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Abstract
By Brook’s Theorem, every n-vertex graph of maximum degree at most ∆ ≥ 3 and clique number
at most ∆ is ∆-colorable, and thus it has an independent set of size at least n/∆. We give an
approximate characterization of graphs with independence number close to this bound, and use
it to show that the problem of deciding whether such a graph has an independent set of size at
least n/∆ + k has a kernel of size O(k).
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1 Introduction

Let ∆ ≥ 3 be an integer and let G be an n-vertex graph of maximum degree at most ∆ that
does not contain a clique of size ∆ + 1. By Brooks’ Theorem [6] G is ∆-colorable, and thus
the size of the largest independent set in G (which we denote by α(G)) is at least n/∆. This
bound is tight, as evidenced by graphs obtained from a disjoint union of cliques of size ∆ by
adding a matching. However, if the bound on the size of the largest clique (which we denote
by ω(G)) is tightened, further improvements are possible.

Albertson, Bollobás and Tucker [1] proved that if a connected graph G of maximum
degree ∆ satisfies ω(G) ≤ ∆ − 1, then α(G) > n/∆, unless ∆ = 4 and G = C2

8 or ∆ = 5
and G = C5 �K2 (see Figure 1(a) and (b)). Under the same assumptions, the bound was
further strengthened by King, Lu and Peng [18], who proved that G has fractional chromatic
number at most ∆− 2

67 , and thus α(G) ≥ n
∆− 2

67
; for particular values of ∆, this bound has

been further improved in [22, 16, 11, 12], and Fajtlowicz [14] gave better bounds for graphs
with smaller clique number.

In this paper, we study the case when ω(G) ≤ ∆ in more detail. How do graphs with
largest independent set close to n/∆ look like? An infinite class of examples can be obtained
by generalizing the construction from the first paragraph: if G contains a subgraph H

isomorphic to the disjoint union of cliques of size ∆ and |V (G) \ V (H)| ≤ k, then clearly
α(G) ≤ |V (H)|/∆+ |V (G)\V (H)| ≤ n/∆+k. For ∆ ≥ 6, we prove an approximate converse
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Figure 1 Non-clique ∆-tight graphs.

to this statement: If max(∆(G), ω(G)) ≤ ∆ and α(G) < n/∆+k, then G contains a subgraph
H isomorphic to the disjoint union of cliques of size ∆ such that |V (G) \ V (H)| < 34∆2k.

For ∆ ∈ {3, 4, 5}, a more technical statement is needed. We say that a graph H is ∆-tight
if

H is a clique on ∆ vertices; or
∆ = 5 and H = C5 �K2 (Figure 1(a)); or
∆ = 4 and H = C2

8 (Figure 1(b)); or
∆ = 4 and H is the graph depicted in Figure 1(c), which we call an extended clique, and
its vertices of degree 3 are its attachments; or,
∆ = 4 and H is the graph depicted in Figure 1(d), which we call an extended double-clique;
or
∆ = 3 and H is one of the graphs depicted in Figure 1(e), which we call diamond necklaces;
or
∆ = 3 and H is one of the graphs depicted in Figure 1(f), which we call Havel necklaces;
or,
∆ = 3 and H is the graph depicted in Figure 1(g), which we call a triangle-dominated
6-cycle.

Observe that if H is ∆-tight, then α(H) = |V (H)|/∆. We say that a graph G0 is ∆-tightly
partitioned if there exists a partition of the vertices of G0 such that each part induces a ∆-
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tight subgraph of G0. Clearly, a ∆-tightly partitioned graph G0 satisfies α(G0) ≤ |V (G0)|/∆.
Our main result now can be stated as follows.

I Theorem 1. Let ∆ ≥ 3 and k ≥ 0 be integers, and let G be an n-vertex graph with
max(∆(G), ω(G)) ≤ ∆. If α(G) < n/∆ + k, then there exists a set X ⊆ V (G) of size less
than 34∆2k such that G−X is ∆-tightly partitioned.

Note that the set X of Theorem 1 can be found in time O(∆2n) without specifying k in
advance (cf. a stronger statement in Lemma 11 below), and that every graph containing
such a set X satisfies α(G) ≤ |V (G)|/∆ + |X|. Hence, we obtain the following algorithmic
consequence.

I Corollary 2. Let ∆ ≥ 3 be an integer, and let G be an n-vertex graph with max(∆(G), ω(G)) ≤
∆. The difference α(G)− n/∆ can be approximated up to factor 34∆2 in time O(∆2n).

