
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/179158

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/179158
mailto:wrap@warwick.ac.uk

The Terminator: An AI-Based Framework
to Handle Dependability Threats in

Large-Scale Distributed Systems

by

Khalid Ayed Budayai Alharthi

Thesis

Submitted to the University of Warwick

for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2023

Contents

Contents

List of Tables vi

List of Figures vii

Acknowledgments ix

Declarations xii

Abstract xiii

Acronyms xiv

Chapter 1 Introduction 1

1.1 Motivation . 3

1.2 Challenges and Opportunities 5

1.3 Basic Concepts About Dependability 6

1.3.1 The Attributes of Dependability 6

1.3.2 The Threats to Dependability: Faults, Errors, and Failures 7

1.3.3 The Means of Dependability 9

1.3.4 Fault Tolerance and Failure Prediction 9

1.4 Problem Statement . 11

1.5 The Approach . 12

1.6 Thesis Contributions . 13

1.7 Outline of this Thesis . 14

Chapter 2 Background 17

2.1 Sentiment Analysis . 17

2.2 Sentiment Analysis Approaches 18

i

Contents

2.2.1 Lexicon-based Approach 18

2.2.2 Machine and Deep Learning Approach 20

2.2.3 Hybrid Approach . 25

2.3 Natural Language Generation (NLG) 25

2.3.1 Recurrent Neural Networks (RNN) 26

2.3.2 Transformers . 30

Summary . 33

Chapter 3 Literature Review 35

Preface 35

3.1 Log Parsing . 36

3.1.1 Clustering Approach . 37

3.1.2 Frequent Items Mining Approach 39

3.1.3 Tree Structure Approach 39

3.1.4 Machine & Deep Learning Approach 40

3.1.5 Other techniques . 41

3.2 Error Detection . 42

3.2.1 Machine Learning Approach 43

3.2.2 Deep Learning Approach 49

3.3 Failure Diagnosis . 54

3.3.1 Traditional Rule-based Approach 55

3.3.2 Statistical Approach . 56

3.3.3 Machine & Deep Learning Approach 58

3.4 Failure Prediction . 59

3.4.1 Rule-based Approach . 60

3.4.2 Probability and Correlation Approach 60

3.4.3 Machine Learning Approach 63

3.4.4 Deep Learning Approach 66

Summary . 71

Chapter 4 System Description, Log Data, And Fault Models 73

4.1 System Model . 73

4.2 Production Systems and Log Data 74

ii

Contents

4.2.1 Blue Gene/Q Mira Cluster 74

4.2.2 TACC Ranger Cluster 75

4.2.3 TACC Lonestar4 Cluster 77

4.2.4 Cray XC30 Cluster . 77

4.2.5 Cray XC40 (Mutrino) Cluster 78

4.3 Fault Model . 79

4.3.1 Fault Model: HPC Node Failures 79

4.3.2 Causes of Node Failures 80

4.4 Basic Definitions . 81

Summary . 83

Chapter 5 Sentiment Analysis Model For Errors Detection In

Large Scale Systems 85

Preface 85

5.1 Introduction . 86

5.2 Problem Formulation and Research Objective 89

5.3 Methodology . 90

5.3.1 Lexicon Construction Using Stochastic Gradient Descent

Logistic Regression . 90

5.3.2 Sentiment Polarity-based Error Detection 94

5.3.3 Erroneous Component Identification Based on Sentiment

Polarity Scores . 96

5.4 Experimental Evaluation . 98

5.4.1 Evaluation Metrics . 99

5.4.2 Evaluation of Error Detection 100

5.4.3 Evaluation of Erroneous Component Identification . . . 109

Summary . 111

Chapter 6 Clairvoyant: A Log-Based Transformer-Decoder for

Failure Prediction in Large-Scale Systems 112

Preface 112

6.1 Introduction . 113

6.2 Problem Formulation . 115

iii

Contents

6.3 Methodology for Clairvoyant 117

6.3.1 Phase I. Log Message Preprocessing 119

6.3.2 Phase II. Log Events Learning and Prediction 119

6.4 Evaluation Metrics . 124

6.5 Evaluation System, Datasets, and Soft Lockup Failure 128

6.6 Evaluation Results . 129

6.6.1 Log Data Preprocessing 131

6.6.2 Predicting Entire Health State of Ranger Performance

Evaluation . 131

6.6.3 Node Failure Prediction Performance Evaluation 134

6.6.4 Node Failure Prediction Performance with Different De-

coding Techniques . 138

Summary . 139

Chapter 7 Time Machine: Generative Real-Time Model For

Predicting Failure and Lead Time in HPC Systems 141

Preface 141

7.1 Introduction . 142

7.2 Problem Formulation . 145

7.3 Time Machine Methodology . 147

7.3.1 Node Failure Prediction 149

7.3.2 Predicting Lead Times to The Node Failure 152

7.3.3 Featuring Real-Time in Time Machine 155

7.4 Production Systems and Datasets 156

7.5 Evaluation Metrics . 156

7.6 Performance Evaluation . 157

7.6.1 Log Data Preprocessing 158

7.6.2 Training and Prediction Time Performance 158

7.6.3 Overall Learning & Log Events Prediction Performance 161

7.6.4 Node Failure Prediction Performance Evaluation 162

7.6.5 Lead Time Prediction Performance Evaluation 165

7.6.6 Impact of Time Machine on Checkpoint-based Execution 168

Summary . 170

iv

Contents

Chapter 8 Conclusions and Future Work 172

Preface 172

8.1 Conclusion . 172

8.1.1 Introductory Chapters 174

8.1.2 The Chapters Discussing Summary of Contributions,

Limitations, and Future Work 175

v

List of Tables

List of Tables

3.1 Comparative Analysis Of Failure Prediction Solutions 71

4.1 The Configuration of the Supercomputers Used in our Evaluation 74

4.2 Description of the Key Fields in RAS logs 75

4.3 Description of Syslogs Message Fields 76

4.4 Description of Rationalized Logs Message Fields 77

4.5 Description of Cray Console Log Fields 79

4.6 Description of Cray Message Log Fields 79

5.1 Scores (Recall, precision, f1-score, and MCC) of our lexicon and

ML models on three systems(Mira, Ranger, and Lonestar 4) . . 105

6.1 Data Logs before and after the Preprocessing Phase 128

6.2 Training Time Performance in Hours 132

135table.caption.95

7.1 Analysis Logs before and after the Preprocessing Phase 158

7.2 Log Events Training Time Performance in Hours 159

7.3 Lead Time Training Time Performance in Hours 160

7.4 Lead Time To Failure Prediction Performance Evaluation on 4

HPC Systems Data Logs . 166

7.5 Performance Breakdown of Simulation (job workload = 6 hours)

based on 1000 tests (in seconds) 170

vi

List of Figures

List of Figures

1.1 Dependability Tree [45] . 7

1.2 The relationship between faults, errors and failures 8

2.1 Sentiment Analysis Approaches[255] 18

2.2 Sentiment Analysis Detection Phases Using Machine and Deep

Learning . 20

2.3 Random Forest (Example of ensemble of decision trees) 22

2.4 RNN Variants Cell Diagrams [292] 27

2.5 Transformer Neural Networks Architecture [19, 305] 31

3.1 A Taxonomy of Log Analysis Approaches 36

3.2 Raw Log to Structured Log . 38

5.1 ∼ 60 of IBM Gene systems lexicon’ items associated with their

sentiment intensity scores . 102

5.2 Detection with different lexicon absolute threshold µ, with φ = 0103

5.3 Mira error detection performance with different detection threshold

φ, with µ = 0 . 104

5.4 The average of detection performance of our lexicon and ML

models on all three systems . 106

5.5 Detection performance of our lexicon/ML models on 2020 Mira

RAS logs . 107

5.6 Detection performance of our lexicon and ML models on Ranger

logs . 108

5.7 Detection performance of our lexicon and ML models on Lonestar4.109

5.8 Illustration of The Erroneous Component Identification on Mira 110

vii

List of Figures

5.9 Mira Erroneous Component Identification (Q2H-I3-J00∼Q2H-

I4-J05) . 110

6.1 Failure and Health State Prediction Phases for Each Component

(i.e., node) . 118

6.2 Monthly Compute Node Soft Lockup Failure Messages on SysLogs129

6.3 Monthly Compute Node Soft Lockup Failure Messages on Ra-

tionalized Logs . 130

6.4 Daily Compute Node Soft Lockup Failure Messages in March . 130

6.5 Daily Compute Node Soft Lockup Failure Messages in July . . 130

6.6 Chain Lengths(# Log Events) Prediction Time 133

6.7 Bleu and Rouge for Entire Health State Prediction on Syslogs . 133

6.8 Bleu and Rouge for Entire Health State Prediction on Ratlogs . 133

6.9 Failure Prediction Performance on SysLogs 135

6.10 Failure Prediction Performance on RatLogs 136

6.11 Failure Prediction with Different Temperature Scale based on

Sampling Decoding . 138

7.1 Illustration of Health State/Failure/Lead Time Prediction Phases

in Time Machine . 150

7.2 Lead Time Training Instances Construction 154

7.3 Prediction Time of Chain Lengths 160

7.4 Entire Health State Prediction Accuracy 161

7.5 Failure Prediction Performance 163

7.6 Lead Time Prediction Performance 166

7.7 Distribution of Total Execution Overhead 170

viii

Acknowledgments

Acknowledgments

In the name of ALLAH, the most gracious, the most merciful (Bism ALLAH

Alrahman Alrahim)

I am grateful to many people who have assisted me in one way or another

during my PhD studies at the University of Warwick. I am honoured to

acknowledge them in this thesis.

First and foremost, I would like to glorify the Almighty ALLAH, the Most

Gracious and the Most Merciful, for the blessings HE has given to me during

my PhD journey and the completion of this thesis. May ALLAH’s blessings

reach HIS final Prophet Mohammad (peace be upon him), his family, and his

companions.

Second, I would like to devote this PhD thesis to my parents (Ayedh and

Amarah) for their utmost love, support, sacrifices, and warm prayers. “Ya

ALLAH„ have mercy upon them as they raised me when I was a child.” (Quran

17:24). Ya ALLAH, grant my parents the highest place in Jannah. Also, I

am forever grateful to my family (brothers (Abdullah, Mohammed, Budayai,

Nemshan, Faisal, Nasser, and Ahmed), and sisters (Khazma, Hajda, Ghyfa,

Waeila, Saliha, Badriya, Fatima, Khayria, and Shaykha), nephews, nieces,

and all relatives and friends) back home in Saudi Arabia who motivated me

throughout this journey and for their love and prayers.

I am profoundly grateful to my supervisor, Dr. Arshad Jhumka, for his tena-

cious support and inspiration, which lead me to strive for excellence throughout

my PhD study. His invaluable guidance, suggestions, and motivation were and

will continue to be pivotal in shaping my current and future academic and

professional growth. His proficiency in providing incalculable feedback and

helpful advice has enhanced the quality of my work and fostered my capability

ix

Acknowledgments

as a researcher. I am truly honoured to have had the opportunity to work

under his supervision and I am very thankful for his lasting impact on my

career. Thank you for your support during the loss of my father and brother.

I am also immensely grateful to Dr. Sheng Di for mentoring me during

my research visit at Argonne National Laboratory, the University of Chicago.

I sincerely appreciate his assistance in providing the Mira data logs for my

research work and his invaluable contribution and insightful feedback on my

research papers. Moreover, I would like to thank Prof. Franck Cappello for

providing valuable comments on my research papers.

I would like to warmly thank: Dr. Anwesha Das (Stanford University) for

answering my questions about the Cray supercomputer system, Dr. Edward

Chuah (University of Aberdeen) and Dr. Nentawe Gurumdimma for answering

my questions about Ranger and Lonestar4 clusters.

Furthermore, I would like to thank: (i) Argonne National Laboratory- the

University of Chicago, for providing the IBM Blue Gene/Q logs, (ii) Texas

Advanced Computing Center at UT-Austin for providing the Ranger and

Lonestar4 data logs, and (iii) Sandia National Laboratories (SNL) and Los

Alamos National Laboratory (LANL) for providing the Cray system logs.

I would also like to thank Prof. Simon McIntosh-Smith(Bristol University)

for hosting me during my one-year research visit at Alan Turing Institute (ATI)

and the Jean Golding Institute (JGI). I would also like to thank the teams

from the student services and AI & Data Science at ATI for the wonderful

administrative support they have given to me during my research visit.

I would like to thank Dr. Lin Gui (King’s College London) for his invaluable

feedback and fruitful research collaboration. Also, I am grateful to Prof. Yulan

He (King’s College London) and Dr. Gabriele Pergola and the team of the

Natural Language Processing (NLP) Research Group at Warwick University

for the opportunity to join the group and learn from them.

I would also like to thank Sharon Howard, Maria Ferreiro, and Kelly

Chennery for all the administrative support they gave me at the Computer

Science Department, the University of Warwick.

I owe much gratitude to my master’s thesis advisors at Kent State University,

USA, Prof. Austin Melton and Prof. Angela Guercio, for helping me take my

x

Acknowledgments

first steps in the world of research.

I would like to thank my examiners, Prof. Gihan Mudalige and Prof.

Karim Djemame, for their insightful feedback and recommendation which

helped improve my final thesis. I would also like to thank my Viva advisor,

Prof. Sara Kalvala, for her guidance and support throughout my Viva.

Many thanks to my friends (Ghurom Saad, Mohammed Buti, Ali Mo-

hammed Alqahtani, Saad Sharaf, Mohammed GhuromALLAH,and AbduLLAH

Ahmed).

Additionally, I would like to thank my lab-mates— Mansour Aldawood

(For his exceptional guidance throughout my PhD journey), Mohammed Maray

Alqahtani (For his and other friends’ support during the loss of my father

and brother and his valuable advices during my PhD), Ali Maray Alqahtani,

and Majed Albarrak, for their tremendous support and friendship during my

studies. Also, I want to thank all of my friends in the CS department.

Special thanks to my dear neighbours (Omar AlSaeed and Nasser Al-

hammad) for their brotherhood, advices, and support. Also, I am thankful to

all of my friends I have met during my PhD study.

My ULTIMATE thanks are dedicated to my beloved wife (Afnan), and my

daughters (Elaf and Mehaf), for their unwavering love, which played a crucial

role during my PhD journey. They genuinely deserve endless appreciation.

Thank you for being my most significant source of inspiration; I am forever

thankful for having you by my side.

xi

Declarations

Declarations

The author confirms that this thesis has not been submitted for a degree at

another university. In addition, the main contributions of this thesis have

been previously published by the author in the following flagship, top-tier, and

leading conferences:

[34] Khalid Ayedh Alharthi, Arshad Jhumka, Sheng Di, Franck Cappello,

and Edward Chuah. Sentiment analysis based error detection for

large-scale systems. In 2021 51st Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN’2021), pages

237–249. IEEE, 2021. [Chapter 5] (GitHub [5]).

[35] Khalid Ayedh Alharthi, Arshad Jhumka, Sheng Di, and Franck Cap-

pello. Clairvoyant: a log-based transformer-decoder for failure

prediction in large-scale systems. In Proceedings of the 36th ACM

International Conference on Supercomputing (ICS’2022), pages 1–14,

2022. [Chapter 6] (GitHub [4]).

[36] Khalid Ayedh Alharthi, Arshad Jhumka, Sheng Di, Lin Gui, Franck

Cappello, and Simon McIntosh-Smith. Time machine: Generative

real-time model for failure (and lead time) prediction in HPC

systems. In 2023 53st Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’2023). IEEE, 2023. [Chapter

7] (GitHub [23]).

xii

Abstract

Abstract

With the advent of resource-hungry applications such as scientific simula-

tions and artificial intelligence (AI), the need for high-performance computing

(HPC) infrastructure is becoming more pressing. HPC systems are typically

characterised by the scale of the resources they possess, containing a large

number of sophisticated HW components that are tightly integrated. This

scale and design complexity inherently contribute to sources of uncertainties,

i.e., there are dependability threats that perturb the system during applic-

ation execution. During system execution, these HPC systems generate a

massive amount of log messages that capture the health status of the various

components. Several previous works have leveraged those systems’ logs for

dependability purposes, such as failure prediction, with varying results. In

this work, three novel AI-based techniques are proposed to address two major

dependability problems, those of (i) error detection and (ii) failure prediction.

The proposed error detection technique leverages the sentiments embedded

in log messages in a novel way, making the approach HPC system-independent,

i.e., the technique can be used to detect errors in any HPC system. On

the other hand, two novel self-supervised transformer neural networks are

developed for failure prediction, thereby obviating the need for labels, which

are notoriously difficult to obtain in HPC systems. The first transformer

technique, called Clairvoyant, accurately predicts the location of the failure,

while the second technique, called Time Machine, extends Clairvoyant by also

accurately predicting the lead time to failure (LTTF). Time Machine addresses

the typical regression problem of LTTF as a novel multi-class classification

problem, using a novel oversampling method for online time-based task training.

Results from six real-world HPC clusters’ datasets show that our approaches

significantly outperform the state-of-the-art methods on various metrics.

xiii

Acronyms

Acronyms

AI Artificial Intelligence.

ANN Artificial Neural Network.

BERT Bidirectional Encoder Representations from Transformers.

Bi-LSTM Bidirectional Long Short-term Memory.

CFG Control Flow Graph.

CNN Convolutional Neural Network.

DL deep learning.

FNN Feedforward Neural Network.

GAN Generative Adversarial Networks.

GPT-2 Generative Pre-trained Transformer-2.

GRU Gated Recurrent Unit.

HDFS Hadoop Distributed File System.

HMM Hidden Markov Model.

HPC High-Performance Computing.

KNN K-Nearest Neighbor.

LR Logistic Regression.

LSTM Long Short-Term Memory.

MCC Matthew’s Correlation Coefficient.

xiv

Acronyms

ML machine learning.

Multinomial NB Multinomial Naive Bayes.

NLG Natural Language Generation.

NLP Natural Language Processing.

PCA Principal Component Analysis.

RAS Reliability, Availability and Serviceability.

RF Random Forest.

RNN Recurrent Neural Networks.

SGD Stochastic Gradient Descent.

SMART Self-Monitoring Analysis and Reporting Technology.

SVM Support Vector Machine.

TACC Texas Advanced Computing Center.

TCN Temporal Convolutional Network.

TF-IDF Term Frequency - Inverse Document Frequency.

XGBoost Extreme Gradient Boosting.

xv

Chapter 1. Introduction

Chapter 1

Introduction

Growing demand has driven expansion in the large-scale distributed systems

market since the first supercomputer, Colossus, was introduced in the 1940s.

Since then, the performance of clusters/supercomputers has been improved

for decades to fulfil the high-end of High-Performance Computing (HPC)

application requirements. Most of today’s supercomputers are capable of

accomplishing computations at the petascale (i.e., computing at least one

quadrillion 1015 per second) and the shift towards supercomputers is accelerated

as exascale computing proliferates, especially due to the fact that the exascale

computation’s barrier (i.e., computing at least one quintillion 1018 calculations

per second) has been broken recently [101]. This is achieved by unveiling

the world’s first exascale cluster, Frontier, in 2021 [3, 233] which opened for

operations in 2022 [3], and soon-to-be-released supercomputers, El Capitan

[22] and Aurora [1]. This evolution requires re-examining various fundamentals

where exascale services are expected to become a part of the application pipeline

across multiple domains. Exascale computing can unlock possibilities that are

not feasible by petascale clusters. It is predicted that exascale supercomputers

will be able to construct a realistic model of the human brain and other

complex neuromorphic tasks. Large-scale high-precision HPC applications in

different sectors such as healthcare, climate, manufacturing, energy, unseen

science materials discovery and much more can be put into practice on exascale

supercomputers. Moreover, large-scale distributed systems, in general, are

becoming increasingly commonplace as Artificial Intelligence (AI) recreates a

more prominent role in most academia, industry, and business computing tasks.

1

Chapter 1. Introduction

For instance, Amazon, IBM, and Nvidia are just a few vendors building their

own supercomputers to handle complex tasks that require massive amounts of

high resources computing.

Today’s industry, engineering, and scientific applications require to be

executed on HPC environments such as supercomputers or data centres, which

are made of many complicated hardware/software components. One use-case is

the training of AI models (e.g., computer version, Natural Language Processing

(NLP)). Gigantic corporations such as Microsoft and Google have invested

billions of dollars to build cutting-edge supercomputers for training AI models.

Supercomputers are also used for weather forecasting and climate-change mod-

els, which manipulate giant weather data and predict hazard situations such as

hurricanes and tornadoes. Healthcare research, such as developing and tracking

new disease drugs and understanding genome sequences, also requires supercom-

puters. Another use is astronomy simulations, such as cosmological simulations

of the galaxy. Cryptanalysis, which involves understanding cryptosystems

and analysing all aspects of cryptography tasks, also benefits from using su-

percomputers. Other applications that necessitate supercomputers include

fusion reactor simulation, chemical compounds modelling, molecular dynamics

simulation, and fluid dynamics simulation [250] just to name a few. All these

application executions substantially depend on the supercomputers, because

they all project resource-intensive computations and massive data to deal with.

