its unstable directign=
0) pushes evolution to polarized A or quasi-polarized A states; C is a alway
a source for alb > 1. Two different scenarios are realized depending on the
inter-population ratio valueg:

(ii1) If B> B2 (see Eq. 4.30), bifurcations only occurtdff < b'f. At b7,
the collision of B and the unstable exitil®joccurs, while ab"}’, it takes
place the collision of A with the enteringtate A. The corresponding
sequence of attracting equilibria is given by:

buP o puP
AB 23 A AN (4.32)
(ii2) If B4 > j3, besides the bifurcations described if ), there is an addi-
tional bifurcation ab<, where A collides with state E that enters into the
unit square. The corresponding sequence of attracting equilibriaga giv

by:

b%ﬁ bUP b

ABE32AAAABE (4.33)
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The presence or absence of the bifurcatigmletermines whether the approach
to the high temptation limit is via “mixed interior type” E state, or “edge quasi-
polarized type” A state, so that for values 8fbelow critical (3/), virtually

full defection (L—, 17) is approached with non-zero cooperation levels in both
populations a# diverges.

(iii) If » < 7B, both quasi-polarized states A and B’ enter into the unit squal’g’at
andb’y, respectively. B’ always destabilizestéf (> b}, always) to become a
saddle through collision with the exiting unstable interior equilibrium E. This
may happens before [as ;) and ¢ii2) below] or after [as in4ji3) and
(¢ii4)] the entrance of A" ab’)” depending orp value (relative tas?). And
finally note that the bifurcation &t only occurs forg < B4, as analyzed
above, to arrive to the following possible four scenarios:

(i7i1) If max(B2, B5) < B, thenby, < b'F, andbs is absent:

b}gp b$ bYP

AB 3 AB A AA (4.34)
(iiiz) If BB < B < B2, thenbs, < b, andbS occurs:
b%p , be buP , be
AB 3 AB BEAA3AAZE (4.35)
(iiiz) If B2 < B < BB, thenb? < b%, andb’, is absent:
buP S N
A B 3 AB 4 AB EBA (4.36)
(iiis) If B < min(B2, B2), thend’{ < b5, andbS, occurs:

buP b4P b b6
AB 3 AB 3 AB BA AZE (4.37)

This analysis provides the three-dimensional phase diagraf i) for fixed,
though arbitrary,e and p. It exhibits a wealthy of different macroscopic phases
separated by critical lines and surfaces. It shows that polarizedwasi-polarized
phases dominate wide regions in parameter space. This illustrates the affiatts-
population trade of fitness (even under the simplest possible structuréepfaimd
intra population contacts) on the evolution of PD replicators.

AB Y aB ¥ E. (4.38)

when0 < r < —pe while, whenr > —pe, the sequence is:

D,AB Y D. (4.39)
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45 Random networks.

On the other hand, for structured populations, where individuals iriten#tt their
neighbors as dictated by a given network of contacts, it is known thatrusame
assumptions cooperation is enhanced, a phenomenon called networ&gipgip

While for well mixed populations, the stability of polarized states extends down
tob = 1T, one should expect that at smalt- 1 values, the enhancement of coopera-
tive fluctuations due to network reciprocity in the defective population fatidzes
the polarized states below some critical vablf&¢’. Moreover, one should also expect
blov to decrease with the paramegembecause higher values pincrease the payoff
that a (defector) individual in population 1 obtains from encounters witbgerator)
individuals of population 2, thus decreasing the resilience of cooperfétistuations
(“network reciprocity”) in population 1. In other words, for low valuesbp the in-
teraction between populations acts against network reciprocity. Thesetatons
are fully confirmed by the results from simulations of the evolutionary dynamics
populations with a random network structure of intra-population contasitsg the
discrete version of replicator dynamics.

In Fig. 4.2 we show the average cooperationevel (over a sample &00 differ-
ent realizations) on the two-population system as a functidnfof different values
of p, and parameters as indicated. The two populations have a random-&&diis
[28]) network of contacts with average degrée = 6. In the initial conditions, the
individuals of both populations were chosen cooperators with probabjlity The
plateau atc) = 1/2 points out the asymptotic polarized state. Moreover, the states
with (¢) < 1/2 correspond to quasi-polarized regimes where all the individuals in
one population are defectors, while those with > 1/2, at values ofb < plow
results from states where all the individuals in one population are caoperd his
represent a new type of quasi-polarized states that were not fourdatbractors of
the dynamics for well mixed populations. The comparison with the averageecoo
ation level for non-interacting populations & 0 in Fig. 4.2) confirms that for low
values ofb the inter-population interaction acts against network reciprocity.

From a complementary perspective, the networked populations showtinae+ a
tors, impossible to be such for coupled well-mixed populations, becausardye
effect of network reciprocity. On the other hand, for larger values, ahe popu-
lations’ coupling favors the achievement of substantial levels of cotperavell
beyond the typical values éffor which network reciprocity ceases to be effective,
being an effect already present in the well-mixed case. This clarifydatltie con-
fluent effects of these two different mechanisms of cooperation erhzard.

Finally, the robustness of polarized and quasi-polarized states sugmaststhe
coupling to a defective population as an engineered (control) proeddunduce
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Figure 4.2: Average level of cooperation in the two-pogatasystem as a function of for
different values of the fractiop of inter-population contacts. Other parametersrare 0,

e = —0.4, N; = Ny = 103. The two populations have a random (Erdds-Rényi) network of
contacts with average degrée = 6. See the text for further details.
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Figure 4.3: Average level of cooperation in the populaticasia function ob, for different
values of the fractiop of inter-population contacts. The population 1 (of si¥e= 10?) has
been coupled to a smaller population/2,(= 102). While initial strategies in population 1
are equiprobables (random initial conditions), the poipaite? starts from the absorbent state
of fully defection. Other parameters ate= 0, e = —0.4. Both populations have a random
(Erdos-Rényi) network of contacts with average dedfge= 6.

high levels of cooperation in a target population. To check for this possjbiity
have coupled a large population 1 with random (equiprobable in strategigal)
conditions to a smaller defective population 2. In Fig. 4.3 we show the asymptotic
average level of cooperation in a target population of $\ze= 102 for different
values of the average numbé¥; - p, of inter-population contacts per individual of
the target population. The results suggest that such arrangementsovate mew
mechanisms to control and/or sustain cooperation in different kind ofragste



90 Evolutionary dynamics on interdependent populations.

Summarizing, two PD populations SD-coupled in conditions of strict inbreed-
ing (no inter-population strategic diffusion) evolve easily to polarized amakig
polarized strategic probability densities in the well-mixed thermodynamical limit of
the evolutionary replicator dynamics. This happens also when populaticrist
is a complex network of contacts, where other mechanisms (known as keteor
procity) of enhanced cooperation also operate. The confluencelofiechanisms
has been analyzed in depth showing that polarization opposes netwipmionity at
small values of the temptation parameter, while both act (synergy) togetteneng
cooperation in one of the layers for higher temptation values. This pherwmgrat
could be rationalized as the effect of incorporating a punishment to tileféater-
population encounters, illustrate the remarkable effects that structural lexiliyp
introduces in evolutionary dynamics.



Chapter 5

Human behavior in Prisoner’s
Dilemma experiments suppresses
network reciprocity.

During the last few years, much research has been devoted to strategiciions

on complex networks. In this context, the Prisoner’s Dilemma has becomadigar
matic model, and it has been established that imitative evolutionary dynamics lead to
very different outcomes depending on the details of the network. Werbpoet that

when one takes into account the real behavior of people observedarpbaments,

both at the mean-field level and on utterly different networks the obddevel of
cooperation is the same. We thus show that when human subjects interattatz an
erogeneous mix including cooperators, defectors and moody conditioopérators,

the structure of the population does not promote or inhibit cooperation vatiect

to a well mixed population.

5.1 Introduction

In recent years, the physics of complex systems has widened its scopadiglering
interacting many-particle models where the interaction goes beyond thecosgabt
of force. One such line of research that has proven particularly sttegeis evolu-
tionary game theory on graphs [16, 88], in which interaction betweerntsgegiven
by a game while their own state is described by a strategy subject to an evaiytion
process [12, 91]. A game that has attracted a lot of attention in this raspleetPris-
oner’s Dilemma (PD) [92, 93], a model of a situation in which cooperatitiors
lead to the best outcome in social terms, but where free riders or ngewiive in-
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dividuals can benefit the most individually. In mathematical terms, this is ithesicr
by a payoff matrix (entries correspond to the row player’s payoffs@rmhd D are
respectively the cooperative and non-cooperative actions)

clp
cl1|s (5.1)
D|T|O

with T" > 1 (temptation to free-ride) anf < 0 (detriment in cooperating when the
other does not).

In a pioneering work, Nowak and May [19] showed that the behavisenled
in a repeated Prisoner’s Dilemma was dramatically different on a lattice than in a
mean-field approach: Indeed, on a lattice the cooperative strategyblea® grevail
by forming clusters of alike agents who outcompeted defection. Subsgqube
problem was considered in literally hundreds of papers [16, 94, 18, 9%], and
very many differences between structured and well-mixed (mean-fiefu)latons
were identified, although by no means they were always in favor of catipe [96,
97]. In fact, it has been recently realized that this problem is very semgdithe
details of the system [88, 115], in particular to the type of evolutionary uhjcs
[79] considered. For this reason experimental input is needed in tvdeach a
sound conclusion about what has been referred to as ‘networkaeettip.

Here, we show that using the outcome from the experimental evidence tminfo
theoretical models, the behavior of agents playing a PD is the same at the aiéan fi
level and in very different networks. To this end, instead of considesomead
hocimitative dynamics [19, 98, 21], our players will play according to the styateg
recently uncovered by Grugjiet al. [23] in the largest experiment reported to date
about the repeated spatial PD, carried out on a lattice as in Nowak and péer
[19] with parameter§” = 1.43 andS = 0.

The results of the experiment were novel in several respects. Firgipghsation
of players exhibited a rather low level of cooperation (fraction of coaipee actions
in every round of the game in the steady state), hereafter denotéd.bMost im-
portant, however, was the unraveling of the structure of the strateghesaralysis
of the actions taken by the players showed a heterogeneous populatisisticg
of “mostly defectors” (defected with probability larger than 0.8), a few “tlyoso-
operators” (cooperated with probability larger than 0.8), and a majority-chied
moody conditional cooperators. This last group consisted of playerswitched
from cooperation to defection with probabiliy”® = 1 —d — v¢; = 1 — PE¢
and from defection to cooperation with probabill®'” = a + 8¢; = 1 — PPP, ¢
being the fraction of cooperative actions in playserneighborhood in the previous
iteration. Conditional cooperation, i.e., the dependency of the choséagstien the
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amount of cooperation received, had been reported earlier in rebgiedments [99]
and observed also for the spatial repeated PD at a smaller scale [be0jeW ingre-
dient revealed in Gruiet al's experiment [23] was the dependence of the behavior
on the own player’s previous action, hence the reason to call them “rioody

5.2 Results

To study how the newly unveiled rules influence the emergence of cdapenaan
structured population of individuals, we first report results from nicaésimula-
tions of a system made up & = 10 individuals who play a repeated PD game
according to the experimental observations. To this end, we explored ¢hagav
level of cooperation in four different network configurations: a well-edixpopula-
tion in which the probability that a player interacts with any other one is the same fo
all players, a square lattice, an Erdds-Rényi (ER) graph and a &sirAtbert (BA)
scale-free (SF) network. It is worth mentioning that the dependenceeopayoff
matrix only enters through the parameters describing the players’ beltdyigra,

£ and the fractions of the three types of players). Once these parametdised
the payoffs do not enter anywhere in the evolution, as this is only deterroyntce
variablesc;, the local fractions of cooperative actions within each player’s neighbo
hood. Thus there is no possibility to explore the dependence on the paguifiuse
we lack a connection between them and the behavioral parameters.

In Figure 5.1 we present our most striking result. The figure represints
color-coded scale, the average level of cooperation as a functiore dfattion of
mostly cooperators;-, and mostly defectorg,p, for a BA network of contacts. The
same plots but for the rest of topologies explored (lattice and ER grapbdiqge
indistinguishable results with respect to those shown in the figure. We theref
conclude that the average level of cooperation in the sysi@es notdepend on the
underlying structure. This means that, under the assumption that the plalj@ns
the behavior of the experiment in [23here is no network reciprocity.e., no matter
what the network of contacts looks like, the observed level of cooperatiche
same. This latter finding is in stark contrast to most previous results comirfigpout
numerical simulations of models in which many different updating rules —alleshth
based upon the relative payoffs obtained by the players— have bphmeask

Mean-field Approach. The previous numerical findings can be recovered using
a simple mean-field approach to the problem. Let the fractions of the threg type
of players bepc, pp andpx, for mostly cooperators, mostly defectors, and moody
conditional cooperators, respectively, with the obvious constpaint 1 — pp — pc.
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Figure 5.1:Dependency of the average level of cooperation on the densibf strategists.
Density plot of(c), as a function of the fractions of the three strategies -ipasbperators,
C, mostly defectorsD, and moody conditional cooperatory,-. Pannels A), B) and C)
correspond to a regular latticé & 8), Erdos-Rényi(k) = 6) and Barabasi-Albert() =
6) network of contacts respectively, but independence opetation level on the topology
make them indistinguishable. The system is made upy of 10* players and the rest of
parameters, taken from [23], aré:= 0.38, a = 0.15, v = 0.62, 8 = —0.1. The thin lines
represent the mean-field estimations [c.f. Eq. (5.5)](for= 0.32, 0.44, 0.56, 0.68. They
very accurately match the contour lines of the density ptotesponding to those values
of (c), thus proving that the same outcome is obtained in a completieh (mean-field).
Simulation results have been averaged over 200 realization

Denoting byP,(A) the cooperation probability at timefor strategyA(= C, D, X)
of the repeated PD we have

(¢}t = pcP(C) + ppP(D) + px Pi(X), (5.2)

whereP;(C') = P(C) andP,(D) = P(D) are known constants [in our caB¢C') =
0.8, P(D) = 0.2]. The probability of cooperation for conditional players in the next
time step can be obtained as

Prp1(X) = (d+7(0)e) P(X) + (a + Blc)i)[1 = P(X)], (5.3)

where the first term in the right hand side considers the probability thaiditamnal
cooperator keeps playing as a cooperator, whereas the second tenchs for the
situation in which a moody conditional cooperator switched from defectionap-c
eration. Asymptotically

tlim P(X) = P(X), lim (¢); = (c).

— 00

t—o00

From Eg. (5.3),

a+ B{c)
l+a—d+(B-7) )’

P(X) = (5.4)
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Figure 5.2: Absence of Network Reciprocity. Average cooperation level in the stationary
state, (c), as a function of the density~ of mostly cooperators and two different values
of the densitypp of mostly defectors, for two different kinds of networks:gutar lattice

(k = 8), and Barabasi-Albert networKk) = 8). The network size isV = 10* and the rest
of parameters are as in Figure 5.1. Lines represent the fieddrestimations. Results are
averages over 200 realizations. The inset is a zoom thalidiig how the different curves
compare.

thus (5.2) implies (with the replacement = 1 — pc — pp)

Apc + Bpp =1, (5.5
where
_PO-PX) L, P(D)-P(X)
AP PP 0

are functions of(c). From Eq. (5.5) it follows that the curves of constdnt are
straight lines in the simplex. Figure 5.1 clearly demonstrates this fact: Thelgtraig
lines are plots of Eq. (5.5) for different values @f. It can be seen that they are
parallel to the color stripes, and that the values®fthey correspond to accurately
fit those of the simulations.

Figure 5.2 depicts the curve) vs. p¢ for two different values opp, as obtained
from Eq. (5.5) and compared to simulations. This figure illustrates the extellen
gquantitative agreement between the mean-field result and the simulation.rébelts
match between the analytical and numerical results is remarkable, as it istteata
the result does not depend on the underlying topology. This is the ultimase-con
guence of the lack of network reciprocity: the cooperation level on atyark can
be accurately modeled as if individuals were playing in a well-mixed population.
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Figure 5.3:Asymptotic level of Cooperation Time evolution of the cooperation level until
the stationary state is reached. The results have beemebtaiom numerical simulations
on different networks with different sizes. The Mean-Fielaive is the solution of Eq. (5.3).
P(C) = 2/3, P(D) = 1/3, P(X;t = 0) = 1, (k) = 8, pp = 0.586, pc = 0.053,

d = 0.345, a = 0.224, v = 0.64, = —0.072. Averages have been taken ovr’
realizations.

The steady state is reached after a rather short transient, as illustratigdiie F
5.3. This figure compares the approach of the cooperation level to its stgtistate
as obtained iterating Eqg. (5.3) and from numerical simulations on diffesntanks
with different sizes. The initial cooperation level has been sét)ip= 0.592, close
to the value observed in the experiment of Ref. [23]. The transient eld@bit a
weak dependence on the underlying topology and specially on the nesizerkout
for the largest simulated siz&/(= 10%) the curves are all very close to the mean-field
prediction.