Another application of Theorem 1 (or more precisely, its refinement Lemma 11) concerns
fixed-parameter tractability. An algorithmic problem is called fixed-parameter tractable with
respect to a parameter p if there exists a computable function f , a polynomial q, and an
algorithm that solves each input instance Z in time f(p(Z))q(|Z|). This notion has been
influential in the area of computational complexity, giving a plausible approach towards
many otherwise intractable problems [8, 20, 7].

A popular choice of the parameter is the value of the solution; i.e., such fixed-parameter
tractability results show that the solution to the problem can be found quickly if its value
is small. However, in the case of the problem of finding the largest independent set when
restricted to some class of sparse graphs, this parameterization makes little sense – the
problem is fixed-parameter tractable for the trivial (and unhelpful) reason that all large
graphs in the class have large independent sets. In this setting, parameterization by the
excess of the size of the largest independent set over the lower bound for the independence
number in the class is more reasonable.

Let G be a class of graphs, and let f(n) = min{α(G) : G ∈ G, |V (G)| = n}. Let (G, α)-
ATLB (Above Tight Lower Bound) denote the algorithmic problem of deciding, for an n-vertex
graph G ∈ G and an integer k ≥ 0, whether α(G) ≥ f(n) + k. For specific graph classes G,
we are interested in the fixed-parameter tractability of this problem when parameterized by
k, i.e., in finding algorithms for this problem with time complexity f(k)poly(n).

The best-known case of this problem concerns the class P of planar graphs. By the
Four Color Theorem [2, 3], all n-vertex planar graphs have independent sets of size at least
dn/4e, and this lower bound is tight. However, there is not even a polynomial-time algorithm
known to decide whether α(G) > n/4 for an n-vertex planar graph G, and consequently the
complexity of (P, α)-ATLB is wide open [20, 4, 15]. The variant of the problem for planar
triangle-free graphs was solved by Dvořák and Mnich [9]. Relevantly to the current paper,
they also considered the case of planar graphs of maximum degree 4 and showed it to be
fixed-parameter tractable [19, 10]; for both problems, they obtained algorithms with time
complexity 2O(

√
k)n.

As a consequence of our theory, we strengthen the last mentioned result in multiple
directions. Firstly, we can drop the assumption of planarity and relax the condition on the
maximum degree to an arbitrary integer ∆ ≥ 3 (assuming that cliques of size ∆ + 1 are
forbidden – let G∆ denote the class of such graphs). Secondly, we obtain a linear-size kernel
for the problem, i.e., we show that in polynomial time (specifically, O(∆2n)), each instance
of the problem can be reduced to an instance of size O(∆3k).
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28:4 Independent Sets near the Lower Bound in Bounded Degree Graphs

I Corollary 3. There exists an algorithm with time complexity O(∆2n) that, given as an input
an integer ∆ ≥ 3, an n-vertex graph G with max(∆(G), ω(G)) ≤ ∆, and an integer k ≥ 0,
returns an induced subgraph G0 of G with n0 ≤ 114∆3k vertices such that α(G) ≥ n/∆ + k

if and only if α(G0) ≥ n0/∆ + k.

Such an instance can be solved by brute force, leading to a 2O(∆3k) + O(∆2n) algorithm
for (G∆, α)-ATLB. Furthermore, as Robertson et al. [21] showed, an m-vertex planar graph
has tree-width O(

√
m), and thus its largest independent set can be found in time 2O(

√
m).

Hence, for the case of planar graphs of maximum degree 4 previously considered in [19, 10],
we can improve the time complexity to 2O(

√
k) +O(n).

After introducing graph-theoretic results on sizes of independent sets in Section 2, we
prove Theorem 1 and Corollaries 2 and 3 in Section 3.

2 Many vertices not covered by ∆-tight subgraphs

We say that a vertex v ∈ V (G) is ∆-free if v is not contained in any ∆-tight induced subgraph
of G. As a special case, Theorem 1 implies that if G has many ∆-free vertices, then its
largest independent set is much larger than the lower bound n/∆. In this section, we prove
this special case in Lemmas 7 and 9. Let us start by a simple observation.

I Lemma 4. Let ∆ > 0 be an integer and let G be a graph with ∆(G) ≤ ∆, and let K be a
clique of size ∆ in G. Consider one of the following situations:

K contains a vertex v whose degree in G is ∆− 1, and G0 = G− V (K), or
V (G) \ V (K) contains two adjacent vertices u′ and v′ with neighbors in K, and G0 =
G− V (K), or
V (G) \ V (K) contains two distinct non-adjacent vertices u′ and v′ with neighbors in K,
and G0 = G− V (K) + u′v′.

Then α(G) ≥ α(G0) + 1.

Proof. Since ∆(G) ≤ ∆, every vertex of K has at most one neighbor not in K. In the
last two cases, let u and v be the neighbors of u′ and v′ in K, respectively. Consider an
independent set S of G0 of size α(G0).