The demand for HPC power is becoming a significant trend and ubiquitous

in manipulating massive data volumes, also leading to ever-increasing require-

ments on dependability and resilience. Also, exascale systems’ applications

are expected to continue with evolving rates of performance improvements

through parallelism, leading to programming challenges for these systems [249];

hence, bringing out an additional layer of reliability challenges. In fact, over

the coming decades, exascale computing will significantly affect our daily lives,

specifically with the spread of AI technologies, data centres, and increased

reliance on cloud computing across all sectors, from manufacturing, research

purposes, and social networks to predictive models and posting market growth.

For example, the global cluster market is estimated to reach $50 billion by

2026, according to Hyperion Research in 2022 [6]. The scale and complexity

2

Chapter 1. Introduction

of these sophisticated systems have grown significantly in response to the

ever-increasing demands, so that they are facing unprecedented reliability

and resilience challenges in the regard of inevitable recurring failures on their

components (e.g., compute nodes).

1.1 Motivation

Faults are commonplace in computer systems, including hardware faults, soft-

ware defects, design flaws, implementation/operation errors, and other factors

such as environment faults, limited memory, or network interruptions which

may lead to system failure ultimately. The large-scale HPC systems tend to

encounter serious resilience problems because of unexpected costly failures.

Particularly, the growing complexity of their components has added a new

layer of difficulty in handling these failures. The HPC systems’ failures result

in a drastic computational overhead, thus severely impacting applications

execution, leading to waste of resources, high costs of financial losses, service

quality degradation, and significant amount of administrators’ time to resolve

these problems.

There are various approaches to handle failures and make large-scale systems

more tolerant such as error detection and failure prediction. Error detection

aims to identify the system errors to run a recovery mechanism before these

errors propagate to cause failures. On the other hand, failure prediction seeks

to predict potential failures before they occur, and this approach often requires

predicting the lead time to the predicted failures. Predicting the failures

and lead times allows the triggering of proactive management solutions (e.g.,

checkpointing, job migration), which can effectively prevent the failures from

occurring or reduce their impacts. An efficient failure predictor may forecast

the failure occurrence accurately, which can effectively resolve all the above

issues in turn.

• An efficient failure prediction can significantly increase users’ satisfaction

with their job execution on supercomputers and cloud services. This is

because increasing failure prediction accuracy can effectively improve

proactive solutions (i.e., checkpointing). Note that today’s exascale ap-

3

Chapter 1. Introduction

plications generally require a long time for checkpointing because of

vast volumes of data involved in the checkpointing. For example, Hard-

ware/Hybrid Accelerated Cosmology Code (HACC) [151] may generate

220 TB data per snapshot when simulating trillions of particles [186].

Since there were no effective predictors for the failures and their lead

times, the state-of-the-art checkpointing solutions [49] are designed to set

checkpoints periodically in case the failures may happen at any moment

during the execution, even though the failures actually may happen very

rarely in practice. Hence, with an accurate prediction of the failure

occurrence moment, periodic checkpoints can be taken with a target at

the right place and right time.

• An efficient failure predictor can effectively suppress error propagation

throughout the system, which may enhance the system’s dependability

in turn. According to studies [100], any fatal event may bring out a long

chain of succeeding other fatal events, which may involve many different

components in large systems. For instance, there are 2.6 million fatal

messages in the five years of the Mira [11] system logging period while

there are only 1,255 source fatal events after the spatio-temporal filtering.

That is, each fatal event may cause about 2000 succeeding fatal messages

on average in the system. Without an accurate prediction of failure lead

time, the fatal event may not be fixed in time, which may easily induce

severe problems to other parts of the system.

• An efficient failure predictor can significantly reduce the system mainten-

ance cost. With accurate failure prediction, the maintenance requirement

can be mitigated considerably because the precautionary solutions can

be taken in time to avoid unexpected components failures, substantially

improving the system’s reliability. Specifically, developing accurate failure

predictors can minimize the breakdowns, outages, and financial losses in

large systems that provide services of healthcare, emergency, education,

and social media application (e.g., Whatsapp, Twitter). For instance,

social media companies, such as Facebook, lost millions of dollars for just

a few hours of outage [2].

4

Chapter 1. Introduction

1.2 Challenges and Opportunities

Main Challenges The HPC systems generate a large amount of log mes-

sages that capture the health state of their components. Log files contain

detailed runtime information about the systems, and they are the first source

for the system administrators to identify the system anomalies and failures.

Nonetheless, it is difficult to detect the system errors and predict potential

failures by simply observing their log messages. This can be attributed to three

key factors. (i) The rapidly developing scale of large contemporary systems

causes logs to blow up excessively and become a significant challenge to handle.

(ii) Log messages may come from different system logs [98] corresponding to

different systems, leading to distinct logging methods and styles. (iii) Most

log messages are unlabelled, redundant and incomplete, and only a small

proportion of the log events are pertinent to system failures [150].

Unfortunately, the effectiveness of existing anomaly detection and failure

prediction approaches is still insufficient, which may significantly affect the

dependability of the complex systems. Thus, a more efficient online failure

predictor is necessitated, which is expected to flag impending failures and their

lead-times with high prediction accuracy and speed and with less computational

overhead. This can ensure the proactive failure solutions would be scheduled

at the optimal time (not sooner or later), mitigating the impact of system

failures, minimising downtime, and reducing costs.

Opportunities We discuss key opportunities which we can take advantage

of to develop efficient error detection or failure prediction models. On the

one hand, the occurrences of the log events usually emerge in sequence pat-

terns which indicate the occurrence of the corresponding failures. In simpler

terms, consecutive log events preceding and leading up to a specific failure

serve as symptoms of that failure. On the other hand, the log messages are

lines of textual data which contain multiple pieces of information (e.g., node

ID, timestamp, job ID, message, etc.). Thus, contemporary Artificial Intel-

ligence (AI) and Natural Language Processing (NLP) approaches have been

revolutionised and built based on the breakthroughs in the machine and deep

learning techniques, and they are well-suited for processing and analysing log

5

Chapter 1. Introduction

messages and developing models to detect and predict the system’s failures

with significant improvements in efficiency, accuracy, and automation.

The modern AI techniques have proven their superiority in various NLP

tasks such as text generation and sentiment analysis. Handling complex tasks

and large volumes of data with higher accuracy and less human intervention

(e.g., no need for manual labels, automation) are key motivations for utilising

the modern NLP techniques to resolve the complexity of log data. This thesis

focuses on utilising the log data generated by the components of HPC systems

and NLP approaches developed based on new AI techniques, to propose novel

real-time models that can predict failures and their lead-times in HPC systems

(i.e., failure prediction) accurately. It also aims to deliver an approach that can

effectively detect errors and identify faulty components (i.e., error detection).

1.3 Basic Concepts About Dependability

This section aims to introduce some essential terminologies and concepts related

to the notion of dependability and fault tolerance to pave the way for our

approach and the challenges involved. The computing system refers to an

entity that consists of multiple components (e.g., hardware, software, humans,

and other entities) that interact with each other to deliver services. The system

components should ensure a high degree of dependability by providing the

intended service as expected. Dependability is defined by Avizienis et al. [45]

as "the trustworthiness of system such that reliance can justifiably be placed on

the service it provides". As depicted in Figure 1.1, the concept of dependability

can be divided into three parts: the dependability attributes, the dependability

threats, and the means to achieve dependability [44].

1.3.1 The Attributes of Dependability

Dependability is an umbrella concept which encompasses different attributes

such as reliability, availability, safety, integrity, confidentiality, and maintainab-

ility. In this thesis, we focus mainly on reliability and availability. Reliability

refers to the system’s ability to perform its correct service consistently and

accurately without failures while availability refers to the system’s readiness to

6

Chapter 1. Introduction

Figure 1.1: Dependability Tree [45]

perform its correct service when needed [45].

1.3.2 The Threats to Dependability: Faults, Errors, and Fail-

ures

The dependable system ensures delivery of the intended service without failure

or interruption, whereas, the system components are vulnerable to errors that

can arise because of system faults, leading to system failures. A system’s

dependability can be compromised by different incidents or events, which are

collectively known as dependability threats. These threats are categorised

into faults, errors, and failures, as shown in Figure 1.2. Correct service is

achieved when the service performs the system function; on the other hand, the

service failure (i.e., failure) is defined by Avizienis et al. [45] as "an event

that occurs when the delivered service deviates from correct service". In other

words, a failure occurs when a system shifts from achieving the correct service

to the incorrect service by failing to perform the system function correctly.

A service fails due to either non-compliance with the functional specification

or the specification itself failing to define the system function sufficiently. A

service outage is defined as the period during which incorrect service is being

provided. The shift from this incorrect service to the correct service is known

as service restoration. Service failure can be classified into different severity

7

Chapter 1. Introduction

levels based on how much the faulty service is deviated from the correct one.

A fault can be described as a hardware or software level anomalous behaviour

that can lead to errors (i.e. illegal system states) [45]. This means that faults

cause errors (i.e., an error can be considered a manifestation of a system’s fault

[150]). Programming mistakes or hardware defects are also examples of faults.

The fault remains dormant or undetected unless it is evolved active to cause an

error. In other words, an error appears in the log file when its corresponding

faults are activated [175] and may lead to failures when the system deviates

from the correct service state. That is, faults are the main reasons (i.e., root

causes) for service failures. Moreover, if a sub-component fails, it may become

a fault for the relatively another or large component since each large component

generally consists of sub-components in a system. Failures can occur without

occurrence of any previous errors, thus a failure is not always the result of

an error. The failure lead time is defined as the time interval between the

timestamp of the error and the timestamp of the failure [93].

Figure 1.2: The relationship between faults, errors and failures

8

Chapter 1. Introduction

1.3.3 The Means of Dependability

Developing dependable systems is a complex and challenging task because

it requires managing multiple aspects such as hardware and software design,

users, security, maintenance, etc. Four classes of means have been proposed by

Avizienis et al. [45] for managing faults - preventing, removing, tolerating, and

forecasting, wihch are closely related to building dependable systems:

• Fault Prevention: refers to the means taken to prevent the introduction

or occurrence of faults.

• Fault Removal: refers to locating faults, diagnosing and removing

them.

• Fault Tolerance: refers to the means taken to allow the system to avoid

service failures and continue functioning despite the occurrence of faults.

Error detection and system recovery are examples of achieving this task.

• Fault Prediction: predicts the occurrences of current and future failures

and their potential impacts.

1.3.4 Fault Tolerance and Failure Prediction

Fault tolerance is closely tied to a system’s dependability. A system is known

to be fault tolerant if it has the capability to continue to perform even if

certain components fail. Distributed systems (e.g., supercomputer clusters)

are often designed to be fault tolerant because they generally involves masses

of components and compute resources connected by a network. More specific-

ally, one important capability in a distributed system design is being able to

bounce back from failures automatically without affecting the system’s overall

performance, such that the system can always work in a satisfactory, expected

status. In general, the essential fault-tolerance attributes/characteristics in a

distributed dependable system generally include availability, reliability, safety,

and maintainability.

Key fault tolerance and fault prediction techniques are very diverse, in-

cluding failure avoidance/mitigation, error detection, and failure prediction;

Recovery management solutions are the cornerstones of fault tolerance in

9

Chapter 1. Introduction

large-scale distributed systems. Error detection or anomaly detection aims at

identifying anomalous patterns that deviate from a system’s normal behaviour

patterns. As mentioned previously, faults manifest themselves as errors, and

systems record these errors as error log events. These errors could be the root

cause or indication of upcoming failures; therefore, they serve as patterns or

signatures of impending failures. Methods of error detection in HPC systems

have focused on various aspects such as identification (i) of erroneous log entries

[241], (ii) of failure-inducing erroneous execution sequence [148], [346], [147]

and (iii) of detecting quantitative relationship among logs [195],[217]. Chapter

(5) addresses the first problem and focuses on the automated classification of

failure log entries, thereby obviating the need for the time-consuming manual

labelling of such entries besides detecting the anomalous components (e.g.,

nodes). Failure prediction methods aim to predict the potential failure of soft-

ware or hardware components to facilitate recovery actions to avoid or mitigate

failures before they occur. To effectively handle failures, it is important to

focus on two critical vital factors of failure prediction: (i) the spatial aspect to

pinpoint the location of the potential failure, i.e., which component is expected

to fail, and (ii) the temporal aspect to estimate the lead time to the failure

occurrence moment, i.e., how much time is left before the component(e.g., node)

fails. On the one hand, developing an accurate failure prediction approach to

tell where the failure may occur is significant because it determines whether

the proactive failure recovery method could be triggered correctly/accurately

in space. On the other hand, the lead times to failures in large-scale systems

also need to be predicted accurately, such that the recovery solutions can be

scheduled at an appropriate timing (not sooner or later), minimising down-

time and reducing costs. Specifically, if the lead-time predicted is over-long,

unnecessary recovery actions may be executed, resulting in unnecessary costs.

If the lead-time predicted turns out to be too short, the proactive operations

cannot be done in time, so that the system component (e.g., node) may still

fail, inevitably causing unexpected job failures, unplanned downtime and lost

productivity.

10

Chapter 1. Introduction

1.4 Problem Statement

HPC systems, such as supercomputer clusters, execute resource-intensive

applications to solve large-scale problems such as weather prediction and aero-

dynamics simulation. These systems are made up of sophisticated hardware

(HW) and software (SW), which may often experience failures because of their

scale and design complexity. The SW components, such as OS and parallel

file systems, typically generate log messages that capture the health of various

components in the system. Log data is a critical source of information for

system administrators and fault-tolerance researchers to diagnose and improve

the HPC system’s dependability. As a result, system administrators can take

advantage of the system log data to detect anomalies or predict system failures

because it contains rich information about normal behaviour (i.e., informational

messages) or abnormal behaviour (i.e., error messages) of various system com-

ponents. Consequently, failure log analysis of HPC systems is attracting more

and more researchers from academia and industry to improve the dependability

of such systems. The AI and NLP have experienced a breakthrough revolution

by the ever-advancing machine and deep learning techniques which motiv-

ates us to leverage them to develop fault-tolerant approaches with significant

improvements in efficiency, accuracy, and automation.

The objective of this thesis is to address the following research questions:

I. Given a set of log messages generated by a large-scale system, can we

develop an efficient AI-based approach to detect the errors of these

systems? What level of accuracy can be achieved for this task?

II. Given a set of log messages generated by a large-scale system, can we

develop an efficient AI-based approach to predict the failure of large-scale

systems components (e.g., nodes) before they actually fail? And if so, can

we develop an efficient AI-based approach to predict lead times for these

failure events (i.e., how long is left before the predicted failure happens)?

What level of accuracy can be achieved for both prediction tasks(i.e.,

failure and lead time prediction)?

11

Chapter 1. Introduction

1.5 The Approach

In this thesis, we introduce multiple novel approaches to error detection and

failure prediction for large-scale systems based on the analysis of log data

generated by the components of these systems.

I. Owing to assumptions that log messages often encapsulate the sentiment

of system developers, which pertains to the perceived health of the system,

we exploit these sentiments to generate a machine-learning based sentiment

lexicon automatically, which can be used to detect errors for HPC systems

and identify the faulty components. This model allows us to exploit

source system logs labelled with severity levels and extract their sentiment

features to automatically label log entries of other unlabelled (target)

systems; thus, error detection is performed without prior knowledge of

the target system logs. This integrated technique is designed to take

advantage of the strengths of both approaches, sentiment lexicon and

machine learning, to enhance error detection accuracy.

II. Owing to the properties that the health status of HPC system components

can be deduced from consecutive log messages generated over time, we

propose deep learning failure prediction approaches which are fully self-

supervised without the need for labeling to predict large system failures

and their lead times. In fact, failure events are often characterised by

certain log sequence patterns, including the causes (i.e., error events)

of these failures [77]. It is challenging to apply supervised learning

because these logs are unlabeled, huge, and complicated. To overcome

this challenge, our approach works by leveraging the preceding log events

sequence for each component to forecast its entire health state through

generating a sequence of forthcoming log events and then identifying

if a failure event is part of the predicted sequence; if yes, we predict

how long is left before the predicted failure happens (i.e., lead times

prediction), so that appropriate proactive methods with low cost could be

triggered in time. Unlike the supervised learning approach, our approach

is self-supervised learning which falls into the category of unsupervised

learning, where the training is without manual data labelling and expert

12

Chapter 1. Introduction

knowledge. The unsupervised approach copes with any new types of log

sequences and emerging failure patterns because of various cases, such as

upgrades of the HPC system components (i.e., software, hardware, and

services). The new jobs (e.g., applications) running on HPC systems can

also induce new log patterns that have not been met before.

1.6 Thesis Contributions

This thesis aims to accomplish fault tolerant and dependable HPC systems. It

introduces a significant contribution by exploring modern machine learning and

deep learning approaches for error detection, failure prediction, and failure’s

lead-time prediction in large-scale systems (i.e., supercomputers clusters).

We perform the evaluation using six log datasets generated by five different

supercomputer clusters developed by different vendors. The results show

that our machine and deep learning-based approaches significantly outperform

other related state-of-the-art methods of error detection and failure prediction

proposed for HPC systems. Our research contributions are summarized as

follows:

• We propose a novel sentiment analysis-based utilising stochastic gradient

descent logistic regression to automatically construct a generic and re-

usable sentiment lexicon over the large-scale system logs. Based on that

sentiment lexicon model, we propose two novel algorithms: the first for

error detection based on the sentiment intensity score of log messages

and the second to discover erroneous components (e.g., nodes) based

on logs’ sentiment polarity scores. Our method efficiently captures the

developers’ sentiment features from the log data of (source) systems that

are labelled to automatically label the massive number of unlabeled logs

(i.e., millions) of different (target) systems.

• We propose a novel failure prediction approach called Clairvoyant which

is a self-supervised (no need for labels) transformer-decoder based model

to predict node failures in HPC systems by first predicting the future

sequence of events (future health state) and then identifying if a failure

is part of the sequence.

13

Chapter 1. Introduction

• We improve our Clairvoyant model to enable the failures’ lead-times by

proposing a novel scalable log-based, self-supervised model, called Time

Machine. It predicts (i) forthcoming log events, (ii) the failure location

and (iii) the expected lead time to failure. Time Machine is designed

by combining two stacks of transformer-decoders with the self-attention

mechanism. The first stack predicts log events sequence to identify if a

failure event is part of that sequence, while the second stack predicts

lead time to failure.

• In the Time Machine model, we devise a novel synthetic minority over-

sampling technique for online time-based tasks to construct the training

instances in real-time from failure sequences. This method has never

been discovered before in AI or other domains and can be generalised to

other domains for time-based tasks (e.g., business, healthcare, booking

business).

• In the Time Machine model, we introduce a novel technique to re-

duce/convert the time prediction problem (a regression problem) into a

self-annotated multi-class classification problem, by predicting the class

for the failure lead time. This method can also be generalised to other

domains for similar time-based tasks (e.g., business, healthcare, booking

business).

• This thesis presents a taxonomy and a comprehensive survey of log

analysis techniques from the perspective of four primary categories: log

parsing, error detection, failure diagnosis, and failure prediction.

1.7 Outline of this Thesis

The remaining chapters of the thesis are structured as follows:

Chapter 2 provides the relevant background on the machine and deep

learning which we utilised to develop our error detection models (to be presented

in Chapter 5) and failure and lead time prediction (to be presented in chapters

6 and 7). This chapter also highlights the state-of-art models we compare our

models with.

14

Chapter 1. Introduction

Chapter 3 provides a taxonomy and comprehensive literature review on

dependability in HPC systems. To do so, this chapter outlines log-based

fault tolerant approaches and categorises them into four primary domains: log

parsing, error detection, failure diagnosis, and failure prediction.

Chapter 4 describes the generic system model of supercomputer cluster

systems for which the approaches can be applied. This chapter presents an

overview of five production clusters along with their logs used in our experiments.

In addition, the assumed fault model in this thesis and HPC system node

failure are illustrated, along with some essential terminologies related to the

log messages and the techniques utilised are defined.

Chapter 5 illustrates our novel sentiment analysis-based approach for error

detection in large-scale systems by automatically capturing the developers’

sentiments in the log messages to build a sentiment lexicon. This chapter

details our two algorithms to detect system errors and identify the components

with erroneous behaviours based on sentiment intensity and polarity scores,

respectively. The content of this chapter is mainly from my published work in

the DSN’2021 conference [34].

Chapter 6 presents our developed Clairvoyant, a novel self-supervised

approach to predict node failures in HPC systems based on a deep learning

approach called transformer-decoder and the self-attention mechanism. The

chapter details how Clairvoyant predicts node failures by (i) predicting a

sequence of log events and then (ii) identifying if a failure is a part of that

sequence. This chapter is fundamentally based on my paper published in the

ICS’2022 conference [35].

