11 research outputs found

    EvLog: Evolving Log Analyzer for Anomalous Logs Identification

    Full text link
    Software logs record system activities, aiding maintainers in identifying the underlying causes for failures and enabling prompt mitigation actions. However, maintainers need to inspect a large volume of daily logs to identify the anomalous logs that reveal failure details for further diagnosis. Thus, how to automatically distinguish these anomalous logs from normal logs becomes a critical problem. Existing approaches alleviate the burden on software maintainers, but they are built upon an improper yet critical assumption: logging statements in the software remain unchanged. While software keeps evolving, our empirical study finds that evolving software brings three challenges: log parsing errors, evolving log events, and unstable log sequences. In this paper, we propose a novel unsupervised approach named Evolving Log analyzer (EvLog) to mitigate these challenges. We first build a multi-level representation extractor to process logs without parsing to prevent errors from the parser. The multi-level representations preserve the essential semantics of logs while leaving out insignificant changes in evolving events. EvLog then implements an anomaly discriminator with an attention mechanism to identify the anomalous logs and avoid the issue brought by the unstable sequence. EvLog has shown effectiveness in two real-world system evolution log datasets with an average F1 score of 0.955 and 0.847 in the intra-version setting and inter-version setting, respectively, which outperforms other state-of-the-art approaches by a wide margin. To our best knowledge, this is the first study on tackling anomalous logs over software evolution. We believe our work sheds new light on the impact of software evolution with the corresponding solutions for the log analysis community

    Anomaly Detection in High Performance Computers: A Vicinity Perspective

    Full text link
    In response to the demand for higher computational power, the number of computing nodes in high performance computers (HPC) increases rapidly. Exascale HPC systems are expected to arrive by 2020. With drastic increase in the number of HPC system components, it is expected to observe a sudden increase in the number of failures which, consequently, poses a threat to the continuous operation of the HPC systems. Detecting failures as early as possible and, ideally, predicting them, is a necessary step to avoid interruptions in HPC systems operation. Anomaly detection is a well-known general purpose approach for failure detection, in computing systems. The majority of existing methods are designed for specific architectures, require adjustments on the computing systems hardware and software, need excessive information, or pose a threat to users' and systems' privacy. This work proposes a node failure detection mechanism based on a vicinity-based statistical anomaly detection approach using passively collected and anonymized system log entries. Application of the proposed approach on system logs collected over 8 months indicates an anomaly detection precision between 62% to 81%.Comment: 9 pages, Submitted to the 18th IEEE International Symposium on Parallel and Distributed Computin

    Time machine : generative real-time model for failure (and lead time) prediction in HPC systems

    Get PDF
    High Performance Computing (HPC) systems generate a large amount of unstructured/alphanumeric log messages that capture the health state of their components. Due to their design complexity, HPC systems often undergo failures that halt applications (e.g., weather prediction, aerodynamics simulation) execution. However, existing failure prediction methods, which typically seek to extract some information theoretic features, fail to scale both in terms of accuracy and prediction speed, limiting their adoption in real-time production systems. In this paper, differently from existing work and inspired by current transformer-based neural networks which have revolutionized the sequential learning in the NLP tasks, we propose a novel scalable log-based, self-supervised model (i.e., no need for manual labels), called Time Machine1 , that predicts (i) forthcoming log events (ii) the upcoming failure and its location and (iii) the expected lead time to failure. Time Machine is designed by combining two stacks of transformer-decoders, each employing the selfattention mechanism. The first stack addresses the failure location by predicting the sequence of log events and then identifying if a failure event is part of that sequence. The lead time to predicted failure is addressed by the second stack. We evaluate Time machine on four real-world HPC log datasets and compare it against three state-of-the-art failure prediction approaches. Results show that Time Machine significantly outperforms the related works on Bleu, Rouge, MCC, and F1-score in predicting forthcoming events, failure location, failure lead-time, with higher prediction speed

    Clairvoyant : a log-based transformer-decoder for failure prediction in large-scale systems