In the first case, v has no neighbor in S, as all neigbors of v belong to K. In the last
two cases, since u′v′ ∈ E(G0), we can by symmetry assume that v′ 6∈ S. Hence, S ∪ {v} is in
both cases an independent set in G. J

We say that distinct vertices u and v are ∆-adjacent in a graph G if uv 6∈ E(G) and G
contains an induced subgraph H0 with u, v ∈ V (H0) such that H0 + uv is ∆-tight.

For a vertex v, let NG[v] denote the set consisting of v and of the neighbors of v in G, and
for a set S ⊆ V (G), let NG[S] =

⋃
v∈S NG[v]. We say that a set Z ⊆ V (G) is ∆-profitable if

G[Z] contains an independent set S such that NG[S] ⊆ Z and |Z| ≤ ∆|S| − 1. Thus, any
independent set of G− Z can be extended to an independent set in G by adding S, and this
way the size of the independent set increases by slightly more than |Z|/∆.

I Lemma 5. Let ∆ ≥ 4 be an integer and let G be a graph with ∆(G) ≤ ∆. Let S =
{v1, v2, v3} be a subset of vertices of G. If G contains no ∆-profitable set of size at most
∆ + 10, then the vertices of S are not pairwise ∆-adjacent.

Proof. Suppose for a contradiction that vertices of S are pairwise ∆-adjacent, and in
particular S is an independent set. For 1 ≤ i < j ≤ 3, let Hij be the induced subgraph of G
showing ∆-adjacency of vi and vj .
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Suppose first that all integers i and j such that 1 ≤ i < j ≤ 3 satisfy |NG[vi] ∩NG[vj ]| ≥
∆− 2. Let Z = NG[S]; by the principle of inclusion and exclusion we have

|Z| =
3∑

i=1
|NG[vi]| −

∑
1≤i<j≤3

|NG[vi] ∩NG[vj ]|+

∣∣∣∣∣
3⋂

i=1
NG[vi]

∣∣∣∣∣
≤

3∑
i=1
|NG[vi]| −

3∑
i=2
|NG[v1] ∩NG[vi]|

≤ 3(∆ + 1)− 2(∆− 2) = ∆ + 7 ≤ 3∆− 1 = ∆|S| − 1.

It follows that Z is ∆-profitable, which is a contradiction.
Hence, we can assume that say |NG[v1]∩NG[v2]| ≤ ∆− 3, and in particular H ′12 = H12 +

v1v2 is not a clique of size ∆. Consequently, ∆ ∈ {4, 5}. Note that H ′12 is not an extended
clique with attachments v1 and v2, as otherwise we would have |NG[v1]∩NG[v2]| = 2 = ∆−2.

If H ′12 is not an extended double-clique, then H ′12 is C2
8 , C5 �K2, or the extended clique,

and |V (H12)| = 2∆. A vertex of V (H12) may only have neighbors outside of V (H12) in
G if its degree in H ′12 is less than ∆, or if it is one of v1 and v2. Using this observation,
a case analysis shows that H12 contains an independent set S′ of size three including v1
and v2, such that |NG[S′] \ V (H12)| ≤ 7 − ∆. Letting Z ′ = NG[S′] ∪ V (H12), we have
|Z ′| ≤ 2∆ + (7−∆) = ∆ + 7 ≤ 3∆− 1 = ∆|S′| − 1. Hence, Z ′ is ∆-profitable, which is a
contradiction.

If H ′12 is an extended double-clique (and ∆ = 4), then |V (H12)| = 12 and H12 contains an
independent set S′ of size 4 (including v1 and v2) such that |NG[S′] \ V (H12)| ≤ 2. Letting
Z ′ = NG[S′] ∪ V (H12), we have |Z ′| ≤ 14 = ∆ + 10 < 4∆ − 1 = ∆|S′| − 1. Again, Z ′ is
∆-profitable, which is a contradiction. J

King, Lu and Peng [18] proved that every graph G of maximum degree at most ∆ ≥ 4
and with no ∆-tight induced subgraph has fractional chromatic number at most ∆− 2/67.
This gives a lower bound on the independence number of graphs whose vertices are all ∆-free.

I Corollary 6. Let ∆ ≥ 4 be an integer, and let G be an n-vertex graph of maximum degree
at most ∆. If G contains no ∆-tight induced subgraph, then α(G) ≥ n

∆ + 1
34∆2n.

Proof. Since G has fractional chromatic number at most 67∆−2
67 , we have

α(G) ≥ 67n
67∆− 2 = (67− 2/∆)n+ 2n/∆

67∆− 2

= n

∆ + 2n
∆(67∆− 2) ≥

n

∆ + n

34∆2 . J

We now extend this result to graphs with only some ∆-free vertices.

