

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/165622

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/165622
mailto:wrap@warwick.ac.uk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Clairvoyant: A Log-Based Transformer-Decoder for Failure
Prediction in Large-Scale Systems

Anonymous Author(s)

ABSTRACT
System failures are expected to be frequent in the exascale era

such as current Petascale systems. The health of such systems is

usually determined from challenging analysis of large amounts of

unstructured & redundant log data. In this paper, we leverage log

data and propose Clairvoyant, a novel self-supervised (i.e., no labels
needed) model to predict node failures in HPC systems based on a

recent deep learning approach called transformer-decoder and the

self-attention mechanism. Clairvoyant predicts node failures by (i)

predicting a sequence of log events and then (ii) identifying if a

failure is a part of that sequence. We carefully evaluate Clairvoyant

and another state-of-the-art failure prediction approach – Desh,

based on two real-world system log datasets. Experiments show that

Clairvoyant is significantly better: e.g., it can predict node failures

with an average Bleu, Rouge, and MCC scores of 0.90, 0.78, and

0.65 respectively while Desh scores only 0.58, 0.58, and 0.25. More

importantly, this improvement is achieved with faster training and

prediction time, with Clairvoyant being about 25× and 15× faster

than Desh respectively.

KEYWORDS
Transformer-decoder; LSTM; failure prediction; logs; HPC systems;

deep learning

1 INTRODUCTION
High-end scientific applications, such as weather forecasting, are

typically executed on high-performance computer (HPC) systems

such as supercomputers. These systems comprise sophisticated

hardware (HW) and software (SW) components (e.g., OS, parallel

file systems) to support the resource-hungry applications. Node

failures
1
in HPC systems can occur as a result of the scale and

design complexity of the systems or due to faults occurring else-

where in the system. Such failures typically lead to a significant

computational overhead which, in turn, may have severe impact of

system throughput.

In HPC systems, popular proactive failure management tech-

niques are used such as task migration and checkpointing/restart.

However, both techniques are expensive procedures and need to be

used only when required, e.g., the computational overhead associ-

ated with these techniques may be exacerbated if they are wrongly

triggered due to wrong failure prediction. Thus, it is important to

develop efficient failure prediction techniques so that the overhead

can be kept tractable. Effectiveness of current failure prediction ap-

proaches show a true positive rate of 50% in terms of actual failure

1
In the context of HPC systems, we will use node failures and system failures inter-

changeably.

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

identification and a false positive rate of less than 10%, meaning

that the overhead of proactive techniques can be bounded [18, 31].

The SW of these HPC systems, such as OS and parallel file sys-

tems, typically generate a large volume of valuable log messages
2

that are recorded in a centralised log file. These log messages typi-

cally capture the health states of every component (e.g., nodes). For

example, a log message may state that the memory of a particular

node has been corrupted. As such, these event logs are critical for

system administrators to assess the state of the system.

Although log files are nontrivial for analysis (e.g., they are often

unstructured, duplicated or even incomplete [10]), extensive re-

search on failure-related analysis using HPC system logs has been

undertaken such as detecting anomalies e.g., [4], [42], [6], diagnos-

ing the root causes of failures, e.g., [10, 14, 17], and detecting the

errors that lead to system failures, e.g., [3, 41, 56, 80].

While error detection is important at system runtime, not all

errors will lead to system failure due to in-built recovery procedures

such as the use of ECCs. As such, any premature triggering of an

error recovery technique would likely introduce extra overhead.

Accordingly, to mitigate the impact of system failures on applica-

tions, it is critical to develop an efficient failure prediction mech-

anism alongside proactive failure management techniques [31].

Unfortunately, the failure prediction tools that determine when

proactive failure management techniques should be activated is

still insufficient [18]. This necessitates the development of fail-

ure prediction techniques that can flag impending failures ahead

of time. Techniques that have been employed for failure predic-

tion in HPC systems are, for example, support vector machines

(SVM) [28], principal component analysis (PCA) [46], learning mes-

sage patterns [75], Bayesian networks for hierarchical online failure

prediction [61], and hidden semi-Markov models (HSMMs) [67].

Despite these contributions, these solutions have limited prediction

accuracy or suffer from high computational overhead.

To the best of our knowledge, the recently proposed Long Short-

term Memory (LSTM) and Bidirectional Long Short Term Memory

(Bi-LSTM), used in [18] and [34] respectively, have been the most

effective techniques for log-based failure prediction. However, they

both suffer non-trivial weaknesses, e.g., due to recurrence learning,

it is difficult to parallelize those approaches, leading to long training

time. Another problem is the vanishing gradient problem, that

causes the loss of earlier "memory" resulting in limited accuracy,

i.e., long-range dependencies cannot be adequately captured.

As such, we develop Clairvoyant, a self-supervised (no need for
labels) transformer-decoder based model to predict node failures

in HPC systems by first predicting the future sequence of events

(future health state) and then identifying if a failure is part of the

sequence. Clairvoyant rectifies the limitations of LSTM implemen-

tations through the self-attention mechanism and parallelization.

Denoting the predicted log sequence as S and a failure log event

2
Wewill use the terms log events, events, log entries, and logmessages interchangeably.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

by F , we then capture failure prediction of the node if F ∈ S, i.e.,
if a failure event appears in the predicted output log sequence. We

run Clairvoyant on real-world datasets and the results obtained

show that Clairvoyant significantly outperforms the state-of-the-art

HPC failure predictor – Desh [18]. To the best of our knowledge,

this paper is the first attempt to leverage the self-attention and

transformer-decoder techniques to predict node failures in HPC

systems. However, different log-based studies have utilized self-

attention with different transformers variants for anomaly detec-

tion and log parsing, such as Trine [81], LAMA [38], LAnoBERT[48],

NuLog[58], and [68].

Wemake the following contributions. (i) We develop Clairvoyant,
a transformer-decoder based technique to predict component (node)

failures in HPC systems. This is a generic model that can be applied

to any other HPC systems or components since it is very common

that the system failures are more or less correlated to the error

messages. (ii) We evaluate the efficiency of Clairvoyant and Desh

using two real-world logs from the Ranger supercomputer. The

log data used in our experiments are very good representatives of

large-scale HPC systems for failure analysis, as they are unlabelled,

unstructured, and more complex than other HPC system logs (e.g.,

Cray and Blue Gene systems). (iii) Our results show that Clairvoyant

significantly outperforms Desh both in prediction accuracy and in

training and prediction time. To the best of our knowledge, this

is the first paper to use transformer-decoder variant on failure

prediction in HPC systems.

Paper structure: In Section 2, we present the system model and

problem formulation. Section 3 presents the methodology behind

Clairvoyant and we present the metrics used for performance eval-

uation in Section 4. We present the evaluation datasets in Section 5

and the results in Section 6. We discuss the related work in Section 7.

We conclude the paper in Section 8.

2 MODELS AND PROBLEM FORMULATION
In this section, we present the system and fault models to be focused

on in our research, as well as a formulation of the problem.

2.1 System Model
For HPC systems, a generic systemmodel is described as follows. An

HPC system consists of a set of compute nodes C = {C1, . . . ,Cm }

provided to execute a set of jobs J = {J1, . . . , Jn } over a set of

production time-slots T = {T1, . . . ,Tp } [11]. A job scheduler and a

collection of software, such as a file system and an operating system,

are required to support these jobs execution. The job scheduler

assigns jobs to production slots on specific nodes. A job may send

data to and from the file system or to each other. As the system

executes, log messages that capture the health of the system are

generated and are sent to a central log file.

2.2 Fault Model
Without loss of generality, we assume that various discrete faults

can be considered, depending on the abstraction level. One may

consider faults occurring at the application level, the file system

level or an aggregate cluster level. When a fault occurs, the resulting

error leads to the output of an error message in the system log file.

If the error is not adequately handled, a failure can occur, which

will also be logged. In this paper, we only consider node failures

[3] and focus on the prediction of such events though Clairvoyant

can also be applied to failures of other components.

2.3 Problem Formulation
Challenges in log-based failure prediction: Informally, our ap-

proach for log-based failure prediction is as follows: given a se-

quence of log events, predict an incoming log sequence and identify

if a failure log event is in the predicted sequence. However, there

are two critical challenges, which are: (i) The instant at which the

failure log event appears in the predicted sequence should neither

be too soon nor too late as the failure management mechanism may

be triggered at the wrong time and (ii) The component (i.e, node)

that is going to fail needs to be clearly identified so that failure

management mechanism is triggered at right “location”.

We denote by Lr
, the set of log sequences of length at most r .

Consider two sets: Lm
and Lk ,k ≤ m. The individuals in set Lk

are called the possible extensions of the individuals in Lm
. Each

individual in Lm
can be assigned an output from Lk

, i.e., for each

si ∈ Lm
, let ei ∈ Lk

be the true outcome to be predicted (i.e., the

true log sequence that follows si). Wemodel a (possibly randomised)

predictor by a mapping M : Lm → Lk
such that M(si) is the

predicted log sequence to follow si , i.e., si · M(si) is a (future)

predicted log sequence of length (k +m), i.e., si · M(si) ∈ Lm+k
.

The two problems we address in this paper can be formulated as

follows:

Definition 1 (Log Prediction). Given a log sequence si ∈ Lm ,
obtain a predictorM such that
arд minM D(si · M(si), si · ei), where D : Lm+k × Lm+k → R
represents a distance metric for log sequences of length (m + k) and
where · represents sequence concatenation.

In this case, we say that M correctly extends si if the distance
is 0. Otherwise, we say that M approximately extends si . D is a

distance metric on log sequences such that the distance is 0 when

the logs are identical.

Definition 2 (Failure Prediction). Given a log sequence si ∈
Lm , its extension ei ∈ Lk and a predictor M that approximately
extends si , we say thatM accurately solves the failure prediction iff
F ∈ ei ⇔ F ∈ M(si). We say that M approximately solves the
failure prediction problem if F ∈ M(si) ⇒ F ∈ ei .