    Get PDF
    System failures are expected to be frequent in the exascale era such as current Petascale systems. The health of such systems is usually determined from challenging analysis of large amounts of unstructured & redundant log data. In this paper, we leverage log data and propose Clairvoyant, a novel self-supervised (i.e., no labels needed) model to predict node failures in HPC systems based on a recent deep learning approach called transformer-decoder and the self-attention mechanism. Clairvoyant predicts node failures by (i) predicting a sequence of log events and then (ii) identifying if a failure is a part of that sequence. We carefully evaluate Clairvoyant and another state-of-the-art failure prediction approach – Desh, based on two real-world system log datasets. Experiments show that Clairvoyant is significantly better: e.g., it can predict node failures with an average Bleu, Rouge, and MCC scores of 0.90, 0.78, and 0.65 respectively while Desh scores only 0.58, 0.58, and 0.25. More importantly, this improvement is achieved with faster training and prediction time, with Clairvoyant being about 25× and 15× faster than Desh respectively

    Improving efficiency and resilience in large-scale computing systems through analytics and data-driven management

    Full text link
    Applications running in large-scale computing systems such as high performance computing (HPC) or cloud data centers are essential to many aspects of modern society, from weather forecasting to financial services. As the number and size of data centers increase with the growing computing demand, scalable and efficient management becomes crucial. However, data center management is a challenging task due to the complex interactions between applications, middleware, and hardware layers such as processors, network, and cooling units. This thesis claims that to improve robustness and efficiency of large-scale computing systems, significantly higher levels of automated support than what is available in today's systems are needed, and this automation should leverage the data continuously collected from various system layers. Towards this claim, we propose novel methodologies to automatically diagnose the root causes of performance and configuration problems and to improve efficiency through data-driven system management. We first propose a framework to diagnose software and hardware anomalies that cause undesired performance variations in large-scale computing systems. We show that by training machine learning models on resource usage and performance data collected from servers, our approach successfully diagnoses 98% of the injected anomalies at runtime in real-world HPC clusters with negligible computational overhead. We then introduce an analytics framework to address another major source of performance anomalies in cloud data centers: software misconfigurations. Our framework discovers and extracts configuration information from cloud instances such as containers or virtual machines. This is the first framework to provide comprehensive visibility into software configurations in multi-tenant cloud platforms, enabling systematic analysis for validating the correctness of software configurations. This thesis also contributes to the design of robust and efficient system management methods that leverage continuously monitored resource usage data. To improve performance under power constraints, we propose a workload- and cooling-aware power budgeting algorithm that distributes the available power among servers and cooling units in a data center, achieving up to 21% improvement in throughput per Watt compared to the state-of-the-art. Additionally, we design a network- and communication-aware HPC workload placement policy that reduces communication overhead by up to 30% in terms of hop-bytes compared to existing policies.2019-07-02T00:00:00

    Machine learning-based performance analytics for high-performance computing systems

    Full text link
    High-performance Computing (HPC) systems play pivotal roles in societal and scientific advancements, executing up to quintillions of calculations every second. As we shift towards exascale computing and beyond, modern HPC systems emphasize resource sharing, where various applications share processors, memory, networks, and other components. While this sharing enhances power efficiency, it complicates performance prediction and introduces significant variations in application running times, affecting overall system efficiency and operational costs. HPC systems utilize monitoring frameworks that gather numerical telemetry data on resource usage to track operational status. Given the massive complexity and volume of this data, manual analysis is often daunting and inefficient. Machine learning (ML) techniques offer automated performance anomaly diagnosis, but the transition from successful research outcomes to production-scale deployment encounters two critical obstacles. First, the scarcity of labeled training data (i.e., identifying healthy and anomalous runs) in telemetry datasets makes it hard to train these ML systems effectively. Second, runtime analysis, required for providing timely detection and diagnosis of performance anomalies, demands seamless integration of ML-based methods with the monitoring frameworks. This thesis claims that ML-based performance analytics frameworks that leverage a limited amount of labeled data and ensure runtime analysis can achieve sufficient anomaly diagnosis performance for production HPC systems. To support this claim, we undertake ML-based performance analytics on two fronts. First, we design and develop novel frameworks for anomaly diagnosis that leverage semi-supervised or unsupervised learning techniques to reduce the need for extensive labeled data. Second, we design a simple yet adaptable architecture to enable deployment and demonstrate that these frameworks are feasible for runtime analysis. This thesis makes the following specific contributions: First, we design a semi-supervised anomaly diagnosis framework, Proctor, which operates with hundreds of labeled samples (in contrast to tens of thousands) and a vast number of unlabeled samples. We show that Proctor outperforms the fully supervised baseline by up to 11% in F1-score for diagnosing anomalies when there are approximately 30 labeled samples. We then reframe the problem and introduce ALBADRoss to determine which samples should be labeled by experts to maximize the model performance using active learning. On a production HPC dataset, ALBADRoss achieves a 0.95 F1-score (the same score that a fully-supervised framework achieved) and near-zero false alarm rate using 24x fewer labeled samples. Finally, with Prodigy, we solve the anomaly detection problem but with a focus on deployment. Prodigy is designed for detecting performance anomalies on compute nodes using unsupervised learning. Our framework achieves a 0.95 F1-score in detecting anomalies on a production HPC system telemetry dataset. We also design a simple and adaptable software architecture and deploy it on a 1488-node production HPC system, detecting real-world performance anomalies with 88% accuracy