I Lemma 7. Let ∆ ≥ 4 be an integer, and let G be an n-vertex graph with max(∆(G), ω(G)) ≤
∆. If G contains at least m ∆-free vertices, then α(G) ≥ n

∆ + 1
34∆2m.

Proof. We proceed by induction, and thus we can assume that the claim holds for all graphs
with less than n vertices.

If H is a ∆-tight induced subgraph of G that is not a clique, then observe that α(H) = t

for some t ∈ {2, 3} and that H has an independent set of size t whose closed neighborhood in
G is contained in V (H). Consequently α(G) = α(G− V (H)) + t. Furthermore, |V (H)| = t∆
and G − V (H) has at least m ∆-free vertices, and thus α(G) = α(G − V (H)) + t ≥

STACS 2017
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n−t∆
∆ + 1

34∆2m+ t = n
∆ + 1

34∆2m by the induction hypothesis. Hence, we can without loss of
generality assume that the only ∆-tight induced subgraphs of G are cliques of size ∆.

Suppose that G contains a ∆-profitable set Z of size at most ∆ + 10, and let S be the
corresponding independent set. Note that the number of ∆-free vertices of G− Z is at least
m− |Z|, and thus

α(G) ≥ α(G− Z) + |S|

≥ n− |Z|
∆ + 1

34∆2 (m− |Z|) + |S|

= n

∆ + 1
34∆2m+ ∆|S| − |Z| − |Z|/(34∆)

∆ .

Since Z is ∆-profitable, we have ∆|S| − |Z| ≥ 1 > |Z|
34∆ , and thus the inequality we seek

holds.
If ω(G) < ∆, then all vertices of G are ∆-free and the claim follows from Corollary 6. It

remains to consider the case that G contains a clique K of size ∆, but does not contain any
∆-profitable sets with at most ∆ + 10 vertices. Let S be the set of vertices outside K with a
neighbor in K. If K contains a vertex whose degree in G is ∆−1, or if S is not an independent
set, then note that G− V (K) contains at least m ∆-free vertices, and by Lemma 4 and the
induction hypothesis, we have α(G) ≥ α(G− V (K)) + 1 ≥ n−∆

∆ + 1
34∆2m+ 1 = n

∆ + 1
34∆2m.

Hence, suppose that S is an independent set and each vertex of K has a neighbor in S (and
thus there are precisely ∆ edges between V (K) and S).

Since ω(G) ≤ ∆, we have |S| ≥ 2. If some two vertices u, v ∈ S are not ∆-adjacent in
G − V (K), then G0 = G − V (K) + uv has at least m ∆-free vertices, and the inequality
follows again by Lemma 4 and the induction hypothesis applied to G0. Hence, suppose that
the vertices of S are pairwise ∆-adjacent. By Lemma 5, we have |S| = 2. Since the vertices
of S are ∆-adjacent in G− V (K), they have degree at least ∆− 2 in G− V (K). Since their
degree in G is at most ∆, the number of edges between V (K) and S is at most 4. Therefore,
there are exactly 4 = ∆ edges between V (K) and S and both vertices u and v of S have
degree exactly ∆− 2 in G− V (K).

Let H be the 4-tight induced subgraph in G − V (K) + uv containing the edge uv.
Since both u and v have degree at most ∆ − 1 in H, we conclude that H is either the
clique on 4 vertices or the extended clique with attachments u and v. In the former case,
H ′ = G[V (K) ∪ V (H)] is an extended clique with the common neighbors of u and v in H
as attachments. In the latter case, H ′ = G[V (K) ∪ V (H)] is an extended double-clique.
In both cases, H ′ is a 4-tight induced subgraph of G distinct from a clique, which is a
contradiction. J

Next, we prove a similar claim for graphs of maximum degree at most 3. Staton [22]
proved that every subcubic triangle-free n-vertex graph has independence number at least
5n/14. In particular, we have the following.

I Corollary 8. Let G be an n-vertex graph of maximum degree at most 3. If G contains no
3-tight induced subgraph, then α(G) ≥ n

3 + 1
42n.

We aim to generalize this result to graphs containing 3-tight subgraphs. In comparison
with Lemma 7, we will actually need to strengthen the claim even more, obtaining an increase
in the size of the independent set also for some of the vertices contained in triangles.