It is interesting to observe that the (predicted) failure lead time is

exact when D(si · M(si), si · ei) is 0, i.e., the failure event log does

neither appear too soon nor too late. It is also worth noting that D

will have a small value when the failure event appears at ’roughly’

the correct time, i.e., at the correct place in the sequence. As such,

developing an efficient mapping will help towards addressing the

first challenge explained above.

So, for each node Cj ∈ C , given an input of a (previous) se-

quence of m log events E1, . . . ,Em logged as node Cj ’s current

health state, the aim of our transformer-decoder based model is to

predict the sequence Em+1, . . . ,En future log events (i.e., the exten-

sion of E1, . . . ,Em), including failure events. The failure prediction

is repeated for every node in Cj ∈ C and the identity of the node

that is predicted to fail will be known, thereby addressing the sec-

ond challenge mentioned above regarding the failure location. The

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in Large-Scale Systems Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

model calculates and predicts an upcoming log event probability

P(E(m+1):n) as follows:

P(E(m+1):n) =

n∏
i=m+1

P(Ei |E1, ...,Ei−1) (1)

3 METHODOLOGY FOR CLAIRVOYANT
In this section, we first provide a high level overview of the proposed

approach followed by a detailed description.

An Overview of the Proposed Approach Due to the serious

limitations of existing techniques (e.g., LSTM based methods) and

challenges of the failure prediction problem, novel and scalable

approaches are needed. Recently, transformer neural network has

made tremendous progress, primarily in natural language process-

ing (NLP) tasks (e.g., text prediction) and tackled LSTM limitations,

through the self-attention mechanism and parallelization processing.
These properties benefit log-based analysis in multiple ways: (i)

The self-attention mechanism emphasizes the important part of the

input data and fades out the rest. Focusing on log-based analysis

where, by analogy, we consider an event log entry as a word and

a sequence of log entries as a sentence; self-attention will help

focus on the important event log entries while moving focus away

from irrelevant events. (ii) The self-attention feature is amenable

to parallelization, meaning that training and prediction time can be

drastically reduced, compared to LSTM.

Driven by the self-attention and parallelization learning – the

crux mechanisms of the transformers neural network [74], we de-

velop a novel approach namelyClairvoyant based on the transformer-

decoder variant [62] to predict HPC nodes’ failures by first predict-

ing the future sequence of events (future health state) for each

node and then identifying if a failure is part of the sequence. Pre-

dicting a compute node’s (or a component’s) failures ahead is

achieved through accurately predicting the forthcoming log events

Em+1, ...,En based on the previous log events E1, . . . ,Em by that

node. Our proposed transformer-decoder-based technique can be

deployed in real-time to assist the large-scale systems administrator

as nodes’ failure predictor. As shown in Figure 1
3
, the proposed

model is based on a transformer-decoder consisting of a stack of at-

tention blocks, preceded by log message preprocessing and an input

embedding, followed by a log events prediction. We can incorporate

these steps as two main phases; log message preprocessing and log

events (log sequence) learning&(prediction), which are described

in detail as follows.

Logs

Preprocessing

E1

E2

Em-1

Em

…

Log

Sequences

(input)

P
o

s
it
io

n
a

l
E

n
c
o

d
in

g
In

p
u

t
E

m
b

e
d

d
in

g

+

S
e
lf A

tte
n

tio
n

F
e
e
d
 F

o
rw

a
rd

 n
e
u

ra
l N

e
tw

o
rk

D
e
c
o
d

e
r

D
e
c
o
d
e

r

D
e
c
o
d
e

r

…

Stack of Transformer-

Decoders
Linear

Layer

SoftMax

Layer
Predicted

Log Events

Em+1

Em+2

En-1

En

…

C
h

e
c
k
in

g
:
F

a
ilu

re
 O

c
c
u
ri
n

g

Figure 1: Failure andHealth State PredictionPhases for Each
Component (i.e., node)

3
For simplicity, Figure 1 shows the prediction phases for one node.

3.1 PHASE I. LOG MESSAGE PREPROCESSING
In the first phase, standard NLP methods are used to clean tex-

tual log messages from all alphanumeric words, punctuation, stop

words, variables that are not strings from log messages. After that,

the duplicate messages are removed based on a time window as

determined by the administrator. Then, (unique) text log messages

are mapped onto corresponding log event IDs based on the unique

events (templates) from log message preprocessing. Next, each

node’s log event IDs are concatenated into sequences (log event

sequences) sequentially based on their timestamps, where each

sequence contains 1024 events at most. Hence, the number of se-

quences from each node can be calculated by dividing the num-

ber of log events generated by that node on 1024. Each node’s

sequences of log events is tokenized by breaking them up and

transforming them to their associated indices (i.e., numbers). Those

indices are generated by taking all events present in the log data

and creating a vocabulary dictionary. The decoder blocks is fed

by nodes’ log sequences one after another. Besides, transformer-

decoder can, in parallel, perform until 1024 log events within the

input sequence, which is an advantage over the recurrent neural

network (RNN) architectures such as Long Short Term Memory

networks (LSTM). Also, the Byte Pair Encoding (BPE) technique

is employed in transformer-decoder architecture to tokenize the

input, allowing the encoding of any unusual tokens, which are the

IDs of log events in our case.

3.2 PHASE II. LOG EVENTS LEARNING AND
PREDICTION

As stated before, our research aims to predict the failures of HPC

system components (nodes) and the entire health state through

generating a sequence of forthcoming log events based on their

preceding log events sequence. Thus, our proposed approach is

based on the transformer-decoder deep neural networks designed

for sequence processing. The transformer’s core component’s self-

attentionmechanism considerably improves the connectivity among

the elements in long sequences. Accordingly, we employ transformer-

decoder neural network, a stack of decoder attention blocks pre-

ceded by an input layer to embed the sequence of real-time log

events logged by the HPC node, and followed by linear and soft-

max layers to predict failures by two steps: predicting the future

sequence of events and then identifying if a failure is part of the

sequence. More design details are described in the following text.

We refer the readers to read [62] for detailed background of the

transformer variant which we will use to build our model.

3.2.1 STEP 1: INPUT EMBEDDING. This step incorporates two
types of encoding: log event embedding and log event’s positional

encoding, which are merged element-wise by dot-matrix multipli-

cation:

LogEmbedding: Each log event ID in input sequences ismapped

into a vector of dmodel dimension size, with continuous numeric

values to represent that event learned through neural networks.

By the end of the training, log event vectors’ values represent the

relation and dependency among these events.

Log Positional Encoding: Transformer avoids the recursion

mechanism that is employed by RNNs, in order to enable parallel

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

computation to minimize training time as well as the reduction in

performance caused by lengthy dependencies. To this end, input

embedding is associated with positional embedding to encode the

order of the tokens (in our case, log events) and determine distances

between the log events in the log sequences to the decoder blocks.

The log event position i is encoded using sin and cosine periodic

functions as follows:
P(pos,2i) = sin(pos

10000
2i

dmodel

)

P(pos,2i+1) = cos(pos

10000
2i

dmodel

) (2)

The even positions in the input vectors of log events in the se-

quence are calculated via the sin function, and the cos function is

used for the calculation of odd positions. The positional vectors are

then added to their corresponding log events input embeddings.

Based on transformer-decoder architecture, each log event embed-

ding in the input sequence incorporates one positional encoding

vector for each of the 1024 positions(pos) [62] in the input; dmodel
refers to the size dimension (which is 768 in our design), and i refers
to the index within the vector of log event.

Positional encoding is added to the input embedding to construct

the input matrix X before being passed to the decoder stack to

provide information about the position of those corresponding

inputs (log events). For an input log event Ei , its embedding xi in
the input matrix X is defined as:

xi =Wembeddinд ∗ Ei + PEi , i ∈ 0, ..., I − 1 (3)

where I denotes the number of log events in the input sequence, PEi
is positional encoding of Ei , and theWembeddinд ∈ REsize×Vsize
is the log event embedding matrix with embedding size Esize and

the log events vocabulary size Vsize .

3.2.2 STEP 2: DECODINGANDLEARNING. In the next phase,
the input matrixX , which is log events embedding vectors, is passed

forward to a stack of decoders (12 decoder blocks) one after the

another forming the main part of the model. These decoders are

identical in their architecture and functions in which each decoder

block consists of a multi-headed masked self-attention layer, feed-

forward neural network (FNN) layer, and some normalization layers.

Each decoder has its own weights in both sublayers (self-attention

and FNN). The following details show how the decoder layers work.

(1) Masked Self-Attention: The masked self-attention mech-

anism allows the model to associate each individual log event to

its preceding log events in the input sequences; this leads to un-

derstanding and capturing the relation, dependencies, and order

occurrence among the log events in the input log sequences. There-

fore, all associated and relevant log events in the sequence that

reveal the connection with a particular log event are identified. As

the correlation between those log events preceding that log event as

these events receive higher scores (given more attention). The self-

attention is achieved by creating three matrices for the decoder’s

input sequenceX (in our case, a sequence of log events embedding).

As stated in the previous step, the log events embeddings are com-

bined into the input matrix X , where each row in X corresponds

to a log event in the input sentence. A Query matrix (Q), a Key

matrix (K), and a Value matrix (V) are created by multiplying X by

three weight matrices, Query weight matrix (WQ), a Key weight

matrix (WK), and a Value weight matrix (WV), are trained during

the training process. The matrices (WQ), (WK), and (WV) have a

smaller size dimension (64) than the log events embedding vectors

(768) for better performance calculation of multiheaded attention(

explained later). The input matrix X is passed through three lin-

ear layersWQ ,WK , andWV to produce the Query (Q), Key matrix

(K), and Value matrix (V) matrices, respectively, where each row

associated with a log event in the input sequence is defined by the

following three equations:
Q =WQ · X + bQ
K =WK · X + bK
V =WV · X + bV

(4)

After the three matrices are created, several calculations are

conducted to generate the masked self-attention Z , which can be

depicted in the following formula:

Z = MaskAttention(Q,K ,V)

= So f tmax(mask(
Q .KT
√
dk

)V
(5)

The masked self-attention is calculating the score for each log

event against the preceding log events in the sequence by multi-

plying the dot product of that log event’s query vector with its key

qx · kx , where qx and kx refer to the vectors of Q and K , respec-
tively. As the correlation between the log event and its preceding

log events increases, these events receive higher scores (given more

attention). Then, those scores are divided by the square root of

the dimension of the key vectors. The results are then passed to

a softmax layer and they will be normalized all positive numbers

with a sum being equal to 1. The obtained score from the soft-

max operation decides how much each individual event receives

attention (focus) with respect to its current position in the input

sequence. The relevant log events receive higher scores than other

irrelevant ones. Next, the softmax scores are multiplying by each

value vector vx . This process keeps the relevant log events gaining

high scores in the previous step and opting out unrelated log events

because they are multiplied by tiny scores. Lastly, the output of the

self-attention layer for that log event at that position is calculated

by summing up the weighted value vector and send this vector

along to the FNN layer. All these processes are performed in the

form of matrix calculation in parallel for all sequence log events.