Distribution of Payoffs. The only observable on which the topology does have a
strong effect is the payoff distribution among players. Figure 5.4 shosgettistri-
butions for the three studied topologies, and at two different times —shdioag.
Smooth at short times, this distribution peaks around certain values at long times
This reflects the fact that payoffs depend on the number of neighbatfefent
types around a given player, which yields a finite set of values for tieffsa(the
centers of the peaks). These numbers occur with different probabftiéésrmining
the height of the peaks), according to the distribution

Qk) =" <kckkD>p'écp'EDp’§(Xp(k), (5.7)

k>1
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wherep(k) is the degree distribution of the network akd= (k¢, kp, kx), butitis
understood thaktx = k — ko — kp. The standard convention is assumed that the
multinomial coefficienl(kckkD) = 0 wheneverkc < 0, kp < 0orky < 0.

The approach to a stationary distribution of payoffs exhibits a much longer tr
sient. This is due to the fluctuations in the payoffs arising from the specifimnac
(cooperate or defect) taken by the players. These fluctuations dangs ole ac-
cumulated payoffs approach their asymptotic values. Thus, the peak siding
proportionally tot~1/2. In fact, one can show that the probability density for the
distribution of payoffdI for strategy”Z can be approximated as

=G - ap(Z)u(k), Vian(Z2)o (k) Q(k), (5.8)

k>1

whereG(z,v) = (2m+2)~1/2¢*/27* | the mean payoff per neighbor received by a
7 strategist against a cooperator is

aw(2) = L{P(Z) + T[ - P(Z)]},

with k£ = ko + kp + kx, and the average cooperation level in the neighborhood of
the focal player and its variance are

p(k
a(k)?

ko P(C) + kpP (D) + kx P(X),
ke P(C)[1 = P(C)] + kpP(D)[1 — P(D)]
+hkx P(X)[1 = P(X)].

The approximate total payoff distributio®/’ (I1) = pcWe(I1) + ppWp(II) +
pxWx (II), is compared in Figure 5.4 with the results of the simulations for the
longest time.

5.3 Discussion

In this work we have shown both analytically and through numerical simulati@is

if we take into account the way in which humans are experimentally found to be-
have when facing social dilemmas on lattices, no evidence of network oettipis
obtained. In particular, we have argued that if the players of a Prisobdemma
adopt an update rule that only depends on what they see from theitboengiod,
then cooperation drops to a low level —albeit nonzero— irrespectivesaiiderly-

ing network. Moreover, we have shown that the average level ofaratipn obtained
from simulations is very well predicted by a mean-field model, and it is foun@&+to d
pend only on the fractions of different strategists. Additionally, we hdse shown
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Figure 5.4:Payoffs Distribution. Distribution of the pay-off per neighbor in the stationary
state for different network topologies: regular lattide=€ 8), Erdos Rényi (k) = 8) and
Barabasi-Albert network() = 8). Solid and dashed lines represent the results of numerical
simulations for two values of timet = 10 (solid lines) and = 10* (dashed lines) while
pointed curves represent the theoretical estimationshiodensity probabilities at= 10*,

as obtained from Eq. (5.8)V = 104, pp = 0.586, pc = 0.053, and other parameters are as
in Figure 5.1. The simulation results are averages d¥erealizations.
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that the underlying network of contacts does manifest itself in the distribufion o
payoffs obtained by the players, and has a slight influence on the inabsieavior.

To conclude, itis worth mentioning that our results only make sense whéir@pp
to evolutionary game models aimed at mimicking human behavior in social dilem-
mas. The independence on the topology seems to reflect the fact thatdupute
their actions according to a rule that ignores relative payoffs. Integhgtiabsence
of network reciprocity has also been observed in numerical simulationg bsist
response dynamics [89], an update rule widely used in economics trahdbtake
into account the neighbors’s payoffs. This suggests that the restultehsorks do
not play any role in the repeated PD may be general for any dynamicsaéatndt
take neighbors’ payoffs into account. We want to stress that the samefkinadels
thought of in a strict biological context are ruled by completely differentmaaisms
which do take into account payoff (fitness) differences. Therefarsuch contexts
lattice reciprocity does play its role. In any case, our results call for éurtperi-
ments that uncover what rules are actually governing the behavior afrglapgaged
in this and other social dilemmas.






Chapter 6

Heterogeneous networks do not
promote cooperation when
humans play a Prisoner’s
Dilemma.

It is not fully understood yet why we cooperate with strangers on a dagysb In

an increasingly global world, where interaction networks and relatioasiepveen
individuals are becoming more complex, different hypotheses haveputéorward

to explain the foundations of human cooperation on a large scale and tonad¢op

the true motivations that are behind this phenomenon. In this context, populatio
structure has been suggested to foster cooperation in social dilerbutdkgoreti-

cal studies of this mechanism have yielded contradictory results so ththarssue
lacks a proper experimental test in large enough systems. We havenpedfthe
largest experiments to datdth humans playing a spatial Prisoner’'s Dilemma on a
lattice and on a scale-free network (1229 subjects). We observed ehbvil of
cooperation reached in both networks is the same, comparable to that ofrsmélle
works or unstructured populationg/e have also found that subjects respond to the
cooperation they observe in a reciprocal manner, being more likely tcecatapif

in the previous round many of their neighbors and themselves did so. This smplie
that humans do not consider neighbors’ payoffs when making theiridesis this
dilemma, but only their actions. Our results, that are in agreement with réusmnt
retical predictions based on this behavioral rule, suggest that poputtiecture has
little relevance as a cooperation-promoter or inhibitor among humans.
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6.1 Introduction

The strong cooperative attitude of humans defies the paradidgrmnd economicus
and poses an evolutionary conundrum [123, 124]. This is so becaasg of our
interactions can be framed as Prisoner’s Dilemmas [93, 125, 126] or Rubbds
Games [127], famous for bringing about a “tragedy of the commons’][12&veral
mechanisms have been suggested as putative explanations of coepleetivior
[129], among which the existence of an underlying network of contactstaining
who one can interact with has received very much attention. This mechardasm
first proposed by Nowak and May [19], whose simulations on a squtieelavith
agents that imitate the behavior of their neighbor with the highest payoffeshbigh
levels of cooperation in the Prisoner’s Dilemma. The ensuing two decadeslita
nessed a wealth of theoretical studies that have concluded that thidesb*natwork
reciprocity” [129] is indeed possible under a variety of circumstantes in many
other contexts networks do not prometer even inhibit- cooperation [16, 88]The
effect of regular and homogeneous networks on cooperation is gesjtive to the
details of the model (e.g., dynamics, clusteringjle theoretical results and simula-
tions indicate that heterogeneous networks should be particularly efiici@stering
cooperation in social dilemmas [108, 109, 88]natural way to shed some light on
these partially contradictory results would be to test experimentally the prewiacifo
the different models. Such tests are currently lacking [130], as theailahle ex-
perimental works only deal—with some exception [23]— with very small neta/ork
[131, 132, 100] Interestingly, the only theoretical result [133] that takes into account
the behavioral information extracted from experiments predicts that nditimeoge-
neous nor heterogeneous networks would influence the cooperatiawibr in the
Prisoner’s Dilemma, i.e., the observed cooperation level should be the saihe a
every player interacted with every other one.

6.2 The experiments.

Here, we close the cycle by testing the above theoretical predictions b8i3¢on-
tributing to the current debate on the existence and effects of netwapcoeity

by performing experiments on large samples of structured populationsieitinals

who interact through a Prisoner’s Dilemma (PD) game. Specifically, we teve
signed a setup in which229 human subjects were placed either in a square lattice or
in a scale-free network, and for more than 50 rounds they plaged 2 multiplayer

PD gamewith each of theirk neighbors, taking only one action, either to cooperate
(C) or to defect (Dy—the action being the same against all opponents. The exper-
iment was simultaneously carried out on two different virtual network®s a 25
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Figure 6.1: Players in the experiment were sitting in different physica locations, but
played in two virtual networks. Panel A is a snapshot at round 10 of a graphic animation
illustrating the activity during the experiment. On a mapoagén the image displays small
buildings representing the schools. Arrows (green for evaje and red for defect) represent
actual actions taken by players. They travel towards thedathere their randomly assigned
neighbors were sitting. Buildings are colored green and peaportional to the respective
number of cooperative and defective actions taken by thgstgiin that school. The height
of the yellow column on top of each building is proportionalthe school's accumulated
payoffs. Panels B and C show snapshots of the two networksaatsame round, along
with their degree distributions (in the case of the heteneges network, both the theoretical
distribution and the actual realization correspondinghi® metwork of the experiment are
represented). Colors indicate the corresponding plagetisn (green for cooperate, red for
defect). The size of a node is proportional to its degree.

regular lattice withk = 4 and periodic boundary conditions (625 subjects), and a
heterogeneous network with a fat-tailed degree distribution (604 subjeetaum-

ber of neighbors varied betweén= 2 andk = 16). Figure 6.1 depicts a snapshot
of a visual representation of the experiment as well as of the two netwSthgects
played a repeated (weak) Prisoner’'s Dilemma (PD) with all their neighloorarf
initially undetermined number of rounds. Payoffs of the PD were set to b@UsE
for mutual cooperation, 10 ECUs for a defector facing a cooperatdrQdECUs for
any player facing a defector (weak PD [19]). We note that thigice of payoffss

as in Grujt et al.'s experiment on a smaller regular lattice [23] (see Figure 6.1) and
such that cooperation should reach a high level according to the avaiahl&ations
[19, 88, 108, 109]. The size of each network was large enough selthsers of
cooperators could form (the underlying mechanism by which cooperatay thrive
[134, 115)).

On this general setup,evcarried out two treatments, which we widifer to as
experiment and control. In the experiment, subjects remained at the saitiengds
the network with the same neighbors throughout all the rounds playede botitrol
treatmentwe removed the effect of the network by shuffling the neighbors of each
subjectin every round. Therefore, in this phase, the players weeysiconnected to
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the same number of neighbors, lhse neighbors changed from round to roudd.
the screen, subjects saw the actions and normalized payoffs of theibnesghom
the previous round, who in the contriseatmentwere different from their current
neighbors with high probability. Altreatmentf the experiment were carried out
in sequence with the same subjects. Players were also fully informed of theedif
setups they were going to run through. The number of rounds intesatmentivas
randomly chosen between 50 and 70 in order to avoid subjects knowingéameel
when it was going to finish, resulting in 51 and 59 rounds for the experimhanta
controltreatmentsrespectively.

6.3 Results and Discussions.

Figures 6.2A and 6.2B show the fraction of cooperative actians,each round for
the two networks and for botineatmentsThe first feature worth noticing in this fig-
ure is that, in the experiment phase, the level of cooperation in either rieduimkly
drops from initial values around 60% to values around 40% and finally seitla
slower pace around 30%, much lower than theoretical models predic1$1®88].
This is especially remarkable for the heterogeneous network, on whipher@mus
results are available, and is in stark contrast with the predictions that thigkiret-
works should be particularly efficient in promoting cooperation [108, 883 In the
control, the initial level of cooperation is already at these low values. TdtisNdor
is consistent with previous findings in experiments with smaller lattices [100a23]
well as with unstructured populations [135, 136]. Regarding the slowydeader-
gone by these curves after the first quick drop in the level of cooparatie believe
that this is associated to a process of learning (see below). Howevarpdteemark-
able result that this figure provides is that, quite unexpectedly, the netieak not
have any influence in the evolution of the level of cooperation. In fadt) borves
are nearly identical—the slightly lower values obtained for the lattice are likely to
arise from the small difference in the initial level of cooperation—despiteséng
different nature of the networks of contacts between the players.

The experimental result we have just reported is in very good agreemtarthe
theoretical prediction in [133]. This prompts us to investigate in detail whateis th
players’ behavior, as the reason why this prediction was differem &arlier ones
is the use of the update rule observed in [ZBhe distributions of subjects by their
individual cooperation levels (averaged over the whole experimenigteepn Fig-
ures 6.2C and 6.2D show quite some heterogeneity of behavior: a fevcsubye
a high level of cooperation (above 70%), a sizable fraction coopelegedhan 20%
of the rounds, whereas the bulk of subjects have intermediate levels pémEtion.
Importantly, the comparison of these distributions of actions, which turn obéto
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statistically indistinguishable (see Kolmogorov-Smirnov test data on Table &k of
appendix 6.5), provides additional evidence that the behavior olukigrtiee two net-
works is the sameThis finding, along with the identical behavior of the cooperation
level, suggests that subjects use the same strategies in the lattice and in the heter
geneous network, regardless of the fact that in the latter the numbeigbiboes of

each individual is heterogeneously distributed.

Figure 6.4 provides further evidence of the significance of the moodyitoomeal
cooperation by means of a nonparametric bootstrap check. The sergesiafs
taken by every individual are randomly reassigned to other positions iattiwe or
the network and the probability of cooperation is recomputed. This is ddhemes
and the results show that the two probabilities become independent of ttextcon
Of course, such a reshuffling will not change the dependence onlageris own
previous action, as the order of the actions is not altered, and comgbqtrere
are still two distinct lines corresponding to the probability of cooperationvioiig
cooperation or defection, but tlteependence on the number of cooperators in the
previous round is fully removed.

The existence ofalmost pureooperators and defectors aside from moody con-
ditional cooperators can be further supported through a comparisortheittame
histograms but for the control condition (see Figure 6.6 of the appersinge for
the latter a larger number of subjects are in the region that would correspdefec-
tors. This can be interpreted as an indication that a fraction of—probahblyedy
conditional cooperators changed to a defective strategy, givendtadiation is in-
effective in the control condition. Furthermore, performing runningages of the
levels of cooperation during the experiment condition (see Figures 6.8.8rud the
appendix) shows that the number of subjects whose level of cooperstiaiow a
given threshold increases with time—irrespective of the precise value dhtash-
old. Not only this gives support to the existence of this kind of players,itha
consistent with a continuoyalbeit small)flow of players who change from moody
conditional cooperation to defection—a behavior that could be understoa gen-
eralized form of a grim strategy. Notice that this flow can account forlthve decay
observed all along the run of the experiment and control observed urdsg.2A
and 6.2B.

Finally, another important point that our experiment allows to address to some
extent is the dependence of the actions on the connectivity of the partijpathe
heterogeneous network. The results are displayed in Figure 6.5, wharpresent
the average cooperation lewels a function of the connectivity of the playefs,
for both treatments: experiment and control. As can be seen from the thlets,
might be some trend towards lower levels of cooperation with increasingelégr
small connectivities, particularly in the control (the levels for the first thuaaes
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of the degree in the experiment are not statistically different). Howewvekjrig at
the figure as a whole it becomes clear that there does not seem to beteatiz alist
significant trend. It has to be borne in mind that in this type of networks thebeu
of hubs or large-degree nodes is intrinsically small, and therefore thetistafisr
them is not very accurate (notice the size of the error bars). Goingdeies results
would require much larger networks (which would still have the same profdem
their higher degree nodes). Additionally, the bottom panels of Figure &Ww #ie
frequency of cooperative actions of nodes with degresfter playing as C or D
with respect to the fraction of their neighbors that cooperated in the u®vannd.
The results are a clear evidence that moody conditional cooperation isdiride
general behavior even if one disaggregates the data in terms of thededelg we
have already stated above for the total level of cooperation, for higgngrees the
statistics is poorer and the analysis does not lead to such clear-cut.results

6.4 Conclusions

To sum up,we have performed a large-scale experimental test of the hypothesis of
network reciprocity, i.e., that the existence of a structure in the populationafray
fect cooperation in social dilemmas. Our experiment shows that, when itsctmme
human behavior, the existence of an underlying network of contactsraessem

to have any influence in the global outcome. We want to stress that this samclu
applies only to human cooperation, and network reciprocity may still be rel@va
other contexts, e.g., in microbiology [137]. Players seem to act by resampmto

the level of cooperation in their neighborhood, and this renders the retwele-
vant. In addition, players behave in a ‘moody’ manner, being significantly leskylike
to cooperate following a defection of their owithe levels of cooperation attained
in a regular lattice and in a highly heterogeneous network (hitherto thoudi &
cooperation enhancer) are indistinguishable, and the responsiaeitiebf subjects
appears to be independent of the number of neighbors they have oe @aybff
differences they observa.he results are in full agreement with the theoretical pre-
diction in [133]; the fact that the key hypothesis in that model is that peagiave

in the way we have just described, provides further support to ounfiraf moody
conditional cooperation in networked Prisoner’s Dilemmas.