A diamond is an induced subgraph isomorphic to a clique on 4 vertices minus one edge.
A necklace is either a diamond necklace or a Havel necklace. A diamond in a graph G is free
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if it is not contained in an induced subgraph of G isomorphic to a necklace. For a subcubic
graph G, let m(G) = m1 + m2, where m1 is the number of 3-free vertices of G and m2 is
the number of free diamonds of G. Note that the same bound was obtained in [17] under
more restrictive assumptions (only for diamond-free graphs without Havel necklaces and
triangle-dominated 6-cycles).

I Lemma 9. If G is an n-vertex graph with max(∆(G), ω(G)) ≤ 3, then α(G) ≥ n
3 + 1

42m(G).

Proof. We proceed by induction, and thus we can assume that the claim holds for all graphs
with less than n vertices.

If H is an induced subgraph of G isomorphic to a necklace or a triangle-dominated
6-cycle, then observe that t = α(H) ∈ {2, 3, 4} and H has an independent set of size t
whose closed neighborhood in G is contained in V (H). Therefore, α(G) = α(G− V (H)) + t.
Furthermore, no vertex of V (H) is 3-free or contained in a free diamond of G, and thus
m(G− V (H)) ≥ m(G). Observe that |V (H)| = 3t, and hence α(G) = α(G− V (H)) + t ≥
n−3t

3 + 1
42m(G − V (H)) + t ≥ n

3 + 1
42m(G) by the induction hypothesis. Hence, we can

without loss of generality assume that the only 3-tight induced subgraphs of G are triangles.
Suppose that H is a diamond in G, which is necessarily free. Let G′ be obtained from G

by contracting all vertices of H into a single vertex v. Observe that v has degree at most 2
in G′, and thus G′ is K4-free. If v were contained in either a necklace or a triangle in G′,
then H would be a part of a necklace in G, contradicting the conclusion of the previous
paragraph. Consequently, we replaced a free diamond H of G by a 3-free vertex v in G′,
and thus m(G′) ≥ m(G). Moreover, for every independent set S′ in G′ there exists an
independent set S in G such that |S| = |S′|+ 1 (if v ∈ S′, we can add the two non-adjacent
vertices of H to S instead; if v 6∈ S′, then we can add one of the vertices whose degree in H
is 3 to S). Hence, α(G) ≥ α(G′) + 1 ≥ n−3

3 + 1
42m(G′) + 1 ≥ n

3 + 1
42m(G). Therefore, we

can without loss of generality assume that G is diamond-free.
If G is triangle-free, then α(G) ≥ n

3 + 1
42n = n

3 + 1
42m(G) by Corollary 8. Hence, suppose

that H is a triangle in G, with vertices v1, v2, and v3. If say v1 has degree two in G, then
every independent set in G− V (H) can be extended to an independent set in G by including
v1. Moreover, none of the vertices in V (H) is 3-free or in a free diamond, which gives
m(G− V (H)) ≥ m(G). Hence, α(G) ≥ α(G− V (H)) + 1 ≥ n−3

3 + 1
42m(G− V (H)) + 1 ≥

n
3 + 1

42m(G). Therefore, we can without loss of generality assume that V (H) contains only
vertices of degree three.

For i ∈ {1, 2, 3}, let ui denote the neighbor of vi not in V (H). Since G is diamond-
free, ui and uj are distinct for all 1 ≤ i < j ≤ 3. If ui is adjacent to uj for some
1 ≤ i < j ≤ 3, then Lemma 4 and the induction hypothesis give α(G) ≥ α(G− V (H)) + 1 ≥
n−3

3 + 1
42m(G − V (H)) + 1 ≥ n

3 + 1
42m(G). Hence, assume that U = {u1, u2, u3} is an

independent set in G.
Suppose that ui and uj have no common neighbor for some 1 ≤ i < j ≤ 3. If ui is not

3-adjacent to uj in G, then let G′ be the graph obtained from G− V (H) by adding the edge
uiuj . We have m(G) ≥ m(G′), and Lemma 4 together with the induction hypothesis give
α(G) ≥ α(G′)+1 ≥ n−3

3 + 1
42m(G′)+1 ≥ n

3 + 1
42m(G). Hence, we can assume that ui and uj

are 3-adjacent in G. Since G is diamond-free and ui and uj do not have a common neighbor,
we conclude that G contains an induced subgraph H0 containing ui and uj such that H0+uiuj

is isomorphic to the diamond-free Havel necklace or the triangle-dominated 6-cycle, and G
contains a subgraph H1 isomorphic to a graph that is either depicted in Figure 2 or obtained
from one of the depicted graphs by identifying a vertex of degree 1 with another vertex
of degree at most 2. Note that |V (H1)| ≤ 14, and as shown in the figure, H1 contains an
independent set of size 5 whose closed neighborhood in G is contained in V (H1). Since at most
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Figure 2 Subgraphs arising from a Havel necklace or a triangle-dominated 6-cycle.
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x12
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Figure 3 Cases in Lemma 9.