A "multi-headed" attention technique is employed (8 attention

heads) to improve the self-attention layer’s performance for two

reasons. First, the ability of the transformer can be increased to

extend attention to various positions. Second, the input embeddings

can be projected into a varied representation subspace. Multiplying

the input matrix X by the 8 multi-headed attention separate sets

WQ ,WK , andWV weight matrices produces 8 sets of Query (Q),
Key matrix (K), and Value matrix (V) matrices, respectively. Then,

8 different Zi matrices are obtained. The FNN layer is expecting

a single matrix to handle, thus the Z matrices are concatenated

and multiplied with an additional weight matrixWO to obtain the

attention layer’s output Z matrix that captures the information

from all multi-heads.

(2) Residual Connection and Normalization Layers: Each
transformer-decoder contains residual connection and normaliza-

tion layers to make the training (learning) more effective. The layer

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in Large-Scale Systems Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

normalization is calculated as:

Normlayer (Z) = γ
Z − µ

σ
+ β (6)

where γ and β are learnable parameters, µ and σ are the mean and

standard deviation of the Z ’ vector’s elements [74] [62].

(3) Feed-ForwardNeuralNetworks: Each transformer-decoder

also contains two-layer feed-forward networks with a ReLU acti-

vation function applied to each position separately and identically.

The first layer is the input layer to receive the output of the pre-

ceding layer, hidden layers that capture the hidden correlations

among those input log events. The second layer is the output layer

to pass forward what has been captured to the next step. Given a

log sequence of vectors h1, ...,hn , the calculation of a position-wise

FNN layer on a hi is represented as:

FNN (hi) = ReLU (hi · Znormalized + b
1) ·W 2 +b2

(7)

where the Znormalized ,W
2
, b1

, and b2
are learnable parameters.

The other decoders work as the first decoder, and the output of

each decoder is sent to the next decoder. The output of the final

decoder is passed on to the linear and softmax layers.

3.2.3 STEP 3: LOG EVENTS AND FAILURE PREDICTION.
The vector of float values returned by the last decoder in the stack

is transformed into a vector (logits vector) via a dense linear layer

whose size is equal to the number of unique log events (vocabulary

size). For instance, in our case, if there areV unique log events in log

dataset, this would result in a logits vector of V cells values where

each cell corresponds to a unique log event score. Finally, those

scores are converted into positive probabilities with a total sum of

up to 1 through a softmax layer, and the index of logit cell with the

highest probability is selected. Based on the model vocabulary, the

log event associated with that index cell is predicted at this time step

as the output (the predicted log event). A log sequence of desired

length of events is predicted via a loop that begins by predicting

the next event based on its preceding events, then appends it to the

input log sequence, and continues to return the subsequent events.

The outcome of this looping process is a prediction of the health

state of the entire HPC component system. Consequently, a failure

is predicted if it appears in the predicted log sequence (our main

goal). This means that Clairvoyant predicts a node failure by first

predicting its forthcoming sequence of events and then identifying

if a failure is part of the sequence.

4 EVALUATION METRICS
To demonstrate the viability of Clairvoyant for failure prediction

of HPC systems, we examine two large datasets, obtained from

two different logging mechanisms operational at different times,

from the same HPC system, namely Ranger. We now introduce

our evaluation metrics and then present the system, datasets, the

evaluation results in the next sections.

Clairvoyant predicts not only future failures for HPC nodes but

also the entire health state of every node. Thus, our model will

be evaluated in two aspects. First, we evaluate the accuracy with

which our model generates (i.e., predicts) log events of HPC nodes

before the actual log events are generated. Second, we evaluate the

accuracy with which our model predicts nodes’ failures. For that

purpose, two prediction-accuracy metrics supported by standard

metrics including recall, precision, F1_score, Matthew’s correlation

coefficient (MCC), false-positive rate and false-negative rate, are

utilized to evaluate our model.

Evaluating text generation (i.e., text prediction) in the NLP do-

main remains challenging because the generation task is open-

ended. However, after a careful analysis of different text prediction

evaluation metrics, we make use of the following metrics, namely

Bleu and Rouge, which will be detailed below. The reason for choos-

ing Bleu and Rouge is that they complement each other for the text

prediction task as Bleu measures the precision of generated text

(log events in our case) while Rouge measures recall. We detail the

metrics below.

4.0.1 Bleu (Bilingual Evaluation Understudy [59]). Bleu is a precision-
based metric calculated by comparing the degree of similarity be-

tween a text candidate to one or more text references (in our case,

just one reference). It was initially designed as a translation evalua-

tion metric, but later it was used to evaluate text generation tasks,

more specifically, to compare a generated text sequence (candidate)

against a reference sequence. A Bleu score ranges from 0 to 1, with

0 indicating a complete mismatch and 1 a perfect match, and 0.6 or

above indicating a good result.

In this paper, we use Bleu to measure how many log events

predicted by our model (candidate) appear in (i.e., overlap with) the

actual log events generated by the HPC system (reference).

The Bleu metric is defined as shown in Eq 8 [59]:

Bleu = BP × e(
∑N
n=1

wn logpn)
(8)

where BP indicates the brevity penalty. BP = 1 when c < r and

BP = e(1−
r
c) when c ≤ r , and where r indicates the length of the

reference sequence (events generated by the HPC system) while c
indicates the length of the candidate sequence (log events predicted

by the model). N represents the length of the ngrams; wn =
1

N
indicates the positive weights, and pn is the modified precision

score as defined in Eq 9 [59].

pn =

∑
C ∈{Candidates }

∑
n-дram∈C

Countclip (n-дram)∑
Ć ∈{Candidates }

∑
n-дram∈Ć

Count(n-дram)
(9)

where Count(nдram) is the number of ngrams for the candidate in

the test set, andCountclip (nдram) is the number of clipped ngrams

for the candidate log sequence.

4.0.2 Rouge (Recall-Oriented Understudy for Gisting Evaluation N-
gram Co-Occurrence Statistics) [51]). Rouge is a recall-based metric

calculated by counting the number of text reference ngrams (in

our case, just one reference) that appear in the text candidate (i.e.,

predicted sequence). A Rouge score can range from 0 to 1, with

0 indicating a complete mismatch, 1 a perfect match, and 0.6 and

above indicating a good result.

In our case, we use Rouge to measure the recall howmany of the

actual log events generated by the HPC system (reference) appear

in (overlap with) log events predicted by our model (candidate), as

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

defined in Eq 10 [51]:

Rouдe=

∑
S ∈{Ref erence}

∑
(дramn)∈S

Countmatch (дramn)∑
S ∈{Ref erence}

∑
(дramn)∈S

Count(дramn)
(10)

in which n indicates the number of ngrams, Count(дramn) is the

count of ngrams that appear in the reference, andCountmatch (дramn)

refers to the maximum ngrams number occurring in both reference

and candidate sets.

The standard metrics that are used are defined in equations (11)

to (15). The symbols TP, FP, FN, and TN refer to True Positives (fail-

ures are predicted correctly), False Positives (failures are predicted

incorrectly), False Negatives (failures are missed by our model) and

True Negatives (non-failures correctly predicted by our model),

respectively
4
.

In addition, we compute the following metrics: (i) the F1-Score

that indicates the overall failure prediction accuracy with regards

to the weighted average between recall and precision, (ii) The

Matthew’s correlation coefficient (MCC) is an adequate metric as

it only returns a high score if it performs well in all four confu-

sion matrix categories (TP, FP, FN, and TN), proportionate to the

quantity of positive and negative classes in the test dataset. The

MCC score can range from −1 to 1 where a score of −1 indicates a

complete discrepancy between the actual and predicted results, a

0 score represents a random prediction and a score of 1 indicates

that the prediction is perfect.

(f ailure)Recall , Precision = T P
T P+FN ,

T P
T P+F P (11)

(nonf ailure)Recall , Precision = T N
TN+F P ,

T N
TN+FN (12)

F1 Score = 2
Recall ·Precision
Recall+Precision (13)

MCC =
TP ×TN − FP × FN√

(TP+FP)(TP+FN)(TN +FP)(TN +FN)
(14)

FPRate, FNRate = F P
FP+T N ,

FN
T P+FN (15)

In comparison to classification tasks, the automatic evaluation

of text prediction tasks is a significant challenge [66]. Even though

Bleu and Rouge are two of the few main metrics for Natural Lan-

guage Generation (NLG), they have some drawbacks. However,

and most importantly, these drawbacks do not apply to the prob-

lem of evaluating our model because only one reference and one

candidate are used in our case. Nevertheless, for failure prediction

experiments evaluation, Bleu and Rouge metrics are complemented

using the standardmetrics
5
. To use specific standardmetrics, we use

failure events and ignored all other log events from the candidate

and reference.

5 EVALUATION SYSTEM AND DATASETS
In this section, we describe the Ranger system and the two log

datasets from Ranger that we used for evaluating our approach.

4
Precision and recall are calculated for both classes (failures and non-failures) and

highlighted in the experimental results section even our test datasets are balanced.

5
The results show the validity of using Bleu and Rouge to evaluate the health state and

failure prediction because both correlate highly with the results of standard evaluation

metrics.

