13 research outputs found

    Polynomial Kernels for Weighted Problems

    Full text link
    Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number nn of items. We answer both questions affirmatively by using an algorithm for compressing numbers due to Frank and Tardos (Combinatorica 1987). This result had been first used by Marx and V\'egh (ICALP 2013) in the context of kernelization. We further illustrate its applicability by giving polynomial kernels also for weighted versions of several well-studied parameterized problems. Furthermore, when parameterized by the different item sizes we obtain a polynomial kernelization for Subset Sum and an exponential kernelization for Knapsack. Finally, we also obtain kernelization results for polynomial integer programs

    Polynomial Kernels for Deletion to Classes of Acyclic Digraphs

    Get PDF
    We consider the problem to find a set X of vertices (or arcs) with |X| <= k in a given digraph G such that D = G-X is an acyclic digraph. In its generality, this is DIRECTED FEEDBACK VERTEX SET or DIRECTED FEEDBACK ARC SET respectively. The existence of a polynomial kernel for these problems is a notorious open problem in the field of kernelization, and little progress has been made. In this paper, we consider both deletion problems with an additional restriction on D, namely that D must be an out-forest, an out-tree, or a (directed) pumpkin. Our main results show that for each of these three restrictions the vertex deletion problem remains NP-hard, but we can obtain a kernel with k^{O(1)} vertices on general digraphs G. We also show that, in contrast to the vertex deletion problem, the arc deletion problem with each of the above restrictions can be solved in polynomial time

    Parameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH

    Get PDF
    The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over F_2, which can be stated as follows: given a generator matrix A and an integer k, determine whether the code generated by A has distance at most k. Here, k is the parameter of the problem. The question of whether k-Even Set is fixed parameter tractable (FPT) has been repeatedly raised in literature and has earned its place in Downey and Fellows\u27 book (2013) as one of the "most infamous" open problems in the field of Parameterized Complexity. In this work, we show that k-Even Set does not admit FPT algorithms under the (randomized) Gap Exponential Time Hypothesis (Gap-ETH) [Dinur\u2716, Manurangsi-Raghavendra\u2716]. In fact, our result rules out not only exact FPT algorithms, but also any constant factor FPT approximation algorithms for the problem. Furthermore, our result holds even under the following weaker assumption, which is also known as the Parameterized Inapproximability Hypothesis (PIH) [Lokshtanov et al.\u2717]: no (randomized) FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only 0.99-satisfiable (where the parameter is the number of variables). We also consider the parameterized k-Shortest Vector Problem (SVP), in which we are given a lattice whose basis vectors are integral and an integer k, and the goal is to determine whether the norm of the shortest vector (in the l_p norm for some fixed p) is at most k. Similar to k-Even Set, this problem is also a long-standing open problem in the field of Parameterized Complexity. We show that, for any p > 1, k-SVP is hard to approximate (in FPT time) to some constant factor, assuming PIH. Furthermore, for the case of p = 2, the inapproximability factor can be amplified to any constant

    Independent Sets near the Lower Bound in Bounded Degree Graphs

    Get PDF
    By Brook\u27s Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number at most Delta is Delta-colorable, and thus it has an independent set of size at least n/Delta. We give an approximate characterization of graphs with independence number close to this bound, and use it to show that the problem of deciding whether such a graph has an independent set of size at least n/Delta+k has a kernel of size O(k)

    On the hardness of learning sparse parities

    Get PDF
    This work investigates the hardness of computing sparse solutions to systems of linear equations over F_2. Consider the k-EvenSet problem: given a homogeneous system of linear equations over F_2 on n variables, decide if there exists a nonzero solution of Hamming weight at most k (i.e. a k-sparse solution). While there is a simple O(n^{k/2})-time algorithm for it, establishing fixed parameter intractability for k-EvenSet has been a notorious open problem. Towards this goal, we show that unless k-Clique can be solved in n^{o(k)} time, k-EvenSet has no poly(n)2^{o(sqrt{k})} time algorithm and no polynomial time algorithm when k = (log n)^{2+eta} for any eta > 0. Our work also shows that the non-homogeneous generalization of the problem -- which we call k-VectorSum -- is W[1]-hard on instances where the number of equations is O(k log n), improving on previous reductions which produced Omega(n) equations. We also show that for any constant eps > 0, given a system of O(exp(O(k))log n) linear equations, it is W[1]-hard to decide if there is a k-sparse linear form satisfying all the equations or if every function on at most k-variables (k-junta) satisfies at most (1/2 + eps)-fraction of the equations. In the setting of computational learning, this shows hardness of approximate non-proper learning of k-parities. In a similar vein, we use the hardness of k-EvenSet to show that that for any constant d, unless k-Clique can be solved in n^{o(k)} time there is no poly(m, n)2^{o(sqrt{k}) time algorithm to decide whether a given set of m points in F_2^n satisfies: (i) there exists a non-trivial k-sparse homogeneous linear form evaluating to 0 on all the points, or (ii) any non-trivial degree d polynomial P supported on at most k variables evaluates to zero on approx. Pr_{F_2^n}[P(z) = 0] fraction of the points i.e., P is fooled by the set of points

    Independent Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time) Approximation Hardnesses

    Full text link
    We present a series of almost settled inapproximability results for three fundamental problems. The first in our series is the subexponential-time inapproximability of the maximum independent set problem, a question studied in the area of parameterized complexity. The second is the hardness of approximating the maximum induced matching problem on bounded-degree bipartite graphs. The last in our series is the tight hardness of approximating the k-hypergraph pricing problem, a fundamental problem arising from the area of algorithmic game theory. In particular, assuming the Exponential Time Hypothesis, our two main results are: - For any r larger than some constant, any r-approximation algorithm for the maximum independent set problem must run in at least 2^{n^{1-\epsilon}/r^{1+\epsilon}} time. This nearly matches the upper bound of 2^{n/r} (Cygan et al., 2008). It also improves some hardness results in the domain of parameterized complexity (e.g., Escoffier et al., 2012 and Chitnis et al., 2013) - For any k larger than some constant, there is no polynomial time min (k^{1-\epsilon}, n^{1/2-\epsilon})-approximation algorithm for the k-hypergraph pricing problem, where n is the number of vertices in an input graph. This almost matches the upper bound of min (O(k), \tilde O(\sqrt{n})) (by Balcan and Blum, 2007 and an algorithm in this paper). We note an interesting fact that, in contrast to n^{1/2-\epsilon} hardness for polynomial-time algorithms, the k-hypergraph pricing problem admits n^{\delta} approximation for any \delta >0 in quasi-polynomial time. This puts this problem in a rare approximability class in which approximability thresholds can be improved significantly by allowing algorithms to run in quasi-polynomial time.Comment: The full version of FOCS 201

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set F⊆E(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set S⊆V(G)S \subseteq V(G), one can in polynomial time find a set F⊆E(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and ∣E(T)∣|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set S⊆V(G)S \subseteq V(G), one can in polynomial time find a set F⊆E(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in ∣C∣|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution
    corecore