Chapter 7 presents our novel real-time online approach namely Time

Machine, which is fully self-supervised without the need for labeling to improve

the Clairvoyant framework by enabling the lead-time prediction to failure.

This chapter explains the framework of Time Machine, which consists of two

transformer-decoder neural network stacks to predict possible failures and the

failure lead-time accurately. Our strategy is converting the time prediction

problem (a regression problem) to a self-annotated multi-class classification

problem, by predicting the class for the failure lead time. Furthermore, this

chapter introduces our novel synthetic minority oversampling technique for on-

15

Chapter 1. Introduction

line time-based tasks to construct the training instances from failure sequences.

This chapter is fundamentally based on my accepted paper in the DSN’2023

conference [36](To Appear).

Chapter 8 concludes and summarises our essential findings of approaches

presented along with their limitations. It further discusses future research

directions.

16

Chapter 2. Background

Chapter 2

Background

Preface

In this chapter, we provide a comprehensive overview of the background

prerequisites for sentiment analysis, in light of our approach and its related

baselines, which are presented in Chapter 5. In addition, this chapter will

discuss the essential background concepts and notations for the transformer

neural networks, with regard to our two approaches and their related baselines

(i.e., Recurrent Neural Networks (RNN) variants) presented in Chapter 6 and

Chapter 7.

2.1 Sentiment Analysis

The rapid expansion of applications, particularly social network apps and shop-

ping platforms, has allowed people to express their opinions, provide reviews,

communicate their feelings (positive, neutral, or negative), and share their

experiences online toward products, services, or any entity. This has led to a

tremendous and unprecedented growth in text data on websites, social networks,

and marketing-related content that cannot be managed and analyzed using

traditional methods. Thus, researchers, organizations, businesses, and govern-

ments have deployed high-efficiency NLP techniques such as Sentiment Analysis

(SA) to manipulate the massive amount of data. Sentiment analysis is one of

the NLP techniques, also known as opinion mining or attitude analysis, and it

is the process of collecting, extracting, and classifying opinions, sentiments, and

attitudes on various subjects, matters, products, and services[43, 314]. The

17

Chapter 2. Background

sentiment polarity indicates whether an opinion is positive, neutral, or negative,

while the sentiment intensity decides the degree of attitudes expressed, ranging

from weak to strong. Sentiment text consists of three Os: (i) Opinion Holder:

the individual or organization that contributes opinions to toward an entity;

(ii) Object: the entity that the individual writes their opinion about; and (iii)

Opinion: the text written by the user about that object [142, 306].

2.2 Sentiment Analysis Approaches

There are four main sentiment classification approaches: (i) lexicon-based, (ii)

machine and deep learning, (iii) hybrid approaches, and (iv) other approaches

(not our focus). An overview of the different methods used under each approach

employed in sentiment analysis is depicted in Figure 2.1.

Figure 2.1: Sentiment Analysis Approaches[255]

2.2.1 Lexicon-based Approach

A sentiment dictionary (lexicon) is a collection of positive and negative features

(i.e., tokens or words) where each feature in the lexicon is pre-assigned with

a sentimental score based on its intensity of polarity, such as +1 for positive

and −1 for negative. In the lexicon-based method, a given text (microblog,

message, review, etc.) is classified based on the overall polarity score of the

text. This is calculated through the summation of the sentimental score of each

token within that text. Multiple researchers have utilized sentiment lexicons

18

Chapter 2. Background

for text classification in their studies (e.g., [156, 169, 194, 269]). A sentiment

lexicon can be generated using one of the following methods [200, 300]:

Manual-based Approach: The dictionary manual-based approach con-

sists of a list of pre-defined sentiment features with their associated polarity

scores assigned manually by domain experts [70, 190]. The lexicon elements

(features) can be extended by exploring for antonyms and synonyms in available

language resources. To ensure the lexicon generation process quality, the final

stage includes a manual review by domain experts or integration with the other

automated approaches to avoid mistakes resulting from incorrect sentiment

score assignment [164, 236, 290].

Corpus-based Approach: The corpus-based approach also comprises a

set of seed sentiment terms with pre-known scores. It then searches for syn-

tactic and co-occurrence patterns in a huge corpus using language constraints,

grammatical patterns, and connectives (e.g., AND, OR, BUT) to find other

new sentiment tokens and add them to the lexicon. The process of discovering

new sentiment features is conducted via a semantic approach or a statistical

approach, as illustrated in the following:

i. Semantic Approach: In this approach, a computation process is

conducted to calculate the similarity score between the pre-defined sentiment

lexicon terms and the large corpus’ tokens. In general, this technique explores

large dictionaries (e.g., WordNet [244], SentiWordNet [283]) for similar words

based on certain rules to calculate the semantic scores between terms and

assigns the exact sentiment score to the semantically close terms to expand

the sentiment lexicon [52], as presented in [51, 344].

ii. Statistical Approach: This approach adds the new sentiment terms

based on a statistical method, such as co-occurrence frequency and computing

mutual information, as proposed in [154, 302]. The basic concept of this

method is that if sentiment tokens with similar sentiment co-occurred in the

same context frequently, they tend to have the same sentiment polarity [314].

The main advantage of using the lexicon dictionary approach is that it does

19

Chapter 2. Background

not require any training data; thus, it is considered an unsupervised technique

by some experts. The primary drawback of this approach is that it is domain-

specific; hence, features and their sentiment scores specific to one domain may

not be utilised in other domains. In addition, it is a time-consuming approach

[248].

Figure 2.2: Sentiment Analysis Detection Phases Using Machine and Deep
Learning

2.2.2 Machine and Deep Learning Approach

The machine learning (ML) and deep learning (DL) approaches utilise the

ML and DL algorithms to classify sentiment polarity (e.g., negative, neutral,

and positive) by training these algorithms on adequate textual data. This

approach generally consists of five phases [255]: input data collection, data

pre-processing, feature extraction, model training, and model assessment, as

shown in Figure 2.2, and these phases are illustrated in Chapter 5.

The machine and deep learning techniques for sentiment classification can

be categorized based on training types into two primary classes: supervised

learning techniques and unsupervised learning techniques. Most machine &

deep learning techniques applied for sentiment analysis are supervised and have

demonstrated satisfactory accuracy; however, these methods require labelled

data. On the other hand, unsupervised machine & deep learning models do not

require labels during training, but they may cause inadequate accuracy. Both

categories contain a variety of different models. We focus only on illustrating

20

Chapter 2. Background

the Stochastic Gradient Descent - Logistic Regression (SGD-LR), which we

employed to develop an ML-based method to automatically construct a senti-

ment lexicon for error detection in large-scale systems. Details are presented in

Chapter 5. Moreover, we will explain the baselines – ML and DL models which

we used to compare our sentiment lexicon’s performance, including Random

Forest (RT), Extreme Gradient Boosting (XGBoost), Multinomial Naive Bayes

(Multinomial NB), K-Nearest Neighbor (KNN), and Long Short-Term Memory

(LSTM).

Stochastic Gradient Descent - Logistic Regression (SGD-LR)

Stochastic Gradient Descent is an effective ML method proposed in [343] for

solving linear prediction problems and improving the performance of support

vector machines (SVM) and logistic regression (LR) models. The SGD classifier

has demonstrated its performance in classifying large data with highly sparse

features that are prevalent in textual data into either two classes (such as

positive and negative) or one of the multiple classes [188] in the domain of

NLP and sentiment analysis, such as [31, 133, 191, 193]. SGD is fundamentally

an optimization technique that aims to determine the suitable parameters

(coefficients) of a function that minimizes a cost (loss) function. SGD in the

sentiment analysis domain is utilised as a linear classifier with a combination

of one of the discriminative machine learning methods, such as SVM and LR.

It is trained based on the textual data in the following way: predicting each

text example’s class output (label), comparing it to the actual class value, and

calculating the difference between predicted and actual values. Based on a

single random selection from training instances for each iteration, the gradient

descent adjusts the feature weights until the predicted value is closer to the real

value. The loss function determines how the SGD is optimised for the SVM

or LR models. The SGD behaves similarly to a LR model when selecting the

logit (sigmoid) loss function. On the other hand, when opting for the modified

Huber loss function, the SGD works quite similar to the SVM classier [37]. Our

model in chapter 5 is implemented based on the SGD classifier with the logit

loss function, which works as an LR model to extract the developer sentiments

and add them to a lexicon for error detection in HPC systems. Our model

21

Chapter 2. Background

presented in Chapter 5 is designed to use binary classification, as this allows

predicting the output class Y (negative or positive) based on a set of textual

input features X (i.e., log messages). The model uses a sigmoid function that

restricts the output between the range 0 and 1. The SGD-LR and its related

functions and concepts are detailed in Chapter 5.

Random Forest (RT)

Random Forest [57] is a tree-based ML approach that has demonstrated its

efficacy for regression and classification tasks in different domains, which include

text classification. In sentiment analysis (e.g., [116, 192]), multiple decision

trees are generated, and each tree is trained based on particular data features.

Finally, the trees’ output results are integrated to obtain a final prediction of

the sentiment class label (negative or positive), which usually outperforms the

decision tree approach. In sentiment analysis, the algorithm employs various

properties (e.g., word frequency and grammatical structure) to detect the

sentiment features. As shown in Figure 2.3 [199], each tree votes for a final

decision on the sentiment class label for specific text data. The class label with

the highest votes will serve as the class label for that text data [96].

Figure 2.3: Random Forest (Example of ensemble of decision trees)

22

Chapter 2. Background

Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting [67] is a sequential ensemble decision tree-based ML

approach that employs a gradient boosting technique with parallel processing

and early stopping abilities. XGBoost has been used for sentiment classification

(e.g., [262, 280, 345]) and achieved high accuracy because of its ensemble learn-

ing feature facilitated by the gradient boosting process, where the predictive

results of multiple classifiers are incorporated. During the boosting process, a

sequence of tree models is created one after another with the goal of decreasing

errors from the previous tree. Each tree model learns from the preceding tree

models and rectifies residual errors. As a result, all the subsequent modes

learn from these adjusted residuals. In boosting, the first classifier models

usually tend to provide less accurate results. The boosting technique combines

these results to produce a powerful model using the information contributed

by each one to predict the final sentiment class label [29]. XGBoost predicts

the class label ŷt
l after a sequence of training on the dataset Xi along with its

corresponding labels Yi, as defined in Eq 2.1:

ŷt
l =

t∑
k=1

fk (xi) = ŷt−1
l + ft (xi) (2.1)

where ŷt−1
l is the prediction of the preceding model and ft (xi) is the new

model prediction. XGBoost aims to minimize the objective function, which

contains loss function l and regularization parameters Ω (ft), as depicted in Eq

2.2:

Lt =
n∑

i=1
l
(
yi, ŷt−1

l + ft (xi)
)

+ Ω (ft) (2.2)

Multinomial Naive Bayes (Multinomial NB)

Multinomial Naive Bayes is a variant of the Naive Bayes technique, which is

a probabilistic, supervised machine learning algorithm employed in various

classification tasks. Based on Bayes’ theorem and the use of a multinomial

distribution for every text feature (i.e., word), Multinomial NB is applied for

sentiment analysis detection (e.g., [26, 114, 293]) to classify a text into one

of the sentiment classes. This model calculates a class’ posterior probability

23

Chapter 2. Background

based on the text’s word distribution without considering the word’s position

within the text corpus (i.e., all features are independent of each other). The

assignment of sentiment class is decided by the frequency of occurrence of

features in the textual data, such as a review, sentence, or document, as shown

below:

P (label | features) = P (label)·P (features | label)
P (features) (2.3)

The prior probability of a class label, denoted as P (label), refers to the

probability of a label being assigned to a random set of features (words

or phrases), whereas P (features/label) represents the prior probability of

classifying a given set of features as a label. P (features) denotes the prior

probability of a set of features having occurred. Since the Multinomial NB

assumes that all features are independent, we can write the above Eq 2.3 as

follows [236] :
P (label | features) =
P (label)·P (f1|label)·......·P (fn| label)

P (features)

(2.4)

K-Nearest Neighbor (KNN)

K-Nearest Neighbor is one of the traditional machine learning techniques that

has been applied frequently for classification and regression tasks. It works

based on the data instances’ proximity to classify them into suitable classes

derived from the insight that similar data are located close to one another.

Accordingly, for the sentiment analysis (e.g., [83, 86, 166], the KNN technique

utilises an analogy-based classification approach that involves comparing the

new text data with the K-nearest neighbours of the most similar instances

from the training dataset to measure similarity scores and assign that new

text to the most comparable nearest class after a weighted average of the K

neighbours’ class labels. The similarity score is calculated using one of the

distance metrics (e.g., Euclidean distance (Eq 2.5) and helps to form decision

boundaries between the classes[109].

distance =

√√√√ d∑
i=1

|Xei − Xti|2 (2.5)

24

Chapter 2. Background

where d represents the number of features, Xei refers to feature i in the new

data, and Xti denotes feature i in the training data.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) [165] is a type of RNN deep learning tech-

nique employed to learn performing tasks such as regression, classification, and

prediction in various domains. LSTM has demonstrated excellent performance

in sequential data and NLP tasks, particularly for text generation and sentiment

analysis. Regarding sentiment analysis, LSTM is widely exploited for sentiment

analysis applications because it is similar to other deep learning methods that

can automatically learn to extract sentiment features from textual data without

manual feature engineering. Thus, researchers have employed its architecture

to classify the sentiment or emotion expressed in textual data, such as negative,

neutral, or positive (e.g., [208, 231, 251]. Generally, the architecture of the

LSTM consists of an input layer, an output layer, and one or more hidden

layers between them. Its architecture design is illustrated in detail in (Section

2.3.1).

2.2.3 Hybrid Approach

Many researchers have proposed hybrid sentiment analysis frameworks by

combining lexicon-based and machine or deep learning-based techniques [326].

This can be accomplished by utilising a machine learning technique for gen-

erating the lexicon elements along with their scores or by integrating the

machine learning model with a pre-defined lexicon dictionary. These hybrid

techniques are designed to take advantage of the strengths of both approaches,

pre-defined sentiment lexicon and machine deep learning, to enhance senti-

ment classification accuracy as demonstrated in many different research studies

[94, 137, 288, 337].

2.3 Natural Language Generation (NLG)

Natural Language Generation (NLG) is a subset of NLP that focuses on

generating a natural language text based on specific objectives. The generated

25

Chapter 2. Background

texts can range in length and complexity from short responses (e.g., one word,

sentence) to long responses (e.g., novel, long dialogue). NLG comprises multiple

sub-tasks, such as text prediction, translation, chatbots, and summarisation.

NLG aims to find an optimal text sequence y<N+1 = (y1, y2, . . . , yN) that

satisfies [271]:

y<N+1 = arg max
y<N+1

log Pθ (y<N+1 | x) = arg max
y<N+1

N∑
t=1

log Pθ (yn | y<n, x) (2.6)

where N denotes the number of words in the produced sequence, y is a

set including all possible sequences, and variable Pθ (yn | y<n, x) denotes the

conditional probability of the subsequent word yn given the preceding sequence

y<n = (y1, y2, . . . , yn−1) and the source text sequence x, based on the model

parameters θ.

The following subsections highlight the two primary approaches, Recurrent

Neural Networks (RNN) and transformer neural networks, which have been

widely employed for addressing text generation work. RNN includes the

traditional RNN, LSTM, Bi-LSTM, and GRU models, which are our baselines

in Chapter 6 and Chapter 7, whereas transformer is the base technique used

for the approaches that we propose in Chapter 6 and Chapter 7.

2.3.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks are deep learning approaches that have manifested

high performance in many NLP tasks, especially for modelling sequential data

such as text prediction. Their effectiveness in sequence modelling tasks lies in

their internal memories, which allow the storing of information from previous

inputs alongside current ones [286]. In other words, the dependency among

inputs where the output at each time step is computed by not just the current

input, but also by the previous steps’ output, which makes the RNN models

suitable for manipulating complex NLP tasks such as text inference, language

translation, etc.[170]. The traditional RNN consists of an input layer, a hidden

layer (or more), and an output layer. The core element of the RNN is the

hidden state, also referred to as "memory" as depicted in Figure 2.4 [292].

Given the input sequence xt at time step t, we can calculate the hidden state,

26

Chapter 2. Background

Figure 2.4: RNN Variants Cell Diagrams [292]

ht, and the single hidden layer output, ot, as follows:

ht = σh (Uhxt + Vhht−1 + bh)

ot = σy (Wyht + bh)
(2.7)

where xt denotes the input vector, ht represents the hidden layer vector,

ot indicates the output vector, b is the bias vectors, V represents parameter

matrix, U & W are parameter matrices, and both σh & σy are activation

functions.

The RNN networks feed the input xt at every iteration (time step) t to

calculate the ht, also taking into account the previous output ht−1. Despite

RNN’s usefulness for addressing problems with sequential data, which requires it

27

Chapter 2. Background

to share the weights among the inputs across the time steps, these models suffer

from certain drawbacks, including long training times due to recurrent learning,

and the vanishing gradient problems, which leads to limited accuracy due to

losing earlier memory of the previous output. Therefore, it is challenging to use

the vanilla RNN to solve tasks that require learning long-term dependencies

because of the vanishing gradient problem and resultant loss of information

over time. Accordingly, different variants (e.g., LSTM, Bi-LSTM, GRU) have

been proposed to address some of the limitations of traditional RNN and

enhance its performance.

Long Short-term Memory (LSTM)

Long Short-Term Memory [165] is an extension of the traditional RNN to

circumvent the main limitation of its architecture. This is achieved by adding

components such as ‘memory cell states units Ct&C̃t’, which include memory

states for the previous state and the current memory to determine what to

keep in memory and what to remove or ignore. This improvement allows

the LSTM to preserve more information in memory for long sequences and

learn longer-term dependencies. In addition, to reduce the vanishing gradient

problem, three gates (input gate it, forget gate ft, and output gate ot) are

added to control the flow of data to and from a memory cell in LSTM networks

(See Figure 2.4). Below are the equations for computing the state of each gate

and cell.

ft = σ (Wf · [ht−1, xt] + bf)

it = σ (Wi · [ht−1, xt] + bi)

ot = σ (Wo · [ht−1, xt] + bo)

C̃t = tanh (Wc · [ht−1, xt] + bc)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ht = ot ⊙ tanh (Ct)

(2.8)

where it, ft, ot denote the three gates (input, forget, and output), xt is the

input vector, ht indicates hidden layer vector, b represents the bias vectors,

Wf , Wi, Wc, Wo are weight matrices, {σ and tanh} denotes two different activ-

ation functions, Ct and C̃t indicate the memory cell and the internal hidden

28

Chapter 2. Background

state, respectively, and ⊙ refers to the element-wise vector product operation.

These gates can selectively add or delete data in a cell’s state, which helps

the network to preserve relevant data and forget specific information (such as

anything irrelevant) as needed. These improvements allow LSTM to replace

the traditional RNN in a broad range of sequential data tasks, including text

inference, speech recognition, and time series prediction, and multiple models

have been presented based on its framework, such as [58, 222].

Bidirectional Long Short-term Memory (Bi-LSTM)

The second variant of RNN is Bidirectional Long Short-term Memory (Bi-

LSTM) [282], which is designed to process sequence data in two directions

(forward and backward) by duplicating the LSTM layer. In comparison, the

previous LSTM framework can only process sequences in a forward direction. In

other words, to capture information from both ends of the sequence, Bi-LSTM

represents the input data twice (forward and backward), then concatenates the

last output hidden states. Thus, Bi-LSTM requires twice as many parameters

and computation steps as LSTM does, incurring higher computational costs

than LSTM. Different models employed Bi-LSTM framework for text generation

tasks, such as [28, 163].

Gated Recurrent Unit (GRU)

Gated Recurrent Unit [72] was developed by Cho et al. in order to reduce the

RNN’s vanishing gradient problem. Its architecture differs from that of LSTM

regarding the number and type of gates. Specifically, as shown in Figure 2.4,

GRU contains two gates— reset (rt) and update (ut); where the update gate

determines how much previous information is passed along to the next state to

reduce the vanishing gradients, and the reset gate which is designed by merging

the LSTM’s input and forget gates to decide how much past information needs

to be disregarded to determine if the amount of the previous cell state is

relevant. The following are the equations to compute the cell states and the

29

Chapter 2. Background

output of each layer:

ut = σ (Wu · [ht−1, xt] + bu)

rt = σ (Wr · [ht−1, xt] + br)

h̃t = tanh (Wh · [rt ⊙ ht−1, xt] + bh)

ht = (1 − ut) ⊙ ht−1 + ut ⊙ h̃t

(2.9)

where xt is the input vector, ht and h̃t indicate the hidden layer vectors,

Wu, Wr, Wh represent parameter matrices, b denotes the bias vectors, and

σ& tanh indicate the used two activation functions.