Our results have implications for policy making when cooperation is a desired
behavior. Although further experiments with other social dilemmas still need-to a
sess the range of applicability of our conclusions, the present studjestsgthat
imposing a network structure might be a sterile effdtrishould be noted, however,
that this caveatioes not imply that networking is useless to achieve cooperation—
results would probably be very different if the network is allowed to benfx by



220

=
o

Conclusions 107
1 B B S E B 80— I 3
I~ A) experiment . 7] 706 C) lattice E
0.8 © lattice 1 peor =
L o heterogeneous| -{ g E E
- 2% E
-4 B4k =
E i
0 ]

o .
o

! \ | ‘
0 10 20 30 40 50 60 02 04 06 08
round cooperative rounds / total rounds
D D L o ETUUE
0. S—B) control > latice 4 ., Zgg D) heterogeneousE
- o heterogeneous| g E E
& 50F E
g 30;— =
c 20? é
L . 10E =
0 \ ! \ ! \ ! \ ! \ ! of = 3
0 10 20 30 40 50 60
round

Figure 6.2:The level of cooperation declines and is independent of theetwork of con-
tacts. Fraction of cooperative actions (level of cooperation)neeind during the experiment
(panel A) and the control (panel B) for both networks, anddgjsams of cooperative actions
in the lattice (panel C) and in the heterogeneous networkgp2). The histograms (panels
C and D) show the number of subjects ranked according to #itiidn of cooperative actions
they perform along the experiment in the two networks. A Kagjorov-Smirnov test shows
that the distributions are statistically indistinguisteatsee appendix 6.5). They illustrate the
high heterogeneity in subjects’ behavior, their levelsaderation ranging from nearly zero
to almost one in a practically continuous distribution. Toeresponding histograms for the
control (Figureexp.figS4 of the appendix) show that a segbbup of subjects lowered their
levels of cooperation hence becoming mostly defectorsudlgt the decline in the level of
cooperation observed in the experiment (paketsd B) can be explained as a constant flow
of subjects to more defective strategies (for evidence @i this hypothesis see Figures
6.7 and 6.8 of the appendix).
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Figure 6.3: Players’ behaviour depends both on the level of cooperatiom the neigh-
borhood and on their previous action. Frequency of cooperative actions after a coop-
erative/defective action, conditioned to the contextdtin of cooperative actions in the
neighborhood in the previous round) observed in the laffideand in the heterogeneous
network (B). Details of the linear fits and comparison withdamizations to prove statisti-
cal significance can be found in the appendix. The plots dstrate that there is a relevant
dependence on the context for subjects that cooperateé jprévious round (i.e., were in a
“cooperative mood”), the cooperation probability incliegswith the fraction of cooperative
neighbors much as for the conditional cooperators foundisghbacheet al[99]. However,
after having defected, this dependence is less clear, amaything, it suggest an exploit-
ing behavior—subjects who defected are less prone to coeptbra more cooperation they
find around. Panels C and D show how subjects who cooperatdefected are distributed
according to the largest payoff-per-link difference initheeighborhoods between the two
actions. These plots reveal that a player's decision to e@dp or defect was independent
on the payoffs-per-link they observed (an information thas explicitly provided during the
experiment).
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Figure 6.4: Null hypothesis statistical significance test.Probability of cooperating after
playing C or D, conditioned to the context (fraction of comi®ve actions in the neigh-
borhood in the previous round), averaged oug# random shuffling of players. Panel A)
corresponds to the experimentedatmentn the lattice, panel B) to the santieatmentbut
for the heterogeneous network, panel C) to the control phmatiee lattice and panel D) to
the same contrdreatmentfor the heterogeneous network. The results show that teere i
dependence on the context and hence that the results ospareld B of Figure 3 are sta-
tistically relevant. The anomalous variance (or even ateseh data) observed at a fraction
of C’s in the neighborhood close 9 is not a relevant feature of the experimental results
but a consequence of the very low probability of having eveonntributing to that bin of the
histogram in the heterogeneous network. This anomaly cnta noticed in Figure 3.
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Figure 6.5: Dependence of the strategies on the connectivityThe upper panels show
the cooperation levet as a function of the connectivity; in the heterogeneous network,
averaged over all rounds of the experiment (upper left pamal the control (upper right) of
the experiment. In the lower panels, we plot the frequenayooperative actions of players
with degree as indicated, after they have cooperated octefeas a function of the fraction
of cooperative actions in their neighborhood during theiotes round, along the experiment
treatment in the heterogeneous network. Statistics igctst to nodes of connectivity = 2
(lower left panel) £ = 3 (lower center) and = 4 (lower right).
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the subjects as part of the game. Recent experiments on groups of upptn20
ple [138, 139] strongly suggest this, but to the best of our knowleddame-scale
experiments have been carried out to test this is€uethe other hand, the theoreti-
cal work in [133] does not predict the slow decay of the cooperatiosl lgvserved
in the experiments, which we have conjectured that arises from moody caoraditio
cooperators becoming defectors in a generalized grim behavior. Scichnge in
the percentage of players using different strategies is not included thebeetical
model, and therefore a next step would require to account for sugtgeband, if
possible, to justify them within an evolutionary framewoHBinally, given that in our
setup players have to play the same action with all their neighbors, it is cldar tha
our results should be related to those of public goods experiments. |rcéandti-
tional cooperation was first observed in that context [99]. Our firglgwggest that
the “moody” version we have found can also arise in public goods garhtsatlis
the case, it is likely that network reciprocity does not apply to public goeases
on networks. Hopefully our experiment will encourage further redear all these
directions.

6.5 Appendix 1: Additional material about the experimen-
tal results

Here we present further results aimed at supporting the findings shotkie iore-
vious sections. As there, we will refer to the basic types of individualsdaon

the experiment as mostly cooperators (players who cooperate with a loigablity

regardless of the context), mostly defectors (players who defect withhapnoba-
bility regardless of the context) and “moody” conditional cooperatoryrsawhose
action depends on their previous action as well as the level of coopemattbeir

neighbourhood, see Fig. 6.3 A and B).

Figure 6.6 shows the histograms of the number of players ranked aagdodin
the fraction of cooperative actions they performed along the contrdephia the
lattice (panelA) and in the heterogeneous network (paBel The same results but
for the experimental phase can be found in pafe&ndD of Figureexp.fig:2. The
comparison between the plots shows a large increase in the fraction afiunals
that never or almost never cooperated in the control with respect to feziment.
This is likely to be a consequence of the fact that in the experiment therdrigiah
amount of cooperation well above 50%, which is not the case in the coatrdhe
other extreme of the plots, the (small) amount of highly cooperative plagarains
approximately the same, indicating that their motivation has nothing to do with hav-
ing or not a fixed environment for their interactions. The general pi¢ture arising
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Figure 6.6:Distribution of cooperative actions in the control. We represent the number of
players that cooperated during the given number of rounalsr(alized by the total number

of rounds played). The results correspond to the contrad@h&imilar results were presented
Fig.6.2.

from the control part is that there is not much cooperation, and the majbptsyers
do not cooperate other than occasionally.

On the other hand, Figure 6.7 displays the time evolution of the distribution of
cooperative actions in the experimental part. The histograms show theglage
guency as a function of the fraction of cooperative actions along ssives10-round
periods corresponding to the experimental phase in the lattice (left colurdiir) éhe
heterogeneous network (right column). The results show evidencered degree of
learning as the experiment progresses: Indeed, the number of pelupleoaperate
never or rarely increases with time. This would be consistent with the ddaay o
operation shown in Fig. 6.2 A; while the first, quick drop in cooperation wdeld
explicable within a computer model with a fixed proportion of defectors, eaiprs
and moody conditional cooperators, the second part of the evolution¢lh stawer
decay, is inconsistent with such a model and must then come from chantfes in
proportion of the different types of players.

The phenomenon we have just described can also be shown in a diffexener,
namely by monitoring the evolution of mostly defectors both during the experiinenta
and control parts of the experiment. Figure 6.8 represents the fractiageoits
whose probability to cooperate is below a given threshold (indicated in thienast
legend) at every round (timg. To calculate this quantity, we have taken into account
the actions of the players during the previous 10 rounds. The resulis@dshow
an increasing trend (more evident for the experimental phase, top pémekwoth
the square lattice and the heterogeneous network, which confirms thadgrad¢he
players to learn that they should defect as time goes on.
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Figure 6.7:Time evolution of the distribution of cooperative actions.The different panels
show how frequently players cooperated in different timeqaks. The results correspond to
the first treatment (experiment). Rows represent perioti8(@y- = 0, top), 11-20{, = 10),
21-30¢, = 20), 31-40¢, = 30) and 41-50f, = 40, bottom) as indicated.

We also report on the statistical analysis we carried out about the exmaime
data. First, in order to determine whether or not the likelihood to cooperdezddif
significantly in the two studied networks, we use the Kolmogorov-Smirnov {ES)
for the two data sets. We take as a first sample the distribution of the probability to
cooperate in the lattice, cumulated over all rounds of the experimental.pfibse
second sample used as input for the KS test corresponds to the samaeititistiitoit
for the heterogeneous network. These are the distributions représenfegure 6.2.
The maximum difference between the cumulative distributions for the expetaimen
phase is0.1071 with a corresponding value faPxs = 0.995. The statistics of
both samples, together with the ones corresponding to the control phafeG-&e
summarized in Table 6.1.

Finally, Table 6.2 summarizes the statistical fits (obtained from a weighted least
squares regression) of the conditional probabiktyo cooperate, conditioned on the
player’s action in the previous round Eafter C, after D) and on the density of
cooperators in the players’ neighborhoods during the previous rdtitsdare defined
by P(C|X, p) = a + bp. The data fitted correspond to the results shown in Figure

6.3A,B.



114 Heterogeneous networks do not promote cooperation ...

lattice heterogeneous
1 1
0.8 — 0.8 —
C . C
r 00006000000000% = 0000
S r o bz F 00496500670
e 0.6 000000 poonooeeas e 0.6 000029000
9] [°° i [} [ o0 o0m0an
3 T I R oo
i . o I 5o
8 0.4 Ly 00000067 T 048 P55 oo
- o 10,0000 - [ ooo” 000007
T ©0099% e =l 00006000
[ 40%° xR REE 0000000000000 .y
ArkH I 00 "
024 g onPomsPPb 0.2 % oo et threshold
= (N2da = S b
0 g:ibblfl>[>l>l>[r[>[>[>>l>[>l>[>[>[‘>[>l>l>[>‘> L 0 ﬁts;’;bfg?[>[>[>[>[‘>[>[>[>DT[>[>l>l>[‘>[>[>l>l>T[>l>[>l>[‘>[>[> | o 0
10 20 30 40 50 10 20 30 40 50 | ° 01
S
round round 8:23
*
1 1 > 0.4
0.8 00 o 000, 06000600 0.8~
o C:po 000000000 000 00000 I
> 30000 © J— > Boo0000000000000000000000000()000000000
B [nalalalalalglalalalala] ~
Q0.6 fgeo"ouPPag0e0s” ool 2 06 o coSPnongiPootossotoon
[} o 400000000000600¢ o pEnRntog on
=] r 000000000 906060 C 000,
060 |- 0 0000000060
g 0.4 iy %**H**H******* g 0.4 moooowoooo%Oo%"ooooo ooemee
E T Bk S R R
= = ¥
| FpF kRt g ****W** Hk
02 sttt ssssead s 0.2 et LBPPPPDDD
B e aaad . 7[>[>>>[>l>[>l>l>l>DDPDDDPDDDDDDDDDDDDDD
oL | | | | o |+ | | |
10 20 30 40 50 10 20 30 40 50
round round

Figure 6.8: Evolution of the fraction of mostly defectors. Fraction of agents with a
cooperation probability lower than a givehreshold as a function oft(=round), accord-
ing to their cooperative actions through the previous 1(hdsy for different values of the
threshold = 0, 0.1, 0.2, 0.3, 0.4. Columns represent results for the lattice (left) and the
heterogeneous network (right), while rows correspond &t treatments: experiment
(top) and control (bottom).

6.6 Appendix 2: Experimental setup.

6.6.1 \Volunteer recruitment and treatment

The experiment was carried out witR29 volunteers chosen among last year high-
school students (17-18 years oldy@fdifferent High Schools located throughout the
geography of the Autonomous Region of Aragén, Spain, whose capiar&yoza,
where the University of Zaragoza is. 34 High Schools were in the prevaic
Zaragoza, 5 in the province Huesca, and 3 in the province of Teruel.thEore-
cruitment of the students, we contacted the coordinators of a programc{&€Mva,
“Living Science”) of the local government that supports the disseminafi@ctience
among public high schools of Aragén. Moreover, we also contacted miatheo
private schools of Zaragoza City also offering them the possibility of tagagin
the experiment. In all cases, the experiment was referred to as “a esgp&iment”
and nobody (including the high-school teachers in charge of the ic@dich) knew

in advance what the experiment was about (see below).
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experiment control
lattice heterogeneous lattice heterogeneous

mean 0.03703 0.03703 0.03226 0.03226
95% confidence (0.02434,0.04974) (0.02335,0.05072) (0.02549,0.04858)| (0.02607,0.04800)
standard deviation 0.03210 0.03459 0.02918 0.02772
high 0.0976 0.104 0.106 0.0878

low 0 0 0 0

third quartile 0.06560 0.06126 0.05440 0.05795
first quartile 0.006400 0.006623 0.006400 0.01159
median 0.04000 0.03146 0.0448 0.03808
Median absolute deviation 0.02844 0.02937 0.02495 0.02275

Table 6.1: Statistics of the distribution of the probability to cooater cumulated over all rounds of the experi-
mental and control phases in both networks. See the text fitrefludetails.

lattice heterogeneous
a b a b
afterC' | 0.457£0.015 | 0.122+0.034 | 0.475+0.016 0.126 £ 0.039
afterD | 0.350 +0.021 | —0.149 +0.050 | 0.309 £ 0.069 | —0.0269 + 0.035

Table 6.2: values of the fitting parameters for the results shown in Kigér3 A,B. Fits are defined by
P(C|X, p) = a+ bp, beingX=afterC, or afterD. See the text for more details.

Following the call for participation, we selected 1300 volunteers. In owaer
satisfy ethical procedures, all personal data about the participantsamenymized
and treated as confidential. Moreover, the Ethical Committee of the Univerfsity
Zaragoza approved all procedures. On the day of the experimenfpteen@ntioned
1229 volunteers showed up, with 541 males and 688 females represestityg ®2%
and 55.98% of the total number of players, respectively. Out of the $Rg#ents,
625 played the game on a square lattice (274 males and 351 females keepnadgthe
to female ratio) and 604 on an heterogeneous network. In the first topaogry
player hadk = 4 neighbors while in the second, the connectivity varied between 2
and 16 following a distributiorﬁvjs,—k) = P(k) = Ak=27, with A = (3>, P(k)) L.

All the students played via a web interface specifically created for theriexpe
ment (see below) that was accessible through the computers available amthater
rooms of their respective schools. At least one teacher superviseajeement in
each computer room (which at most had a maximum capacity of 20 studemns), p
venting any interaction among the students. To further guarantee thatigbten
teractions among students seating next to each other in the class do naotdeflne
results of the experiment, the assignment of players to the different tapslogs
completely random. Hence, the odds of having two participants geogrépluicse
(i.e., of the same school and seating next to each other) who were al$dboesgn
the virtual topology was quite small. In addition, as described below, thescosmd
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to code the two available actions of the game were also selected randomlgr furth
decreasing the likelihood that neighboring participants could influendeaher.

We describe in the following section the steps followed by each participant du
ing the experiments. In short, all participants went through a tutorial oncitee!s,
including questions to check their understanding of the game. When edyrjiad
gone through the tutorial, the experiment began, lasting for approximateipuam
At the end of the experiments volunteers were presented a small questcionl
in. Immediately after, all participants received their earnings and their-sipofge.
Total earnings in the experiment ranged fron9 to 40.48 euros.

6.6.2 Experimental platform and interface

The experiment was run using a fairly sophisticated web application spdiyifite-
veloped to this purpose. The application was made entirely using free seftita
was developed in Ruby On Rails, a technology used by other popular welisite
Twitter, and has a MySQL database that stores all data needed to ctitng experi-
ment and the subsequent analysis. MySQL is a freely available operegelational
database management system based on Structured Query Languayet{&@ost
popular language for adding, accessing and managing content in askatab

The application was designed to be used by three different user prdéfitesof
all, we have the players, who were shown at the beginning a detailed tutoral
better understanding of the interface and basis of the experiment. $gcbece are
teachers who were responsible for supervising students through duioated web
monitors, facilitating the work of the central administrator work and contributing
to the success of the experiment. Finally, the administrators were respofwsible
controlling the game and everything that was happening in real time. The afjmic
which was designed using technologies compatible with all platforms, was e@nag
from a standard web browser. There was a last participant, a daemmoaass
running in the background whose function was to update the results anohglaad
of players who do not play within the specified time frame for each action.

Considering that the experiment required that arous@d students could play
online simultaneously, we used a server with enough power, and many opiimsa
were performed in terms of connections to the server, access to datageserver
data exchange, lightness of the interface, control logic, etc. Theimemrstarted
on December 20, 2011 at 10:00 CET. The steps followed during the geneft of
the experiment were:

1. Administrators opened the registration process.

2. Players (students) gradually registered.
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3. Once all students had registered, teachers informed the administiattirsiv
screen.

4. As soon as the required number of participants have registered (thiesrtmond
20 minutes), administrators blocked further registrations and initiated the read
ing of the tutorial.

5. Students and teachers read the tutorial.

6. Teachers informed (also via their screens) administrators that thegesals
completed.

7. The experiment treatment began, which lasted 51 rounds.

8. Students played according to some predefined times (a maximum of 20 sec-
onds per round to choose an action). During these steps, teaché&aledn
for any potential problem using a chat channel that connected them &althe
ministrators. As mentioned above, if one student did not play within the 20
seconds given for each action, the daemon played automatically (se€.below
The administrators were able to identify who was not playing and to contact
the teachers if the situation persisted. However, the experiment went dynooth
and no feedback to the professors for misbehavior was needed.