6 vertices of V (H1) are 3-free in G, we have m(G− V (H1)) ≥ m(G)− 6. Together with the
induction hypothesis, we obtain α(G) ≥ α(G−V (H1)) + 5 ≥ n−14

3 + 1
42m(G−V (H1)) + 5 ≥

n+1
3 + 1

42 (m(G)− 6) > n
3 + 1

42m(G).
Therefore, we can assume that ui and uj have a common neighbor for all 1 ≤ i < j ≤ 3.

There are two cases – either these common neighbors are pairwise different, or there exists a
common neighbor of all vertices of U . We first consider the case that there exists a vertex x
adjacent to u1, u2, and u3. We distinguish two subcases.

The first subcase is that either one of vertices of U has degree two (see Figure 3(a)),
or two vertices of U have a common neighbor distinct from x (see Figure 3(b)), and
consequently |NG[U ]| ≤ 9. If |NG[U ]| ≤ 8, then let Z = NG[U ]. If |NG[U ]| = 9, then let
Z = NG[U ] \ {y}, where y is a vertex of NG[U ] \ (V (H) ∪ U) with only one neighbor in
U . Note that |Z| ≤ 8 and at most 5 vertices of Z are 3-free in G, and thus m(G− Z) ≥
m(G)− 5. Furthermore, observe that G[Z] contains an independent set U ′ of size 3 such
that NG[U ′] ⊆ Z. Hence, α(G) ≥ α(G′) + 3 ≥ n−8

3 + 1
42 (m(G)− 5) + 3 > n

3 + 1
42m(G).

The second subcase is that |NG[U ]| = 10, and thus the vertices of U have pairwise distinct
neighbors not contained in V (H) ∪ {x}. For 1 ≤ i ≤ 3, let yi denote the neighbor of
ui distinct from vi and x, see Figure 3(c). Let G′ be the graph obtained from G by
removing the 8 vertices of Y = V (H) ∪ U ∪ {x, y3} and adding the edge y1y2 if it is not
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already present (since G is diamond-free, this does not create K4). All vertices of G′
that are 3-free in G are also 3-free in G′, unless they belong to a triangle, a necklace, or
a triangle-dominated 6-cycle containing the edge y1y2. Note that at most one necklace or
triangle-dominated 6-cycle Q of G′ contains the edge y1y2 (only the 6-vertex diamond
necklace can intersect another necklace, and this situation cannot arise since G is diamond-
free). Furthermore, all but at most 9 vertices of V (Q) are contained in a triangle in G,
and at most 5 vertices of Y are 3-free in G. Consequently m(G′) ≥ m(G)− 14. Consider
any independent set S of G′. Since y1y2 ∈ E(G′), we can by symmetry assume that
y2 6∈ S. Hence, S ∪ {v1, u2, u3} is an independent set in G. By the induction hypothesis,
this gives α(G) ≥ α(G′) + 3 ≥ n−8

3 + 1
42m(G′) + 3 ≥ n+1

3 + 1
42 (m(G)− 14) = n

3 + 1
42m(G).

Secondly, let us consider the case that there is no common neighbor of all vertices of
U . For 1 ≤ i < j ≤ 3, let xij denote a common neighbor of ui and uj , and observe that
x12, x13, and x23 are three distinct vertices. Since G does not contain a Havel necklace as
an induced subgraph, the set {x12, x13, x23} is independent in G. Let G′ be obtained from
G−NG[V (H)] by identifying x12, x13, and x23 into a new vertex x. Since G does not contain
a triangle-dominated 6-cycle, G′ is K4-free. All vertices of G′ that are 3-free in G are also
3-free in G′, unless they belong to a triangle, a necklace, or a triangle-dominated 6-cycle
containing x. Since G is diamond-free, x is contained in at most one such subgraph of G′, and
at most 8 vertices of this subgraph other than x are 3-free in G. We have |V (G)|−|V (G′)| = 8,
but the vertices of H are not 3-free in G. Consequently, m(G′) ≥ m(G)− 14. Let S be an
independent set in G′. If x ∈ S then (S \ x) ∪ {x12, x13, x23, v1} is an independent set of
G, see Figure 3(d). If x 6∈ S then S ∪ {u1, u2, u3} is an independent set of G. This gives
α(G) ≥ α(G′) + 3 ≥ n−8

3 + 1
42m(G′) + 3 ≥ n+1

3 + 1
42 (m(G)− 14) = n

3 + 1
42m(G). J

3 Proofs of the main results

We need the following corollary of the list-coloring version of Brook’s theorem [5, 13].