GRU has fewer parameters, making it a less complex architecture and thus

faster than LSTM. Its performance has been shown to be as accurate as LSTM.

Many studies based on GRU have been proposed for text prediction (e.g.,

[40, 196]).

We refer the readers to see [80, 170] for more details about the RNN models

and their technical framework regarding text generation.

2.3.2 Transformers

Although solutions in the form of RNN’ variants have been proposed to address

the serious vanishing gradient problem, none of these techniques fully resolve

it, especially when dealing with long textual sequences. In addition, all RNN-

based models still handle sequences sequentially in recursion mode token by

token, thus hindering the parallel processing. Furthermore, if input sequences

become excessively lengthy, the model is susceptible to either forgetting the

information from distant positions within the sequence, or twisting it with the

information of their subsequent positions. Consequently, a breakthrough, the

transformer neural networks approach by Vaswani et al. [305] in AI and NLP,

was introduced to tackle ’s limitations through the self-attention mechanism

and parallelization.

Transformers are similar to RNN in that they are developed to handle

sequential data, however, unlike RNN, they, through the self-attention mech-

anism, do not necessarily need to process data in sequence one after another.

Instead, transformers utilise self-attention to capture relationships and con-

nections between consecutive sequence elements (i.e., words) while processing

30

Chapter 2. Background

Figure 2.5: Transformer Neural Networks Architecture [19, 305]

31

Chapter 2. Background

at once in parallel. The new positional embedding layer facilitates parallel

processing to replace the recursion mechanism, the main weakness of RNNs.

This section highlights the vanilla architecture proposed by Vaswani et al.

[305] that other transformer variants architectures are based on with different

design changes. Figure 2.5 depicts the vanilla architecture of the transformer

model, which comprises two stacks: six encoders and the same decoders. In

general, each encoder/decoder is made up of three neural network components:

multi-head self-attention, feed-forward network (FNN), and add & normalisa-

tion. The decoder stack contains another sub-layer that calculates multi-head

attention over the encoder’s output. Utilising self-attention and feed-forward

neural networks, the encoder takes the input sequence and generates a sequence

of hidden representations, each containing information about a particular data

point in the input sequence. These hidden representations are employed by

the decoder, which also computes hidden representations for each data point

in the output sequence using self-attention and feed-forward neural networks.

The following are the high-level explanations for the main components of each

encoder/decoder stack and their purposes:

• Multi-Head Attention: The transformer uses multi-head attention,

which enables the model to simultaneously take into account several

pieces of the input or output sequence (i.e., tokens) while computing

hidden representations to understand the relations among the sequence

elements. It does so by emphasising the different elements in the sequence

with different degrees of significance (i.e., weight).

• Feed-Forward Neural Networks: It receives the output of the hidden

layers that capture the hidden correlations among the sequence’s elements

by applying the activation function to add non-linearity to the model.

In this way, it learns more complex and abstract representations of the

input data, and then passes forward what has been captured to the next

layer.

• Embedding layers: The transformer framework represents the input

sequence by combining two different types of encoding: input embedding

and positional embedding. Input embedding represents each token in the

32

Chapter 2. Background

sequence with fixed-size dense vectors, learnt throughout the training

phase, to capture the token’s meaning. Positional encoding, on the other

hand, is utilised to compute information about the position of each token,

because self-attention does not contain information about the tokens’

order in the sequence. As a result, input embedding depicts the tokens’

meaning, while positional encoding indicates their location, which are

then combined to capture both features of the input sequence.

• Residual connection and normalisation layers: Each transformer

contains residual connection and normalisation layers. Residual connec-

tions allow information to travel over the transformer layers without

modification and prevent the vanishing gradient problem when its values

become small, which can cause slow learning. The normalisation layers

stabilise the distribution of hidden states across layers, thus making the

mode training more effective.

For more details about the vanilla transformer, see [32, 305]; for details

about other generative models, see [103]. In our thesis, we employ Generative

Pre-trained Transformer-2 (GPT-2) [272], which is a variant of [305], to model

our solutions. This is explained in detail in Chapter 6 and Chapter 7. GPT-2

is a decoder-based transformer developed especially for generating text tasks

(e.g., predictions for the next word, text summary, etc.)[33].

Summary

This chapter provided insight into an important aspect of sentiment ana-

lysis, and its different approaches, which is the fundamental background to

our proposed sentiment analysis-based technique and its baselines; these are

presented in Chapter 5. Particularly, we analyzed the Logistic Regression

(LR) model with the Stochastic Gradient Descent (SGD) optimiser, RF, XG-

Boost, Multinomial NB, KNN, and LSTM. Moreover, this chapter provided a

prerequisite overview of the transformer neural networks utilised to develop

our two frameworks (Clairvoyant and Time Machine), which are presented in

Chapter 6 and Chapter 7. Furthermore, we outlined the Recurrent Neural

Networks and its three famous variants, LSTM, Bi-LSTM, and GRU, which

33

Chapter 2. Background

we used as state-of-the-art approaches for a comparison with our own proposed

approaches, which is detailed in Chapter 6 and Chapter 7.

34

Chapter 3. Literature Review

Chapter 3

Literature Review

Preface

Logs are data that record information about the health states of software and

hardware components for HPC systems, and in the last decades, they have

become increasingly important in the reliability assurance process. Numerous

automated log-based analysis studies have been conducted to utilise logs

effectively and efficiently in large-scale system reliability. This chapter presents

a survey of crucial automated log analysis research efforts from the four primary

categories perspectives, as illustrated in Figure 3.1: log (parsing) preprocessing,

anomaly detection (i.e., error detection), failure diagnosis, and failure prediction,

which serves as a significant related work study to support the failure prediction

and error detection focused by this thesis.

The first domain is log parsing, as detailed in Section 3.1, which includes

solutions that aim to transform the raw, unstructured message logs produced

by large-scale systems into more structured data. The second domain is about

anomaly detection and related profiling methods of machine learning (ML) and

deep learning (DL), as detailed in section 3.2, which are designed to identify

abnormal system and unexpected behaviour patterns. The methods used in the

two key domains can be further divided into sub-categories for each. The third

domain is developing failure diagnosis approaches to uncover the root causes

(i.e., errors and faults) of failures in the components of large-scale systems,

which is described in section 3.3. The last domain includes the use of failure

prediction to generate proactive early alerts to avert failures in HPC systems,

which is detailed in section 3.4.

35

Chapter 3. Literature Review

Figure 3.1: A Taxonomy of Log Analysis Approaches

3.1 Log Parsing

The health of large-scale systems is usually determined upon a challenging

analysis of a large amount of log data which is often unstructured, redundant

and incomplete. Administrators use the log data to observe and monitor

their systems’ health because it contains runtime details. However, log data

analysis is still challenging because of the growing extent and complexity of

large-scale systems, which cause exponentially increasing log size, as well as its

unstructured nature. Consequently, it is impractical to manually inspect the

massive and unstructured log files generated by these sophisticated systems.

For these reasons, log preprocessing (parsing) serves as the first crucial phase

preceding the subsequent log analysis. It filters and processes high quantities

of large-scale systems’ raw and unstructured message logs into structured data.

To this end, considerable studies (e.g., LogAider [99], MoLFI [242]) have been

conducted on automated log parsing, in addition to the creation of industrial

solutions tools (e.g., Logentries [9], Splunk [14]), resulting in the development

of various log preprocessors (parsers) based on various methodologies.

Log files contain millions of log messages, each incorporating multiple

pieces of information to report a specific state of the system component.

36

Chapter 3. Literature Review

Each log message contains two parts: the header and the content. The

header includes several attributes that can be easily extracted and manipulated

through preprocessors. Event time (timestamp), severity level (e.g., INFO,

WARN, FATAL), a component that triggers the log message (location), and the

associated job are some examples of header attributes, which may vary from

system to system. The message content describes a system event, generally

written by the developers in the form of free text, so extracting valuable

information from the message context is non-trivial. Message content involves

constant strings and variable values. The constant strings are the English

words or characters used by the system developers to describe a specific event,

so they are reused frequently to represent the same event in the log file. The

variable values are parameters that record dynamic runtime information, often

combined with the constant strings. The objective of log parsing is to transform

each log message into a particular event template. For instance, the log message

(2013, Feb, 10, 02:02:03 1330599150 i147-409 kernel soft lockup CPU stuck

for <3>BUG: 5359) is transformed to its associated log template (kernel soft

lockup CPU stuck for *BUG:*), symbolising the key parameters (e.g., [‘3’,

‘5359’]), as shown in Figure 3.2.

Log parsing is the first task followed by multiple log analysis steps, so it

serves as the backbone of the entire analysis. Various data-driven parsers have

been proposed based on distinctive parsing approaches, and some existing

parsers are built by incorporating two or more parsing methods. These parsers

differ in terms of parsing strategy, accuracy, efficiency, robustness and mode

(i.e., online or offline). In this chapter, we classify the existing parsers into

several categories based on their parsing approaches: clustering, frequent

pattern mining, tree structure, machine/deep learning techniques and other

approaches (e.g., heuristic techniques). More details are provided on each

category method with different parser examples in the following sections.

3.1.1 Clustering Approach

Log parsing can be considered a log message clustering task because the

log messages that share the same log templates are classified into the same

groups (clusters). LenMa [287], LogMine [153], CLF [339], LogOHC [331] and

37

Chapter 3. Literature Review

Figure 3.2: Raw Log to Structured Log

amulog [203] are instances of clustering algorithms used for parsing the log files.

LenMa and LogOHC utilise the length of each log message token (i.e., word)

and word distributed representation (word2vec), combined with a hierarchical

clustering method, to deploy online template clustering parsers. They calculate

the similarity of each newly arriving log message with existing log template

clusters. If it is successfully matched, the log message will be attached to

the existing cluster with the highest similarity score; otherwise, a new log

template cluster will be generated. LogMine is an offline parser to generate log

event templates by a hierarchical clustering method that groups log messages

into clusters from bottom to top. Zhang et al. proposed CLF [339] which is

clustering method based on extracting the log message templates from raw

log based on the length and first word integrated with some heuristic rules.

Amulog [203] is a general framework to parse log messages by dividing them

into headers and segmented messages, employing a template-matching strategy

to cluster them and storing the log templates in a database.

38

Chapter 3. Literature Review

3.1.2 Frequent Items Mining Approach

Frequent pattern mining is a kind of log parsing because the log message

templates can be viewed as a dataset of transactions, and each event template

can be treated as a transaction that comprises a collection of items that occur

frequently. LFA [252], LogCluster [303], Logram [84], and Sequence-RTG [157]

are examples of this parsing strategy. These four log parsers follow similar

steps: first, multiple passes over log messages are conducted; then, frequent

itemsets (tokens) are created from each traversal; after that, log messages are

collected into different groups; and finally, event templates from each group

are extracted. LFA employs the word frequency distribution in each log event

to parse log messages rather than all of the log data. LogCluster parses the log

messages based on the frequent occurrence of tokens without considering their

position in the log messages. Logram is based on frequent n-gram dictionaries,

and its key insight comes from states that frequent n-grams are generally

constants. Sequence-RTG (Sequence-Ready-To-Go), an extended version of the

pattern-mining framework called SEQUENCE [12], was proposed to identify

patterns in system log messages. LogAider [99] is a toolkit deployed for parsing

and mining the Reliability, Availability and Serviceability (RAS) and job logs of

IBM BlueGene HPC series supercomputers [98] based on statistical correlation

methods across log message fields using an optimised K-means algorithm for

spatial correlation.

3.1.3 Tree Structure Approach

A tree-form structure is utilised as a base for multiple log parsers and may

sometimes be combined with other parsing strategies. Specifically, He et

al. proposed Drain [160], an online log parser that preprocesses the log

messages using some heuristic rules (regular expressions) and then utilises a

fixed depth parse tree to speed up the process of grouping log messages. Those

belonging to similar log templates are grouped into the same leaf node through

these heuristic rules encoded within the internal nodes of the tree. Another

example is FT-tree [341], which combines two different parsing strategies – tree

structure and frequent pattern mining – to develop a frequent template tree

(FT-tree)-based parser. This design is inspired by the FP-tree technique [155],

39

Chapter 3. Literature Review

a structure that is incrementally re-trainable to identify ‘correct’ templates of

syslogs of data centres’ switches. The FT-tree design is motivated by the fact

that a syslog message sub-type is usually the longest sequence of frequently

occurring tokens, thus obtaining a template entails identifying the longest

combination of frequent tokens from syslog messages. Researchers compared

FT-tree performance to signature tree [270], statistical template extraction

(STE) [197], and LogSimilarity [198] using real-world switch syslogs of 10 data

centres over two years. The evaluation results showed that the FT-tree achieved

the highest accuracy but it suffers from a high computational cost, as it is

incrementally re-trainable. Vervaet et al. [307] proposed USTEP, a log parser

based on an evolving tree descent structure that encodes parsing rules based on

the parsed logs in an online mode. This paper presents USTEP-UP, a method

of handling multiple instances of USTEP in a parallel manner. Also, Plaisted

et al. [267] proposed the disagreement index parser, a decision-tree-based log

parser. The core idea of this method is using some conditions to determine

if tokens at which similar log events disagree are parameters. It can match

similar events to the same log template class if the tokens of disagreement are

‘look like’ parameters.

3.1.4 Machine & Deep Learning Approach

Over the last decade, machine & deep learning-based log event parsing has

been extensively studied, and numerous artificial intelligence method-based

approaches have emerged. For instance, Meng et al. [240] developed LogParse

by turning the parsing of the log template problem into a token classification

problem and utilising Support Vector Machine (SVM) to learn constant and

variable features of the log template. Different log parsers are built based on

deep learning neural network models. For example, lexical information word

embedding [298] and semantic word embedding [220] was employed by Liu

et al. [239] to develop the Log2Vec-based, LSWE, which is a semantic-aware

representation preprocessor technique for online parsing the switches’ log data in

the datacentres. The embedding vector representation of logs’ tokens effectively

extracts the semantic information and handles unseen out-of-vocabulary tokens

of new log messages. Other log parsers have been developed based on different

40

Chapter 3. Literature Review

word embedding variants, such as [238, 311]. Tao et al. [299] and Zhao et al.

[348] developed log parsers based on Bidirectional Encoder Representations

from Transformers (BERT), and Nedelkoski et al. [256] developed NuLog

parser based on the encoder transformer, which is a self-supervised learning

technique to preprocess log messages by addressing the parsing task as masked

language modelling. Setianto et al. [285] fine-tuned the Generative Pre-trained

Transformer-2 (GPT-2) to parse Cowrie Secure Shell honeypot logs. Cowrie

is a honeypot interaction system that engages malicious user attackers and

monitors their actions by generating tracing logs to investigate the systems’

vulnerabilities.

3.1.5 Other techniques

Different log parsers are built based on different approaches, such as heuristic

rules, iterative partitioning, and the longest common subsequence algorithm.

AEL [185] is a log parser based on a list of heuristic rules. For each pair, such

as ‘variable=value’, AEL masks numerical ‘value’ with a ‘v’ sign. The heuristic

rules-based parsers, in general, are hard to be extended to preprocess other

logs. An iterative partitioning technique, combined with some heuristic rules,

is used by IPLoM [232] to divide log messages into their log templates based

on message length, token location and mapping relation. The longest common

subsequence-based method was employed by [106] to develop Spell, an online

streaming parser used to dynamically identify log pattern templates to filter

out large system real-time log files. Messaoudi et al.[242] modelled MoLFI log

parsing as a multi-objective optimisation problem and solved it by adopting

an evolutionary algorithm, the non-dominated sorting genetic algorithm II

NSGA-II algorithm [95] to search for log event templates in the solution space.

Most log parsers require a preprocessing phase to remove common variable

values, such as IP addresses and numbers, though some parsers do not. Addi-

tionally, some parsers are open-source or deployed in production for industrial

use (e.g., elastic [10]), while others are not.

41

Chapter 3. Literature Review

3.2 Error Detection

This section elaborates on error detection’s main existing approaches and related

work. Error detection is the process of identifying anomalous patterns that

deviate from a system’s normal patterns of behaviour on log data (e.g., HPC

system logs). These anomalies include potential faults, errors, or failures logged

by system components; so error detection is also known as anomaly detection.

Anomaly detection approaches divide log data into two groups: normal logs

and abnormal logs. Often, abnormal behaviour detection is achieved using

rule-based technique, which aims to (i) explore how to detect errors in terms of

the potential features or correlations in log messages or (ii) identify anomalous

log patterns that do not coordinate with common behaviours on log messages.

Such rule-based methods (e.g., regular expressions [122]), however, are often

not effective as expected because the rules have to be updated to adapt to new

types of log patterns. Note that the amount of log messages and patterns may

continue to evolve due to the ever-increasing scale and complexity of today’s

large-scale systems and the jobs assigned to these systems.

As illustrated in Figure 3.1, anomaly detection methods are classified into

two broad categories: machine learning and deep learning. Machine learning

refers to the methods for which the detection of anomalous patterns depends

on the traditional machine learning techniques such as Logistic Regression,

Support Vector Machine, etc. Deep learning methods, on the other hand, are

the methods which detect anomalous patterns using Artificial Neural Network

(ANN)s. Overall, in this section, we survey the approach/algorithm, the features

to be utilised by the model, the learning method (supervised, unsupervised, or

self-supervised), and offline or online mode. Unlike unsupervised techniques,

supervised approaches necessitate labels for model training. The self-supervised

methods are self-contained labels; more detailed explanations about the types

of learning modes can be found in section 4.4. The online mode means its

input is processed in a streaming fashion, one input data at a time. In contrast,

the offline mode requires all the input data to be available before detecting the

anomalies.

42

Chapter 3. Literature Review

3.2.1 Machine Learning Approach

Different anomaly detection approaches (e.g., classification, clustering, regres-

sion, etc.) adopt various machine learning models. Traditional ML techniques

are utilised to map the event count vectors onto a vector space effectively. A log

sequence vector is considered to be anomalous if it deviates from the majority

(i.e., it violates certain invariant relations among the log events counts).

Feature engineering is one of the most crucial steps in building ML models.

It aims to extract, identify, transform, and organise essential features from raw

data (log data) in a suitable way before applying an ML model. Examples of fea-

ture engineering methods include imputation methods (e.g., mean substitution,

mode imputation) for handling missing data, variable transformations (e.g.,

normalisation, one-hot encoding) for transforming variables’ values from one

scale to another using such mathematical functions, or creating new features

from existing ones.

Various anomaly detection and classification techniques have been built

based on different machine learning algorithms, which are classified as follows :

Clustering Approach

The clustering based log anomaly detection is an unsupervised learning method

that aims to divide log data features into a number of clusters based on some

similarity or distance metric such that features in the same group are more

similar and dissimilar to other features in other clusters. A high percentage of

anomalies can be attributed to clusters with very few log data instances. The

new log data is classified based on its features to one of the available clusters; if

not, a new cluster is created. Ning et al. [260] designed the Heterogeneous Log

Analyzer (HLAer) tool based on pair-wise similarity utilising the hierarchical

clustering algorithm OPTICS [42] for heterogeneous logs categorization, format

recognition, indexing, information retrieval, and outlier detection. Hamooni et

al. overcame some of HLAer’s shortcomings by developing LogMine [153], which

is similar to HLAer in that it also employs a hierarchical clustering technique to

abstract heterogeneous log messages. However, LogMine [153] circumvents some

of HLAer’s shortcomings. For example, HLAer was resistant to heterogeneity

and was insufficient for abstracting big log files due to the memory demand and

43

Chapter 3. Literature Review

communication cost. On the other hand, LogMine employs MapReduce, with

no assumptions about the log messages’ features and no requirements for user

intervention. Lin et al. [217] proposed LogCluster, a problem identification

technique based on an agglomerative hierarchical clustering technique that

takes into account all of the features of the logs generated by online service

systems. It does so by assigning different weights to log events and grouping

them into clusters based on their log sequence pattern similarities. Moreover,

to identify the critical issues in service systems, He et al. [162] introduced the

Log3C model based on system key performance indicator (KPIs) logs. First, a

cascade clustering approach is used to categorize logs efficiently. Then, a linear

regression model is employed to pinpoint the underlying causes of degrading key

performance indicators. In general, the proposed clustering techniques are easy

to use because they do not require labels for detecting anomalies; however, this

method is very sensitive to distance metrics and clustering parameters, which

can result in limited accuracy. Besides, the clustering results can be subjective

and need expert knowledge to distinguish between identifying anomalous from

normal patterns.