9. The experiment treatment finished and a brief tutorial on the secon@ome
trol) was shown.

10. Once teachers and students had read the tutorial, the former notifagththe
istrators.

11. Administrators started the control treatment, which lasted 59 rounds.
12. Students played as in the previous treatment.

13. Once the control treatment finished, volunteers were presenteamttagsies-
tionnaire to fill in.

14. All participants checked their earnings and were given their stpiea!

6.6.3 Synchronous play and automatic actions

The experiment assumes synchronous play, thus we had to make sexetiyabund
ended in a certain amount of time. This playing time was set to 20 seconds,wdsch
checked during the testing phase of the programs to be enough to makisiargec
while at the same time not too long to make the experiment boring to fast players.
If a player did not choose an action within these 20 seconds, the compulerthe
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decision instead. This automatic decision was randomly chosen to be the'player
previous action 90% of the times and the opposite action 10% of the times. We
chose this protocol following previous testings performed by the autti@similar
experiment (see [23]). Volunteers were informed that the computer walajdfor

them if their decision took more than the prescribed time-out. However, they we
not informed of the precise strategy used by the computer in order to avpioias

in their own choices of strategy. In any case, for the reliability of the exypt it is
important that a huge majority of actions were actually played by humansyreb
computer. This quantity, when averaged over all rounds, yields thato¥ted the
actions were chosen by humans, regardless of the underlying nethvaohktacts.

6.6.4 Questionnaires

At the end of the experiments volunteers were presented a small questcionl
in. The list of questions (translated into English) was the following:

1. Describe briefly how you made your decisions in part | (Experiment).
2. Describe briefly how you made your decisions in part Il (Control).

3. Did you take into account your neighbors’ actions?

4. Is something in the experiment familiar to you? (yes/no).

5. If so, please point out what it reminds you of.

6. If you want to make any comment, please do so below.

The first three questions have a clear motivation, namely to see whettssilyo
some) players did have a strategy to decide on their actions. Question 3evaieid

to check whether players decided on their own or did look at their envirogroe-
cause only in this last case imitative or conditionally cooperative strategies amgk
sense. Questions 4 and 5 focused on the possibility that some of the plegegs
nized the game as a Prisoner’s Dilemma because they had a prior knowfetige o
basics of game theory. The final question just allowed them to enter artjoaddt
comment they would like to make. We did not carry out a more detailed question-
naire to avoid the risk of many players’ leaving it blank (the whole experimest
already very long).
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Presentation of Part Il.

In this part of the thesis, we address the second research theme: tlamdeler
under the framework of social dynamics. The concepts of tolerancentoidrance
have been approached from many perspectives including biologgl@gpe and phi-
losophy [74]. For the purposes of this thesis, we consider tolerare @ermissive
and indulgent attitude in relation to those subjects whose characters, opinide-
haviors differ from one’s ownand, complementarily, intolerance or bigotry aké
refusal to accept subjects with different characters, opinions or betsfrom one’s
own’.

Despite antecedents in classical greek (as well as from the hellenisticpand
man period) philosopher®.g. Socrates, Epictetus, Marc Aurellius), toleration does
not become a serious subject of philosophical and political concernriopEwntil
the 16th and 17th Centuries. Motivated by the Religion’s Wars which folloRefd
ormation and Counter-Reformation, thinkers as Milton, Bayle, Spinoza allel
defended religious tolerance. Among the Enlightenment’s philosophersapse
\oltaire was the one that most vividly expressed his views in defensedligiones
tolerance, and surely Kant was the most rigorous one.

At the end of the 18th Century one can see tolerant ideas embodied in @ractic
in the USA Constitution’s Bill of Rights. In the 19th Century at the formulation of
political liberalism, J.S. Mill argues that the only proper limit of liberty is harm (to
others), and that political power should have no authority to regulate tutisdéties
and interests of individuals that are purely private and have no sappetfects on
others.

Already in the 20th Century, toleration became an important component af wha
is known as liberal theory. It has been defended by liberal philogsrel political
theorists such as Dewey, Berlin, Popper, Dworkin and Rawls, but atstized by
Marcuse and other modern marxist thinkers who worry that toleration anmdieihs
of state neutrality is merely another hegemonic Western ideology, a usefugr-s
structural mask”. After all, some politically neo-liberal practices in Europkips
are indeed quite far from being tolerant in any ample sense of the term. ddg®ia
a concern for racial equality, gender neutrality, an end of prejudéspect for cul-
tural and ethnic difference, and a general commitment to multiculturalism béeifu
ongoing debates about the nature of toleration in our age of globalizatibhcamo-
geneization.

To a 21st Century social sciences theorist that might worry about theses,
a basic methodological question is wether or not social tolerance can [zimeda
or at least semi-quantitatively inferred from observations. What abousider it
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as a parameter in an ABM investigation? The accepted meaning of the “t@&ranc
parameter of the Schelling model is but a possible operational use of theptarf
toleration. So we see there is already a half-century old tradition of usingqhae
as a social parameter in social modeling of some phenomena. Moreaar,that
intolerance is the main cause of conflicts at all levels, from two-persontgiso
multipart struggle and wars, and considering that, unfortunately, sepéation and
self-exclusion based on real or perceived characteristics is inhigréne human
condition and has always been present in every culture and time pedpddJ, the
cultural diffusion enhanced by development of mass media and new tegie®
leads to an increasing need to address tolerance under the perspettweeial and
cultural dynamics.

Tolerance and intolerance are issues that can be properly addifessegh ABMs,
as shown, for example, the fact that one of the first social ABM was dbiglen-
tial segregation model developed by Thomas C. Schelling in 1971 [52, B3¢
Schelling’s model shows how a preference to have similar neighbors @adndeeg-
regation for relatively small values of intolerance (see Introduction 1.Bléyerthe-
less, ABM have not paid much attention to the study of tolerance, in contratdo
related topics such as homophily [59], opinion formation [153] or rumoeasing
[155].

In the Axelrod model (see Introduction 1.3.1 for a basic presentationydhe
cial influenceon the “cultural” individual characteristics defining the cultural state,
appears itself asomophile satisfactigrthe driving force of cultural change (or cul-
tural evolution). One might say that the “incentive” to modify a cultural traig(
conversion to a hew, non-inborn faith, changing of musical taste, oggoto bio-
organic food consumption) is the aspiration to a greater share of culeatlrés
with nearby agents. Simple and of general appealing, homophile satisfectiosn
“benefit function” in an economic framework formulation of the model. Ecoito
language is well-fitted to permeate Political Sciences modeling, and human social
behavior, though not always, can sometimes be understood in termsrafnegof
“moral feelings” and/or other categories.

Importantly, the Axelrod’s dynamics assumption, namely “the more similar two
cultural agents are, the more similar they'll likely become in the future”, seésos a
be rooted on a sensible theorist’s inference from social experiendasbservations.
Note that this assumption leads naturally, for a dimer of cultural automata, t6 a se
sustained increase of cultural similarity. Though this may suggest that tizerdgs
is just a trivial accelerated tendency to cultural consensus, wheimgdissn the cul-
tural dimer analysis to the neighborhood’s state analysis of a focal agentealizes
that the (ensemble averaged) mean similarity of the focal isn't forcefullp@aeas-
ing function of time dynamics: it could decrease in time, so dynamics is not that
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trivial. Despite that, the tension between the two extreme macroscopic states; glo
ization and multiculturalism, is regulated by the (initial) degyed cultural diversity,
as in the dimer analysis: Provideds so large as to render negligible the probability
of sharing some cultural feature, no option other that multiculturalism preaailse
dimer, as well as for the whole macroscopic population, where frozen nitutialu
patterns dominate the asymptotic states for large initial cultural diversity.

Another basic feature of this modeling framework of cultural dynamics is its
highly non-biasedsetting respect to trait values: There is no advantage of particular
traits regarding “socio-cultural ineffectiveness” power. A physitigan for this
basic feature igrait symmetry The complete invariance under interchangeability of
traits imposes that the homogeneously cultural macroscopic state cayftaimisro-
scopic states, that are equally likely provided traits are uniformly distributélgein
initial conditions. Along any particular stochastic trajectory, the macrosampisen-
sus reaches fixation (thus irreversibly breaking trait's symmetry) thranghmbiased
random walk, as it occurs in Evolutionary Genetics where neutral cteaszare fixed
in some populations. The same occurs regarding traits frequencies in mutatultu
macroscopic states.

Our daily experience would easily sanction as too simplistic both (homophily and
exact symmetry) basic features of this cultural dynamics: to put it crudeting the
early eighties of last century, when | became more a reggae than heavyockt
tasted young Spaniard, is a different socio-economic situation from gtareous
conversion of a young Mexican “catholic”-born to the “Jehovah’s vases” faith,
that are treated as indistinguishable processes inside this frameworkmddhd,
however, is not aimed to address individuals’ cultural issues. Alsoa ficeld an-
thropologist interested, say, in the cultural decline of Patagonia popuasach a
bareness of details in the description of cultural dynamics could seenssisidtely
a mere kidding exercise. However, no particular cases of importantatacesses
(as culture extinction) motivate this model.

Our kind of theorists’ social modeling is (no more and no less than) an estlica
(scientific) attempt to gain insight into basic fundamental mechanisms thatepera
in some sense universally, in the emergence of collective social bebaWerknow
that the Ising model is invaluably useful, far away its strict applicabilitg.th mag-
netic materials experiments. This important message is well-understood inside ou
physicists’ culture, and, hopefully, will be increasingly so across athientific cul-
tures. Itis amply heard, at least in some branches of social and eca@i@tiences
research, in connection to the Schelling model, where residential ségrebased
on ethnic (racial, unchangeable agent features) differentiation ofidhdils, is mod-
eled through a very simple homophile satisfaction driven mobility dynamics (see
Introduction for a basic presentation).
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Although intolerance and homophily are close ideas, the relation between both
concepts is not trivial: while homophily refers to the preference to notantewith
dissimilar people, this preference does not implies social rejection. Neless) the
Axelrod and the Schelling model share the s@weial force the homophile satisfac-
tion. In the first one it fuels the cultural change (under conditions gyea cultural
diversity parameter), while in the second it determines moving decisiondifmred
by a tolerance parameter) in a “geography” of residential neighbdhdeach model
addresses a different specific social issue, and inside own domelmngea is a basic
archetype model ultimately based on homophile satisfaction as a social force.

Our goal in this part of the thesis is to incorporate intolerance into the cuttyral
namics through different mechanisms. Starting from the Axelrod’s modehapter
7 we introduce intolerance allowing agents to move from a culturally dissimilar en-
vironment to other available places according to a intolerance thregholchis is
possible thanks to the introduction of a density of empty sitésthe lattice of the
original model. We show that, when the denditpf empty sites is low enough and
the agents percolates the lattice, mobility enhances the convergence to ituwabcu
state. Moreover, the transition valye depends linearly with the system size. On
the other hand, for large enough valueshpfwhen1 — h is below the site perco-
lation threshold, a new multicultural fragmented phase appears at low \@flties
initial cultural diversityq; however, the monocultural phase of the original Axelrod’s
model is recovered for intermediate valueg;pfriggered by mobility, as well as the
disordered (multicultural) phase for large valuesyofin chapter 8, we extend the
previously described model by considering intoleraficas an individual cultural
feature susceptible of imitation through the cultural dynamics. This asymmetry in-
troduced in the traits of Axelrod dynamics allows to study the preferencderhtd
traits to be present or not in dominant cultures. We consider two optionsler ty
introduce individual intolerancesocial rejection(i.e., the agents move according to
their neighbors’ intolerance) arself-exclusiorfagents move incited by its own intol-
erance to their neighbors). In both cases we show that tolerant traitsomeclikely
to be present in dominant cultures. Moreover, the advantage of tokeilacreases
with the densityh of empty sites, being higher in tls®cial rejectionscheme. In or-
der to obtain a more realistic model, given that social networks are hererogg, in
Chapter 9 we introduce tolerance into cultural dynamics thronagtvork plasticity
allowing agents to remove links to its dissimilar neighbors and reconnecting them to
other individuals chosen at random. This method allows to consider hetezogs
and dynamic networks, with a network dynamics driven by the cultural micg
Starting from the dynamics designed by Vazqee¢al. [166], we introduced tol-
erance through a parameté&rthat modulates the intensity of rewiring mechanism.
We show that rewiring mechanism induces opposite effects. As expdotddrge
values of toleranc&, rewiring promotes the convergence to globalization. Neverthe-
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less, for intermediate values df, the rewiring mechanism enhances the formation
of disconnected cultural clusters for values of the initial cultural ditserg which
present globalization in non-evolving networks. Further, for low valfef, al-
though clusters are present in transitory states, rewiring promotes tsjweading
between clusters for large enough valueg,aind monocultural phase is recovered.






Chapter 7

Residential segregation and
cultural dissemination: An
Axelrod-Schelling model.

In the Axelrod’s model of cultural dissemination, we consider mobility of cultura
agents through the introduction of a density of empty sites and the possibility that
agents in a dissimilar neighborhood can move to them if their mean cultural simi-
larity with the neighborhood is below some threshold. While for low values of the
density of empty sites the mobility enhances the convergence to a global ctdture
high enough values of it the dynamics can lead to the coexistence of deatedn
domains of different cultures. In this regime, the increase of initial cultlivarsity
paradoxically increases the convergence to a dominant culture. Furthease of
diversity leads to fragmentation of the dominant culture into domains, foobaatg-

ing in shape and number, as an effect of the never ending erodingyaoficultural
minorities.

7.1 Introduction

The use of agent-based models (ABM) [156] in the study of social phena pro-
vides useful insights about the fundamental causal mechanisms at wedciel
systems. The large-scale (macroscopic) effects of simple forms of (roapia3 so-
cial interaction are very often surprising and generally hard to anticipateividly
demonstrated by one of the earliest examples of ABM, the Schelling [52n68¢l
of urban segregation, that shows how residential segregation cagesfinem indi-
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vidual choices, even if people have fairly tolerant preferencegdeygathe share of
like persons in a residential neighborhood.

To gain insights on the question of why cultural differences betweeniddiv
als and groups persist despite tendencies to become more alike as alenaseof
social interactions, Axelrod [59] proposed an ABM for the disseminatfautture,
that has subsequently played a prominent role in the investigation of cudiuram-
ics. Questions concerning the establishment, spread and sustainabilitiuoédsuas
well as on the “pros and cons” of cultural globalization versus the prasen and
coexistence of cultural diversity, are of central importance both frdomdamental
and practical point of view in today’s world.

The Axelrod model implements the idea that social influence is “homophilic”,
i.e. the likelihood that a cultural feature will spread from an individual to anothe
depends on how many other features they may have already in cofBjornThe
resulting dynamics converges to a global monocultural macroscopic state tivh
initial cultural diversity is below a critical value, while above it homophilic so-
cial influence is unable to inforce cultural homogeneity, and multicultural qatte
persist asymptotically. This change of macroscopic behavior has besactdr-
ized [141, 142, 143, 144] as a non-equilibrium phase transition. Subsegtudies
have analyzed the effects on this transition of different lattice or netwouktsires
[145, 146], the presence of different types of noise (“culturattqrfid7, 148], as
well as the consideration of external fields (influential media, or informdted-
back) [149, 150] and global or local non-uniform couplings [154pbng with other
models of social dynamics (a&sg, models of opinion formation [153, 154], rumor
spreading [155], etc) cultural dynamics are of interest in the field ofewprilibrium
phase transitions in lattice models, as other stochastic spatial models motivated by
population dynamics or evolutionary biology [80]. Up to now, no investigatibn
the effects of agent mobility on cultural transmission has been carried dghtthe
exception of [157], where individuals move following the gradient ofega™” land-
scape (that they consume) and interact culturally with agents in their nelyiduh
i.e., mobility is not culturally driven.

In this chapter we incorporate into the Axelrod dynamics of cultural transmissio
the possibility that agents living in a culturally dissimilar environment can move to
other available places, much in the spirit of the Schelling model of residertial s
regation. This requires the introduction of a density of empty ditesthe discrete
space (lattice) where agents live. As anticipated by [157] the expectatiernhat
the agents mobility should enhance the convergence to cultural globalizatibw, in
extent that it acts as a sort of global coupling between agents. It tutrthat these
expectations are clearly confirmed when the densibf empty sites is low enough
so that the set of occupied sites percolates the lattice: The transition valeedsep
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linearly with the number of agents, so that in an infinite system (thermodynamical
limit) only global cultural states are possible. However, for large enoadineg of

h, new phenomena appear associated to this mixed Axelrod-Schelling spasathe

ics, including a new multicultural fragmented phase at very low values of ttial in
cultural diversity, a (seemingly first order) transition to cultural globalizatiwat is
triggered by mobility, and the fragmentation of the dominant culture into separate
domains that change continuously as the result of erosive procemsssdcby the
mobility of cultural minorities.