    Automating telemetry- and trace-based analytics on large-scale distributed systems

    Get PDF
    Large-scale distributed systems---such as supercomputers, cloud computing platforms, and distributed applications---routinely suffer from slowdowns and crashes due to software and hardware problems, resulting in reduced efficiency and wasted resources. These large-scale systems typically deploy monitoring or tracing systems that gather a variety of statistics about the state of the hardware and the software. State-of-the-art methods either analyze this data manually, or design unique automated methods for each specific problem. This thesis builds on the vision that generalized automated analytics methods on the data sets collected from these complex computing systems provide critical information about the causes of the problems, and this analysis can then enable proactive management to improve performance, resilience, efficiency, or security significantly beyond current limits. This thesis seeks to design scalable, automated analytics methods and frameworks for large-scale distributed systems that minimize dependency on expert knowledge, automate parts of the solution process, and help make systems more resilient. In addition to analyzing data that is already collected from systems, our frameworks also identify what to collect from where in the system, such that the collected data would be concise and useful for manual analytics. We focus on two data sources for conducting analytics: numeric telemetry data, which is typically collected from operating system or hardware counters, and end-to-end traces collected from distributed applications. This thesis makes the following contributions in large-scale distributed systems: (1) Designing a framework for accurately diagnosing previously encountered performance variations, (2) designing a technique for detecting (unwanted) applications running on the systems, (3) developing a suite for reproducing performance variations that can be used to systematically develop analytics methods, (4) designing a method to explain predictions of black-box machine learning frameworks, and (5) constructing an end-to-end tracing framework that can dynamically adjust instrumentation for effective diagnosis of performance problems.2021-09-28T00:00:00

    The terminator : an AI-based framework to handle dependability threats in large-scale distributed systems

    Get PDF
    With the advent of resource-hungry applications such as scientific simulations and artificial intelligence (AI), the need for high-performance computing (HPC) infrastructure is becoming more pressing. HPC systems are typically characterised by the scale of the resources they possess, containing a large number of sophisticated HW components that are tightly integrated. This scale and design complexity inherently contribute to sources of uncertainties, i.e., there are dependability threats that perturb the system during application execution. During system execution, these HPC systems generate a massive amount of log messages that capture the health status of the various components. Several previous works have leveraged those systems’ logs for dependability purposes, such as failure prediction, with varying results. In this work, three novel AI-based techniques are proposed to address two major dependability problems, those of (i) error detection and (ii) failure prediction. The proposed error detection technique leverages the sentiments embedded in log messages in a novel way, making the approach HPC system-independent, i.e., the technique can be used to detect errors in any HPC system. On the other hand, two novel self-supervised transformer neural networks are developed for failure prediction, thereby obviating the need for labels, which are notoriously difficult to obtain in HPC systems. The first transformer technique, called Clairvoyant, accurately predicts the location of the failure, while the second technique, called Time Machine, extends Clairvoyant by also accurately predicting the lead time to failure (LTTF). Time Machine addresses the typical regression problem of LTTF as a novel multi-class classification problem, using a novel oversampling method for online time-based task training. Results from six real-world HPC clusters’ datasets show that our approaches significantly outperform the state-of-the-art methods on various metrics
    corecore