Graph Mining Approach

Graph-structured models have been broadly used to detect the anomalies and

health states of large-scale systems using graphical features. Representing

the log messages through graphs facilitates the capturing of entities of HPC

components (i.e., graph nodes) and their relations (i.e., edges); this can help

with gaining insights from the log data. The graphical features are typically

used to generate a graph model characterizing the system health state, such

as the flow of a process’s execution, to identify hierarchical or sequential

relations between the components of the system and log events. These types

of relationships include dependency, co-occurrence, among other things. For

instance, Nandi et al. [254] used the Control Flow Graph (CFG) method to

detect abnormal runtime behaviours of distributed system applications from

execution logs. This approach can identify two types of anomalies, namely

sequence anomalies and distribution anomalies, by calculating the closest

neighbour groups to more precisely discover the temporal co-occurrence of log

44

Chapter 3. Literature Review

events. An unexpected child’s absence from a parent node inside the allotted

time window indicates a sequence anomaly; on the other hand, a violation of

an edge probability indicates a distribution anomaly. Moreover, Fu et al. [118]

proposed a graph-based model to detect two anomaly classes: faults occurring

during the execution pathways and low execution performance. The study

characterized each system module’s workflow as a state transition graph by

learning Finite State Automatons (FSAs) via the log sequences constructed

from log data. Each FSA transition is considered a log key sequence. The time

consumed and circulation number are both collected for each state transition

to detect short transition times and low transition loops. Execution low-

performance changes can be captured using a Gaussian distribution technique

and selecting a proper threshold. A Probabilistic Penalty Graph (PPG) is

employed in [247] and [81] to detect "unexplained" log message patterns. These

two approaches were designed to simulate the temporal behaviour of log

events. Then, anomaly detection is achieved by evaluating log sequences

that cannot be “explained” by any constructed path. Various graph-based

anomaly detection approaches have been introduced by utilising neural network

architectures. For instance, Xie et al. [324] presented LogGD, a technique

for log-based anomaly detection utilising the power of the Graph Transformer

Neural Network, which integrates graph structure and node semantics. Graph

creation, graph representation learning, and graph classification are the three

components of the LogGD framework. Nettie et al. [257] presented a model

that is based on RF to categorise the errors that can occur in HPC systems

nodes. Using the graph techniques for anomaly detection in large-scale systems

has several advantages, including high ability to detect complicated erroneous

patterns and high flexibility to scale massive volumes of data. However, the

used algorithms and the logs quality can impact the accuracy of the results,

and it also requires powerful processing resources.

Support Vector Machine Approach

Support Vector Machine (SVM) algorithm is used by many researchers to clas-

sify erroneous log entries or log sequences (i.e., anomalous) from non-erroneous

ones (i.e., normal). Different statistical features are used to detect abnormal

45

Chapter 3. Literature Review

instances from normal ones. SVM is a supervised ML algorithm method that

aims to find a hyperplane in an N-dimensional space (i.e., N features) that

distinctly separates the classes of logs’ data points. Determining the hyper-

plane is an optimisation task aiming to maximise the distance between the

hyperplane and the most immediate log data point for the classes. A new log

message or sequence is positioned above the hyperplane; it is classified as an

anomaly while tagged otherwise as normal. For example, based on six log

message features (e.g., the number of events in a time window, accumulated

events number). [214] utilised SVM and other machine learning (ML) methods

to detect anonymous IBM BlueGene/L systems logs. Kimura et al. [198]

applied the SVM method with the Gaussian kernel on other statistical fea-

tures, including periodicity, burstiness, frequency, and correlation with failures

and maintenance for proactive failure detection on large-scale network logs.

Furthermore, He et al. [161] compared between three supervised methods

(logistic regression, SVM, decision tree) and three unsupervised methods for

anomaly detection on different large-scale systems’ logs with different settings.

It was found that SVM achieved better accuracy than the other two supervised

methods. Additionally, Meng et al. in [237] and its extension [241] proposed

LogClass to identify individual errors for real-world switch logs and HPC

log datasets using partial labels based on Positive and Unlabeled Learning

(PU Learning) [261] and support vector classifier techniques. The LogClass

framework can be outlined as follows:

i. Manual partial positive labels and PU Learning are employed to address

unlabeled log problems.

ii. The SVM method is utilised to calculate the similarity of the word tokens’

combination between a given log message and labelled anomalous logs (i.e.,

partial positive labels).

iii. LogClass also proposed a novel method named TF-ILF (Term Frequency-

Inverse Location Frequency) inspired by TF-IDF (Term Frequency-Inverse

Document Frequency) [297] to weight the log tokens in the construction of

the feature vector phase.

LogClass is the most related method to our model [34] detailed in (chapter

46

Chapter 3. Literature Review

5) where both proposed to classify log entries to faulty and non-faulty based

on discriminative linear classifiers. However, we used SGD-LR to construct a

sentiment lexicon for error detection & erroneous component identification in

large-scale systems. Our method efficiently captures the developer’s sentiment

features from the (source) system log data that are labelled to automatically

label the massive number of unlabeled logs of different (target) systems.

Frequent Pattern Mining Approach

Frequent pattern mining (e.g., association rule mining) approach is unsupervised

technique that identifies frequent patterns, relationships, and correlations

within datasets. Various anomaly detection techniques have been built based

on different frequent pattern mining approaches to identify the log patterns

within a log message that appears the most frequently and depict the normal

behaviour of a system. Anomalies are the occurrences of log patterns that do

not follow frequent patterns. The existence of certain log messages, as well as

their order, can form patterns. For instance, the framework developed by Lim

et al. [215] employed frequent pattern and statistical analysis techniques on

logs generated from large-scale telephony systems to demonstrate the efficacy

of these methods in identifying system failures and abnormalities. Furthermore,

Lu et al. [224] developed CloudRaid to mine log sequential order patterns to

detect erroneous behaviour or bugs in distributed systems. Moreover, Lou

et al. [223] introduced an invariant searching method to automatically mine

invariants from console events groups. These invariants can measure the

underlying linearity of the program workflow to detect anomalies in large-

scale systems such as Hadoop and CloudDB. Similarly, Farshchi et al. [115]

developed a statistical regression approach to mine the linear correlation and

causal associations between log messages and metric changes that show the

status of cloud systems. The model’s outcome is employed to construct a set

of assertions utilised for anomaly detection during the runtime execution of

cloud application tasks. Therefore, anomalies are detected if there is any non-

compliance between the new log message with these metrics. Frequent pattern

techniques can prune infrequent logs and classify them as anomalies without

requiring labels (unsupervised approach). However, it can be computationally

47

Chapter 3. Literature Review

intensive (e.g., requiring huge memory) and produce many irrelevant patterns,

resulting in limited accuracy.

Other ML Approaches

There are various anomaly detection approaches that do not fall into any of the

aforementioned machine learning technique categories. For instance, for network

failure monitoring, Yamanishi et al. [329] applied HMMs (Hidden Markov

Models) on syslogs to monitor network failure symptom detection. The logistic

regression model was also one of three supervised log-based anomaly detection

methods in [161], where event count vectors were constructed from log messages

and trained on labelled log data. Molan et al. [246] developed a bayesian-based

classifier named TrueExplain to identify anomalies in supercomputers nodes; it

outperformed other ML models such as Decision Trees (DT), Random Forest

(RF), Nearest Neighbors (KNN), and Radial Basis Function SVM (RBF-SVM).

Moreover, some features of the log data are not essential to detect the erroneous

behaviours of large-scale components. These features are captured and removed

by converting the log data with high dimensions into a representation with

low dimensions in the way that some of the significant characteristics of the

original log messages can be preserved in the low-dimension space. The most

well-known unsupervised method of this dimensionality reduction approach is

Principal Component Analysis (PCA). It works by checking if the gap between

the data points and the first K main components is bigger than a threshold.

If so, it indicates an anomaly. [327] projected log data points to K principal

components; the faulty behaviour can be detected if the projected distance

for new logs exceeds a certain threshold. Furthermore, in [148], the authors

combined PCA with entropy and mutual information to perform error detection

in supercomputer clusters based on two types of logs: resource usage data

and event logs. In addition, the method in [204] uses PCA and independent

component analysis (ICA) to identify outlier nodes in HPC systems. ICA is

another effective dimensionality reduction approach used to reduce the log

messages’ features, seeking more accurate detection.

There are also some existing works leveraging sentiment related techniques

for log analysis. Allen et al. [38] is the first research group that utilized a

48

Chapter 3. Literature Review

sentiment lexicon through a pre-built library called IBM Watson API to analyze

software logs and assign sentiment scores for log data. Yadwad et al. [328]

applied machine learning and time series models (e.g., PCA, Naïve Bayes, and

logistic regression) on combined data of the social tweets, emails and logs for

service outage detection. By comparison, our work [34] focused on the domain

of a large-scale system. Furthermore, our domain-specific sentiment lexicon

items are extracted automatically with the use of a machine learning-based

technique, since a feature’s sentiment is affected by the domain in which it is

used. Allen et al.[39] also proposed a method based on using at least keyword

and synonym matching percentage analysis criteria to classify log messages’

levels in applications code. In contrast, our model [34] was designed to detect

faulty components and errors of large-scale systems based on AI technique.

3.2.2 Deep Learning Approach

Although traditional machine learning approaches are faster, less complex,

and can learn from small data in comparison with the deep learning methods,

the deep learning algorithms have been more effective on unstructured data

with high accuracy. Furthermore, they require less human intervention in

feature engineering before the data is fed to the training phase. The deep

learning architectures are utilised in many fields and research areas, such

as computer vision, NLP, business intelligence, healthcare, and security, to

name a few. Due to the extraordinary capability of deep learning to capture

complex relationships, multiple anomaly techniques have been developed based

on various neural network architectures. These deep learning-based models

are more suitable to represent log data (e.g., [273]) that is typically unstruc-

tured, complex, huge, redundant, and incomplete. As stated before, deep

learning-based log parsers are developed as explained in section 3.1.4, failure

diagnosis and failure prediction models, as will be illustrated in section 3.3.3

and section 3.4.4, respectively; moreover, this current section will go on to

clarify anomaly detection models based on the approaches they take. There

are four main deep neural network design architectures with many variants

for each category: Convolutional Neural Network (CNN), Recurrent Neural

Networks (RNN), Generative Adversarial Networks (GAN), and transformer

49

Chapter 3. Literature Review

neural networks. Thus, in this thesis, we divide the DL-based anomaly models

into four categories: CNN-based approach, RNN-based approach, GAN-based

approach, and transformer-based approach.

Convolutional Neural Network (CNN) Approach

Convolutional Neural Networks (CNNs) are known for their dominant per-

formance in computer vision tasks due to their convolution layers. Various

log-based anomaly detection techniques employ this architecture to discover

abnormalities in HPC systems’ health state. The general idea of using CNN for

anomaly detection techniques depends on considering the log data as sequential

data with one dimension (i.e., a one-dimensional matrix); thus, an embedding

layer and a one-dimensional convolutional network are required to perform this

task. [227] leveraged CNN to investigate the hidden complicated relationship

in logs and find abnormalities in big systems’ logs. This model consists of three

different layers: 1-D convolutional layer, a dropout layer, and a max-pooling

layer; these are all preceded by a logkey2vec embedding layer. In this method,

logkey2vec is employed to create the embeddings by mapping the log keys to

embedding vectors. Embeddings are then fed into convolutional layers with

various filters, each of which has a width equal to the length of a set of log lines.

The maximum value for each feature is then selected by applying a max pooling

layer. In order to generate the result for the probability distribution, a softmax

layer is added at the top of this network architecture. Hashemi and Mantyla

[158] presented a hierarchical classifier, OneLog, to detect large-scale system

errors using the character-based convolutional neural network. Similarly, [64]

Cheansunan and Phunchongharn proposed a CNN-based anomaly detection

framework for a Hadoop Distributed File System (HDFS). Furthermore, Wang

et al. [313] presented a new lightweight log anomaly detection algorithm based

on the Temporal Convolutional Network (TCN) for anomaly behaviour detec-

tion supported by the use of word2vec and post-processing algorithms (PPA)

to create a low-dimensional semantic vector space. As a result of these two

changes, the detection performance of a standard TCN is enhanced, while the

number of parameters and computations is drastically reduced. CNN achieves

a high accuracy in detecting the HPC system anomalies because it can learn

50

Chapter 3. Literature Review

hierarchical logs representations, capturing local and global features. However,

similar to other deep learning methods, CNNs significantly depend on extensive

training data.

Recurrent Neural Networks (RNN) Approach

As explained in (section 2.3.1), RNNs are a category of neural networks that

have attained superior results on sequential data such as textual and time

series data. This superiority comes from their flexible designs allowing previous

outputs to be used as inputs supported by different hidden states. Long

Short-Term Memory (LSTM) (either single or dual) and Gated Recurrent

Unit (GRU) are the most famous variants of this class and have been widely

employed to learn sequential patterns in log messages for detecting anomalies

in large-scale systems. Anomalies are captured when any deviations occur from

the normal path. For anomaly detection in HPC systems, Du et al. proposed

a log-based solution called DeepLog. In DeepLog, a log message is shown as a

sequence of tokens with specific patterns that can be easily modelled by the

LSTM neural network to learn normal log patterns from normal execution

and consider any deviations from that as abnormal behaviour. Furthermore,

Meng et al. [238] proposed a semantic-based log anomaly detection approach,

namely LogAnomaly, to model log data as a sequence in a natural language.

This method proposed template2vec to represent the log messages inspired by

the embedding mechanism word2vec in NLP to capture the semantic meaning

hidden in log data; it is also complemented by the LSTM neural network

and is able to identify sequential and quantitive log anomalies of real-world

large-scale systems at the same time. Given that the log data lacks stability,

Zhang et al. presented [346] LogRobust, a technique to extract capturing logs’

semantics by utilising TF-IDF [277] weights and off-the-shelf word embedding,

FastText [187]. Then, the Bi-LSTM model is employed to detect anomalies in

Hadoop and other large-scale online service systems. Anomalies in software

execution path logs are identified using a Siamese network structure on top

of LSTM layers in SiaLog [159]. It showed more efficient results with low-

cost training time than other neural network baselines. Zhang et al. [338]

utilised the Bi-LSTM neural network to develop a sentiment analysis model,

51

Chapter 3. Literature Review

SentiLog, for analysing parallel file systems (e.g., Lustre and BeeGFS) logs

and detecting their anomalies. This work showed promising results; however,

its model is trained using the source code logging statements, which is not

easily accessible, rather than the more available runtime logs. Furthermore,

Yang et al. [330] introduced PLELog, a GRU-based detection model, to handle

the issue of inadequate labels of log data. PLELog applied on open-source log

data of large-distributed systems classifies log sequences into two categories:

normal or anomaly. Studiawan et al. [295] also utilised the GRU model to

propose, Pylogsentiment, which is an anomaly detection technique for OS logs

of different systems (including HPC systems) based on utilising positive and

negative sentiment features. Furthermore, based on the context and content

attention model, Studiawan et al. [296] employed the GRU technique to identify

aspect terms and the corresponding sentiments to extract events of interest

from log files in the forensic timeline. In comparison, as presented in our

paper [34], we built sentiment lexicon based on stochastic gradient descent

logistic regression algorithm to detect errors of large-scale systems and faulty

components (e.g., nodes).

Generative Adversarial Networks (GAN) Approach

Effort has also been devoted to exploring the feasibility of Generative Ad-

versarial Networks (GAN) for anomaly detection. The GAN-based approach

[136] falls under the category of unsupervised learning; in this deep learning

method, new or synthetic data is generated depending on patterns encountered

in the original dataset (input). GAN networks consist of two main parts:

a generator and a discriminator. The generator is an encoder that aims to

generate synthetic data samples via the features during its learning phase after

performing certain transformations. The discriminator serves as a critic and

comprehensively understands the problem domain and generated data. The

discriminator receives both joint actual and generated samples to classify these

data as either fake or real. As an example, Zhao et al. [348] proposed Trine, a

GAN-based model including three transformer encoders to identify anomalies

in system log data. On the one hand, the first encoder aims to extract feature

representations from the log message entries. On the other hand, the second

52

Chapter 3. Literature Review

and third encoders are used as a generator and discriminator for generative ad-

versarial networks, respectively. This research addresses the anomaly detection

task as a binary classification (normal or abnormal). Similarly, Xia et al. [321]

presented LogGAN, an LSTM-based generative adversarial network utilising

permutation log event modelling to detect systems’ anomalies. The two main

parts of LogGAN consist of (i) a generator and (ii) a discriminator. The gener-

ator aims to capture the actual log training data distribution and synthesises

plausible instances, while the discriminator seeks to differentiate fake cases that

are constructed from real and synthetic datasets. The trained LSTM-based

generator identifies whether the upcoming log message is normal or anomalous

based on the latest log entries. By constructing realistic log samples to increase

training data, GAN-based solutions can potentially increase detection accuracy.

Nevertheless, training GANs may be computationally costly and challenging to

stabilise, resulting in a more extended training period and limited performance.

Transformers Approach

Various studies have utilised self-attention and parallel learning [305] with

different transformer variants to detect HPC errors and anomalies. Transformer-

based architectures have been created to fix the limitations of RNN-based

models using the self-attention mechanism to train data in the parallel and

self-supervised learning modes. The inputs (log events in our case) interact

with each other (self) in parallel to determine which ones require more focus

(i.e., attention). The final outputs are vectors that aggregate these attention

scores. For instance, [144] proposed LAMA, self-attention-based model to

detect anomalies of sequential log events. LAMA’s pipeline is passed through

three main phases: the embedding phase, the learning and attention phase,

and the anomaly detection phase. [318] also employed the transformer-encoder

architecture to develop an unsupervised anomaly detection technique called

A2Log. Each log message is assigned an anomaly score through the self-

attention neural network in this approach. Then, the anomaly decision is

determined using an unsupervised method that applies data augmentation on

the normal training data to determine the anomaly decision boundary value.

Furthermore, to prevent the loss of information due to log parsing errors such

53

Chapter 3. Literature Review

as OOV (out-of-vocabulary) words and semantic misunderstandings, [206] pro-

posed NeuralLog, which is another anomaly detection approach. Preprocessing,

neural representation, and transformer-based classification are the three phases

that comprise NeuralLog. Preprocessing the logs is the initial stage during

which log messages are divided into a set of word tokens, and all non-character

tokens are removed. Following this, BERT is employed to encode the semantic

meaning of log messages into a semantic vector. As a result, NeuralLog can

avoid the loss of essential information from log messages. NeuralLog adopted

the WordPiece tokenisation [281, 319] which is capable of handling OOV terms

issues. Finally, the transformer vanilla model [305] is utilised to identify log

sequence anomalies. Combining both the learning of the log events’ dependency

relationships and log sequences’ proximity at the same time, Yongzheng Xie et

al. [323] proposed LogDP, a log-based anomaly detection approach. In this

study, normal log events patterns are divided into dependency patterns and

proximity patterns. The former refers to the log events that have occurrence

relationships among them, whereas the latter is associated with events inde-

pendent of other events. Normal patterns of dependent events are learned using

dependency, while independent events are identified using proximity. Thus, any

log sequence that deviates from the normal pattern is considered anomalous.

Other research studies utilised self-attention with different transformer variants

for error and anomaly detection, such as LAnoBERT[207], LogAttention [108],

and [206]. However, in our two frameworks Clairvoyant [35] and Time Machine

[36], we utilised self-attention and transformer neural network architecture to

predict HPC system components’ failures and lead time to failures.

Many other studies have been proposed for error propagation and fault

tolerance (e.g., [146, 176–184]).

3.3 Failure Diagnosis

Failure diagnosis is a process that includes all approaches and tools to identify

error propagation paths that lead to failures [77]. This means that failure

diagnosis is a root cause analysis that focuses on tracing the pathway to

the root-cause (i.e., faults events) that is likely to be symptomatic of the

54

Chapter 3. Literature Review

failure in question. Failure diagnosis in HPC systems is a very challenging

and complex process aiming to resolve the problems that reduce the system

reliability. According to the definitions of error, fault, and failure provided

in [205], the goal of failure diagnostic techniques is to pinpoint the errors

that result in the malfunction observed by end users. With the growth in

sophistication of contemporary large-scale systems, it is very challenging to

effectively separate the relationships between the error, the failure, and the

manifestation experienced by the end users. In the last decades, log data has

become the primary resource for developing failure diagnosis tools. Furthermore,

log messages and resource usage data are the two types of log data employed

in many studies in which the system administrators examine the cause of

failures. These logs are interleaved in time, and only a tiny percentage of the

events are pertinent to the diagnosis of a particular failure. Many approaches

have been deployed on automated log-based failure diagnosis for the HPC

and distributed systems; these can be categorised into three main categories:

rule-based approach, statistical correction approach, and machine learning &

deep learning approach, as is explained below.

3.3.1 Traditional Rule-based Approach

Many traditional rule-based techniques have been developed to diagnose failures

in large-scale system logs, however, such rule-based approaches are often

inflexible. This is because the rules must be adjusted when new types of

log patterns are generated. Specifically, such approaches depend on a set of

predefined rules derived from experts in the domain of failure diagnosis. Two

typical examples are LogMap [65] and SherLog [336], where a set of rules is

predefined based on two inputs: (i) log messages collected during the failed task

execution, and (ii) the source code. This is to reconstruct the execution paths

of failures from log messages with respect to their corresponding logging lines

in the source code to assist the developers in analysing the paths of failures

with their constraints and variable values. These studies face difficulties with

redefining the predefined regular expression rules when new failure paths arrive

or are re-employed in different systems with different source codes and log

data.