7.2 The model

In the Axelrod model of cultural dissemination, a culture is modelled as a vettor
F integer variabledo} (f = 1,..., F), called culturafeatures that can assume
valuesoy = 0,1, ...g — 1, the possibléraits allowed per feature. At each elementary
dynamical step, the cultuder (i)} of an individuali randomly chosen is allowed to
change (social influence) by imitation of an uncommon feature’s trait ofidomly
chosen neighbaj, with a probability proportional to the cultural overlap; between
both agents, defined as the proportion of shared cultural features,

1
Wij = 4 D bos i) (i) (7.1)

whered,, , stands for the Kronecker’s delta which is rit= y and 0 otherwise. Note
that in the Axelrod dynamics the mean cultural overdgmf an agent with its k;
neighbors, defined as

ke
_ 1 Z
w; = k—l < wij s (72)

not always increases after an interaction takes place with a neighboeng agleed,
it will decrease if the feature whose trait has been changed was psvghared with
at least two other neighbors.

To incorporate the mobility of cultural agents into the Axelrod model, two new
parameters are introduced, say the density of empty sjtaad a threshold” (0 <
T < 1), that can be callethtolerance After each elementary step of the Axelrod
dynamics, we perform the following action: If imitation has not occurredwand#
1, we compute the mean overlap (7.2) andjf< T, then the agent moves to an
empty site that is randomly chosen. Finally, in the event that the agamdomly
chosen is isolated (only empty sites in its neighborhood), then it moves direetty to
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empty site. Note, additionally, that in the presence of a density of empty sites, the
sum in equation (7.2) runs over neighboring agents, and not on neigglsites, so
thatk; can take on the valués 1, .. .4 for a square lattice geometry.

We define the mobilityn; of an agent as the probability that it moves in one
elementary dynamical step (provided it has been chosen):

m; = (1= ;) O(T — @) , (7.3)

whereO(z) is the Heaviside step function, that takes the valueal i 0, and O if

x < 0. For an isolated agent, that moves with certainty, one may convene that its
mean cultural overlap is zero, so that expression (7.3) applies as wellavidrage
mobility m of a configuration is the average of the mobility of the agents:

| N
m:Nzgmi , (7.4)
1=

whereN is the total number of cultural agents. We will consider below two-dimensional
square lattices of linear siZg so thatV = (1—h)L?, periodic boundary conditions,
and von Neumann neighborhoods, so that the nurhpef neighbors of an agerit
is0 < k; < 4. We fix the number of cultural features 6 = 10, and vary the
parameterg, h andT’, as well as the linear sizk of the lattice. As it happens also
for the genuinei(e., without mobility) Axelrod model, no qualitative differences ap-
pear for different values of” > 3, the only difference being that larger valuesrof
make it easier the convergence to cultural globalization. One can eadizertéeat
the probability that the overlap between two randomly chosen cultures asaly, is
positive P(w;; > 0) = 1 — ((¢ — 1)/¢)¥', is an increasing function of the parameter
F.

Note that forF" = 1, no matter how largg > 2 is, the overlapy;; is either0
or 1 so that there is no chance for cultural interaction (imitation). In this limit case
each agent keeps forever its own initial culture, and the size of eachiecidtixed
by the initial conditions (no cultural evolution). In this case the model effelti
reduces to a version (one among the many possible variants) of the Schedlitel
of urban segregation. Specifically, it becomes a Schelling model with myopic lo
range move. Some recent papers in the physics literature on the Schelliry mod
are [158, 159, 160, 161]. See also [162] for some critical commentseophysical
perspective of the Schelling model.
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Figure 7.1: Order parameté$,,....) /N versus scaled initial cultural diversigy N for a very
small density of empty sitels = 0.05 and different values of the intoleran@e= 0.3, 0.7,
and of the lattice linear sizé = 20, 30, 40, as indicated in the inset.

7.3 Results and Discussion

For the initial conditions for the cultural dynamic®, cultural agents are randomly
distributed in thel. x L sites of the square lattice, and randomly assigned a culture.
The simulation is stopped when the numbgrof active links {.e., links such that

0 < w;; < 1) vanishes. The results shown below are obtained by averaging over a
large number (typically - 10> — 10%) of different initial conditions.

The usual order parameter for the Axelrod modelSsax) /N, where(Smay) is
the average number of agents of the dominant (most abundant) cultuge. lsdues
(close to unity) of the order parameter are the signature of cultural glatializ In
Fig. 7.1, we plot the order parameter versus the initial cultural diversifeddo the
population sizeq/N, for a small value of the density of empty sites= 0.05, and
different values of the intoleran@@and of the linear sizé&. We observe the collapse
in a single curve of the graphs corresponding to different lattice sizbsaoreover,
that the results are rather insensitive to the intolerance values. Figurepredents
the cultural distribution in both states: ordered phase for low valueg &f and
disordered phase for high valuesgfv.

For a fixed value of the initial cultural diversity, the larger the sizév of the
population is, the more likely an agent can share a cultural feature with senetse
in the population. Hence, as mobility allows contacts with virtually anybody, the
increase of the population size enhances the tendency towards cultlaization,
and the monocultural (ordered) phase extends up to higher values parthmeter
g. The critical valugy. of the transition between consensus and a disordered multi-
cultural phase diverges with the system sjze- N, so that in the thermodynamical
limit only global cultural states are possible for a small densitf empty sites.
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Figure 7.2: Cultural distribution when the density of empitgs is below their percolation
threshold: The system is characterized by two phases a®iariginal Axelrod Model: A
monocultural phase for low values of initial cultural disgy g/N (left chart, g/N=0.1) and
a multicultural phase for high values of g/N (right chariNgb). The center chart (q/N=1)
represents an anomalous state that is present only in safiEat®ns. Each color represents
the cultural group that owns the node. Empty cells are repttesl in black. Here has been
taken L=30, h=0.05 and T=0.8.

Figure 7.3: Cultural distribution for a empty sites densibove their percolation threshold.
A new multicultural fragmented phase appears for very lolues of the initial cultural
diversity (left chart, g/N=0.1), in adition to the two phasef original Axelrod Model (the
ordered phase of center chart for g/N=1 and the disorderagepbf right chart for q/N=5).
Here has been taken L=30, h=0.45 and T=0.8. Colors repréeentiltural groups and black
sites the empty cells.
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Figure 7.4: Order parametéf,,...)/N versus scaled initial cultural diversig/N for an
intermediate value of the density of empty sites= 0.5. Panel (a) corresponds to a high
value of the intoleranc® = 0.7, and different lattice linear sizds = 20, 30, 40, 50, while

in panel (b)L = 40, and different values of the intoleran¢e= 0.2, 0.4, 0.7, 0.9 are used.
See the text for further detalils.
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Figure 7.5: Order parametéf,,...)/N versus density. of empty sites, for three different
values of the scaled initial cultural diversigy N = 0.5, 1.1, 4.0, 7 = 0.7, and linear lattice
sizeL = 30.

We will focuss hereafter on larger values of the denkibf empty sites, a regime
where the cultural dynamics shows strikingly different features. Ay \@w values
of the initial cultural diversityy (so that cultural convergence is strongly favored), the
asymptotic states are characterized by low values of the order paraifigigr/NV.
The reason for the absence of cultural globalization in this regime is the rexésté
disconnected monocultural domains, a fact that requires values of tiséyde — A
of cultural agents at least close to (or below) the site percolation thresalid for
the square lattice (0.593). In Fig. 7.5 we plot the order parameter versudeti
sity h of empty sites, for three different values @fN, intolerancel’ = 0.7, and
linear lattice sizel. = 30. For the largest value af/N = 4.0 corresponding to
the culturally disordered regime, the order parameter is rather insensitihe to
values. This is also the case fofN = 1.1, a value representative of the cultural
globalization regime. However, for the lowest valueggfV = 0.5, we observe the
decrease of the order parameter when h takes on values close to the site percola-
tion threshold, signaling the appearance of the fragmented multicultural reghrige
new kind of macroscopic multicultural state is thus of a very different ndtora
the “genuine” multicultural phase of the original Axelrod model- 0). Though
cultural convergence is locally achieved inside each geometrical cltisteapsence
of contacts between clusters makes impossible the existence of globalizatien. T
values of the order parameter in tiiiagmentedhase, represented in Fig. 7.4a as a
function ofg/N with h = 0.5 and7" = 0.7 and for several values df, decrease with
increasing lattice size, and the expectation is that the order parameteregimshe
thermodynamical limit, because the largest cluster size below percolatiold dieu
independent of the lattice size. Left chart of figure 7.3 shows the cluttigtaibution
of this new multicultural fragmented phase, next to the phases of originalrddk
Model.
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Figure 7.6: Histograms of the values 8f,.. /N, nearby the transition from the fragmented
multicultural phase to globalization, fér x 103 realizations at (from left to right and top
to bottom)q = 100, 150, 250, 400, for L. = 30, h = 0.5, andT = 0.7. The histograms
display the characteristic behavior of a discontinuoust(érder) phase transition.

The increase iy from the very small values that correspond to the fragmented
multicultural phase has the seemingly paradoxical effect of increasingytlee pa-
rameter(Smax) /N values,i.e., the increase of the initial cultural disorder promotes
cultural globalization. To understand this peculiar behavior, one musidemthe
effect of the increase af in the initial mobility of the agents. One expects that the
higher the value of is, the lower the initial values of the cultural overlag among
agents are, and then the higher the initial mobility of agents should be. Uoxig c
tions of high mobility, the processes of local cultural convergence aneeslihan the
typical time scales for mobility, so that the agents can easily move before fall loc
consensus can be achieved, propagating their common features, rettiegy the
social influence among different clusters. In other words, the attainofelifferent
local consensus in disconnected domains is much less likely to occur, arsthonld
expect the coarsening of a dominant culture domain that reaches a bigger

A straightforward prediction of this argument is that one should obsdgheh
values of(Smax) /N for higher values of the intoleran@& because agents mobility is
an increasing function of this parameter (see eq. (7.3)). The numezgdts shown
in Fig. 7.4b for different values of’ andh = 0.5 nicely confirm this prediction,
in support of the consistency of the previous argument. Interestinglyefty low
values of7" when mobility is not enhanced, multiculturalism prevails for the whole
range ofg values. On the contrary, for high values of the intolerdfican almost full
degree of cultural globalization is reached, as indicated by the vafixgs) /N ~ 1
of the order parameter. In those final states almost all agents belong tgla sin
connected monocultural cluster. One should also note that, for fixedsvafufe
intolerancel” and the density. of empty sites, the previous argument indicates that
the relevant variable for this transition is the initial cultural diversitgnd noty/N,
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Figure 7.7: Average mobilityn versus time for h = 0.5, L = 30, 7" = 0.7 and different
values of the scaled initial culture diversifyN as indicated. Unlike the other figures, in this
case each curve represents the results of a single reatiz&ee the text for further details.

so that the interval of values @f N that corresponds to the multicultural fragmented
phase shrinks for increasing values.

To characterize the passage from the multicultural fragmented phase @& glob
consensus with increasing initial cultural diversity, we have computedshagnams
of the values ofSyax/N at values of; where the order parameter increases, see Fig.
7.6. The histograms display the bimodal characteristics of a first-ordeiticem In a
fraction of realizations, the transient mobility is able to spread social infeuemong
the clusters so that global consensus is finally reached. This fracticeases with
q, to the expense of the fraction of realizations where fragmented multicultuisality
reached. Note that no significant change of shape and position of trespond-
ing part of the histogram is noticeable, apart from its progressivectiexaiuto lower
volumes, whery increases.

Further increase of the initial cultural diversitgnhances the likelihood of agents
sharing no cultural feature with anybody else in the finite population. Tésepice
of these culturally “alien” agents decreases the value of the order ptraamsl the
increase of their number withis concomitant with the transition to multiculturality
in the original Axelrod model (as well as here, for finite populations). &e is
Fig. 7.4b that the increase of the intolerance paramigtshifts this transition to
higher values of;/N, in agreement with the enhancement of the convergence to
globalization thafl” produces via mobility, as discussed above. Each alien agent has,
at all times, a mobilityn; = 1, and the average mobility cannot decrease in time
to zero value when they appear. In other words, the asymptotic statesaflthieal
dynamics are no longer characterizedrby= 0. The time evolution of the average
mobility m for particular realizations a@ = 0.5, 7' = 0.7, L = 30 and different
values ofg/N is shown in Fig 7.7. The value @f/ N beyond which the stationary
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Figure 7.8: Cultural minorities continuously erode the dwamt culture domain, that breaks
into separate domains and isolated individuals. As a quaive measure of this erosion
phenomenon we plot here the stationary value of the averfagetibnn?’ /S,,... of isolated
individuals of the dominant culture versgé&N, for h = 0.5, 7 = 0.7, andL = 30. The inset
shows an illustrative configuration where erosion can tdkeep

average mobility is larger than zero signals the appearance of these dtiemralcu
agents.

In addition, the restless character of the alien agents has an importaritaffe
the geometry of the dominant culture, namelyeitssion As an illustrative example,
let us consider the situation represented in the inset of Fig. 7.8, in whicheartia
of the dominant culture is placed at the frontier of a cluster, having a siegiéinor
of his kind, and assume that an alien agehtis moved recently to one of the empty
neighboring sites of. When agent is chosen for an elementary dynamical step,
there is a probabilityl /2 of choosing agenj for an imitation trial. Asw;; = 0,
and thenw; = 1/2, the agent will move from there to a randomly chosen empty
site whenever the intolerance parametef'is- 1/2. We see that, for this particular
situation, the erosion of the dominant culture cluster will occur with probabifiey o
half.

Note that the erosion of the dominant culture cluster does not change ¢he siz
Smax Of the dominant culture. It simply breaks it up into separate domains, some of
them consisting of single (isolated) individuals. These isolated members déthe
inant culture will eventually adhere to domains, to be at a later time again ekpose
to erosion, and so on. Therefore the shape and number of domainsdurthieant
culture (as well as that of the other ones), fluctuate forever. The nungbef iso-
lated dominant culture agents reaches a stationary value that results &talamce
between erosive and adhesive processes. To quantify the strénlgéhesoding ac-
tivity of cultural minorities we show in Fig. 7.8 the stationary value of the aveilag

D
fraction (—>—) of isolated individuals of the dominant culture versus the scaled ini-

n

Smaz
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Figure 7.9: Order paramet$y,,... /N versus intolerance T, for differents values of h, g/N=1.1
and L=30. The shape corresponds to discrete and continspasta of the algorithm. Results
have been averaged fop* different initial conditions. See the text for further déta

tial cultural diversity, forh = 0.5, T = 0.7, andL = 30. Soon after the transition
from the fragmented multicultural phase to globalization occurs, erosiorases
dramatically, largely contributing to the large values of the stationary mobhilitizat
characterize the multicultural states in the model here introduced.

Figure 7.9 shows the order parames$gr,.. /N versus intolerance T, for a scaled
diversity initial ¢/N = 1.1 and different densities of empty sites h. This value of
q/N is high enough to avoid cultural globalization in the Axelrod limit, but low
enough to allow the overlap. There exists a threshold of intolerdndaelow which
the order parameter iS,,.../N ~ 0. If T" < T, the mobility is low and can not
promote cultural convergence. Although empty sites enhance mobility,gpacatly
it is found thatT, increases with h. The explanation for this phenomenon is that
the influence of h on the mobility is small, but the increase of h implies a decrease
of N, therefore also a decrease of qzjffN had been fixed. This in turn implies a
increase of mean overlap, a decrease of mobilityz; and finally the incerase af.
as observed. For low values of h/7if> T, the order parameter is fourtt),,. /N =~
1, that is, above a critical value of mobility the system reaches monocultural state
By contrast, when h is high enough to allow the formation of site clusters, ibean
seen a discontinuous behavior: Now a node can have 0, 1,2, 3 or 4 neighbors,
andS, .. (T) presents steps faf = n/m.
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7.4 Theorical analysis

Let i be a node of dominant culture D, amdits number of links to his cultural
domain. If i has an allien neighbor of culture O, every time step the probability
for i to stay unchanged, ie, to preserve his features and rest in pgs0o

P _k+(1—wDO)H(%—T) 75
su = E 1 ; (7.5)

where H represents the Heaviside function. The probabitityfor i to change, that
is, to leave the group D is:

wWpDO
P, = : 7.6
k+1 (7.6)

and the probabilityPs,, for i to move is:

1—wpo k —wpo
pP,=—"HT—-——"T7"7) , 7.7
k+1 ( k+1 ) (7.7)

From now on, we deal with stationary state, and therefore weugke= 0.

In order to calculate an estimatenf, we consider:
n": number of D-agents exposed to real erosion, ie, having an allienbmiglithey
belong to a D-cluster with at least three elememt$.is the sum of nodes like that,
with « links to D-agents:
' =30 n"(x).
ng: D-agents exposed to erosion that belong to a 2-agents domain.
n?: number of empty sites adjacent to a D-domain.
HE: number of empty sites adjacent to isolated D-agents.