Table 1: Data Logs before and after the Preprocessing Phase

Log Data Durtion From To # Before # After

Syslogs 5 mon Jan-11 May-11 43,639,722 2,346,780

RatLogs 6 mon June-11 Nov-11 360,688,966 8,068,752

5.1 TACC RANGER AND LOG DATA
In our experiments, we adopt two real-world supercomputer system

logs both generated by Ranger system, which have been widely

used for failure analysis [3, 12, 23, 40, 70]. Ranger logs are very good

representatives of large-scale systems for failure analysis. First, the

Ranger system (operated by Texas Advanced Computing Center

(TACC)) used to be one of the most powerful supercomputers in

the world (ranked 5th in 2008 Top500 list and still ranked 50th in

2012 Top500 list). It contains 4K nodes with a total of 15,744 quad-

core AMD Opteron microprocessors (featuring up to 62,976 cores)

connected by a high-speed Infiniband network. During the entire

life of Ranger, it served 4K+ scientists from 2,244 research projects,

completing over three million simulation experiments. Second, the

system/job failures exhibit similar characteristics across different su-

percomputers. For instance, the bestfit distribution of failure events

is widely reported as Weibull distribution, based on many different

prior studies [20, 65, 69, 78]. High spatial locality/correlation of the

failures can be observed in both ORNL Titan supercomputer (made

by Cray Inc.) [39] and ANL Mira supercomputer (manufactured by

IBM) [20]. Last but not least, the Ranger system logs are unlabeled

(no severity levels) and unstructured, whereas other cluster sys-

tems logs are labeled and more structured (e.g., Blue Gene systems),

which means that the Ranger log data are much more challenging

to handle than other system logs in practice. As such, we believe

our evaluation results as well as our model are also applicable to

other systems.

Ranger’s jobs were managed by the Sun Grid Engine [26], gen-

erating two different system logs based on two different logging
frameworks, namely SysLogs and Rationalized Logs. As shown in

Table 1, our SysLogs dataset spans across five months (January to

May 2011), while Rationalized Logs span six months (June to No-

vember 2011). We use both of them in our experiments and analysis.

5.1.1 Syslogs. The Syslogs dataset is collected from a centralized

logging system framework called syslog [1]. It uses POSIX standard

similar to most linux cluster systems which allows flexible log

formatting under different implementations. Table 2 describes the

five fields for each log event in Syslogs.

Table 2: Description of Fields for Syslogs
field example description

timestamp Jan 1 00:08:35 the time stamp

host i151-306 the node where the job ran

system-id kernel (linux) ID of the system

application Lustre application name

text message an error occurred
6

detailed message of the event

5.1.2 Rationalized logs. Rationalized logs was a new logging

framework for TACC supercomputers instead of Syslogs. It differs

6
full message of this example: "while communicating with 129.114.97.29 o2ib. The

ost_write operation failed with -122 & key event message"

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in Large-Scale Systems Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

from Syslog, with a few additional fields being added to the message

logs, for example, job-ID, which is a numeric identification number

of each running job. This new logging framework was selected

for the purpose of effectively analyzing the log-based failures in

the system. Specifically, Rationalized logs would allow the system

to parse the unstructured log messages more efficiently and may

commit the error mappings and job failures more directly. The

detailed fields and descriptions are given in Table 3.

Table 3: Description of Fields for Rationalized Logs
field example description
jobid 2184431 the identification number of job

timestamp Oct 31 23:59:38 the time stamp

host i119-107 the node where the job ran

prog kernel protocol name

text message X Northbridge Error key event message

Ranger ComputeNode Soft Lockup Failures: Ranger admin-

istrators at TACC frequently encounter “compute node soft lockup"

log events, indicating failures. A soft lockup is a state that causes

the kernel of Linux OS to panic, be unresponsive, stuck, and loop

endlessly, preventing other processes from being completed and

eventually causing the nodes to crash. Soft lockup failures are recog-

nized in log data by searching for the term soft lockup. Accordingly,
the failures we aim to predict in this work are those soft lockups,

which can be used to guide administrators in using mechanisms

that will reduce the number of applications from failing [9] Sev-

eral types of errors precede the failure of Ranger compute nodes

(soft lock up), including Linux OS process errors, Lustre file-system

errors, storage errors, network errors and software errors among

others. Some of those errors propagate fast, quickly leading to soft

lock up failures i.e., the sequence of log events between when the

error message begins and when the soft lockup occurs is short. On

the other hand, other errors take a long time to trigger their relevant

failures to occur, resulting in lengthy sequences of log events being

logged between the time those errors begin and the time they cause

failures. Moreover, between Ranger failures and their induced error

events, many interleaved & irrelevant log events in both short and

long sequences are recorded, making the failure prediction process

more challenging. For example, some errors take many hours to

trigger the associated failures, resulting in extended and lengthy

log sequences.

6 EVALUATION RESULTS
To show the efficacy and applicability of our technique across log

data, we evaluate the performance of our model on two unlabeled
real-world log datasets with different logging frameworks, Sys-

Logs and Rationalized Logs, to predict potential soft lockup failures.

Moreover, we compare our method to a state-of-the-art deep learn-

ing prediction technique, Desh [18], one of the best in class, which

employs LSTM to predict HPC node failures. There are good fail-

ure prediction approaches as well such as CNN-LSTM based and

Bi-LSTM based approaches proposed in [53] and [34], respectively.

However, both techniques require long training time with slower

prediction because they combine two neural networks CNN+LSTM

and Bi-LSTM, respectively, with similar accuracy to Desh. In ad-

dition, our model is a self-supervised learning that does not need

labels, unlike the supervised learning based methods (such as SVM,

Random Forest, KNN, etc.) that depends on the labels. All our codes

will be released once our paper is accepted.

6.1 Log Data Preprocessing
We developed a log preprocessor to sort the log events based on

their timestamps, clean raw log messages, and remove the duplicate

ones based on the spatial and temporal correlations, as determined

by the administrator. After that, log messages are transformed into

log sequences based on their associated nodes, as explained in the

first phase of our methodology. Table 1 shows the quantities of

both datasets’ log messages before and after the preprocessing

phase. 83087 log sequences are constructed from Syslogs, and 25272

log sequences are constructed from Rationalized Logs. Both logs

are divided into training part and testing part. The training part

accounts for 80% of the logs’ data, while the testing part accounts

for the remaining 20%. We verified that the testing part comprises

the same number of log sequences containing a failure and log

sequences having no failures (benign), to avoid an imbalanced

dataset which could affect the evaluation metrics.

6.2 Predicting Entire Health State of Ranger
Performance Evaluation

We implement our technique using a neural network architecture

similar to the GPT2 model, which has a stack of 12 transformer-

decoders with 12 attention heads for each layer, 768 dimensional

states to encode log events into their embeddings, 1024 feed-forward

sizes, and maximum log sequence input length being set to 1024.

Additionally, we implement the baseline (Desh) model as explained

in [18]. The training is conducted for 10 epochs and a batch size of

16 for our model as well as the baseline model.

6.2.1 Training andPredictionTimePerformance. Table 4 shows
that the training time for learning using our model is drastically re-

duced 25.2× compared to Desh on average. Our approach requires

only 1.64 and 0.71 hours in training on SysLogs and Rationalized

Logs, respectively. By comparison, Desh requires at least 41 and 18

hours on both training sets, respectively.

Table 4: Training Time Performance in Hours

Clairvoyant Desh

SysLogs R. Logs SysLogs R. Logs

1 Epoch 0.16 0.07 4.17 1.82

Entire Training 1.64 0.71 41.74 18.23

Furthermore, our model predicts the forthcoming log sequence

of events 15.4× faster than Desh during the testing. As illustrated

in Figure 2, only 0.30−5.78 secs are needed to predict a log se-

quence chain of lengths 64 to 1024 respectively, whereas the Desh

technique requires 3.36−98.00 secs. This can be explained by the

transformer-decoder mechanism’s parallelization capabilities and

positional encoding, which takes substantially less training and

prediction time than the RNN models such as LSTM, which lack

parallel training and require sequential learning. Therefore, the

prediction of upcoming events using our solution on the testing

data is very suitable for the real-time failure prediction scenario

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

that requires fast forecasting to trigger the appropriate proactive

recovery actions and avoid costly failures.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 64 256 512 1024

P
re

d
ic

ti
o
n
 T

im
e

 (
in

 s
e
c
o
n
d
)

Chain Length

Out Solution
Desh

15.4

37.8

98

2.56 5.78

3.36

1.28

0.08

0.05
 0
 1
 2
 3
 4
 5

1 64

0.30

Figure 2: Chain Lengths(# Log Events) Prediction Time

6.2.2 Overall Learning and Log Events Prediction Perfor-
mance. We employ Bleu and Rougemetrics tomeasure ourmodel’s

overall accuracy in generating (predicting) the nodes’ forthcoming

log events (whether informational, errors, or failures) before the

actual log events are generated, with respect to the entire system

future health state. Bleu and Rouge measure the degree of similar-

ity (overlapping) between the candidate (predicted log events by

our model and the baseline (Desh)) and the reference (log events

generated by the Ranger system in realtime).

0%

20%

40%

60%

80%

100%

Bleu Rouge

S
c
o
re

Our Solution
Desh

(a) SysLogs

0%

20%

40%

60%

80%

100%

Bleu Rouge

S
c
o
re

Our Solution
Desh

(b) Rationalized Logs

Figure 3: Bleu and Rouge for Entire Health State Prediction

As can be seen in Figures 3(a) and 3(b), our transformer decoder-

based approach achieves a Bleu score of 0.70 and 0.73 on SysLogs

and Rationalized Logs, respectively, in predicting forthcoming log

events. In contrast, the Desh baseline obtains only 0.45 and 0.46,

respectively. Thismeans that on average, 72% of log events predicted

by our model (the candidate) appeared in the events generated by

the HPC system (the reference), compared to just 45.5%by Desh.