55

Chapter 3. Literature Review

3.3.2 Statistical Approach

Statistics-based failure diagnosis methods have also been proposed for years.

Lu et al. [226] quantitatively measured the degree probability of underlying

root causes of failures in Spark log data to define a weighted combination

threshold constructed from seven factors. The authors employed a statistical

approach, including the mean and median of job running time and the standard

deviation of the entire data, for the diagnosis and detection phases, which

are preceded by log preprocessing and feature extraction phases. Also, a

fine-grained root-cause analysis was made feasible by Zheng et al. [351], who

proposed an automatic root-cause diagnostics tool for HPC systems to identify

the failure layer combined with the failure time and location of an error event

that causes its corresponding failure based on RAS logs of the IBM Blue

Gene/P system. This mechanism involves four phases: (i) the parsing phase to

preprocess the system logs; (ii) the information fusion phase for synthesising

data from RAS, job, and environment logs; (iii) the layer identification phase

to specify the searching space by analysing numerous logs across the system

software, application, and hardware components; and (iv) the time and location

identification phase to identify the event that caused the failure and trace its

location and occurring time. The authors identified the events of a node power

error, insufficient memory error, invalid memory address error, and machine

check error as the main reasons for BPC clock failure, the application out-of-

memory failure, network torus sender failure, and kernel panic, respectively.

Mdini et al. [235] utilised a large number of logs stored in a Hadoop-distributed

file system to propose an automated model, ARCD (Automatic Root Cause

Diagnosis), for root cause diagnosis in the different devices of large mobile

networks based on statistical graph correlations. Furthermore, Das et al. [93]

applied statistical correlations of internal and external logs to diagnose the

breakdown of compute nodes across five HPC systems. The main finding

from this study is that though hardware and software errors drive failures,

the fundamental cause is the application malfunctioning which is inducing the

system nodes to fail.

There are some other diagnostic frameworks which combined log messages

with resource usage data to avoid the problem caused by the incompleteness

56

Chapter 3. Literature Review

issue of log messages. Resource usage data indicates the amount of resources

consumed or produced by all the jobs in the system, including the system

hardware performance, file system operation counts, and network device usage.

For instance, the resource usage data file may contain different counters for

the amount of memory, network, Lustre filesystem, or processors a job uses at

a given time. CORRMEXT (CORrelating Resource use and MEssage logs and

eXtracting Times) [77] is a diagnostics framework that analyses patterns of

system errors and generates reports on the success and failure of error recovery

protocols. FDiag [74], ANCOR [75], and CORRMEXT assume that when two

message types are strongly positively correlated, the messages can be used

to determine the likely cause of a given system failure. While FDiag and

ANCOR focus on failure diagnosis, CORRMEXT focuses on identifying error

propagation patterns. CORRMEXT processes rationalised message logs [152],

Syslogs [75] and resource usage data [113]. It consists of three modules: (i) a

data types extractor module, (ii) a correlation module, and (iii) a time-bins

extraction module. The data types extractor module is composed of two

data type extractors. A resource use extractor extracts resource use counters

from resource usage data and organises these counters by time-bins into a

resource use data matrix. The authors defined a time-bin as a time window

of one fixed time interval. A message types extractor extracts message types

from rationalised message logs and Syslogs and organises counts of message

types by time-bins into a message types data matrix. The correlation module

uses Pearson correlation and Spearman-Rank correlation algorithms to obtain

correlation coefficients for the resource use counters and correlation coefficients

for the message types. It uses a correlation threshold value of 0.8. If the

correlation strength of two message types or two resource use counters is

greater than or equal to 0.8, then the message types or resource use counters

are stored in a list of strongly positively correlated message types or strongly

positively correlated resource use counters. It uses Fisher’s z-transform to

test the significance of all correlation coefficients and Bonferroni Correction

to identify false positives. A fixed threshold value is used to identify strongly

positively correlated resource use counters and strongly positively correlated

message types. The time-bins extraction module obtains differences between

57

Chapter 3. Literature Review

the variance of two adjacent time-bins for the strongly correlated resource use

counters, and separately for the strongly positively correlated message types.

EXERMEST (EXtracting fEatures and coRrelating resource use counters and

MESsage Types) [78] enhanced CORRMEXT with several feature extraction

methods and linked significant resource use counters and message types with

node failures and error recovery protocols.

3.3.3 Machine & Deep Learning Approach

Various machine learning and deep learning algorithms have been explored to

uncover the root-causes of their corresponding failures by transforming the

diagnosis problem into a detection procedure based on the fact that failure dia-

gnosis is the process of detecting the error events after the failure has occurred.

For instance, Chen et al. [66] utilised the decision tree to diagnose request

failures in the eBay internet service system by classifying the log patterns of

requests that succeeded and failed during the faulty time. Then, the output

graph of decision trees is used to interpret the root causes for failed requests.

Furthermore, based on terabytes of log data, Bansal et al. [47] introduced

DeCaf, a method for diagnosing and triaging performance issues in large-scale

cloud services applications. The DeCaf framework is developed based on the

Random Forest algorithm in conjunction with custom scoring functions. In fact,

Microsoft adopted DeCaf for two large-scale commercial cloud services, where it

successfully diagnosed the root causes of 31 unknown issues alongside 10 known

cases. The authors of [234] showed that the one-class SVM model outperformed

the decision tree and Bayesian network in diagnosing and troubleshooting the

failures of large service distribution networks. In LogFlow[268], the authors

demonstrated that the deep learning, LSTM architecture with the support of

the Temporal Attention Gated Model [264] is a practical solution for inferring

correlations between log events in supercomputers and cloud systems. LSTM

is used to predict the upcoming flow of events, and the outputs of the attention

module are used in LogFlow as the basis for determining correlations by assign-

ing weights between log events. The weight scores increased as the correlation

among log events increased.

58

Chapter 3. Literature Review

3.4 Failure Prediction

Failure prediction is the process of forecasting failures before they occur to

alleviate their effects entirely or partially by triggering one of the suitable

proactive management techniques at the right time. It is more challenging

than anomaly detection because it requires predicting the impending failures

significantly ahead of occurrence time, such that various precautions can be

executed in time. In HPC systems, popular proactive failure management

techniques are used, such as task migration and checkpointing/restart. However,

these techniques are expensive procedures and need to be used only when

required, e.g., the computational overhead associated with these techniques may

be exacerbated if they are wrongly triggered due to incorrect failure prediction.

Thus, it is important to develop efficient failure prediction techniques so that

the overhead can be kept minimized and tractable. Moreover, there are times

when certain components may show abnormal behaviours; however, these

abnormal actions can be transient (e.g., low memory) and recovered before

they lead to failures [210]. In these cases, if failure is predicted too soon, it

may lead to unnecessary precaution solutions; on the other hand, if a failure is

predicted too late, it can result in costly impacts. Consequently, the prediction

methods must determine failure at the right time, without being either too

early or too late.

The log data generated by the components of large-scale systems are a

primary resource for developing proactive failure prediction solutions that keep

track of the system health state, such as the current state of each component,

configuration, and other operational data. Hence, a considerable number of

log-based research studies in academia and industry have been proposed to

generate early warning alarms by predicting failures in large-scale systems so

that these costly events can be prevented from occurring while the systems

remain fully operating with their assigned jobs. Most of the proposed methods

lack the ability to predict the failure lead-time, whereas others are attached

with a sub-model to estimate the failure lead-time based on the log patterns.

In this section, the log-based failure prediction methods for HPC systems are

highlighted and categorised into four classes1: rule-based approach, probability
1The finer taxonomy (9 classes) for the HPC failure prediction methods can be found in

59

Chapter 3. Literature Review

and correlation-based approach, machine learning-based approach, and deep

learning-based approach.

3.4.1 Rule-based Approach

Similar to the rule-based methods proposed for anomaly detection, other studies

have been presented to predict failures based on constructing a list of rules that

alert the system administrators in advance before the occurrence of failures

if conditions have been met. For instance, Watanabe et al. [316] presented

an online method to forecast data centres’ failures by extracting log event

patterns as failure symptoms. The learned patterns are accumulated in a

dictionary using Bayes’ theorem to calculate the co-occurrence probability of a

log pattern and a failure. Then, each incoming pattern is checked against all

the patterns stored in the pattern dictionary, and the system triggers an alert if

the probability of a match is high enough to exceed a predetermined threshold.

Zheng et al. [350] proposed a method to predict failures (FATAL log events) and

their lead times from logs collected from an IBM Blue Gene/P supercomputer

cluster. Their methodology is based on the Genetic Algorithm (GA) and the

Michigan encoding technique. The genetic algorithm generates and selects some

rules based on the log events that precede the fatal events; then, the Michigan

method is used to convert these candidate rules into genetic individuals. The

GA method re-evaluates the selected rules using the Fitness function for optimal

prediction accuracy. Other rule-based failure prediction methods are presented,

such as [90, 143, 229, 315], in which the authors generally try to establish some

predicate rules such as if/then statements extracted from offline log datasets.

The rule-based failure prediction approaches necessitate periodic revision since

system patterns and behaviours might change over time, owing to various

variables such as updates on software and hardware; thus, new log patterns

often emerge. Besides, each system requires creating its own set of rules.

3.4.2 Probability and Correlation Approach

Many studies predicted the large-scale systems based on calculating correlation

association scores between the log events and failures, even if predicting failures

Jauk et al.’s survey paper [174].

60

Chapter 3. Literature Review

was not the primary objective for some of these studies. For instance, over

a hundred days of RAS event logs were compiled for the Blue Gene/L super-

computer system’s health state behaviour in [213]. The authors explored the

temporal and spatial characteristics of fatal failure events and the relationship

between fatal and non-fatal failure events. Then, they developed straightfor-

ward failure prediction techniques based on spatial and temporal skewness in

the failure distribution. As much as 80% of memory and network failures and

47% of application I/O failures may be anticipated. Fu et al. [119] introduced

LogMaster, an approach to predict HPC system failures by leveraging the

Apriori-LIS data mining technique to extract association rules from the unique

characteristics and the correlation among log messages. The failure prediction is

developed based on representing these associated rules using Events Correlation

Graphs (ECGs). The correlation scores at ECGs’ vertices are used to estimate

the failure occurrence probability in large-scale cluster systems. The LogMaster

framework limitations (e.g., low recall score) are rectified in [121]. The authors

provided a three-step methodology for enhancing failure prediction accuracy

in large systems by identifying events’ dependencies correlations in Failure

Generating Processes (FGPs). The event sequences are first divided into event

groups based on a frequent occurrences clustering technique. Then, the causal

relationships between events are identified within each cluster based on a Causal

Dependency Graph (CDG). Finally, failure prediction rules are extracted based

on the assumption that similar events occurring on similar nodes or from the

same job applications usually exhibit similar operational behaviour. Ma et al.

[230] analysed Redundant Array of Independent Disks (RAID) failure data

from the world’s largest backup enterprise systems. The analysis showed that

the accumulation of reallocated sector (RS) errors is the main reason for degrad-

ing disc reliability; thus, these errors can be employed to predict disc reliability

deterioration. Using these results, the authors implemented the RAISHIELD

framework, which consists of PLATE and ARMOR components to monitor and

prevent disc failures before they happen. In order to prevent RAID failures

in production environments, PLATE provides an assessment of disc health

by capturing the number of RS and proactively recognising unstable discs.

ARMOR quantifies the RAID reliability deterioration and predicts vulnerable

61

Chapter 3. Literature Review

RAID DGs, even in cases where individual discs have not yet suffered enough

damage to warrant the activation of warnings. Ren et al. [275] proposed a

mining frequent patterns-based mechanism and applied it to predict the failures

of three large-scale systems, including a cloud computing system based on

Hadoop that involves calculating the mining correlations among different events

and failures. This mining process is conducted by leveraging the FP-Growth

algorithm [155], which facilitates discovering the correlations and association

relationship between failure signs (i.e., error events) and failures. Utilising the

Self-Updating Cause-and-Effect Graph (SUCEG), [335] presented a method

for failure prediction in large HPC systems that can automatically mine the

causality among log messages from systems and update the failure prediction

Cause-and-Effect graph (CEG) throughout the systems’ life cycle. Then, the

obtained CEG under different parameters is used to predict the failure events.

This prediction process passes over five phases: log parser, event identification,

cluster system event base (CSEB), SUCEG, and failure prediction. Other

analytic-based approaches [55, 82, 120, 126, 128, 212, 301, 349] perform fail-

ure prediction by probability analysis, correlation analysis, or curve fitting.

Multiple statics and correlation-based methods have also been proposed, such

as the apriori algorithm in [121, 168] and a signal-based approach for failure

prediction in [125, 127].

Time-series forecasting statistical methods have also been employed to

predict failures’ occurrence time in HPC systems through previous data to

predict what will occur in the future. The prominent techniques for this

approach are Moving Average (MA), Auto-Regression (AR), Autoregressive

Moving Average (ARMA), and Autoregressive Integrated Moving Average

(ARIMA). For instance, a combined technique including the Fault Tree Analysis

and ARMA was built by Chalermarrewong et al. in [63] to forcest hardware

failures within data centres. In this study, a set of system parameters that

may induce cluster faults are monitored. The role of the ARMA model is

to detect anomalies in the parameters’ values and then transform them into

binary signals that are then fed as inputs for the fault tree model. A warning

is triggered to the cluster’s administration in the case of a potential failure.

The limitations of this study are that the evaluation was conducted only on

62

Chapter 3. Literature Review

simulated clusters and software failures were not considered. On the other

hand, Hora [266] replaced Fault Tree Analysis and ARMA with the Bayesian

networks and ARIMA to predict failures of the RDF Site Summary (RSS)

reader application of Netflix’s server. Furthermore, this study attempted to

predict memory leaks, sudden node crashes, and system overloads. Lastly,

Rawat et al. [274] proposed a prediction methodology that integrates ARIMA

and stochastic models to predict the failures of virtual machines in cloud

centres. Although the correlation-based approaches link some of the system

failures with their preceded errors, they may not be able to capture complex

and unprecedented failure patterns, which is a significant drawback.

3.4.3 Machine Learning Approach

In the last decades, the use of machine learning approaches for failure prediction

in large-scale systems has attracted academic and industrial attention. A

significant amount of failure prediction frameworks have been proposed to

predict the failures in HPC systems based on traditional machine learning

algorithms such as SVM, tree structures (e.g., Decision Tree, Random Forest),

and Latent Dirichlit Allocation (LDA).

Liang et al. [214] extracted multiple features from the raw log dataset

to capture the characteristics of failures and applied four ML classification

techniques to predict fatal events from non-fatal events in IBM Blue Gene/L

RAS logs collected over 142 days. They divide the entire time into fixed windows

and predict whether a fatal event would occur in the next time window based

on the event patterns in the previous time windows. The RIPPER (a rule-based

classifier), SVM, the traditional KNN, and a customised KNN classifier were

applied to RAS logs. The results showed that the customised KNN method

outperformed the other three methods. Furthermore, the window size affects

the accuracy of the failure prediction, where the prediction accuracy is much

degraded when the window size is decreased. Moreover, this solution requires

a fair amount of effort and data engineering to extract the features from logs

before applying the ML methods, and this does not accommodate the need for

fast online real-time failure prediction.

Mohammed et al. [245] inspected machine learning’s predictive capabilities

63

Chapter 3. Literature Review

to enhance the accuracy of future components’ failures in virtualised HPC cloud

systems and applications based on five years of log data. The authors defined

the prediction task as a multi-classification problem. They then executed a

comparison among five failure prediction models, including SVM, classification

and regression trees (CART), RF, KNN, and LDA. The SVM-based model

achieved the highest prediction accuracy among the other models.

Fulp et al. [123] employed labelled Self-Monitoring Analysis and Report-

ing Technology (SMART) log messages and modelled the hard drive failure

prediction problem as a classification task to apply a spectrum-kernel SVM

algorithm. This method focuses on maximising the hyperplane to classify

faulty from non-faulty next windows based on occurrence frequency features

extracted from the previous log messages to predict probable failures in the

sub-sequences.

An empirical evaluation performance investigation of seven commonly

used machine learning classifiers is conducted in [320] to predict large-scale,

six-month data centres’ Dynamic Random Access Memory (DRAM) failures.

These classifiers include SVM, LR, RF, decision tree, gradient boosting decision

tree (GBDT), Extreme Gradient Boosting (XGBoost), and light gradient

boosting machine (LGBM). The results revealed that LGBM and XGBoost

obtained better prediction accuracy than other ML techniques. The same failure

prediction task is then reformulated as an unsupervised anomaly detection task,

and three anomaly detection techniques, including HBOS [135], iForest [219],

and COPOD [211] are evaluated on the same dataset, with HBOS turning out

to be the best solution among them.

Nie et al. [259] proposed a series of different ML models, which includes

GBDT, LR, Artificial Neural Network (ANN), and SVM, in order to predict

GPUs errors in HPC systems. The GBDT-based method outperformed other

ML techniques in both F-1 score and recall.

Ana et al. [129] introduced a novel hybrid approach that combines signal

analysis and data mining to predict failures in large systems integrated with

failure avoidance techniques. Additionally, a failure prediction framework is

proposed in [89] for extracting failure messages from Cray cluster systems that

are symptomatic of compute node failures through three steps: first, both the

64

Chapter 3. Literature Review

Cray system logs and the job logs are analysed. Second, the impact of compute

and service node failures on the system and user applications is highlighted

by providing frequency estimates of these failure occurrences. Finally, a node

failure prediction technique is proposed, TBP (time-based phrase), using a ML

technique called Latent Dirichlit Allocation (LDA) [53] and the Topics over

Time (TOT) [312] model to enable the extraction of the crucial log entries that

indicate node failures. In order to extract the intended entries, this method

uses phrase likelihood estimation while considering continuous time-series data.

This framework warns of impending failures with a lead time of 20 seconds to

2 minutes.

Yangguang et al. [210] assisted DevOps engineers by providing an AIOps

(Artificial Intelligence for IT Operations) solution to leverage data analytics,

including: alert data (message logs), spatial data (e.g., the location of nodes),

and build data (i.e., the hardware and software configuration information

of nodes) for node failure prediction in an ultra-large-scale cloud computing

centre, SystemX at Alibaba, using three machine-learning (ML) techniques.

The ML algorithms employed were LSTM [165], MING [218], and Random

Forest [57]; the results show that RF outperforms the other two techniques in

terms of node failure prediction accuracy and computation time speed.

There are a few more research studies [63, 243, 284, 309, 310] which have

been proposed to predict the hardware failures of data centres (e.g., disk failure)

that lead to the outages of cloud services and subsequent failures of the running

jobs (i.e., applications). SVM, trees, HSMM, and other supervised machine

learning-based methods [46, 117, 141, 342, 347] have been developed to predict

task or job failures for cloud services in data centres based on numerical inputs,

which include CPU usage, memory usage, disk usage, unmapped page cache,

etc.

Other machine learning-based approaches have been proposed to predict

HPC systems failures such as [30, 60, 62, 111, 123, 130, 139, 140, 201, 202,

204, 214, 228, 253, 265, 266, 279, 291, 294, 301, 315, 333, 353], which include

failure prediction methods using the machine-learning techniques mentioned

above or other ML algorithms such as PCA, Bayesian networks for hierarchical

online failure prediction, and Hidden Semi-Markov models (HSMMs). Despite

65

Chapter 3. Literature Review

these contributions, these solutions have limited prediction accuracy or suffer

from high computational overhead. Furthermore, most of these works focus on

the failure prediction of one specific type of component, e.g., switches [342],

compute nodes [210], memory [334], and GPUs in [258, 259].

The machine learning approaches assume that the data they process is

unchanging and unrelated, but this is not the case in log data in supercomputers

or cloud data centres. Accordingly, they are not suitable for dealing with log

data in large-scale systems that change over time (i.e., sequence data) or have

multiple variables, where the data at different points in time or with different

features may be connected to each other. Moreover, the training models of

traditional machine learning algorithms usually depend on annotated data that

require manual labelling by a human expert, which is a time-consuming and

labour-intensive task. Consequently, machine learning approaches are not the

best solutions to accurately predict failures in cloud data centres [131]. To

handle the challenge of machine learning-based methods, different studies have

used deep learning techniques that have been demonstrated to be effective

solutions. Deep learning models can facilitate unsupervised learning solutions

and effectively capture long-term dependencies of log data, which are essential

for accurately predicting failures in large-scale systems, as detailed in the

following section.