We take into account the useful time step, ie, we only consider a step when a
event occurs. That only implies a time translation and does not affect ficieds.
We study the most likely events of erosion and adhesion:

e a;: Simple adhesion eventty — nY —1, AN" >0,
e ¢;: Simple erosion event)) — nf +1, AN" = -1,
e ay: Double adhesion event:) — nf’ — 2,

e ¢;: Double erosion event)) — nf’ +2,
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and, their respectives probabilities are:

D, E
Pla1) = - nD )
hL?(n® + ng’ + nt)
n¥ 1 3 1 K
Pler) = (1-) U H(T - ,
(1) nL? n0+n§+nu;” e e e
D HD
Plag) =~ ——p——obo
nY +ny +n*hlL
E U1 1
n ng sH(T — 5
P(el) _ (1_ 2> 202 (D 2) .
hL?) n® +ng + nv
(7.8)
A necessary condition for equilibrium is:
P(al) + 2P(a2) = P(el) + 2P(62)
(7.9)

Therefore, under this assumptions (we are not taking into account sgiljpje
events), we can replace 7.8 in 7.9 to estimgfe

T<1/2: o = o0,
(hL? —n® — HP)(n*(1) + nY)
1/2<T<2/3: nf = ,
et 2(n” + H)
2/3<T<3/4: nf = (hL? —n® — H)(5n"(1) + 5n"(2) + 375
reajas ap (L HYERU) + 0t (2) + it ®) + o
= B 0 TLE+H()D

(7.10)

Figure 7.10 shows the comparison between theorical estimate for the isolated
dominant culture agentrs(? and experimental results. As one can see, although the-
ory underestimates the value of isolated agents, adjustment is quite goo@x-The
planation for this deviation is that we have ignored some kinds of eventsevow
n{’ estimate is rooted not only in system parameters, but also in other observable
related to the spatial distribution (perimeter, location of aliens), so that rétaera
prediction is a check of the analytical method.
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Figure 7.10: Isolated dominant culture agenfs versus the scaled initial cultural diversity
q/N, for T=0.8, h=0.3 and L=30. Circles represent simulaticsutts for10* realizations,
and lines theorical estimation.

7.5 Conclusions

We have introduced a model of cultural dynamics in which agents can mmandr
by cultural dissimilarities with their environments, at the style of the Schelling model
of urban segregation. The introduction of agents mobility through this gatjoa
mechanism into the Axelrod cultural dynamics leads to an enhancement afrthe ¢
vergence to cultural globalization for small densities of empty sites, so thatethe
havior of the order parameter (i.e., the relative size of the dominant cukoadgs
with the numberV of cultural agents. That is, the transition to multiculturalism only
occurs for finite populations.

Furthermore, for larger densities of empty sites, when cultural agemstper-
colate the lattice, a new type of multicultural fragmented phase appears atliogsv
of the initial cultural diversityy. Though the initial cultural overlap is enough to trig-
ger the local cultural convergence inside each geometrical clusteeatsagultural
globalization is no longer possible due to the lack of cultural transmission betwe
monocultural isolated domains. Provided the values of the intolerdnaee high
enough, this regime is followed by a new transition to globalization for incrgasin
values ofq, that is triggered by the increase in the initial mobility. Moreover, in the
genuine Axelrod transition from global consensus to polarization, thgesdrad num-
ber of cultural domains are here dynamically fluctuating by the competitiveadala
of erosive and adhesive processes associated to the agents mobility.






Chapter 8

Selective advantage of tolerant
cultural traits in the
Axelrod-Schelling model.

In the previous chapter 7 we introduced the Axelrod-Schelling model, thatpoe
rates into the original Axelrod’s model of cultural dissemination the possibilay th
cultural agents placed in culturally dissimilar environments move to other plhees,
strength of this mobility being controlled by an intolerance parameter. By allowing
heterogeneity in the intolerance of cultural agents, and considering icakuaal
feature,i.e., susceptible of cultural transmission (thus breaking the original symme-
try of Axelrod-Schelling dynamics), we address here the question ahe&hwolerant

or intolerant traits are more likely to become dominant in the long term cultural dy-
namics. Our results show that tolerant traits possess a clear selectamtagky in

the framework of the Axelrod-Schelling model. We show that the reasothisr
selective advantage is the development, as time evolves, of a positiveatorrée-
tween the number of neighbors that an agent has in its environment and igtoler
character.

8.1 Introduction

In the Axelrod-Schelling model introduced in chapter 7, we focused orilitypbon-
sidering the driving force of mobility is the agents’ cultural dissimilarity with their
environmentj.e., homophile (dis)satisfaction, the same that drives cultural transmis-
sion. Starting from the Axelrod model for culture dissemination and the nmetsidle
segregation model of Schelling, two new parameters where introduced|ynérme
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densityh of empty lattice sites (places that are available to moving agents), and an
intolerance parametédr that controls the strength of the mobility: If an attempt to
cultural interaction (imitation) fails, then the agenmoves to a randomly chosen
empty lattice site if its mean cultural similarity; < 7. T here is a threshold for
tolerance, in such a way that high valuesibtharacterize intolerant societies.

In this chapter, we extend the Axelrod-Schelling model by considering ttole
anceT as a cultural feature, and then it is no longer a parameter (a propertg of th
whole population) but an individual property of agents subjected to e@lli@nsmis-
sion. Due to its influence on the dynamics through the rule of mobility, the question
of whether or not certain traits of this feature are more likely to be presettiein
dominant culture makes sense, contrary to what occurs with the resltufat fiea-
tures, whose particular traits do not influence the dynamics, and aredleasively
neutral.

We have performed extensive numerical simulations that implement different
rules for the mobility of agents, whose results show unambiguously that riblera
traits possess a selective advantage over intolerant begshey are better adapted
for survival in the long term dynamics. Furthermore, by a stochastic sisalye
present arguments showing that the reason of this cultural evolutionacgss of
tolerant traits is the establishment in the population of a negative correlativedre
the numbel; of neighboring agents, and the valiieof the agent intolerance. This
is presented in section 8.3. Before, in section 8.2, we reconsider théitarxe-
tween fragmented multiculturalism and globalization, first analyzed in chapbsr 7
using an alternative scheme for mobility with homogeneous intolerance. Tlis ne
scheme corresponds to the homogeneous version of one of the rulebibfynused
in section 8.3 (mobility by social rejection), so that this helps in the interpretafion o
some of these results, and at the same time, it throws a new light on the undegta
of the mechanisms triggering this transition. Finally, we summarize our results in the
concluding chapter 10.

8.2 The transition from fragmented multiculturalism to glob-
alization revisited

One of the new phenomena that appear associated to the mixed Axelreltirisch
social dynamics is the existence, for values of the der{sity /) of agents below
the lattice percolation threshold, of a multicultural macroscopic phase atimery
values of the initial cultural diversity. In this regime, the processes of local cultural
convergence are faster that the typical time scales at which mobility is ableucend
global convergence to a monocultural state. In this multicultural state agerag-a
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gregated into disconnected (monocultural) clusters where differentaldtansensus
have been achieved. Hence the ndragmentedor this multicultural phase.

If the value ofq is increased (see figure 1a), the behavior for the order parameter
(Smaz)/IN, becomes rather sensitive to the value of the intolerance paraifiefer
very low values ofl" multiculturalism persists, while for very high values, a first
order transition to complete globalization is observed. At intermediate valuEs of
the order parameter increases vergusut complete globalization is not reached.
The observation that the increase of the initial cultural diversity promaiksral
globalization may seem paradoxical at a first sight, but it is not difficulationalize
it by noting that an increase inhas also the effect of enhancing mobility, which is
in turn an important driving force towards globalization. Moreover, iasat higher
values of7" enhance agents’ mobility, the different behaviors that are observed fo
different values of the intolerance are consistent with this interpretation.

To deepen further our current understanding of the complex compétaugseof
different parameter variations that lead to the transifiagmented multiculturalism-
globalization we study here this transition in a different scheme for the mobility of
cultural agents. We remind here that in the original scheme of chapteter,aaf
elementary step of the Axelrod dynamics, if imitation has not occurredugng 1,
the agent moves to a randomly chosen empty site wheneyex 7. If the agent
1 turns out to be isolated, then it moves with certainty. We refer hereafter to this
scheme as A. The mobility:; of an agent is defined as the probability that it moves
in one elementary dynamical step (provided it has been chosen). Thussoltbme
A:

mi =1 -a) T — &) , (8.1)

1

where©(z) is the Heaviside step function, that takes the valueal if 0, and O if
z < 0.

In the new scheme, hereafter referred to as B, after an elementaryfstep o
Axelrod dynamics, if imitation has not occurred ang # 1, the agent moves to
a randomly chosen empty site with probability — w;) 7. In the case that agent
is isolated, then it moves with certainty, as in the previous scheme. The mobility of
agent; in the scheme B is thus given by
mP=1-o)?T . (8.2)

1

As shown in the figure 8.2, in both schemes the mobility is a decreasing function
of w. However in the scheme A the mobility vanishes in the integval T" (being
independent off” for w < T'), while it does not vanish in the scheme B, provided
@ # 1 (andT > 0), though it takes lower values than in the scheme Adot. T
where it depends linearly dfi.
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Figure 8.1: Order parametés,,....)/N versus scaled initial cultural diversigy/N for a
density of empty siteé = 0.5 and lattice linear sizd. = 40. Panel (a) corresponds to
scheme A for different values of the intolerance paramé&anel (b) corresponds to scheme
B. See the text for further details.
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Figure 8.2: Mobilitym,; for a nodei as a function of his mean overlap in schemes A and
B. In the scheme A the mobility vanishes for> T'. Otherwise, whenever # 1 and7” > 0,
it does not vanish in the scheme B.

In figure 8.1(b) we plot the order parameter versus the scaled initial alittisr
versity ¢/N for h = 0.5 and different values of the intoleran@& for the scheme
B and a two-dimensional square lattice geometry. In contrast with the resuttsef
scheme A (shown in figure 8.1(a)), the behavior of the order parametsrdut to be
rather insensitive to the values of the intolerafiteand the transition from the frag-
mented multicultural phase to globalization takes place for all the valugstdt we
have used. How to fit these observations into the interpretation framewek o
chapter 7 (succintly reproduced above in a previous paragraptiedransition?

To have a better picture of the speed at which the processes of culbumadre
gence take place and what parameters are more influential on them, wedpeeed
the time evolution of the histograms ©f namelyP(w, t), at values of the initial cul-
tural diversity close (below and above) to the transition. In all cased@niooth
schemes, this probability density evolves always from being sharplyectrated
nearw = 0 att = 0, to become later widespread, the centroid shifting to progres-
sively higher values ok as time goes by, until it concentrates near 1, finally
becoming a Dirac delta functiow — 1). The time scale at which this evolution
occurs seems not to be influenced by the scheme (A or B) adopted andukeade
of the value ofT" is also minor. The important parameter that mainly determines the
time scale of local cultural convergence is the initial cultural divergitfhe lower
its value the faster this process takes place. Then, what makes a truly gfelnin
difference between, on one side, both scheme A atfighlues and scheme B at all
T values and, on the other side, scheme A at Towalues (where the transition to
globalization is absent), is that agents with high cultural overlap do not mabvein
latter.
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These results throw a new light over the mechanisms that trigger the transition
from the fragmented multicultural phase to cultural globalization. The inerefs
the initial cultural diversity slows down the local cultural convergenaéng then
a chance to mobility to induce global cultural consensus. But it is the mobility of
agents with a significant high local cultural overlap (however small its mobibityict
be, as itis the case for the scheme B atbwalues), and not just the amount of over-
all mobility, what allows the effective cultural transmission among the disatiede
clusters of the fragmented states so making possible the coalescence drthe g
monocultural cluster characteristic of the globalization state. If mobility is strictly
limited to culturally marginal agents, its power of cultural transmission is unable to
overcome the fragmentation into disconnected cultural clusters.

8.3 Heterogeneous intolerance.

As we have already mentioned in the introductory section, the mobility of cultural
agents in the Axelrod-Schelling model is driven by the same utility (or social dr
ing force) that underlies the cultural dynamics of the Axelrod model (dkasghe
dynamics of the Schelling model), namely “homophile satisfaction”. In the model,
those agents that are placed inside fully homogeneous cultural envirtsduarit
move. Cultural dissimilarities are the only source of mobility, and the pararitgter
that controls the strength of mobility, quantifies the degree of (in)tolerarmdtioral
dissimilarities. Being a model parameter, tolerance is a quantity characterigtie of
whole (artificial) society. In other words, in this context one can spedklefant
(low value ofT") or intolerant societies. However, it seems to us rather natural to
consider (artificial) societies where different agents have differegtegs of toler-
ance to cultural dissimilarities. This certainly opens the possibility of new integes
qguestions to be investigated inside the model.

In what follows, we consider that each cultural agemas assigned a real number
0 < T; < 1, called intolerance. Moreover, we are going to consider the intolerdnce o
agents as a quantity associated twuHural feature i.e. a component of the cultural
vector, and then subjected to temporal changes as a result of culturaktiues.
Without loss of generality, one can associate the agents’ intolerance tostheofn-
ponentr; of the cultural vectofo s }. As this variable takes on integé, (, ..., ¢g—1)
values, one has to choose some functfdm) that takes values in the intervidl, 1],
and define the intoleranc® of agenti to be

T, = f(ou(i)) - (8.3)

Next we have to specify the particular way in which the agents’ intoleragrttes
into the dynamical rules. Many alternatives can indeed be consideréddod our
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first choice will be the following: After an elementary step of the Axelrodaiyits,
if imitation has not occurred and;; # 1, the agent moves to a randomly chosen
empty site with probability

k;
(1 — wij)T; (8.4)
j=1

1
L

N

where the sum extends to theneighbors ofi, and if the agent is isolated k; = 0)
it moves with certainty. In this choice, the intoleranéeta; of a cultural ageny
is seen as its degree of hostility towards a culturally dissimilar neighband is
weighted by the cultural dissimilarityl — w;;). The mobility of an agent is here
the result of thesocial rejectionof its neighbors, due to cultural dissimilarities.

The Axelrod-Schelling model with homogeneous tolerance, as the origical A
elrod’s model does, assumes an unbiased scenario in the sense thattshef &
cultural feature are completely interchangeable: Nothing in the dynamieal dis-
tinguishes among different traits, and then the likelihood that each particaiiis
present in the dominant culture of a realization is the same for all of themidev
they are uniformly distributed in the initial conditions for the dynamics. The partic
lar traits that survive in the dominant culture of a given realization reaetidix by
neutral selection, so that averaging over many independent realizaiimsbtains
a uniform distribution of traits in a large enough sample of dominant cultures.

However this symmetry of the model is broken in our current case of hygtero
neous intolerance regarding the cultural featygfor its particular values do influ-
ence the local dynamics through the dynamical rule of mobility. Then, theiqoes
of how likely are different traits to prevail and be present in the dominahtie
makes now sense in this new symmetry-breaking scenario. Do tolerant trsssgs
a cultural selective advantage? or, on the contrary, are intolerantitedits adapted
to survive? Moreover, by which dynamical mechanisms the “natural” sefeof
particularT” values is built up in the time evolution of the populations of cultural
agents?

Note that if one takes fof (=) in equation (8.3) a constant function, so tiat=
T independent of, one recovers the scheme B introduced in the previous section
8.2. In the extent that the behavior of the order paramgigr...) /N (for a density
of empty sitesh = 0.5) in scheme B was seen to be rather insensitive to the value of
T, one should expect in the present case of heterogeneous intoleifzaidbe order
parameter for a density of empty sites= 0.5 will be as shown in figure 8.1(b). Thus
the choice made above in equation (8.4) is technically convenient for tipesriof
investigating the question on the selective advantage of tolerant traitseetge it
is expected that it leads to states of cultural globalization in some rangesinitile
cultural diversity, when the very term “dominant culture” is most meaningfu
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We consider two-dimensional square lattices of linear Bizeith periodic bound-
ary conditions. The numbdr of cultural features is fixed té¢" = 10, and we have
used two values of the density of empty sites, namety 0.05, representative of the
situation in which agents percolate the lattice, &ne: 0.5 as representative of the
opposite case. Fgf(z) we will consider a simple linear function:

T, =q ‘ou(i) . (8.5)

For the initial conditions)N = (1—h)L? agents are randomly distributed on the L
lattice sites and randomly assigned a culture. The simulation of the culturahitga
is stopped when the number of links for whioh< w;; < 1, commonly called
active links, vanishes. Besides the order parameter, we compute theantaep

of the dominant culture, the average intolerai€¢, and sometimes, the histogram
of intolerance values of the final state. The results that we show beloobta@ed
by averaging over a large number (typically? — 10%) of different initial conditions.

In the two panels of Figure 8.3 we show our numerical results fer0.05 (panel
a) andh = 0.5 (panel b). First, we confirm the expectations on the behavior of the
order parameter discussed above: Given the insensitive charatterafler param-
eter in the scheme B to the value of the intolerance pararieferboth values of:,
no effect on(S,,..) /N due to the heterogeneity of agents’ intolerance is observed.

The numerical results for the intolerance valdgs of the dominant culture for
both values of the density of empty sites clearly show that very tolerant traits a
better adapted to survive and become a part of the dominant culture. chissan
the whole range of values of the initial cultural diversity that leads to vabfi¢ise
order parameter much larger thaiT! (so as the term dominant possess a meaning).
By comparing the graphs dafp shown in Figs. 8.3a and 8.3b, we observe that the
T'p values are significantly lower far = 0.5 than forh = 0.05, so that the strength
of the selective advantage of tolerant traits increases when the dénsitgmpty
sites is higher. The fact that the average intoleraficeof the final configurations
is higher thari, provided the order parametadf ! < (S,...)/N < 1, indicates
that the non-dominant surviving values of the intolerance are typicallgidingn the
dominant one. We further show in Fig. 8.4 that the results regarding thevioelof
Tp and(T') for L = 40, are essentially unchanged for lattice of sipé x 100.