Also, as illustrated in Figures 3(a) and 3(b), results demonstrate

that our technique obtains Rouge scores of 0.60 and 0.67 on Sys-

Logs and Rationalized Logs, respectively. Desh, however, obtains

only 0.30 and 0.38, respectively. This means that on average, 63.5%

of events generated by the HPC system appear in the log events

predicted by our model, compared to Desh’s 34%.

The Bleu and Rouge scores imply that it is difficult for Desh, an

LSTM-basedmodel, to capture long-range dependencies/correlations

between events in long sequences due to a loss of memory for ear-

lier events caused by the vanishing gradient problem. On the other

hand, our technique successfully predicts the future log events

sequence depending on the preceding lengthy log sequence (pre-

dicting the upcoming health state from previous& current health

state). This is indicated by a high match (overlap with) between the

forthcoming log events predicted by our model(candidate), and the

Table 5: Failure Prediction Performance Evaluation on Both
Data Logs

SysLogs Rationalized Logs

Our Sol Desh Our Sol Desh

Bleu 0.89 0.56 0.91 0.59

Rouge 0.75 0.57 0.80 0.59

Failure Precision 0.97 0.76 0.99 0.86

Failure Recall 0.52 0.21 0.61 0.21

non-Failure Precision 0.67 0.54 0.72 0.55

non-Failure Recall 0.98 0.93 0.99 0.96

Overall Precision 0.82 0.65 0.86 0.70

Overall Recall 0.74 0.57 0.80 0.59

F1-Score 0.74 0.51 0.80 0.52

MCC Score 0.6 0.2 0.7 0.3

FP-Rate 0.02 0.07 0.01 0.04

FN-Rate 0.48 0.79 0.39 0.79

events generated by the HPC system (reference). The key reason

is that the masked self-attention mechanism, which is the crux of

our model, efficiently identifies the log entries of important events

while moving the focus away from irrelevant ones and capturing

long-range dependencies/correlations between events in long se-

quences.

6.3 Node Failure Prediction Performance
Evaluation

The main objective of this research is to predict the failures of nodes

in an HPC system. As explained, our solution, Clairvoyant, predicts

node failures by first predicting the future sequence of events for

every node as evaluated above and then identifying if a failure is

part of the sequence, as evaluated below using Bleu and Rouge, and

the standard metrics mentioned in the Section 4. To this end, we

calculate the values of the evaluation metrics by focusing on only

failure prediction events, unlike the evaluation of the prediction of

the entire health state, which involves multiple log events predicted

by our model and the events generated by the HPC system.

Ranger often encountered compute node lockup failures; thus,

our goal is to predict those soft lockup failures ahead of their occur-

rences, to trigger proactive failure management procedures in the

system. Accordingly, we demonstrate our approach’s effectiveness

by evaluating the performance of our technique and comparing the

results with baseline results on two different logs as follows:

As presented in Table 5, Figure 4 (a), and Figure 4 (b), our model

predicts upcoming failures with a Bleu score of 0.89 and 0.91 on

SysLogs and Rationalized Logs, respectively. In comparison, the

Desh baseline scores just 0.56 and 0.59. In other words, on average,

90.0% of Ranger failures predicted by our model (the candidate)

appear in the events generated by the HPC system (the reference),

compared to only 57.5% by Desh.

Moreover, results show that our technique obtains better recall

accuracy. Specifically, Clairvoyant achieves a Rouge score of 0.75

and .80 on SysLogs and Rationalized Logs, respectively. Desh ob-

tains only 0.57 and 0.59, respectively. This means that on average,

77.5% of failures generated by the Ranger appear in the log events

predicted by our model, compared to Desh’s 58%.

As presented in Table 5, Figure 4 (a), and Figure 4 (b), the result

of standard metrics shows that Clairvoyant predicts failures on

SysLogs and Rationalized Logs with a high-precision score of 0.97

and 0.99, and the recalls can reach up to 0.52 and 0.61, respectively.

In comparison, the Desh baseline achieves lower precision scores of

0.76 and 0.86 and lower recall scores of 0.21 and 0.21, respectively.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in Large-Scale Systems Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

 0

 0.2

 0.4

 0.6

 0.8

 1

B
LE

U

R
O

U
G

E

F
A
ILU

R
E
 P

R
E
C
IS

IO
N

F
A
ILU

R
E
 R

E
C
A
LL

N
O

N
-F

A
ILU

R
E
 P

R
E
C
IS

IO
N

N
O

N
-F

A
ILU

R
E
 R

E
C
A
LL

F
1-S

C
O

R
E

M
C
C
 S

C
O

R
E

F
P
-R

A
T
E

F
N
-R

A
T
E

S
c
o

re

Our Solution
Desh

 0
.8

9
 0

.5
6

 0
.7

5
 0

.5
7

 0
.9

7
 0

.7
6

 0
.5

2
 0

.2
1

 0
.6

7
 0

.5
4

 0
.9

8
0

.9
3

 0
.7

4
 0

.5
1

 0
.6

 0
.2

 0
.0

2
 0

.0
7

 0
.4

8
 0

.7
9

(a) SysLogs

 0

 0.2

 0.4

 0.6

 0.8

 1

B
LE

U

R
O

U
G

E

F
A
ILU

R
E
 P

R
E
C
IS

IO
N

F
A
ILU

R
E
 R

E
C
A
LL

N
O

N
-F

A
ILU

R
E
 P

R
E
C
IS

IO
N

N
O

N
-F

A
ILU

R
E
 R

E
C
A
LL

F
1-S

C
O

R
E

M
C
C
 S

C
O

R
E

F
P
-R

A
T
E

F
N
-R

A
T
E

S
c
o
re

Our Solution
Desh 0

.9
1

 0
.5

9

 0
.8

8
 0

.5
9

 0
.9

9
 0

.8
6

 0
.6

1
 0

.2
1

 0
.7

2
 0

.5
5

 0
.9

9
0
.9

6

 0
.8

0
 0

.5
2 0

.7
 0

.3

 0
.0

1
 0

.0
4

 0
.3

9
 0

.7
9

(b) Rationalized Logs

Figure 4: Failure Prediction Performance

Also, Clairvoyant predicts non-failure sequences correctly (benign

sequences) on SysLogs and Rationalized Logs with a precision

score of 0.67 and 0.72, and its recalls can reach up to 0.99 and 0.99,

respectively. The Desh baseline, on the other hand, achieves lower

precision scores (0.54 and 0.55) and also high recall scores (0.93

and 0.96), respectively.

We also check MCC, which is a reliable metric as it only returns a

high score if it performs well in all four confusion matrix categories

(TP, FP, FN, and TN), proportionate to the quantity of positive

class (failure) and negative (non-failure) class in the test dataset.

Moreover, we also utilize the weighted average of f1-score from

the positive class (failure) and negative (non-failure) class for more

accurate evaluation even our test set is balanced between the two

classes. The results (see Table 5, Figure 4 (a), and Figure 4 (b)) show

that our model (Clairvoyant) achieves better prediction on SysLogs

and Rationalized Logs with MCC scores of .6 and 0.7, and the f-

scores reach 0.74 and 0.80, respectively. In comparison, the Desh

baseline achieves MCC scores of 0.2 and 0.3 and f-scores of 0.51

and 0.52, respectively.

Moreover, false positive rate (FP-rate) and false negative rate (FN-

rate) also demonstrates the substantial improvement of our model.

The FP-rate shows that 7% and 4% of Desh alarms on SysLogs and

Rationalized Logs are false alarms (which would cause incorrect

recovery actions), respectively. On the other hand, our model only

drives 2% and 1% false alarms, leading to rare incorrect trigger

recovery actions. Also, based on FN-rate, Desh significantly missed

real node failures on SysLogs and Rationalized Logs (both 79%),

while Clairvoyant missed only 48% and 39%.

As follows, we give a detailed explanation why our model signif-

icantly advances Desh in node failure prediction. As stated before,

different lengths of log sequences are observed between Ranger’s

node failures and their associated errors&faults (such as software&

kernel OS process, file-system errors, memory&storage errors, and

network errors) for each Ranger component (e.g., nodes). Those se-

quences contain numerous interleaved & irrelevant log events, mak-

ing the failure prediction process more challenging. For example,

some errors take many hours to trigger the associated failures, re-

sulting in extended and lengthy log sequences (e.g., over 2000 events

even after the preprocessing phase). Nevertheless, due tomulti-head

masked attention layers and the positional encoding technique, our

transformer-decoder-based model outperforms the recurrent neu-

ral network baseline (Desh) in that it completely avoids recursion,

processing log sentences as a whole and understanding associations

between log events. In other words, our approach’s effectiveness

in identifying the relationship between Ranger soft lockup failures

and their preceding inducing errors comes from masked attention

neural networks, which is the main component of the transformer-

decoder and positional encoding layer that is combined with log

events embedding. Accordingly, our solution can successfully pre-

dict node failures before they occur based on evaluation scores.

The baseline – Desh, however, achieved lower accuracy and slower

prediction because it is an RNN-based model that requires recur-

ring recursion and sequential processing (log sequences processed

event by event). Moreover, some log sequences are too long, and

LSTM fails to capture the long relationship dependency range be-

tween failures and inducing error events as a result of the vanishing

gradient problem, causing memory loss for earlier occurring events.

6.4 Node Failure Prediction Performance with
Different Decoding Techniques

Transformer-decoder neural networks can be employed for text pre-

diction with different decoding methods, including greedy search,

beam search, basic sampling, top-K sampling, and top-P (Nucleus)

sampling, and our model can work with each of them flexibly. This

section examines the performance of two of these techniques on

Rationalized Logs (similar results appeared with Syslogs) and how

they affect the node failure prediction accuracy.

6.4.1 Greedy Search. In the greedy search decoding technique,

the next log event is predicted as the log event with the highest

probability, and the next log event is updated through the following

Eq 16 at each time step t .

Et = arдmaxEP(Et |E1:t−1) (16)

Using the greedy technique, our model achieves high scores of Bleu

and Rouge, f1-score, MCC 0.91, 0.80, 0.80, and 0.7 respectively, in

predicting future soft lockup failures in Ranger Rationalized Logs.