3.4.4 Deep Learning Approach

Several studies have contributed in predicting HPC system failures using

deep neural networks architectures that perform better with sequential data

(e.g., Recurrent Neural Network(RNN) [41, 134]). The deep learning-based

approaches (e.g., [91, 172, 225]) leverage deep neural networks that generally

are composed of a significantly higher number of layers than the plain neural

networks; thus, they often need relatively long training on top of a large

amount of samples (i.e., log messages). Among all the approaches of failure

prediction methods, the DL-based approaches have gained significant favour

over other types mainly because of their outstanding prediction accuracy. These

studies have shown the superiority of deep learning-based methods compared

to traditional machine-learning methods such as decision trees, SVM, etc.

66

Chapter 3. Literature Review

As stated before, the RNN is a type of deep neural network that has been

widely utilised for many NLP tasks, especially for tasks that train on sequential

data to learn and make predictions (e.g., text generation). Many studies

also demonstrate the superiority of RNNs in predicting failures in large-scale

systems. RNNs can handle input sequences with varying lengths using their

internal state memory, which suits the sequence log events that depict the

system health state, where errors and other events precede the failures. The

RNN-based failure prediction methods are state of the art and mainly based

on one of the four types of neural networks architectures: the simple RNN,

LSTM, Bi-LSTM, and GRU.

We discuss several failure prediction approaches that leveraged RNN as

follows. Cheng et al. [68] applied the standard RNN to predict job failures

for the Google cluster workload traces with around 12,000 nodes based on

job resource usage data (e.g., CPU and memory usage). Similarly, [325]

employed the standard RNN to evaluate the health state and predict the

potential failures of hard drives based on monitoring data called Self-Monitoring,

Analysis, and Reporting Technology (SMART) to select the urgency level of

the hard drive recovery and schedule repairs. However, training the standard

RNN model to handle failure prediction requires understanding long-term

dependency and can be challenging. This is due to the vanishing gradient

problem, in which the gradient of the loss function diminishes exponentially

with sequential data length. As error signals back-propagate through time, their

size begins to decrease, making it difficult for the network to remember long-

term dependencies. This issue is solved partially by improving the standard

version of RNN to LSTM, BiLSTM, and GRU versions, which use gates to

control information flow, allowing the network to keep a longer-term memory

[134]. Therefore, different research studies proposed different failure prediction

techniques for large systems by utilising one of these variants. For instance,

Islam et al.’s work [173] aims to predict the jobs or tasks that eventually fail

or are terminated in the Google cluster workload trace. To accomplish this, an

LSTM model was trained on the consumption of resource data, including disk

usage, memory usage, cache memory usage, CPU usage, etc. This LSTM-based

model outperformed Feed-forward Neural Networks (FNN), SVM, and standard

67

Chapter 3. Literature Review

RNN-based methods in terms of prediction accuracy. Both studies [68, 173]

models were trained on numerical data (i.e., usage resources data) and were

unable to predict when the jobs or applications are going to fail (i.e., lead-time

prediction). Das et al. proposed Desh [91], which is a deep learning-based

approach designed to predict compute node failures and their lead times based

on the LSTM network. It involves three critical stages: (i) training to recognise

chains of log events leading to failure; (ii) retraining the chains of log events

to predict the lead-time to the failures; and (iii) online prediction/inference,

obtaining high accuracy in HPC node failure prediction. In addition, Das et

al. presented a method called Aarohi [87] to expedite the identification of the

failure chain from log events. Aarohi is an extension of Desh that provides an

online HPC systems node failure framework and expedites the prediction time

to facilitate sufficient lead time and make proactive recovery solutions more

feasible. Aarohi consists of two main phases: the first phase is offline learning

by leveraging the Desh framework (LSTM-based) with log parsing to learn

node failure chains. The second phase is the online prediction by scanning and

comparing the stream of log events with failure chains, accomplished by regular

expressions (RE) and the use of grammar-based rules. The incoming stream

events are compared to these rules to predict future failures. The second phase

speeds up the prediction time 27 times more than prior methods. However,

this approach requires retraining and updating failure chains in the case that a

new service or hardware/software upgrades are added. Furthermore, Lu et al.

[225] leveraged a hybrid technique of the convolutional neural network and long

short-term memory (CNN-LSTM) for Hard disk drives (HDDs) fault prediction

based on SMART data. The SMART data used in this study were collected

from a well-known data centre operator’s 64 locations, covering 380,000 hard

drives over two months. The study reached high accuracy for 10 days prediction

horizon. Other solutions [27, 69, 105, 167, 218] also employed LSTM to predict

the failures of HPC systems components, such as compute nodes, HDDs, GPUs,

switches, etc.

The LSTM-based techniques can increase the failure prediction accuracy;

however, they still face some weaknesses mentioned above. The LSTM-based

method is designed to assign higher weights to predict the log events with

68

Chapter 3. Literature Review

shorter distances and lower weights to data that are more distant from each

other. However, such a design inevitably suffers from significant shortcoming in

that the accuracy of failure prediction may be greatly affected, as distant data

can have a significant impact on failure in many cases. To address this issue,

some other studies utilized the Bidirectional LSTM neural networks to improve

prediction accuracy. Gao et al. [131] proposed Bi-LSTM-based framework for

task and job failure prediction in large cloud centres. The learning in Bi-LSTM

is conducted in a forward and backward LSTM network that can manage more

input features to increase the failure prediction accuracy. This study showed

that the failure prediction accuracy (in terms of F1 score, precision, and recall)

can be improved compared to other state-of-art prediction methods, including

HSMM, SVM, RNN, and LSTM. Likewise, Dai et al. [85] presented a failure

prediction model to forecast the faulty nodes due to the CPU and memory

faults for the migration of service in the cloud centres based on 12 fluctuated

resource usage data metrics (e.g., CPU usage, memory usage). The Bi-LSTM

model gains a better accuracy than the LSTM model, with over 95% and 97%

accuracy for CPU and memory failures, respectively, whereas the LSTM model

achieves an accuracy of approximately 90% for both types of failures (CPU and

memory). In general, the Bi-LSTM-based approaches require a long training

time with slower prediction speed because they combine two LSTM neural

networks.

A few other researchers have utilised the third improved version of the

standard RNN, Gated Recurrent Unit (GRU), to build their failure prediction

solutions. Islam and Miranskyy [171], for example, enhanced the reliability

through predicting failures of cloud centres based on multi-dimensional resource

usage metrics data. They employed the GRU neural network, and the results

demonstrated that GRU could be utilised as an effective model for predicting

HPC systems failures. However, the GRU-based failure prediction methods

have similar drawbacks to those of LSTM-based approaches.

The RNN-based approaches(e.g., [91] (Desh), [131], and [171]) are state-of-

the-arts when it comes to predicting the HPC systems’ failures. However, they

suffer from non-trivial weaknesses: (i) long training time because of the absence

of parallelisation in recurrence learning, and (ii) the vanishing gradient problem

69

Chapter 3. Literature Review

with loss of earlier "memory", which may cause limited accuracy. Clairvoyant

[35] and Time Machine [36] approaches improve on the failure prediction

approaches through (i) a self-attention mechanism and (ii) parallelisation,

which are the crux of transformer neural networks and are explained in detail

in Chapter 6 and Chapter 7, respectively. Specifically, Clairvoyant used one

stack transformer-decoder to predict failures only. To enable the prediction of

failure lead time, there are several key innovative designs proposed in the Time

Machine model. Time Machine framework adopts a two-stack transformer-

decoder architecture to predict not only failures but their lead times. The

adaptation of the transformer-decoder to predict the failure lead times is based

on a novel approach to self-attention: specifically, the Time Machine framework

demonstrates how the self-attention mechanism developed for text prediction is

used to predict failure lead times by encoding/decoding log events to map each

log event onto its timestamp step during the training and prediction phases.

In many domains (e.g., [61, 352]) except for fault tolerance, other transformer

variants have been utilised for predicting time series as a regression task (i.e.,

supervised learning), which requires label data and results in limited accuracy.

However, Time Machine is the first model to overcome these limitations by

formulating the time prediction as a self-annotated multi-class classification

problem by predicting the class for the failure lead time. Moreover, Time

Machine can construct training instances in real-time because of our novel

synthetic minority oversampling design. The Time Machine method can

be generalised to other domains for similar time-based tasks (e.g., business,

healthcare, booking business).

Additional failure prediction models have been developed for HPC systems.

However, these solutions are mainly based on supervised learning methods,

requiring extensive data labelling such as [202, 349]. However, most failure

prediction solutions do not address the problem of predicting the lead-time to

failure, such as [85, 131, 171].

Our solutions, Clairvoyant (Chapter 5) and Time Machine (Chapter 6),

present self-supervised learning that does not need labels, unlike the deep

learning-based methods, which are utilised as supervised learning-based meth-

ods. For instance, the failure prediction techniques that were applied to predict

70

Chapter 3. Literature Review

Table 3.1: Comparative Analysis Of Failure Prediction Solutions

Solutions Method Unsupervised Lead-Time Online
Zheng et al. [350] Genetic Algorithm (GA) χ χ ✓

Hora [266] ARIMA (Autoregression) χ ✓ ✓
Fu et al. [121] Episode Mining χ χ χ

Berrocal et al. [50] Void Search, PCA χ ✓ χ

Klinkenberg et al. [202] Supervised Classifiers χ χ χ

Desh [91] LSTM-based ✓ ✓ ✓
Goa et al. [131] Bi-LSTM-based ✓ χ χ

Islam and Miranskyy [171] GRU-based ✓ χ χ

Aarohi [92] Compiler-based ✓ ✓ ✓
Clairvoyant [35] Transformer-Decoder ✓ χ ✓

AtFP [209] Transformer-Endoder-Decoder χ χ ✓
Time Machine [36] Transformer-Decoder ✓ ✓ ✓

failures in cloud centre systems based on collected workload metrics (CPU

usage, network usage, memory usage, disk usage, etc.) are supervised solutions

requiring labels.

In October 2022, Li and Znati presented the AtFP framework [209], the

second study published after our study Clairvoyant [35], which is an attention-

based failure prediction model for large-scale systems. The evaluation showed

that AtFP outperforms the LSTM technique, as we had demonstrated before.

The AtFP model architecture relies on the encoder-decoder [305], whereas our

models, Clairvoyant and Time Machine, rely on the GPT-2 decoder variant

[272]. Moreover, the AtFP method labelled the input sequence as failure or

no-failure; on the other hand, Clairvoyant and Time Machine are self-supervised

approaches (i.e., no need for labels). Furthermore, our models have been applied

on many data logs, while AtFP was applied only on one dataset. Finally, the

Time Machine framework is capable of predicting not only the failures but also

the lead times to the failures, whereas AtFP predicts the failures only. Table

3.1 shows a comparative analysis of existing failure prediction solutions.

Summary

This chapter reviews the previous research on automated log analysis for

large-scale systems’ reliability. The review divides prior studies into four

domains: log (parsing) preprocessing, anomaly detection (i.e., error detection),

failure diagnosis, and failure prediction. We also discussed the advantages and

disadvantages of each approach carefully. This chapter serves as fundamental

literature to other chapters. Most of the methods presented in this survey rely

71

Chapter 3. Literature Review

on HPC systems’ log message data. The next chapter illustrates the large-scale

systems (i.e., supercomputer clusters) model, log datasets, and fault model

that are used to validate our methodologies.

72

Chapter 4. System Description, Log Data, And Fault Models

Chapter 4

System Description, Log Data, And Fault

Models

In this chapter, we present the system model (Section 4.1) and the targeted

supercomputer systems as well as their system logs used in our experiments in

(Section 4.2). Also, we describe the fault model and HPC system compute node

failure in (Section 4.3). The definition of fundamental terminologies related to

fault tolerance, log events, and machine learning are detailed in Section (4.4).

4.1 System Model

In most supercomputer clusters such as IBM Blue Gene/Q, Cray, Lonestar4,

and Ranger, the typical system model consists of interconnected compute nodes

that execute various jobs (i.e., application), and a scheduler that assigns these

jobs to nodes. A node consists of a set of production resources (e.g., core-hours)

to execute the scheduled jobs. In addition to enabling job executions, the

supercomputer HPC system includes a range of components such as a parallel

file system (PFS). The cluster components generate log messages generally

stored in the form of files and collected on a central repository to capture the

system’s health.

Specifically, we describe the general supercomputer HPC system model

targeted in this thesis as follows: In the HPC cluster system, there is a set

of compute nodes C = {C1, . . . , Cm} provided to execute user-submitted jobs

J = {J1, . . . , Jn} (e.g., weather forecasting, scientific simulations). We assume

the compute nodes to be co-located geographically such that message delays

73

Chapter 4. System Description, Log Data, And Fault Models

between nodes and a central log repository is bounded. Also, we assume nodes

to be time-synchronised, through the use of clock synchronisation, which is

important for event timestamping. A job scheduler is used to assign the jobs

to different production time-slots T = {T1, . . . , Tp} on specific nodes. As the

system operates, a bunch of log messages are generated to capture the health

of the system and collected on a central log server or file [35, 150].

4.2 Production Systems and Log Data

We now describe the production clusters along with their logs used in our

thesis, which is the fundamental information of our evaluation in the following

three chapters. Table 4.1 shows the configuration of the five supercomputers

generated six log datasets used in our evaluation. Specifically, these system

are of various scales (from 200 nodes to 49,152 nodes), various interconnects

(Infiniband and Aries Dragonfly), different file systems (Luster, MarFS, etc.),

different processors, and different logging mechanism (IBM Blue Gene/Q,

Ranger Syslogs, Ranger and Lonestar4 Rationalized Logs, Cray Log Messages,

and Cray Console Messages). More details are described in the following text.

Table 4.1: The Configuration of the Supercomputers Used in our Evaluation

Supercomputer System Scale Total Cores Interconnect File System Processors
Mira 49,152 nodes 786,432 5D torus GPFS PowerPC A2

Ranger 4,084 nodes 62,976 Infiniband Lustre AMD Opteron
Lonestar4 1,888 nodes 22,656 Infiniband Lustre AMD Opteron

Cray XC 30 5,600 nodes 133,824 Aries Dragonfly Lustre/SuSE IvyBridge
Cray XC 40 200 nodes 10,000 Aries Dragonfly MarFS Haswell/KNL

4.2.1 Blue Gene/Q Mira Cluster

The Mira supercomputer [11] used to be one of the most powerful supercom-

puters in the world, and its comprehensive system logs (including RAS log,

job scheduling log, I/O behavior log, etc.) have been released to the public to

promote the understanding of extreme-scale systems. Mira consists of 48 racks,

each containing two midplanes. Every midplane has 32 compute nodes, each

being facilitated with 16 active cores on a PowerPC A2 1600 MHz processor

and a total of 16G DDR3 memory. As such, the entire Mira system consists of

49,152 nodes, and has a total of 786,432 cores and 786,432 GB of memory. The

74

Chapter 4. System Description, Log Data, And Fault Models

Mira system’s storage capacity reaches up to 35PB with 384 I/O nodes, and

adopts a 2GB/s chip-to-chip-link 5D torus network, with each node containing

10 links with 2 Gb/s bandwidth. Mira’s job-scheduling log involves 32.44 billion

core-hours, about 1,300 users, and about 630 projects throughout its whole

5-year service [98], which creates an outstanding use-case for a resilience study.

RAS Logs

In the Mira cluster with diverse system logs, the Reliability, Availability, and

Serviceability (RAS) log is our focus. The core monitoring and control system

(CMCS) of the Blue Gene / Q systems is responsible for monitoring the

hardware components, including compute nodes, I/O nodes, and different

networks. CMCS reports monitored information as RAS event records that are

used to provide facilities for detection, diagnosis, and prediction of failure. The

event in the RAS log is identified by one of three severity levels (INFO, WARN,

or FATAL). Although one message in the RAS log consists of 14 fields, we focus

only on a few of them related to the system reliability, such as MESSAGE,

MSG_ID, LOCATION, SEVERITY, and EVENT_TIME, as suggested by

[97–99].

Table 4.2: Description of the Key Fields in RAS logs

Field Description
Msg Id Unique identifier of RAS event
Severity Severity level of the message (FATAL, WARN, or INFO)

Event Time Time stamp of the event (e.g, 2015-04-03-17.30.26.691211)
Location Particular occurrence location (e.g., midplane, node board)
Message Detailed description of the event

4.2.2 TACC Ranger Cluster

Ranger [18] is a well-known supercomputer, which used to be one of most

powerful machines in the world (ranked 45th in 2008 Top500). The Ranger

system consisted of 4,084, and has 15,744 quad-core AMD Opteron micro-

processors in total (involving a total of 62,976 cores), which were connected

via an Infiniband network. During its lifetime, this supercomputer served

4K+ scientists from 2,244 research projects, with over 3 million simulation

experiments completed.

75

Chapter 4. System Description, Log Data, And Fault Models

In our experiments, we adopt two real-world supercomputer system logs

both generated by Ranger system, which have been widely used for failure

analysis [34, 104, 149, 289]. The Ranger system adopted a well-designed

monitoring and logging system, and its jobs were managed by the Sun Grid

Engine [112]. Two types of system logs were generated by two different logging

frameworks, called SysLogs and Rationalized Logs. In the following, we describe

the two logs, SysLogs and RatLogs, in details.

Syslogs

The Syslogs dataset is produced by a specific logging system called syslog [25],

which uses POSIX standard (very similar to linux cluster systems) to output

logging messages. The syslog handles the logs via Linux’s /var/log directory

and keeps kernel system messages such as core dumps in /var/log/messages.

Table 4.3 describes the five fields for each log event in Syslogs.

Table 4.3: Description of Syslogs Message Fields

Field Example Description
Timestamp Feb 2 02:02:03 Occurrence time

Host i152-304 The node on which the job ran
System Id kernel (linux) System’s ID/type

Application Lustre Name of application
Text message The ost_write operation filed with -122&key Detailed message of one event

Rationalized logs

Compared with Syslogs, Rationalized logs (abbreviated as RatLogs) was a new

logging framework for TACC supercomputers. Unlike Syslogs, RatLogs has

a few additional fields to record more information, for example, job-ID (an

identification number to identify each running job). Such a logging framework

was adopted for analyzing the log-based failures effectively in the system. In

particular, RatLogs can be used to parse unstructured log messages more

efficiently. It may also commit error mappings and job failures directly. The

detailed logging metrics and their descriptions are shown in Table 4.4.

76

Chapter 4. System Description, Log Data, And Fault Models

Table 4.4: Description of Rationalized Logs Message Fields

Field Example Description
Job Id 2211223 Job’s identification number

Timestamp Oct 21 22:539:18 Time stamp
Host i112-102 The node onw hich the job ran
Prog kernel Name of the protocol

Text message X Northbridge Error Detailed message of the event

4.2.3 TACC Lonestar4 Cluster

The Lonestar4 [8] HPC cluster system is also operated by the Texas Advanced

Computing Center (TACC) [76]. It consists of 1,888 compute nodes, each with

two 6-core processors, for a total of 22,656 cores. It has a total memory capacity

of 44 TB and 276 TB of local disc space, with a potential peak computation

performance of 302 TFLOPS [15]. It was operated from 2009 to 2015. As

was described in the description of Ranger, a high-speed Infiniband network is

deployed to provide the communication among all the nodes on Lonestar4; a

job scheduler is employed to deal with job scheduling and resource management,

and the Lustre file system is deployed to provide high-speed data I/O service.

Lonestar4 Rationalized logs

Lonestar4 write their events using unstructured rationalized logs (Ratlogs)

similar to Ranger Rationalized logs in (Section 4.2.2) with the same logging

framework to allow freedom for the formatting of logs. The logging metrics

and their descriptions are similar to the Ratlogs format displayed in Table 4.4.

4.2.4 Cray XC30 Cluster

The fourth supercomputer system studied in this thesis is called Cray XC30

[93], which has been widely used in the resilience studies. The log messages

were generated on the System Management Workstation (SMW) in the form of

syslog format. The Cray system is composed of Login, boot, Service Database

Node (SDB), as well as compute nodes, syslog, I/O and networking nodes.

It has a total of 5600 nodes facilitated with IvyBridge processors, which are

connected via Aries Dragonfly network. All information about service nodes

are kept in the SDB. The shared file system (Lustre) managed by a boot node is

77

Chapter 4. System Description, Log Data, And Fault Models

connected with service nodes and compute nodes. The user job submissions are

managed by Slurm under the Application Level Placement Scheduler (ALPS),

such as aprun, apbridge, apshed, apinit etc. The system log used in this thesis

covers 1 month of operation.

4.2.5 Cray XC40 (Mutrino) Cluster

Trinity Cray XC40 [16] was one of the most powerful supercomputers (ranked

at #6 in the top 500) in 2018, which was managed under a joint effort between

Los Alamos National Laboratory (LANL) and Sandia National Laboraties

(SNL). Mutrino, sited at SNL, is a readiness test platform for the Trinity Cray

supercomputer [56]. According to [21], Mutrino is identical the full Trinity

system except for the size. Specifically, Mutrino/Trinity utilizes the Cray Aries

Interconnect network to connect hundreds of Cray nodes, including 100 Haswell

nodes and 100 KNL nodes. It has approximately two PetaBytes of DDR4 that

can feed data to the processors at a rate of over 1PB/s. It is also facilitated

with Burst Buffer which is composed of 4 PetaBytes of SSD drives running

Cray DataWarp software that can move data in and out of memory at a rate

of 6TB/s. Below the Burst Buffer, the system adopts the Lustre filesystem

to keep the data for several weeks, and uses a so-called MarFS filesystem to

stage large amounts of data for several months. The system uses an HPSS

tape archive system for essentially permanent storage.