In Fig. 8.5 we show the histogram @f, values, obtained fror@ x 103 real-
izations, at fixed value of /N = 1.1, for a density of empty sites = 0.05. One
should note that though the mean value of the dominant intolerancé&is at0.07,
the probability density is sharply peakedlas = 0 and quickly decays to negligible
values adp increases. In other words, the lower the valu&'gf the more probable,
so that the mean value is only indicative of the dispersion scale of the density.
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Figure 8.3: Order parameté$,,,...) /N (stars), intoleranc&), of the dominant culture (cir-
cles), and average intoleran(g) (squares) versus scaled initial cultural diversifyv for a
lattice linear size. = 40, for the scheme of mobility corresponding to equation (8Rgnel
(a) corresponds to a density of empty sikes- 0.05. Panel (b) corresponds fo= 0.5. See
the text for further details.
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mobility rule used in Fig 8.3.
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Figure 8.5: Histogram of the values of the intolerafigeof the dominant culture fa2 x 103
realizations, at scaled initial cultural diversigyN = 1.1, and a density» = 0.05 of empty
sites. See the text for further details.
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In order to explain why tolerant traits are better adapted to prevail in the long
term of the dynamics, let us consider the sub&€r, ¢) of those cultural agentsfor
which, at timet, T; < T, whereT is an arbitrarily chosen value of the intolerance
(e.g, T = 0.3 or more, or less). Let us denote hyT', t) the cardinal ofA(7 ¢), and
call £(T',t) the set of lattice linkgi, 7), such that the agemtbelongs toA(T', ¢) and
the ageny is notin this set (sd@; > T). If time is measured in elementary step units,
the difference

An(T,t) =n(T,t+1) —n(T,t) (8.6)

can only take on the valugs +1. To compute the probability’; that An(T,t)
takes on the value-1, one has to sum over all linkg, j) € £(T,t) the product of
the following factors:

a) the probability {V —1) of choosing agent for a cultural imitation trial,
b) the probability (cj‘l) that its neighbot is chosen,

c) the probability ¢;;) that agen}j imitates an uncommon feature’s traitipfind

d) the probability(W) that the chosen uncommon featureis

Note that for a link(7, j) in the setZ(T',t), the strict inequalityv;; < 1 holds.
Then we obtain

1 1 Wi i

P, =— § s 7

tTONF ki (1— wij) (8.7)
(L.)EL(T )

In a similar way, the probability’_ that An (7', t) takes on the value-1 is

1 1 Wij
(4,7)EL(T,t)

We see that the number of agents in the 4é1’,¢) performs a complicated
random walk with left- and right-step probabilities changing in time as dictated by
the model dynamics. The expected value/oi(7,t) is given by the difference
(P4 — P_), then

(ki —kj)  wij

k‘ik'j (1 — wij) ' (89)

1
E[ANT, 1) = 1 >
(4,5)€L(T,t)

This equation is the basis for an understanding of the selective advanitame
erant traits. Indeed, following equation (8.4), agents with Highalues promote the
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mobility of their neighbors (leaving empty sites in their neighborhoods) more than
tolerant agents do, so that one should expect that a negative comrdlativeen val-

ues ofk; andT; may be easily developed in the population, and tolerant agents may
likely have larger values of; than those of intolerant agents. If this is the case, then
equation (8.9) indicates that the random walk performed {3, ¢) will be biased

to the right, and the number of tolerant agents will likely increase as time evolves
The cultural selective advantage of tolerant traits has its origin on the tmdsiged

by the negative correlation degree-intolerance ;) that is directly induced by the
dynamical rule of social rejection.

The equation (8.9) allows also to rationalize the observation that the selective
advantage of tolerant traits is strengthened by higher values of the demdigmpty
sites, because highgvalues easily allow for higher values of the degree differences
(k; — kj;) for (4,5) € L(T,t), and so the bias favoring the increasewT’, t) can be
stronger.

We have also considered a second way in which agents’ intolerancergatere
mobility rule of the dynamics: After an elementary step of the Axelrod dynamics,
if imitation has not occurred and;; # 1, the agent moves to a randomly chosen
empty site provided

w; < T . (8.10)

Note that if one takes fof (x) in equation (8.3) a constant function, so tiat= T
independent of, one recovers the scheme A for homogeneous intolerance, that was
used in chapter 7: Intolerance value is a threshold for the cultural pveBlat there

is also here an important difference with respect to equation (8.4) iegdtek inter-
pretation, or meaning, of the intolerance. In (8.10) what determines wtsattagent

i moves or not, is its own intolerance valillg instead of that of its neighbors, as in
the previous case. Though both dynamical rules are based on homapbdé&siac-
tion, they in fact implement different plausible mechanisms for mobility. Whetlger th
average social rejection (hostility) of my neighbors is more important than nmy ow
degree of tolerance with a dissimilar environment or not, in the decision of ovin
may be a question with widely different (as well as context-dependent)idtudil
answers, and it is certainly not inside the scope of this work to enter into auc
discussion. We regard here both as alternative plausible mechanismsHoityno
which may lead to differences regarding the selective advantage ofribteads in

the Axelrod-Schelling model with heterogeneous intolerance.

We show in figure 8.6 the results obtained for the dynamical rule associated to
equation (8.10). Though the values®} are in this scheme higher than those char-
acteristic of the scheme analyzed before, certain degree of selectimatage of
tolerant traits is unambiguously observed. Also, the selective advantagenger
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Figure 8.6: Order parameté$,,,...) /N (stars), intoleranc&), of the dominant culture (cir-
cles), and average intoleran¢E) (squares) versus scaled initial cultural diversifyv for a
lattice linear sizd. = 40, for the scheme of mobility corresponding to equation (B.Fanel

(a) corresponds to a density of empty sites- 0.05. Panel (b) corresponds to= 0.5. See
the text for further details.
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Figure 8.7: Time evolution of the average number of neighlpmr agentk) and average
intolerance(T'), for ¢/N = 1, L = 40 andh = 0.5 as obtained from 200 realizations in the
scheme of equation (8.10).

Figure 8.8: Time evolution of the tolerance distributionemhthe density of empty sites is
below their percolation threshold in a representativeizatibn. Each cell represents a node.
The color code is a quasi-continuum, from blue for tolerasdes to red for intolerant ones.
Left chart represents the initial conditions, center chtre intermediate states and the right
one the stationary state. Here has been taken L=30, h=0.05.

Figure 8.9: Time evolution of the tolerance distributionemhthe density of empty sites is
above their percolation threshold in a representativeza#n. Codes are the same that in
figure 8.8. L=30, h=0.5.
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for high densityh of empty sites, as before. Now, however, agents move depending
on their own intolerance values, and then it is not (at least) as clear aelibat

a negative correlation degree-intolerance could be established, wbidd v turn
explain the selective advantage of tolerant traits.

A possibility for this comes from the fact that intolerant agents move to empty
sites more easily than tolerant agents do, so that a negétivé’ correlation could
appear provided the lattice sites occupied by agents are more likely to hents ag
in their neighborhood than empty sites are. To check for this, we have ¢edhihe
time evolution of the average number of neighb@ts of agents. Figure 8.7 shows
that, after some (long) transient, the average degree of agents ircedase its
initial value (that is(k) = 4(1 — h), for a square lattice and von Neumann neigh-
borhood). This increase dk) corresponds to the coalescence of clusters that will
become monocultural in due (short) time. Interestingly, we also see in fighitbe
decrease of the average intolerariég as soon as the average degree increases, SO
giving further support to the argument.

Consequently, also in the case that the agents’ mobility is the result of their own
intolerance to cultural dissimilarity, the tolerant traits possess selectiveniagya
due to the establishment of a negative, (T;) correlation which in this case has
its origin in the agents’ aggregation processes concomitant to the increbsalo
cultural overlaps. The observed fact that the selective advantagéeddnt traits is
now weaker than in the case when mobility is induced by social rejection, may like
be the effect of two confluent factors; on one hand, the developnienhegative
degree-intolerance correlation is not now a direct consequence dytiaenical rule,
and on the other, as analyzed in previous section 8.2, agents’ aggnegaitesses
are much less effective when intolerance enter as a threshold for mobility.

8.4 Summary and concluding remarks.

In the Axelrod-Schelling model for cultural dissemination among mobile agemsts,
have considered the intolerance, that was originally (chapter 7) a madmahpter
controlling the strength of agents’ mobility, as a variable associated to a dditara
ture, and thus subjected to cultural transmission. We have performedieetern-
merical simulations for two different dynamical rules for mobility, whose eetipe
homogeneous versions are analyzed with respect to the transition frotodaally
fragmented local consensus to global cultural consensus that @atowesy low val-
ues of the initial cultural diversity. In the first of these dynamical ruleskhifitg

by social rejection) agents move due to the intolerance of their neighbeighisd

by their cultural dissimilarity, while in the second one the mobility depends on the
agent’s own intolerance to the cultural dissimilarity with its environment. In both
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cases our results indicate that tolerant traits are selectively advansagedhat the
intolerance values present in the dominant culture are preferentially low. tigen
sees how the breaking of the original symmetry (indifference of the dysaiespect
to particular feature’s trait values, that leads to purely neutral selectidarinant
characters in cultural evolution) effectively allows for the appearancetural se-
lection of advantageous traits.

The selective advantage of tolerant traits increases with the dénsityempty
lattice sites, and is also higher for the first scheme, where mobility is the résié o
social rejection from the neighborhood. A stochastic analysis allows tiomadiza-
tion of all these numerical observations, and points to the dynamical devetowf a
negative correlation between the number of neighbors of an agent antbiesance
value as the origin of the selective advantage of tolerant traits. We shoyldasize
here that regarding the rule of cultural imitation, nothing privileges toldraiis over
intolerant onesi.e., Axelrod’s cultural interactions are completely unbiased, so the
bias towards tolerant traits can only come from the influence of the tolecariceal
feature on the mobility of agents, that shapes the instantaneous netwotkratin
tions among cultural agents. One should expect analogous findinghémetwork
updating dynamics as the one considered (in the symmetric context) by [@6g, 1
also showing topologically fragmented phases, provided the trait symmetgkisrb
at the network updating rule level.

In this regard, the term tolerance -in the context of the Axelrod-Schellindgfno
has a very precise and narrow meaning, much more limited than its usual meaning
in social science and political philosophy, where it certainly means much tinane
just a conditioning factor of the mobility of individuals and groups. Howgirer
side the limitations of a simple agent based model like this one, our findings on the
“adaptive to survival” character of tolerant traits in cultural dynamicsnito basic
mechanisms that can be highly influential in cultural evolution.



Chapter 9

Co-evolutionnary network
approach to cultural dynamics
controlled by intolerance.

Starting from Axelrod’s model of cultural dissemination, we introduce arieg
probability, enabling agents to cut the links with their unfriendly neighborseirth
cultural similarity is below a tolerance parameter. For low values of toleraae&ing
promotes the convergence to a frozen monocultural state. Howeveméatite tol-
erance values prevent rewiring once the network is fragmented, rgsintan mul-
ticultural society even for values of initial cultural diversity in which the ora
Axelrod model reaches globalization.

9.1 Introduction

The growing interest in the interdisciplinary physics of complex systemsfdias
cussed physicists’ attention on agent-based modeling [156, 32] of styciamics,
as a very attractive methodological framework for social sciencesandugricepts and
tools from statistical physics turn out to be very appropriate [142] foattedysis of
the collective behaviors emerging from the social interactions of the agemsdy-
namical social phenomena of interest include residential segregatiocsdp2ultural
globalization [59, 141], opinion formation [153, 168], rumor spreadibgb] 169]
and others.

The question that motivates the formulation of Axelrod’s model for cultuisal d
semination [59] is how cultural diversity among groups and individualé&dcsurvive
despite the tendencies to become more and more alike as a result of socéd-inter
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tions. The model assumes a highly non-biased scenario, where the cfituragent

is defined as a set of equally important cultural features, whose particailaes
(traits) can be transmitted (by imitation) among interacting agents. It also assumes
that the driving force of cultural dynamics is the “homophile satisfactiore' apents’
commitment to become more similar to their neighbors. Moreover, the more cultural
features an agent shares with a neighbor, the more likely the agent will imitaie a
common feature’s trait of the neighbor agent. In other words, the higheruttural
similarity, the higher the social influence.

The simulations of the model dynamics show that for low initial cultural diversity
measured by the numberof different traits for each cultural feature (see below),
the system converges to a global cultural state, while;fabove a critical value.
the system freezes in an absorbing state where different culturastpéditse (non-
equilibrium) phase transition [110] between globalization and multiculturalism was
first studied for a square planar geometry [141, 143, 144], but stier network
structures of social links [145, 146, 152] were considered, as wdhea effects of
different types of noise (“cultural drift”) [147, 148], external fielfftmodelinge.g.
influential media, or information feedback) [149, 150, 163, 164], dodaj or local
non-uniform couplings [165, 151].

In all those extensions of Axelrod’s model mentioned in the above pahgra
the cultural dynamics occurs on a network of social contacts that is fioed the
outset. However, very often social networks are dynamical structhegsontinu-
ously reshape. A simple mechanism of network reshaping is agents’ mohilityg a
scenario (named the Axelrod-Schelling model) where cultural agentsopiiaail-
turally dissimilar environments are allowed to move has been analyzed in ch@pter
and 8. In this model, new interesting features of cultural evolution appegeardling
on the values of a parameter, the (in-)tolerance, that controls the strenagents’
mobility.

A different mechanism of network reshaping has been considere® 167],
where a cultural agent breaks its link to a completely dissimilar neighborectdir
ing it to a randomly chosen agent. At variance with the mobility scenario of the
Axelrod-Schelling model, that limits the scope of network structures to clustans
figurations on the starting structure (square planar lattice, or othersjewigng
mechanism allows for a wider set of network structures to emerge in theotation
of culture and social ties [170].

In this chapter we introduce in the scenario of network rewiring a tolerpaee
rameterZ controlling the likelihood of links rewiring, in such a way that the limit
Z = 17 recovers the case analyzed in [166, 167], where only links with arciasso
ated null cultural overlap are broken. Lower valuesZoforrespond to less tolerant
attitudes where social links with progressively higher values of the clibwexlap
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may be broken with some probability that depends on these values. Tlits sbaw

a counterintuitive dependence of the toleraiten the critical valugg.. On one
hand, as expected from [166, 167], rewiring promotes globalizatiohifir values
of the tolerance, but on the other hand, very low valueg qivhich enhance the
rewiring probability) show the higher values@f Indeed, a non monotonous behav-
ior is observed ing.(Z): Our results unambiguously show that for some intermediate
values of the toleranc®, cultural globalization is disfavored with respect to the orig-
inal Axelrod’s model where no rewiring of links is allowed. In other wgnesviring
does not always promote globalization. On the other hand, the resulting@nketw
topology depends o, changing from a Poisson connectivity distributiBik) to a

fat tailed distribution fory ~ q..

9.2 The model

As in Axelrod’s model, the culture of an agenis a vector ofF" integer variables
{o¢(@)} (f = 1,..., F), called culturalfeatures that can take on values,o¢(i) =
0,1,...,q — 1, the culturakraits that the featurg' can assume. Th& cultural agents
occupy the nodes of a network of average dedfgewhose links define the social
contacts among them. The dynamics is defined, at each time step, as follows:

e Each agentimitates an uncommon feature’s trait of a randomly chosen neigh-
bor j with a probability equal to theicultural overlapw;;, defined as the pro-
portion of common cultural features,

F

1
wij = o D bosiyos (i) (9.1)
=1

whered, , denotes the Kronecker’s delta which is kit= y and 0 otherwise.
The whole set ofV agents perform this step in parallel.

e Each agentdisconnects its link with a randomly chosen neighbor agevith

probability equal to itglissimilarity 1 — w;;, provided the dissimilarity — w;;
exceeds a thresholtb{erancg 7,

1-— wij > Z (9.2)

and rewires it randomly to other non-neighbor agent. The tolerfarce’ < 1
is a model parameter.
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First we note that the initial total number of links in the network is preserved
in the rewiring process, so the average degrgeremains constant. However, the
rewiring process allows for substantial modifications of the network topabtea-
tures,e.g. connectedness, degree distribution, etc. In that respect, excetbtefor
limiting situation of very low initial cultural diversity; and a very high tolerance
Z (where the likelihood of rewiring could be very low), one should expeat the
choices for the initial network of social ties have no influence in the asymgietic
havior of the dynamics.

When the threshold toleran@satisfies% < Z < 1, only those links among
agents with zero cultural overlap are rewired, so the model becomesédhstuatied
in [166, 167]. On the other hand, when the tolerance takes the valgel, there
is not rewiring likelihood and the original Axelrod’s model is recoverechéVz =
0 rewiring is always possible provided the cultural similarity is not compleg¢e,
wi; # 1, so that it corresponds to the highest intolerance.

The usual order parameter for Axelrod’s model9s,...) /N, where(S,,...) is the
average (over a large number of different random initial conditionf)ehumber of
agents sharing the most abundant (dominant) culture \aigdthe number of agents
in the population. Large values of the order parameter characterize thedigdion
(cultural consensus) regime. We also compute the normalized Sizg /N of the
largest network componeritd., the largest connected subgraph of the network).