6.4.2 Sampling Decoding with Different Temperature Val-
ues. In NLP prediction task, the unpredictability of the predicted

text (log events in our case) is controlled by a temperature (hyper-

parameter), so we explored our model performance using basic

sampling decoding with different temperature values. As shown in

Figure 5, we observe that the failure prediction accuracy increases

as the temperature value decreases, meaning that log events with

high probability will be selected over the ones with low probability.

Thus, we suggest using low-temperature values (≤ 0.5) to predict

HPC systems to avoid predicting log events with low probability

over those with high probability. In contrast, it is recommended to

use ≥ 0.7 to perform well with NLP open-ended tasks.

7 RELATEDWORK
Although this paper focuses on failure prediction, our work is also

closely related to log processing (the first phase of log analysis) and

error&failure detection. Thus, we discuss all the three categories,

log preprocessing, error detection, and failure prediction.

Log processing is the first step for log analysis, and different log

parsers are built based on self-attentionmechanism and transformer

models. For instance, [81] developed a log parser based on BERT,

[58] built NuLog self-supervised parser based on a transformer-

decoder, and [68] built a GPT-2 transformer based parser to pre-

process Cowrie Secure Shell (SSH) honeypot logs. Several other

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 0.2 0.4 0.6 0.8 1

F
a

ilu
re

 P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Temperature

Bleu
Rouge
f1-score
MCC

0.89 0.9 0.9
0.91 0.91

0.76 0.77 0.78 0.79
0.80

0.64 0.65

0.68
0.70 0.700.74 0.74

0.76 0.77

Figure 5: Failure Prediction with Different Temperature
Scale based on Sampling Decoding

log parsers are developed with different methods but none of them

are transformer based, such as LogAider[22] deployed for IBM

BlueGene HPC series [21], Craftsman [79], etc.

In the area of error&failure and anomaly detection, different

studies utilize self-attention with different transformer variants to

detect HPC errors and anomalies. For example, Zhao et al. [81]

proposed Trine, which is a generative adversarial network (GAN)

based model including three transformer encoders to identify anom-

alies in system log data. Also, [38] proposed LAMA, which is a

self-attention-based transformer-decoder to detect anomalies of

large-scale systems. The LAMA model is applied for anomaly de-

tection, where our model is applied for failure prediction. [76] also

employed the transformer-encoder architecture to develop an un-

supervised anomaly detection technique called A2Log. There are
other recent research studies that utilized the self-attention with dif-

ferent transformer variants for error and anomaly detection such as

LAnoBERT[48], LogAttention [24], and [47]. However, our model

utilized self-attention and transformer neural network architecture

to predict failures in HPC system components (nodes). Also, sev-

eral detection techniques are proposed with different approaches

that are not transformer based such as sentiment analysis based

technique [3], OVIS for monitoring error system [5], etc.

Failure prediction is beyond and more challenging than the error

and anomaly detection, because failure prediction requires to pre-

dict the upcoming failures significantly ahead of occurrence time

such that various precautions can be executed in time. Basically, the

failure prediction methods developed for HPC systems can be cate-

gorized into 4 classes
7
: rule-based method, mathematics/analytic-

based method, machine-learning based method, and deep-learning

based method. Rule-based failure prediction methods [15, 37, 55, 64,

75] generally try to establish some predicate rules such as if/then

statements, which are extracted from the offline log datasets. math-

ematics/analytic based approaches [5, 13, 27, 29–31, 49, 73, 82]

often perform failure prediction by probability analysis, correla-

tion analysis, or curve fitting. Machine-learning based approaches

[2, 7, 8, 25, 33, 35, 36, 45, 50, 54, 57, 60, 71–73, 77, 83] include failure

prediction methods using any machine-learning (ML) techniques

including decision tree/forest, regression, classification, Bayesian

network, and Markov chain, etc. For instance, Ana et. al. [32] intro-

duced a novel hybrid approach that combines signal analysis and

data mining to predict failures in large systems integrated with fail-

ure avoidance techniques. Nie et. al. proposed a serious of different

7
The finer taxonomy (9 classes) for the HPC failure prediction methods can be found

in Jauk et al.’s survey paper [44].

MLmodels to predict GPU error in HPC systems. The deep learning

based approaches [18, 43, 53] leverage deep neural networks which

generally are composed of much more layers than the plain neural

networks, thus they often need a relatively long training on top of

a large amount of samples (i.e., log messages).

From among all the four classes of failure prediction methods,

the deep-learning based approaches have gained a significant favor

over other types especially because of their outstanding accuracy.

For example, Lu et al. [53] leveraged hybrid technique of the convo-

lutional neural network and long short-term memory (CNN-LSTM)

in disk fault prediction, which can reach a high accuracy for 10

days prediction horizon. Desh [18] is a deep Learning based ap-

proach obtaining high accuracy in HPC nodes failure prediction.

Das et al. [16] proposed Aarohi, which is an extension to Desh with

higher inference performance but it still suffers as inferior failure

prediction capability and long training time, because it focuses

only the inference stage. Moreover, Aarohi needs re-training and

re-generation if any new failure patterns occur.

In comparison with Desh, we develop a more efficient failure

prediction technique by leveraging the self-attention mechanism

and transformer-decoder architecture, which outperforms Desh

significantly in all evaluation metrics based on our experiments.

Also, unlike Desh, our model does not eliminate interleaved logs

before predicting failures to replicate the real-time HPC system

in production. On the other hand, some other failure prediction

techniques are supervised-learning based models, which obtain

high accuracy, but they need labels. The self-attention mechanism

and transformer-decoder is introduced in “Attention Is All You

Need" research work by Vaswani et al [74]), followed by several

variants of transformers (Language modeling (LM)) in NLP tasks

domain such as BERT[19], GPT-2[62], Roberta[52], T5[63], etc. To

the best of our knowledge, this paper is the first attempt to leverage

the transformer-decoder in HPC failure prediction.

8 CONCLUSION
In this paper, we propose a novel self-supervised log-based ap-

proach called Clairvoyant to predict node failures. Clairvoyant

solves two main problems with state of the art solution, such as

Desh, by (i) being able to capture long-range dependencies and (ii)

being amenable to parallelisation. To the best of our knowledge,

Clairvoyant is the first attempt to leverage the transformer-decoder

technique for failure prediction. Our experiments using two differ-

ent datasets demonstrate a significant improvement in both pre-

diction accuracy and learning/training performance over Desh – a

LSTM-based failure predictor that has been verified as the best in

class. The key findings are summarized as follows:

• Clairvoyant can obtain much higher Bleu score (0.90), Rouge

score (0.78), MCC score (0.65) and F1-score (0.77) than Desh

does (0.58, 0.58, 0.25, and 0.52, respectively).

• Clairvoyant is about 25× and 15× faster than Desh, respec-

tively, during the training and prediction phases.

In the future, we plan to evaluate Clairvoyant using more system

logs such as Cray and Blue Gene systems.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in Large-Scale Systems Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] 2018. IEEE Standard for Information Technology–Portable Operating System

Interface (POSIX(TM)) Base Specifications, Issue 7. IEEE Std 1003.1-2017 (Revision
of IEEE Std 1003.1-2008) (2018), 1–3951. https://doi.org/10.1109/IEEESTD.2018.

8277153

[2] Bikash Agrawal, Tomasz Wiktorski, and Chunming Rong. 2015. Analyzing

and Predicting Failure in Hadoop Clusters Using Distributed Hidden Markov

Model. In Cloud Computing and Big Data, Weizhong Qiang, Xianghan Zheng,

and Ching-Hsien Hsu (Eds.). Springer International Publishing, Cham, 232–246.

[3] Khalid Ayedh Alharthi, Arshad Jhumka, Sheng Di, Franck Cappello, and Edward

Chuah. 2021. Sentiment Analysis based Error Detection for Large-Scale Systems.

In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 237–249.

[4] Andrea Borghesi, Antonio Libri, Luca Benini, and Andrea Bartolini. 2019. Online

anomaly detection in HPC systems. In 2019 IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS). IEEE, 229–233.

[5] Jim Brandt, Ann Gentile, JacksonMayo, Philippe Pébay, Diana Roe, David Thomp-

son, and Matthew Wong. 2009. Methodologies for Advance Warning of Compute

Cluster Problems via Statistical Analysis: A Case Study. In Proceedings of the
2009 Workshop on Resiliency in High Performance (Resilience ’09). Association for

Computing Machinery, New York, NY, USA, 7âĂŞ14.

[6] Sathya Bursic, Vittorio Cuculo, and Alessandro DâĂŹAmelio. 2019. Anomaly

Detection from Log Files Using Unsupervised Deep Learning. In International
Symposium on Formal Methods. Springer, 200–207.

[7] Carlos A. C. Rincon, Jehan-FranÃğois PÃćris, Ricardo Vilalta, Albert M. K.

Cheng, and Darrell D. E. Long. 2017. Disk failure prediction in heteroge-

neous environments. In 2017 International Symposium on Performance Eval-
uation of Computer and Telecommunication Systems (SPECTS). 1–7. https:

//doi.org/10.23919/SPECTS.2017.8046776

[8] Thanyalak Chalermarrewong, Tiranee Achalakul, and Simon Chong Wee See.

2012. Failure Prediction of Data Centers Using Time Series and Fault Tree

Analysis. In 2012 IEEE 18th International Conference on Parallel and Distributed
Systems. 794–799. https://doi.org/10.1109/ICPADS.2012.129

[9] Edward Chuah. 2020. Features correlation-based workflows for high-performance
computing systems diagnosis. Ph.D. Dissertation. University of Warwick.

[10] Edward Chuah, Arshad Jhumka, Samantha Alt, Daniel Balouek-Thomert, James C

Browne, and Manish Parashar. 2019. Towards comprehensive dependability-

driven resource use and message log-analysis for HPC systems diagnosis. J.
Parallel and Distrib. Comput. 132 (2019), 95–112.

[11] Edward Chuah, Arshad Jhumka, James C Browne, Bill Barth, and Sai

Narasimhamurthy. 2015. Insights into the diagnosis of system failures from

cluster message logs. In 2015 11th European Dependable Computing Conference
(EDCC). IEEE, 225–232.