I Lemma 10 ([5, 13]). Let L be a list assignment for a graph G such that |L(v)| ≥ deg(v)
for every v ∈ V (G). If G is not L-colorable, then G contains a clique or an odd cycle K
such that all but at most one vertex of K have lists of size δ(K) = ∆(K).

A set Z ⊆ V (G) is ∆-free if either ∆ > 3 and all vertices of Z are ∆-free, or ∆ = 3 and
Z can be partitioned so that each part either induces a free diamond or contains only 3-free
vertices. We say that G is K∆-partitioned if there exists a partition of the vertices of G
such that each part induces a clique of size ∆. We say that a subset Z of vertices of G is
∆-profitably nibbled if there exists a partition Z1, . . . , Zr of Z such that for a = 1, . . . , r, the
set Za is ∆-profitable in G−

⋃a−1
i=1 Zi and |Za| ≤ ∆ + 7.

We are now ready to prove our main decomposition result.

I Lemma 11. There exists an algorithm with time complexity O(∆2n) that, given as an
input an integer ∆ ≥ 3 and an n-vertex graph G with max(∆(G), ω(G)) ≤ ∆, returns a
partition of vertices of G to sets A, B, C, and D, such that

G[A] is ∆-tightly partitioned,
G[B] is K∆-partitioned and |B| ≤ 3∆(|C|+ |D|),
C is ∆-profitably nibbled,
D is ∆-free in G− C, and
α(G) = α(G[B ∪ C ∪D]) + |A|/∆.

STACS 2017
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Figure 4 Set Y for ∆ = 3 in Lemma 11.

A0 A1 A3 B C D

Figure 5 Partition of G in Lemma 11 for ∆ = 4.

Proof. See Figures 5 and 6 for an illustration of the sets that we construct. Each of the
following steps can be easily done in time O(∆2n):

Initialize C = ∅, and while there exists a set Y ⊆ V (G) \ C such that G[Y ] is isomorphic
to

if ∆ ≥ 4, the clique on ∆ + 1 vertices minus one edge, or
if ∆ = 3, two diamond necklaces that share an edge or a diamond necklace sharing an
edge with a triangle (see Figure 4),

add NG−C [Y ] to C (note that |NG−C [Y ]| ≤ max(∆ + 3, 10) ≤ ∆ + 7 and NG−C [Y ] is
∆-profitable in C).
If ∆ ≤ 5, find all connected components of G− C of size at most 4∆ that are ∆-tight,
and let A0 be the union of their sets of vertices; otherwise, let A0 = ∅.
If ∆ = 4, find all subgraphs of G− (C ∪A0) isomorphic to an extended clique (all these
subgraphs are necessarily vertex-disjoint, and vertex-disjoint from all cliques of size 4
not fully contained in the subgraph), and let A1 be the union of their sets of vertices;
otherwise, let A1 = ∅.
If ∆ = 3, find all subgraphs of G− (C ∪A0) isomorphic to a necklace (all these subgraphs
are necessarily vertex-disjoint and vertex-disjoint from all triangles not fully contained
in the subgraph, by the choice of C), and let A2 be the union of their sets of vertices;
otherwise, let A2 = ∅.
Let D be the set of vertices of G− (A0 ∪A1 ∪A2 ∪ C) that

if ∆ ≥ 4 are not contained in cliques of size ∆, and
if ∆ = 3 are not contained in cliques of size ∆ or are contained in diamonds.

Let A′3 = V (G) \ (A0 ∪A1 ∪A2 ∪ C ∪D).

Note that since ∆(G) ≤ ∆, the choice of C and D ensures that any two cliques of size ∆
in G[A′3] are vertex-disjoint, and thus A′3 is K∆-partitioned. Next, perform the following
procedure: initialize B = ∅, and as long as there exists a clique K of size ∆ in G[A′3] such
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A0 A2 A3 B C D

Figure 6 Partition of G in Lemma 11 for ∆ = 3.

that at least ∆− 1 vertices of K have neighbors in B ∪ C ∪D, remove V (K) from A′3 and
add it to B; let A3 denote the set obtained from A′3 by performing this procedure. Note that
each step of the procedure decreases the number of edges between A′3 and B ∪ C ∪D by at
least ∆− 2, and the number of edges going out of |C ∪D| is at most ∆(|C|+ |D|), and thus
|B| ≤ ∆2

∆−2 (|C|+ |D|) ≤ 3∆(|C|+ |D|).
Let A = A0 ∪ A1 ∪ A2 ∪ A3. Each ∆-tight graph H satisfies α(H) = |V (H)|/∆,

and since A is ∆-tightly partitioned, clearly α(G[A]) ≤ |A|/∆. It follows that α(G) ≤
α(G[B ∪ C ∪D]) + |A|/∆.