9.3 Results and discussion

We have studied networks of siz&5 = 900, 1600; averaging oveb0 - 2000 repli-
cas. Checks for robustness of main results with larger sizZ€ ef 2500 were also
made. The considered cultural vectors have- 10 cultural features, each one with
a variability g = 5 - 10000. We studied different values of the tolerance threshold
Z € (0,1) and different values of the average connectivity = 4, 10, 20, 40. Each
simulation is performed folN, F, (k), Z, andq fixed. For the sake of comparison
with previous results [166, 167], we will present resultsfor = 4.

The behavior of the order parameter for different value& @ seen in Fig. 9.1.
Like in [166], three different macroscopic phases are observed witkeasing val-
ues ofg, namely a monocultural phase, with a giant cultural cluster, a multicultural
one with disconnected monocultural domains, and finally a multicultural phiise w
continuous rewiring. The nature of the latter phase has been sudbesgplained
in [166]: At very large values of the initial cultural diversigy the expected number
of pairs of agents sharing at least one cultural trait becomes smaller thaat#h



Results and discussion 163

10\\\\? KT IR T T
[ 55 vv Z=0 []
08— i : * 7=0.3 |
I R oo Z=04 |
".. -8 7=0.5
Z 0.6/ : o 7=0.6 M
= L \ L | aaz=07 ||
3 B o ++ Z=0.8
0.4 | o 7=0.9 M
- i Aa Z=1 |
02 I 5 '
21— WA ik ) —
L Egz‘*ﬁmaﬂ “_\‘E\;‘ _
P T A Y VO i e
. 1 2 4
10 10 10

q

Figure 9.1: Order parameter as a function of the variabijitfor different values of the
tolerance threshold. N = 900, (k) = 4, average ovet000 replicas.

number of links in the network, so that rewiring cannot stop. Here we willi$o
attention on the first two phases and the transition between them.

In figure 9.2 we show the size distribution of the dominant culture over differ
ent realizations, measured for different valueg,cdit a particular fixed value of the
toleranceZ = 0.5. In the region ofg values near the transition from globalization
to multiculturalism, the distribution is double peaked, indicating that the transition
is first order, as in the original Axelrod’s model. The transition valye may be
roughly estimated as thgvalue where the areas below the peaks of the size distri-
bution are equal. The estimates of the transition points for different valutée o
toleranceZ are shown in Fig. 9.3. The non monotonous character of the gr&gah
seen in this figure reveals a highly non trivial influence of the toleran@npeter on
the co-evolution of cultural dynamics and the network of social ties.

Let us first consider the (most tolerant) cdse= 0.9 that, except for the system
size N, coincides exactly with the situation considered in [16.€], only links with
zero cultural overlap are rewired. As discussed in [167]gfealues larger than the
critical value for a fixed networkd.(Z = 1) ~ 60), rewiring allows redirecting links
with zero overlap to agents with some common cultural trait (compatible agemts), s
reinforcing the power of social influence to reach cultural globalizatiGmce all
links connect compatible agents, rewiring stops (note: the decreasetofzeposi-
tive cultural overlap cannot be strictly excluded, though it may be coresicies a non
typical event). From there on, the network structure will remain fixed gholoaliza-
tion will be reached with the proviso that the network has so far remainatected.
This is the case for most realizations (for = 900) up to values of; ~ 240. In-
creasing further the cultural diversity increases the frequency of rewiring events
and slows down the finding of compatible agents, favoring the topologiaghfen-
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Figure 9.2: Histograms d$,,,.../N for different values of;, and for a fixed tolerancg =
0.5, N =900, (k) = 4. From this figure one gets. ~ 20.

tation into network components before rewiring stops. Under these corgjitios
asymptotic state will consist of disconnected monocultural components.

On one hand, network plasticity allows to connect compatible agents, so promo
ing globalization; but on the other hand it may produce network fragmenjatmn
favoring multiculturalism. What we have seen in the previous paragraphtifotha
Z = 0.9 the first effect prevails over the second one ugt@Z = 0.9) ~ 240.
Going from there to less tolerant situations (decreagipgncreases the likelihood
of rewiring, making easier that network fragmentation occurs befor&ingastops.
This has the effect of decreasing the critical vajue In fact, from Fig. 9.3 we see
that forZ = 0.7,0.6, and0.5 multiculturalism prevails for cultural diversities where
the original Axelrod’s model shows cultural globalization. In these casésork
plasticity promotes multiculturalism in a very efficient way: Agents segregata fr
neighbors with low cultural similarity and form disconnected social groupsres
full local cultural consensus is easily achieved, joralues low enough to allow a
global culture in fixed connected networks.

For very low values of the tolerance parameter, though network fragtiamta
occurs easily during the evolution, Fig. 9.3 shows that globalization pergists
very high values of the initial cultural diversity To explain this seemingly paradox-
ical observation, one must realize that network fragmentation is not arelisible
process, provided links connecting agents with high cultural overlap agositive
rewiring probability. Under these circumstances, transient connectnosgdiffer-
ent components occur so frequently so as to make it possible a progresfural
homogenization between components that otherwise would have sepagatsied
different local consensuses. Fig. 9.4 illustrates the time evolution fer100 and
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different values ofZ. Panel (a) shows an example of cultural evolution where net-
work fragmentation reverts to a connected monocultural network fer0.2. Panel

(b), that corresponds t6 = 0.6, shows that social fragmentation persists during the
whole evolution, while in panel (c), which corresponds to the most toleiturdtion

( Z = 0.9), the network remains connected all the time.

The degree distribution of the network is Poissonian centered dbpir all ¢
values, except fo = ¢. where it becomes fat tailed, with several lowly connected
(and disconnected) sites. For very highalues, in the dynamical phase, the network
rewiring is esentially random, sB, (k) is again Poisson like, centered aroufd.

9.4 Summary

In this chapter we have generalized the scenario for co-evolution dfdke cultural
dynamics and network of social ties that was considered in [166, 1$#jtdfoducing

a tolerance parametef that controls the strength of network plasticity. Specifically,
Z fixes the fraction of uncommon cultural features above which an ageaksiits

tie with a neighbor (with probability equal to the cultural dissimilarity), so that, the
lower theZ value, the higher the social network plasticity.

Our results show that the network plasticity, when controlled by the tolerance
parameter, has competing effects on the formation of a global culture. Wigen to
ance is highest, network plasticity promotes cultural globalization for valtidseo
initial cultural diversity where multiculturalism would have been the outcome for
fixed networks. On the contrary, for intermediate values of the tolerdme@etwork
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plasticity produces the fragmentation of the (artificial) society into discondectie
tural groups for values of the initial cultural diversity where global aalkeonsensus
would have occurred in fixed networks. For very low values of the talsrasocial
fragmentation occurs during the system evolution, but the network plasticity is
high that it allows the final cultural homogenization of the transient groapsdry
high values of the cultural diversity. Intermediate tolerances promote multialiltu
ism, while both extreme intolerance and extreme tolerance favor the formaton of
global culture, being the former more efficient than the latter.



Chapter 10

Conclusions.

Starting from the idea of many interacting entities, we have addressecediffen-

cial and economic issues using procedures and theoretical tools froplecosys-
tems physics, in addition to other fields, such as complex networks and game the
ory. Although social sciences obviously have their own methods to dealswith

kind of problems, this methodology yields new approaches, especially biepns

that involve stochastic and/or nonlinear dynamics aspects, and enhbestsdy of
emergent properties arising from aggregating approaches.

In the first part of the thesis, we address a issue related to differientes such
as biology, economics or sociology: the evolution of cooperation in hostiecen
ments, that is, when in the first instance the selfish behavior is more adsansafpr
the individual that cooperative action. This problem has been dealt wétvariety
of ways. In this context, the Prisoner’s Dilemma (PD) has become a parddigm
studying the emergence of cooperative behavior. Besides, the themaradal per-
spective on evolutionary game dynamics studies (usedjn chapter 2) is not a new
issue, as can be found in research literature on game theory [16 ab2ildllows us
to interpret the social indicators as physical observables and later tcaimdiéytical
results.

In chapter 2 we investigate in detail the dynamics of PD in an artificial network
(Dipole Model) that models the influence on a population of two antagonist ¢
nected to the whole population, but with no direct connection between thesedBa
on previous studies [109, 112, 113] that have shown that the asymptidis sfavo-
lutionary PD in complex networks are characterized by three kinds oftageure
cooperators, pure defectors and fluctuating agents), we designeabtied so that
the hubs remain as pure strategist; more specifically, we constrained theciontchi
tions in order to cancel the probability of strategy change for the hulesamalytical
formulation enables a thermodynamic approach of the system, which pravitkes
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scription with a range of validity limited by the effects of network topology. Tée r
sults, besides providing mathematical meaning to the concept of social tearpera
help to understand the behavior of a population under the influence ofpgpasie
influential elementsg.g, mass media).

In chapter 3, we study the reversibility of the evolutionary dynamics of POfin d
ferent complex networks under adiabatic variations of the temptation totddflee
results show that, for the topologies analyzed, the process is reversiblded it is
kept away from absorbing states, but when the cooperation readipggsrg point
the system becomes irreversible showing a hysteresis cycle which is toofuné
the considered network. The causes of irreversibility vary from oneldgy to an-
other: the centralization of cooperator clusters around cooperatarihdzale-free
(SF) networks prevents the onset of irreversibility in most SF networl®veder,
the multiple clusterization of cooperators in Erdds-Rényi (ER) networteriahnes
that, once the tipping-point is reached, irreversible transitions always,cand irre-
versibility is more evident around the absorbing states.

In chapter 4 we take into consideration a topic that has been deeply studhed in
last years:multiplex networksUsually, real populations (regardless of their nature)
are not isolated, but interlinked by interactions between different I§y@éds 175]. In
addition, the interactions that take place within a given layer may be govbyndit
ferent rules that the interactions between elements of different layéss X7, 178].

In this context, we study the influence of interdependency betweendlifféayers

on the degree of cooperation in stratified systems. In particular, we &octe case

in which relations within layers are governed by an evolutionary PD, whilaebhts

of different layers interact through the Snowdrift (SD) game. Thiesemodels a
situation in which defection is punished in interactions vatlisider defectorsOur
model consists of two populations, provided with an internal structure miacts,

that interact through interpopulation links. When the populations are wellemixe
carry out analytical calculations that populations that show, in a regitimegfaram-
eter space, @olarizedstate consisting of &ull-cooperationcommunity connected

to afull-defectionpopulation. Other regions of the parameter space shoasi-
polarizedstates, characterized by a population where every agent defects tmked
another where most agents cooperate. In order to deal with netwoolediations,

we solved the system numerically and found that previous states appeampejpu-
lation structure is a complex network of contacts, where network reciproaiyote
cooperation. The results show that, while for small values of the temptation to de
fect parameter polarization opposes network reciprocity, for higherttdinp values
both mechanisms have the same sign promoting cooperation in a layer. Aslian app
cation, we find that the cooperation level in a target population can beoteditr
through a coupled defective population.
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However all the above, the statement that underlying network structhemeas
cooperation in human interactions is based on some assumptions, namelyrthat pe
sonal strategies depends on neighbor’s pay-offs. Althoug netwaigrocity mech-
anism in humans has been deeply studied in the last twenty yeare @eg,6, 94,

18, 109, 95, 96, 97]), the conclusions are in general contradidiecguse the strate-
gies are usually a hypothesis of the models without experimental sup®rt IfY
chapter 5, instead of assuming that people choose following one of thetista-

gies, we analyzed the problem taken as starting point the results of eqmseri-
ments [100, 23] on the behavior of small human populations in iterated PD games
These works shown that people do not take into account the neighlayaffy, but,
instead, they consider the cooperation level in their neighborhood. Wée dtad-

ied mathematically the implications of such strategies in heterogeneously-temnec
large populations. Specifically, we solved analytically the mean-field cakean-
pared the theoretical results with data obtained from numerical simulations made
in three network topologies: regular lattice, ER and SF. This comparisom thad
cooperation level is exactly the same, regardless of the network strudtioeecon-
sequences of this prediction are very important, because, if eventuafiynaed by
experiments, they will allow to discard the network reciprocity mechanism in huma
prisoner’s dilemma-like situations. Experimental confirmation implies experiments
in heterogeneous networks, and therefore, large scale experiments.

In chapter 6 we show the results of the large-scale experimental testve@bia
formed to test the conclusions above mentioned. Our experiment showetieat]-
ing human behavior, the underlying topology does not have influence oberved
cooperation level. In particular, the cooperation levels observed inwdareigttice
and in a heterogeneous network are indistinguishable, moreover, thededf sub-
jects appears to be independent of their connectivity. This concluspiegnly to
human cooperation in static networks, therefore network reciprocity mapetiéle-
vant in other contextse(g, in microbiology [137] or evolving social networks [179]).
Our experiment confirm that most people follow the strategy shown in prsviorks
[23], consisting of the imitation of neighbor’s actions with a probability thatethejs
on their frequency. Accordingly, the results confirm the theoreticaliptien made
in chapter 5. These results may be applied to promoting cooperation in steifrsy
the study suggests that improving network structure might be an innef@ctiay
but invites to incentive individual behavior.

In the second part of the thesis, we study some aspects of social dynéwnics
cusing our attention in particular on a issue that has been approachedifstog-
ical, sociological and philosophical perspectives: the intolerance [[iddlerance,
defined as “the refusal to accept subjects with different charaaipisions or be-
haviors from one’s own”, is amenable to be dealt with agent based masiRM)(
in fact, one of the first ABM designed to explore a social issue was thregaiipn
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model of Schelling [52]. Despite this, ABM have not paid much attention to the in-
tolerance in itself, while related issues of social dynamics -such as hom¢pajly

, opinion formation [153] or rumor spreading [155]- have been deeptyvaidely
studied.

In chapter 7, we have introduced a model of cultural dynamics allowingtage
to move according to their degree of cultural disagreement with their neigbbd.
For small density of empty sites, the introduction of mobility into the Axelrod cul-
tural dynamics promotes the convergence to cultural globalization, with th&eeo
guence that the order parameter scales with the system size. Thetteédransition
to multicultural population only occurs for finite population®( in the thermody-
namic limit there exists only monocultural phase). Furthermore, for largesitiles
of empty sitesi(e., when population density is below the percolation threshold), a
new phase (that we cathulticultural fragmented phaseppears at low values of the
initial cultural diversityq. The causes of this new phase can be founded in the early
stages of the dynamics: for low values @fthe initial cultural overlap is enough
to promote local cultural convergence enhancing the formation of isol&ustecs
of agents, wich isolation prevents cultural diffusion between differemains. For
high enough values of the intolerance threshB|dhe increase of has the effect
of increasing the initial mobility, and the monocultural phase of the originalrage
model is recovered, followed by the multicultural phase for high enougfesafg
and finite populations. Moreover, in the last transition from order to desextiphase,
the dynamics showrosion-adhesioprocesses associated to the agents mobility; in
fact, the increase in enhances the probability of agents without a common cultural
feature with anyone elsal{ens.

In chapter 8, we refined the Axelrod-Schelling model by considering tiod- in
erancel’ as a variable associated to a cultural feature, and thus subjected tolcultura
transmission. There are (at least) two natural ways of relating mobility anddnél
intolerance: agents can move due to the intolerance of their neighdmmisl(rejec-
tion) or agents can move motivated by its own intolerance to the cultural dissimilarity
with its environment gelf-exclusioh In both cases our results indicate that tolerant
traits are more likely to spread, so that the dominant culture tends to havellosgva
of intolerance. In addition, the selective advantage of tolerant traitsasesewith
the densityh of empty sites, and is also higher for thecial rejectionscheme.

While in chapters 7 and 8 we introduced tolerance into the original Axelrod’s
model through mobility, in Chapter 9 we consider network plasticity, allowingesge
to remove links to its dissimilar neighbors. Rewiring mechanism into Axelrod dy-
namics was considered by Vazquez, Gonzélez-Avella, Eguiluz and BaielNIL66];
in their model, an agent was able to break its link to an antithetical neighbgtley
do not share any trait), redirecting it to another agent at random. Ireseerch, we
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have generalized the model proposed in Refs. [166, 167], by intinglictoler-
ance paramete? which modulates the intensity of plasticity. We show that rewiring
mechanism can produce opposite effects, depending on the tolerdne& vavhile

for large values o¥, rewiring enhances monoculturalism compared to non-evolving
networks, for intermediate values of tt#e rewiring mechanism promotes clusteri-
zation into disconnected cultural groups for values of the initial culturardity ¢
which would show monoculturalism in fixed networks. Finally, for low valués o
Z, transient states show clusterization phenomena, but rewiring (eryealiby low
tolerance) enhances cultural transmision between groups for veryahiges ofq,
yielding monocultural states. In conclusion, intermediate tolerance vallesea
diversity, high values of tolerance greatly promote globalization while loweslu
of tolerance weakly promote it. Note that, unlike the Axelrod-Schelling desarib
in chapters 7-8, the networks used are heterogeneous and dynamie, wétivork
dynamics given by the cultural dynamics.
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