[12] Edward Chuah, Shyh-hao Kuo, Paul Hiew, William-Chandra Tjhi, Gary Lee, John

Hammond, Marek T. Michalewicz, Terence Hung, and James C. Browne. 2010.

Diagnosing the root-causes of failures from cluster log files. In 2010 International
Conference on High Performance Computing. 1–10. https://doi.org/10.1109/HIPC.

2010.5713159

[13] Carlos H.A. Costa, Yoonho Park, Bryan S. Rosenburg, Chen-Yong Cher, and

Kyung Dong Ryu. 2014. A System Software Approach to Proactive Memory-

Error Avoidance. In SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 707–718. https://doi.

org/10.1109/SC.2014.63

[14] Anwesha Das and Frank Mueller. 2018. Holistic root cause analysis of node

failures in production HPC. SC Poster Session (2018).

[15] Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and Scott Baden. 2018.

Doomsday: Predicting Which Node Will Fail When on Supercomputers. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. 108–121. https://doi.org/10.1109/SC.2018.00012

[16] Anwesha Das, Frank Mueller, and Barry Rountree. 2020. Aarohi: Making Real-

Time Node Failure Prediction Feasible. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 1092–1101. https://doi.org/10.1109/

IPDPS47924.2020.00115

[17] Anwesha Das, Frank Mueller, and Barry Rountree. 2021. Systemic assessment of

node failures in HPC production platforms. In 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 267–276.

[18] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018. Desh:

deep learning for system health prediction of lead times to failure in HPC. In

Proceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing. 40–51.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[20] Sheng Di, Hanqi Guo, Eric Pershey, Marc Snir, and Franck Cappello. 2019. Char-

acterizing and Understanding HPC Job Failures Over The 2K-Day Life of IBM

BlueGene/Q System. In 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 473–484. https://doi.org/10.1109/DSN.

2019.00055

[21] S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello. 2019. Characterizing and

Understanding HPC Job Failures Over The 2K-Day Life of IBM BlueGene/Q

System. In 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 473–484.

[22] Sheng Di, Rinku Gupta, Marc Snir, Eric Pershey, and Franck Cappello. 2017.

Logaider: A tool for mining potential correlations of HPC log events. In 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 442–451.

[23] Jack Dongarra, Thomas Herault, and Yves Robert. 2015. Fault Tolerance Techniques
for High-Performance Computing. https://doi.org/10.1007/978-3-319-20943-2_1

[24] Qingfeng Du, Liang Zhao, Jincheng Xu, Yongqi Han, and Shuangli Zhang. 2021.

Log-Based Anomaly Detection with Multi-Head Scaled Dot-Product Attention

Mechanism. In International Conference on Database and Expert Systems Applica-
tions. Springer, 335–347.

[25] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder. 2017. Learning from

Failure Across Multiple Clusters: A Trace-Driven Approach to Understanding,

Predicting, and Mitigating Job Terminations. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). 1333–1344. https://doi.

org/10.1109/ICDCS.2017.317

[26] Oracle/Sun Grid Engine. [n. d.]. https://www.oracle.com/it-infrastructure/. On-

line.

[27] Xiaoyu Fu, Rui Ren, Sally A. McKee, Jianfeng Zhan, and Ninghui Sun. 2014.

Digging deeper into cluster system logs for failure prediction and root cause

diagnosis. In 2014 IEEE International Conference on Cluster Computing (CLUSTER).
103–112. https://doi.org/10.1109/CLUSTER.2014.6968768

[28] Errin W Fulp, Glenn A Fink, and Jereme N Haack. 2008. Predicting Computer

System Failures Using Support Vector Machines. WASL 8 (2008), 5–5.

[29] AnaGainaru,Mohamed-Slim Bouguerra, Franck Cappello, Marc Snir, andWilliam

T. C. Kramer. 2013. Navigating the Blue Waters : Online Failure Prediction in the

Petascale Era. https://www.mcs.anl.gov/papers/P5219-1014.pdf.

[30] Ana Gainaru, Franck Cappello, and William Kramer. 2012. Taming of the shrew:

Modeling the normal and faulty behaviour of large-scale HPC systems. In 2012
IEEE 26th International Parallel and Distributed Processing Symposium. IEEE, 1168–

1179.

[31] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. 2012. Fault

prediction under the microscope: A closer look into HPC systems. In SC ’12:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. 1–11. https://doi.org/10.1109/SC.2012.57

[32] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. 2013. Failure

prediction for HPC systems and applications: Current situation and open issues.

The International journal of high performance computing applications 27, 3 (2013),
273–282.

[33] Sandipan Ganguly, Ashish Consul, Ali Khan, Brian Bussone, Jacqueline Richards,

and AlejandroMiguel. 2016. A Practical Approach to Hard Disk Failure Prediction

in Cloud Platforms: Big Data Model for Failure Management in Datacenters. In

2016 IEEE Second International Conference on Big Data Computing Service and
Applications (BigDataService). 105–116. https://doi.org/10.1109/BigDataService.

2016.10

[34] Jiechao Gao, Haoyu Wang, and Haiying Shen. 2020. Task failure prediction in

cloud data centers using deep learning. IEEE Transactions on Services Computing
(2020).

[35] Jiexing Gu, Ziming Zheng, Zhiling Lan, John White, Eva Hocks, and Byung-

Hoon Park. 2008. Dynamic Meta-Learning for Failure Prediction in Large-Scale

Systems: A Case Study. In 2008 37th International Conference on Parallel Processing.
157–164. https://doi.org/10.1109/ICPP.2008.17

[36] Qiang Guan, Ziming Zhang, and Song Fu. 2011. Proactive Failure Management by

Integrated Unsupervised and Semi-Supervised Learning for Dependable Cloud

Systems. In 2011 Sixth International Conference on Availability, Reliability and
Security. 83–90. https://doi.org/10.1109/ARES.2011.20

[37] Luanzheng Guo, Dong Li, Ignacio Laguna, and Martin Schulz. 2018. FlipTracker:

Understanding Natural Error Resilience in HPC Applications. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage,
and Analysis (SC ’18). IEEE Press, Article 8, 14 pages.

[38] Yicheng Guo, Yujin Wen, Congwei Jiang, Yixin Lian, and Yi Wan. 2021. De-

tecting Log Anomalies with Multi-Head Attention (LAMA). arXiv preprint
arXiv:2101.02392 (2021).

[39] Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James Rogers, and Don

Maxwell. 2015. Understanding and exploiting spatial properties of system fail-

ures on extreme-scale hpc systems. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 37–44.

[40] Nentawe Gurumdimma, Gideon Dadik Bibu, Desmond Bala Bisandu, and Mam-

muan Titus Alams. 2018. Identifying Recovery Patterns from Resource Usage

Data of Cluster Systems. Science World Journal 13, 4 (2018), 87–94.
[41] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and

James Browne. 2016. Crude: Combining resource usage data and error logs for

accurate error detection in large-scale distributed systems. In 2016 IEEE 35th
Symposium on Reliable Distributed Systems (SRDS). IEEE, 51–60.

11

https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.23919/SPECTS.2017.8046776
https://doi.org/10.23919/SPECTS.2017.8046776
https://doi.org/10.1109/ICPADS.2012.129
https://doi.org/10.1109/HIPC.2010.5713159
https://doi.org/10.1109/HIPC.2010.5713159
https://doi.org/10.1109/SC.2014.63
https://doi.org/10.1109/SC.2014.63
https://doi.org/10.1109/SC.2018.00012
https://doi.org/10.1109/IPDPS47924.2020.00115
https://doi.org/10.1109/IPDPS47924.2020.00115
https://doi.org/10.1109/DSN.2019.00055
https://doi.org/10.1109/DSN.2019.00055
https://doi.org/10.1007/978-3-319-20943-2_1
https://doi.org/10.1109/ICDCS.2017.317
https://doi.org/10.1109/ICDCS.2017.317
https://www.oracle.com/it-infrastructure/
https://doi.org/10.1109/CLUSTER.2014.6968768
https://www.mcs.anl.gov/papers/P5219-1014.pdf
https://doi.org/10.1109/SC.2012.57
https://doi.org/10.1109/BigDataService.2016.10
https://doi.org/10.1109/BigDataService.2016.10
https://doi.org/10.1109/ICPP.2008.17
https://doi.org/10.1109/ARES.2011.20

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[42] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience re-

port: System log analysis for anomaly detection. In 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 207–218.

[43] Tariqul Islam and Dakshnamoorthy Manivannan. 2017. Predicting Application

Failure in Cloud: A Machine Learning Approach. In 2017 IEEE International
Conference on Cognitive Computing (ICCC). 24–31. https://doi.org/10.1109/IEEE.

ICCC.2017.11

[44] David Jauk, Dai Yang, and Martin Schulz. 2019. Predicting faults in high per-

formance computing systems: An in-depth survey of the state-of-the-practice.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–13.

[45] Jannis Klinkenberg, Christian Terboven, Stefan Lankes, and Matthias S. MÃĳller.

2017. Data Mining-Based Analysis of HPC Center Operations. In 2017 IEEE
International Conference on Cluster Computing (CLUSTER). 766–773. https://doi.

org/10.1109/CLUSTER.2017.23

[46] Zhiling Lan, Ziming Zheng, and Yawei Li. 2009. Toward automated anomaly

identification in large-scale systems. IEEE Transactions on Parallel and Distributed
Systems 21, 2 (2009), 174–187.

[47] Van-Hoang Le and Hongyu Zhang. 2021. Log-based anomaly detection without

log parsing. arXiv preprint arXiv:2108.01955 (2021).
[48] Yukyung Lee, Jina Kim, and Pilsung Kang. 2021. LAnoBERT: System Log

Anomaly Detection based on BERT Masked Language Model. arXiv preprint
arXiv:2111.09564 (2021).

[49] Yinglung Liang, Yanyong Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo.