Conversely, consider any independent set S in G[B ∪C ∪D]. Let L be the assignment of
lists to vertices of A defined by L(v) = {1, . . . ,∆} if v has no neighbor in B ∪ C ∪D and
L(v) = {2, . . . ,∆} otherwise. Note that G[A] contains no clique K of size ∆ such that all
but at most one vertex of K have lists of size ∆ − 1, as otherwise we would have moved
K to B. Furthermore, if ∆ = 3, G[A] contains no odd cycle of length at least 5 with all
but one vertices having list of size 2, as otherwise G[A] would not be 3-tightly partitioned.
Hence, Lemma 10 implies that G[A] is L-colorable. Each ∆-tight subgraph H of G[A]
satisfies α(H) ≤ |V (H)|/∆, and since we are using exactly ∆ colors, H contains |V (H)|/∆
vertices of each color. Since A is ∆-tightly partitioned, the set S′ of vertices of color 1
has size |A|/∆. Hence, S ∪ S′ is an independent set in G of size |S| + |A|/∆. Therefore,
α(G) = α(G[B ∪ C ∪D]) + |A|/∆. J

Next, we show that if G does not contain independent set much larger than the lower
bound n/∆, then the sets C and D (and thus also B) are small.

I Lemma 12. Let ∆ ≥ 3 be an integer and k ≥ 0 a rational number, let G be an n-vertex
graph with max(∆(G), ω(G)) ≤ ∆, and let A,B,C,D be a partition of V (G) as in Lemma 11.
If |C|+ |D| ≥ 34∆2k, then α(G) ≥ n/∆ + k and we can in time O(∆2n) find an induced
subgraph G0 of G with n0 ≤ 34∆2dke vertices such that α(G0) ≥ n0/∆ + k.

Proof. Let C1, . . . , Cr be a partition of C showing that C is ∆-profitably nibbled. For
a = 1, . . . , r + 1 let Ga = G −

⋃a−1
i=1 Ci. For 1 ≤ a ≤ r, we have |Ca| ≤ ∆ + 7 and

∆ · (α(Ga)− α(Ga+1)) ≥ |Ca|+ 1.
Since ∆ ≥ 3, we have |Ca| ≤ ∆ + 7 ≤ 34∆. Hence |C| ≤ r34∆. Moreover, ∆ · (α(G)−
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α(G− C)) ≥ |C|+ r, and thus by Lemmas 7 and 9,

α(G) ≥ |C|+ r

∆ + α(G− C) ≥ |C|+ r

∆ + n− |C|
∆ + |D|

34∆2

= n

∆ + r

∆ + |D|
34∆2 = n

∆ + r34∆
34∆2 + |D|

34∆2

≥ n

∆ + |C|+ |D|34∆2 ≥ n/∆ + k.

The graph G0 can be defined as G0 = G[C1∪. . .∪Cd∆ke] if r ≥ ∆k, and as G0 = G[C∪D0]
for a set D0 ⊆ D of size d34∆2ke − |C| otherwise. This can be computed in O(∆2n) since
the partition of V (G) to A,B,C,D can be computed in O(∆2n) by Lemma 11. J

Finally, we are ready to prove the results stated in the introduction.

Proof of Theorem 1. Compute the partition A,B,C,D of V (G) as in Lemma 11. By
Lemma 12, |C| + |D| < 34∆2k, and since G[A ∪ B] is ∆-tightly partitioned, we can set
X = C ∪D. J

Proof of Corollary 2. Compute the partition A,B,C,D of V (G) as in Lemma 11, let

k = |C|+ |D|34∆2 ,

and return that α(G)− n/∆ ≥ k. That this is a true statement follows from Lemma 12.
On the other hand, since G[A∪B] is ∆-tightly partitioned, α(G) ≤ α(G[C ∪D]) + (|A|+

|B|)/∆ ≤ |C ∪D|+ n/∆, and thus α(G)− n/∆ ≤ |C ∪D| = 34∆2k. Hence, the algorithm
approximates α(G)− n/∆ up to the factor 34∆2. J

Proof of Corollary 3. Compute the partition A,B,C,D of V (G) as in Lemma 11. If |C|+
|D| ≥ 34∆2k, then return the induced subgraph G0 obtained in Lemma 12. If |C| +
|D| < 34∆2k, then |B| ≤ 3∆(|C| + |D|) < 102∆3k by the statement of Lemma 12, and
|B∪C∪D| < 114∆3k. By Lemma 11, the graph G0 = G[B∪C∪D] satisfies α(G0)−n0/∆ =
α(G)− n/∆. J
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