2006. BlueGene/L Failure Analysis and Prediction Models. In International
Conference on Dependable Systems and Networks (DSN’06). 425–434. https:

//doi.org/10.1109/DSN.2006.18

[50] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. 2007. Failure

prediction in IBM Bluegene/L event logs. In Seventh IEEE International Conference
on Data Mining (ICDM 2007). IEEE, 583–588.

[51] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.

In Text summarization branches out. 74–81.
[52] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[53] Sidi Lu, Bing Luo, Tirthak Patel, Yongtao Yao, Devesh Tiwari, and Weisong Shi.

2020. Making disk failure predictions smarter!. In 18th {USENIX} Conference on
File and Storage Technologies ({FAST} 20). 151–167.

[54] Xu LU, Hui qiang WANG, Ren jie ZHOU, and Bao yu GE. 2010. Autonomic

failure prediction based on manifold learning for large-scale distributed systems.

The Journal of China Universities of Posts and Telecommunications 17, 4 (2010),
116–124. https://doi.org/10.1016/S1005-8885(09)60497-0

[55] AoMa, FredDouglis, Guanlin Lu, Darren Sawyer, Surendar Chandra, andWindsor

Hsu. 2015. RAIDShield: Characterizing, Monitoring, and Proactively Protecting

against Disk Failures. In Proceedings of the 13th USENIX Conference on File and
Storage Technologies (FAST’15). USENIX Association, USA, 241âĂŞ256.

[56] Weibin Meng, Ying Liu, Shenglin Zhang, Federico Zaiter, Yuzhe Zhang, Yuheng

Huang, Zhaoyang Yu, Yuzhi Zhang, Lei Song, Ming Zhang, et al. 2021. Log-

Class: Anomalous Log Identification and Classification with Partial Labels. IEEE
Transactions on Network and Service Management (2021).

[57] Nithin Nakka, Ankit Agrawal, and Alok Choudhary. 2011. Predicting Node Failure

in High Performance Computing Systems from Failure and Usage Logs. In 2011
IEEE International Symposium on Parallel and Distributed Processing Workshops
and Phd Forum. 1557–1566. https://doi.org/10.1109/IPDPS.2011.310

[58] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and

Odej Kao. 2020. Self-supervised log parsing. arXiv preprint arXiv:2003.07905
(2020).

[59] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[60] Alejandro Pelaez, Andres Quiroz, James C. Browne, Edward Chuah, and Manish

Parashar. 2014. Online failure prediction for HPC resources using decentralized

clustering. In 2014 21st International Conference on High Performance Computing
(HiPC). 1–9. https://doi.org/10.1109/HiPC.2014.7116903

[61] Teerat Pitakrat, DušanOkanović, André vanHoorn, and Lars Grunske. 2018. Hora:

Architecture-aware online failure prediction. Journal of Systems and Software
137 (2018), 669–685.

[62] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[63] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the lim-

its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

[64] Raghunath Rajachandrasekar, Xavier Besseron, and Dhabaleswar K. Panda. 2012.

Monitoring and Predicting Hardware Failures in HPC Clusters with FTB-IPMI.

In 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops PhD Forum. 1136–1143. https://doi.org/10.1109/IPDPSW.2012.139

[65] Narasimha Raju, Yudan Liu, Chokchai Box Leangsuksun, Raja Nassar, and Stephen

Scott. 2007. Reliability Analysis in HPC clusters. http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.88.1149&rep=rep1&type=pdf.

[66] Ananya B Sai, Akash Kumar Mohankumar, and Mitesh M Khapra. 2020. A survey

of evaluation metrics used for NLG systems. arXiv preprint arXiv:2008.12009
(2020).

[67] Felix Salfner and Miroslaw Malek. 2007. Using hidden semi-Markov models for

effective online failure prediction. In 2007 26th IEEE International Symposium on
Reliable Distributed Systems (SRDS 2007). IEEE, 161–174.

[68] Febrian Setianto, Erion Tsani, Fatima Sadiq, Georgios Domalis, Dimitris Tsakalidis,

and Panos Kostakos. 2021. GPT-2C: A GPT-2 parser for Cowrie honeypot logs.

arXiv preprint arXiv:2109.06595 (2021).
[69] S. Sharma and A. D. Clark. 2018. Introducing a Reliability Analysis Framework

for High Performance Computing Environments. In 2018 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM). 1131–
1138. https://doi.org/10.1109/ASONAM.2018.8508245

[70] Nikolay A. Simakov, Joseph P. White, Robert L. DeLeon, Steven M. Gallo,

Matthew D. Jones, Jeffrey T. Palmer, Benjamin Plessinger, and Thomas R. Furlani.

2018. A Workload Analysis of NSF’s Innovative HPC Resources Using XDMoD.

arXiv:cs.DC/1801.04306

[71] Alina Sîrbu and Özalp Babaoglu. 2016. Towards Operator-less Data Centers

Through Data-Driven, Predictive, Proactive Autonomics. CoRR abs/1606.04456

(2016). arXiv:1606.04456 http://arxiv.org/abs/1606.04456

[72] Mbarka Soualhia, Foutse Khomh, and Sofiene Tahar. 2015. Predicting Scheduling

Failures in the Cloud: A Case Study with Google Clusters and Hadoop on Amazon

EMR. In 2015 IEEE 17th International Conference on High Performance Computing
and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security, and 2015 IEEE 12th International Conference on Embedded Software
and Systems. 58–65. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.170

[73] Joshua Thompson, DavidW. Dreisigmeyer, Terry Jones, Michael Kirby, and Joshua

Ladd. 2010. Accurate fault prediction of BlueGene/P RAS logs via geometric

reduction. In 2010 International Conference on Dependable Systems and Networks
Workshops (DSN-W). 8–14. https://doi.org/10.1109/DSNW.2010.5542626

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[75] Yukihiro Watanabe and Yasuhide Matsumoto. 2014. Online failure prediction in

cloud datacenters. Fujitsu scientific & technical journal 50, 1 (2014), 67–71.
[76] Thorsten Wittkopp, Alexander Acker, Sasho Nedelkoski, Jasmin Bogatinovski,

Dominik Scheinert, Wu Fan, and Odej Kao. 2021. A2Log: Attentive Augmented

Log Anomaly Detection. arXiv:cs.LG/2109.09537

[77] Li Yu, Ziming Zheng, Zhiling Lan, and Susan Coghlan. 2011. Practical online

failure prediction for Blue Gene/P: Period-based vs event-driven. In 2011 IEEE/IFIP
41st International Conference on Dependable Systems and Networks Workshops
(DSN-W). 259–264. https://doi.org/10.1109/DSNW.2011.5958823

[78] Yulai Yuan, Yongwei Wu, Qiuping Wang, Guangwen Yang, and Weimin Zheng.

2012. Job failures in high performance computing systems: A large-scale em-

pirical study. Computers & Mathematics with Applications 63, 2 (2012), 365–377.
Advances in context, cognitive, and secure computing.

[79] Shenglin Zhang, Ying Liu, Weibin Meng, Jiahao Bu, Sen Yang, Yongqian Sun, Dan

Pei, Jun Xu, Yuzhi Zhang, Lei Song, et al. 2020. Efficient and robust syslog parsing

for network devices in datacenter networks. IEEE Access 8 (2020), 30245–30261.
[80] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,

Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based

anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807–817.

[81] Zhenfei Zhao, Weina Niu, Xiaosong Zhang, Runzi Zhang, Zhenqi Yu, and Cheng

Huang. 2021. Trine: Syslog anomaly detection with three transformer encoders

in one generative adversarial network. Applied Intelligence (2021), 1–10.
[82] Ziming Zheng, Zhiling Lan, Rinku Gupta, Susan Coghlan, and Peter Beckman.

2010. A practical failure prediction with location and lead time for Blue Gene/P.

In 2010 International Conference on Dependable Systems and Networks Workshops
(DSN-W). 15–22. https://doi.org/10.1109/DSNW.2010.5542627

[83] Bingpeng Zhu, GangWang, Xiaoguang Liu, Dianming Hu, Sheng Lin, and Jingwei

Ma. 2013. Proactive drive failure prediction for large scale storage systems. In

2013 IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST). 1–5.
https://doi.org/10.1109/MSST.2013.6558427

12

https://doi.org/10.1109/IEEE.ICCC.2017.11
https://doi.org/10.1109/IEEE.ICCC.2017.11
https://doi.org/10.1109/CLUSTER.2017.23
https://doi.org/10.1109/CLUSTER.2017.23
https://doi.org/10.1109/DSN.2006.18
https://doi.org/10.1109/DSN.2006.18
https://doi.org/10.1016/S1005-8885(09)60497-0
https://doi.org/10.1109/IPDPS.2011.310
https://doi.org/10.1109/HiPC.2014.7116903
https://doi.org/10.1109/IPDPSW.2012.139
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.1149&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.1149&rep=rep1&type=pdf
https://doi.org/10.1109/ASONAM.2018.8508245
https://arxiv.org/abs/cs.DC/1801.04306
https://arxiv.org/abs/1606.04456
http://arxiv.org/abs/1606.04456
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.170
https://doi.org/10.1109/DSNW.2010.5542626
https://arxiv.org/abs/cs.LG/2109.09537
https://doi.org/10.1109/DSNW.2011.5958823
https://doi.org/10.1109/DSNW.2010.5542627
https://doi.org/10.1109/MSST.2013.6558427

	Abstract
	1 Introduction
	2 Models and Problem Formulation
	2.1 System Model
	2.2 Fault Model
	2.3 Problem Formulation

	3 Methodology for Clairvoyant
	3.1 PHASE I. LOG MESSAGE PREPROCESSING
	3.2 PHASE II. LOG EVENTS LEARNING AND PREDICTION

	4 Evaluation Metrics
	5 Evaluation System and Datasets
	5.1 TACC RANGER AND LOG DATA

	6 Evaluation Results
	6.1 Log Data Preprocessing
	6.2 Predicting Entire Health State of Ranger Performance Evaluation
	6.3 Node Failure Prediction Performance Evaluation
	6.4 Node Failure Prediction Performance with Different Decoding Techniques

	7 Related work
	8 Conclusion
	References