The Mutrino log data (Cray XC40) used in this thesis can be found online

[21]. It spans 16 months, and comprehensively covers different states of the

system, including standup, a variety of naturally occurring and induced network,

electrical, thermal, and functional failures (such as Aries errors, DIMM failures).

The log resides also on the System Management Workstation (SMW), which

provides a single point of access to log data. Most of the log messages are

stored in the form of multi-line text format, and some log files are stored in

binary format. Most of the log messages depend on the syslog format (e.g.,

netwatch).

The detailed logging message format of both Cray systems will be described

in detail in the next subsection because Cray XC30 and Cray XC40 are sharing

the same format in logging messages.

78

Chapter 4. System Description, Log Data, And Fault Models

Cray XC40 and Cray XC30 Logs

For both Cray XC30 and Cray XC40, there are two types of logs (console and

message) used in our evaluation. The logging files (console and message) are

stored in the p0-directories, and their formats are presented in Table 4.5 and

Table 4.6, respectively. Specifically, they both contain timestamps and node

ids (cX-cYcCsSnN) per line. The node id is represented as a sequential decimal

number, which can be transformed to physical id, i.e., cX-cYcCsSnN format

for identifing a node’s physical location, e.g., which node (N), on which cabinet

(XY), in which blade (S), and in which chassis (C). Additional references to

boot messages and job logs provide the status of nodes and jobs over time.

Table 4.5: Description of Cray Console Log Fields

Field Example Description
TimeStamp 2016-01-11 16:11:36.347690+00:00 Time Stamp of The Event

Node c5-3c2s4n2 Execution node
Message PCIe Bus Error The detailed message of the event

Table 4.6: Description of Cray Message Log Fields

Field Example Description
TimeStamp 2015-07-26T15:02:06-06:00 Time stamp of the event

Node c0-0c0s0n1 Execution node
Application ccrdhelper The application related to the event

Message Unable to determine BIOS type for node 1 The detailed message of the event

4.3 Fault Model

In this section, we detail the assumed fault model, viz. node failures, of this

work. We subsequently explain the potential causes of these failures.

4.3.1 Fault Model: HPC Node Failures

HPC node failure is a state in which the operating system kernel hang-up,

becomes unresponsive, goes stuck, or loops without ends, blocking other

processes from executing and ultimately causing the nodes to shutdown [35].

In HPC systems, there could be many factors or different types of preceding

errors (from hardware errors to software/application faults) that can result in

node failures. The preceding errors that cause node failures are very diverse,

79

Chapter 4. System Description, Log Data, And Fault Models

including hardware issues (memory, GPU, network), OS process errors, file

system errors, application errors, etc.

The consequence of these preceding errors may differ a lot. Some errors may

induce failures very quickly because of their fast propagation: i.e., the sequence

of log events between the first error message and the ending failure event could

be very short. On the other hand, some other errors may take a long time

before their corresponding failure occurs, corresponding to a lengthy sequence

of log events with a relatively high delay between the first error message and

the ending failure event. This could be due to, e.g., the system attempting

a recovery that eliminates the error (e.g., message loss + re-transmission).

However, the error may come back later and if recovery is unsuccessful despite

many attempts, failure may ensue, with a long lead time. It is also worth noting

that there could be many interleaved & irrelevant events recorded between node

failures and their preceding error events, for both short and long sequences,

making failure prediction more challenging.

In this thesis, we focus on the prediction of node failure events as well

as their failure lead-times through our methods proposed in Chapter 6 and

Chapter 7, which can also be applied to failures of other components (such as

switches, GPUs).

4.3.2 Causes of Node Failures

A fault model specifies the way a system is expected to be affected by faults.

Our designed failure prediction framework can be applied on various types

of discrete faults at different levels, such as hardware, system, application

level, file system, and at an aggregate supercomputer level. As a fault occurs,

the resulting errors will result in error messages in the system log file. A

failure to address the causes of these error messages will likely result in a

system/application failure, which will also be logged.

The system faults have been classified into various fault models based

on experts, and the following are some categorisation approaches [150]: (i)

Design-Runtime Fault Model, which divides faults depending on their

origin, with design faults that occur as a result of system design flaws and

runtime faults that emerge during the production time. At the design phase,

80

Chapter 4. System Description, Log Data, And Fault Models

fault tolerance approaches (e.g., system testing) are utilised to reduce or remove

these flaws, while error detection/prediction can capture erroneous log patterns

induced by runtime faults that may result in failures; (ii) The Hardware-

Software-Human Fault Model, which categorises the system faults based

on how they are designed and the executed operations, with hardware faults

owing to hardware defects, software faults induced by application or software

flaws, and human faults caused by human activity. When these faults are

activated, their corresponding errors are generated, which can be identified and

predicted by error detection and failure prediction methods. It is important

to emphasise that there are cases where the error events are not logged in

the log file; thus, their corresponding faults may go unrecognised until the

associated failures occur, as such failures have no signatures or patterns; (iii)

The Permanent-Transient-Intermittent Fault Model, which categorises

faults depending on how long they remain in the system(i.e., their duration).

Permanent faults, which are generally caused by hardware issues, persist until

they are fixed, whereas transient faults, such as temporary communication

faults, disappear once they occur. Intermittent faults, such as a loose connection,

arise and disperse temporarily but may return. Additional fault models have

been suggested, such as how software faults are observed [138] or the faults’

behaviour/impact [48].

Failures in one component of the system (such as network) can lead to

a fault in another component of the system (e.g., memory). This is due to

the fact that, through fault transformation, the interactions between the two

components are impaired, causing the assumptions of the second components

to be violated. This assumption violation is transformed into a faulty situation

for the second component [77, 304].

4.4 Basic Definitions

This section provides some basic terms and definitions related to fault tolerance,

log messages, and machine learning.

• Log event (message): Log event is represented as a line of unstructured

text in the log file, which incorporates multiple pieces of information in

81

Chapter 4. System Description, Log Data, And Fault Models

the regard of different components or states of the system (e.g., NodeID,

timestamp, JobID, etc.). Each log event/message is reported with a

timestamp indicating the moment that the event occurs. In this thesis,

we use the terms log message, log event, and event interchangeably

• Log sequence: A log sequence (event sequence) consists of one or more

consecutive log events that are reported within a specified time window

[148].

• Fault: Fault is a hardware or software defect within the system, which

can lead to system failures (e.g., node crashes) or fatal issues (i.e. the

illegal system states). Programming mistakes, hardware defects, and

data transmission mistakes are examples of faults.

• Error: Error is an activated fault (or a situation through which the fault

turns out to be manifest), which potentially leads to failures when the

system deviates from the correct service state.

• Failure: An event that occurs when the delivered service deviates from

the correct and intended service [45].

• The failure lead time: The failure lead time is defined as the time

interval between the timestamp of the precursor log message (e.g., the

error event) and the timestamp of the failure [93].

• Job (Application): Job or application is an execution instance of an

application submitted to a supercomputer for completing some simulation

work (generally in parallel). As a job is submitted, it will be first put in a

queue waiting for the schedule, and then executed once available compute

nodes are allocated to it. Various pieces of specification information

are attached to HPC jobs (e.g., number of tasks, workflow, and other

resource requirements). The number of tasks indicates the total number

of individual tasks or units that comprise the entire job, whereas the

workflow defines the steps required to complete the job. Other resource

information to execute jobs also is needed, such as the number of CPUs,

cores, memory, GPUs, etc. On a supercomputer, the jobs are generally

involved in many different scientific application domains, such as climate

82

Chapter 4. System Description, Log Data, And Fault Models

simulation, earthquake and cosmology simulation, quantum chemistry

simulation, and fusion reactor simulation.

• Chain (Sequence) length: Chain (sequence) length indicates the

number of the log events in a log sequence.

• Failure chain (Sequence): Failure chain (sequence) is referred to as

the log sequence that ends with a failure event.

• Online model: Online model enables incremental learning as new data

arrives; thus, the model’s parameters are continually updated based on

a continuous stream of incoming data accompanied by improvement in

model performance.

• Offline model: Offline model is trained based on the entire accumulated

data (i.e., batch) at periodic intervals (e.g., weekly, monthly, yearly); thus,

it is called batch learning, and the model performance would decrease

as new data have emerged, hence retraining with the entire dataset is

required which includes the previous batch data and the new data.

• Supervised learning: Supervised learning is an approach in which

training the models requires labelled data (i.e., requiring manual labels);

thus, the model function focuses on mapping the inputs to the correct

labels. This approach includes algorithms such as support vector machine,

decision tree, random forest, etc.

• Unsupervised learning: Unsupervised learning is an approach in which

the models are trained on unlabeled data. The unsupervised models seek

to discover the hidden patterns among the input data. This approach

includes algorithms such as K-means and apriori algorithm.

• Self-supervised learning: Self-supervised learning is an approach in

which the models do not require manual labels; however, the models

train themselves by leveraging some portions of data to act as labels.

Thus, this approach is considered a subset of the unsupervised learning

technique because it does not need human labels. This approach includes

language modelling algorithms for NLP tasks such as BERT, GPT-2, etc.

83

Chapter 4. System Description, Log Data, And Fault Models

Summary

This chapter presents an overview of the supercomputer cluster’s system and

fault model. Also, five production systems and their log datasets which will

be used in our experiments in the following three chapters have been detailed

with examples. Moreover, we defined some basic terminologies related to fault

tolerance and log messages.

84

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Chapter 5

Sentiment Analysis Model For Errors

Detection In Large Scale Systems

Preface

Log messages generated by the components of HPC systems are the primary

resource for developing error detection solutions and keeping track of the sys-

tem’s health state. However, as the size of these large systems expands, the

number of log messages increases exponentially, which makes it challenging

to identify faulty messages efficiently. We conjecture that these log entries

capture the sentiments of system developers regarding the health of the gen-

erating components (e.g., a network timeout expresses a negative sentiment

about the network health). Leveraging these sentiments, we propose novel

sentiment analysis-based algorithms for error detection in large-scale systems.

One approach for sentiment analysis is through the use of a sentiment lexicon,

which, however, is often generated manually. In this chapter, we propose a

novel approach for the automated generation of a reusable sentiment lexicon to

support log analysis of different large scale systems, since these large systems

often share similar components. Our contributions are four-fold. (i) We develop

a machine learning-based approach to automatically build a sentiment lexicon,

based on the system logs. (ii) Using the sentiment lexicon, we develop an

algorithm to detect system errors. (iii) We develop an algorithm to identify the

nodes and components with erroneous behaviours, based on sentiment polarity

scores. (iv) We evaluate and compare our sentiment lexicon’s performance

with those of machine/deep learning algorithms, including Random Forest,

85

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

XGBoost, Multinomial NB, KNN, and LSTM to detect three different super-

computers’ errors: Blue Gene/Q Mira, Ranger, and Lonestar4. The results

show the viability of our approach and outperform other related state-of-the-art

approaches.

5.1 Introduction

There are two approaches to handling failures of large-scale systems: (i) failure

prediction and (ii) error detection. Potential failures are forecasted, and

proactive management actions are triggered to prevent or lessen them in the

first approach. In the second approach, errors are detected as they occur, and

measures are conducted to recover from them. This chapter focuses on the

second task (i.e. error detection) based on the analysis of log messages.

Error detection, using system logs has been extensively studied for years. In

[148], the authors performed error detection in supercomputers by combining

entropy, mutual information, and PCA approaches. Several different works

were generally based on detecting system anomalies (e.g., [54, 59, 161]). Further

techniques based on NLP and AI have also been applied towards failure log

analysis [107, 110, 322].

Works on error detection in HPC systems have focused on various aspects

such as identification (i) of erroneous log entries [241], (ii) of failure-inducing

erroneous execution sequence [148],[346],[147] and (iii) of detecting quantitative

relationship among logs [195],[217]. This chapter addresses the first problem

and focuses on the automated classification of failure log entries, thereby

obviating the need for the time-consuming manual labelling of such entries.

Often, automated labeling is achieved using rule-based techniques. However,

such rule-based approaches are often inflexible as the rules need to be revised

when new types of log entries are generated.

In this chapter, we explore a novel perspective on the problem of failure log

analysis. We conjecture that log messages often encapsulate the sentiment of

system developers, which pertains to the perceived health of the system. For

example, if a typical log entry states a timeout issue on a particular node, this

message implies that there is something wrong at the network level. That is,

86

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

such a message indicates that the system developer has a negative sentiment

about the current network status. The question is: can we leverage these

sentiments to develop a sentiment analysis-based technique for failure log

analysis? Our answer is yes, as we propose two novel algorithms for detecting

error messages and faulty nodes and components in these systems. This is

particularly helpful for error detection in systems with non-labelled logs (e.g.,

Ranger (4.2.2) and Lonestar4 (4.2.3), detailed in Chapter 4).

Sentiment analysis, which is a text classification technique that combines

NLP and AI, is based on assigning weighted sentiment scores to the text

entities within a word, phrase, sentence, or document. One class of approaches

for sentiment analysis makes use of a sentiment lexicon where the focus is on

developing specific list of words that carry cues of affection or sentiment, instead

of using every word as a feature [189]. However, the development process of

the sentiment lexicon has some weaknesses: (i) it is often generated manually,

which is tedious and inaccurate to users; (ii) it tends to be domain-specific for

efficiency reasons. We address these two respective problems as follows: (i) we

develop a machine-learning approach that exploits the log sentiments to develop

a sentiment lexicon to support the detection of errors in large systems1 and

identify the erroneous components or nodes and (ii) based on our observation

that such HPC systems often share similar components such as OS, a lexicon

for one system (i.e., source system) can be reused for another target system.

The fundamental principle of our design is that the sentiment intensity scores

can accurately represent the system state, among which the system developers

generally use very similar concepts or terms to record the events/messages

across different systems. In fact, the system developers often use negative

sentiments to log serious problems such as errors and failures, neutral sentiments

to highlight informational messages indicating the system works as expected,

and positive sentiments to mark the system faults/problems that have been

fixed, which inherently captures the three main classes (sentiment polarities)

of a log message.

However, to detect errors, sentiment polarity is not adequate. A sentiment

intensity score keeps track of the strength of a sentiment, e.g., the features
1A system fault refers to a potential event that may adversely affect the system execution.

87

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

‘failed’ and ‘unexpected’ may be associated with higher negative scores than the

features ‘slow’ and ‘monitor’, while the features ‘recovered’ and ‘successfully’

are assigned higher positive scores than ‘normal’ and ‘valid’ states. This

potentially allows us to exploit system logs of a source system that are labelled

with severity levels (e.g., Blue Gene systems 4.2.1) and extract their sentiment

features to automatically label log entries of other unlabelled (target) systems

as an unsupervised approach.

We draw four key research contributions of this chapter as follows:

i. We develop a ML-based method using stochastic gradient descent logistic

regression, to automatically construct a reusable sentiment lexicon for such

systems.

ii. We develop an algorithm for error detection based on the sentiment intens-

ity score of log messages.

iii. We develop an algorithm to discover system components (e.g., nodes)

which show erroneous behaviors based on sentiment polarity scores of

messages logged by those components during a specific time period.

iv. We perform the evaluation using the system logs of three large systems:

(i) Blue Gene/Q Mira (4.2.1), (ii) Ranger (4.2.2) and (iii) Lonestar4 (4.2.3)

which were built by three different vendors - IBM, Sun, and Dell respectively.

We also compare our sentiment lexicon’s performance with ML/deep

learning classification algorithms, including Long Short Term Memory

(LSTM), Random Forest (RT), Extreme Gradient Boosting (XGBoost),

Multinomial Naive Bayes (Multinomial NB), and K-Nearest Neighbor

(KNN). Experiments show that our sentiment-based solution can efficiently

detect error messages based on their associated sentiment scores, with

an average MCC-score of 91% and an average f -score of 96%, whereas

state-of-art ML/deep learning model (LSTM) obtains only 67% and 84%

respectively. Our technique identifies error messages with an f -score of

about 99% for Blue Gene/Q Mira system. Using the sentiment lexicon

items extracted based solely on the Blue Gene systems logs, a majority

of errors in Ranger and Lonestar4 logs can be successfully detected, with

f -scores of about 94%, and 95%, respectively. This effectively shows that

88

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

our technique can generate reusable lexicon for such systems, enabling the

automated labelling of any system’s logs.

The remainder of this chapter is organized as follows: Section 5.2 formulates

the research problem and the objectives of this chapter. Section 5.3 presents

the main steps of our approach. Section 5.4 shows the evaluation metrics and

the experimental results performed on the logs of three large systems. This

chapter concludes with a summary.

5.2 Problem Formulation and Research Objective

We formulate our research problem based on the three aforementioned super-

computers, including Blue Gene/Q Mira (involving 49K nodes with a total of

786K cores), TACC Ranger (involving 4K nodes) and Lonestar4 (about 2K

nodes with up to 63K cores), which were built by three different vendors - IBM,

Sun, and Dell respectively.

Without loss of generality, the general system model for a large-scale system

(e.g. IBM Blue Gene) contains a set N of nodes, a queue of J jobs, a set T of

production times, a job scheduler JS, and various software components such

as a file system. The scheduler JS allocates the J jobs to the N nodes to

execute during time period T . Further, the components write message logs in

to a central writing container [76].

The problem that our approach addresses can be formulated as follows:

Assume (i) a set of log messages is generated by a large-scale system, (ii) these

log messages have different severity levels, and (iii) the message templates

comprise system developers’ sentiments (either negative, neutral, or positive),

our objective is to develop an efficient approach that is able to:

i. Automatically construct a reusable sentiment lexicon intended for large-

scale systems.

ii. Using the lexicon, identify system individual faults.

iii. Using the lexicon, develop an unsupervised approach to detect faults of

other (target) systems that are missing the severity attribute information.

89

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

iv. Using the generated lexicon, identify the erroneous nodes and components

to assist precaution (e.g., avoid node crash), thereby preventing job failures.

5.3 Methodology

This section details our approach which features sentiment analysis model for

detecting errors in large-scale systems. We first explain our technique to extract

developers’ sentiment features with their weights from the source system to

automatically construct lexicon items. Second, we explain our algorithm for

error detection based on the sentiment intensity score of a log message. Third,

we outline our algorithm to discover system erroneous components based on

sentiment polarity scores of log messages.

5.3.1 Lexicon Construction Using Stochastic Gradient Descent

Logistic Regression

In this section, we describe a machine learning based model that allows for

the automatic construction of sentiment lexicons to detect errors in large-scale

systems via the stochastic gradient descent logistic regression technique. A

sentiment lexicon is a dictionary that consists of features (N-gram) associated

with their sentiment polarity values, and these sentiment scores are estimated

based on a model trained on a sample of log message templates. Stochastic

gradient descent logistic regression was employed since it is a discriminative

model which assigns high weights (sentiment scores) to the significant log

message features that can distinguish error messages from non-error messages.

To generate a sentiment lexicon for a large-scale system, our model requires

four components:

• M input/label pairs of log message templates (xi,yi) where each input log

message template xi is represented by a vector of f j features [f1, ..., f j].

• the sigmoid (logistic) function to compute the estimated class ȳ = σ(w.x+

b) for each log message template.

• the cross-entropy loss function for features weights (i.e.,coefficients) learn-

ing through minimizing error on training log messages.

90

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

• the stochastic gradient descent algorithm for optimizing the cross-entropy

loss function and updating weights.

This method performs two main steps to learn sentiment lexicon items

(features and their weights).

Phase I. Log Message Template Preprocessing

In the first step, we use M representative training log message templates (xi,yi)

that are labelled as either [−1, 1] faulty or non-faulty messages where the

numbers of erroneous and non-erroneous messages are balanced. We can use

severity levels as log message template labels for those large-scale systems with

this feature in their log data. The following preprocessing steps are conducted

on the dataset with log message templates:

• Divide log message templates into tokens such as strings, variables, and

punctuation.

• Remove all alphanumeric words, punctuation, stop words, variables that

are not strings from log messages and use other NLP methods to clean

text, such as lowercasing all texts, etc.

Phase II. Sentiment Lexicon Learning

We present the sentiment lexicon learning pseudo-code in Algorithm 5.1. Ba-

sically, the stochastic gradient descent logistic regression (SGDLR) technique

obtains sentiment scores (a vector of weights) of lexicon elements by learning

from the log message templates training set. Each weight wj(used later as a

sentiment score) is a real number (∈ R) and is linked with one of the log message

features f j . The weight wj signifies how important the log message feature is

to classifying a faulty log message from a non-faulty log message. Without loss

of generality, we assume that a high positive weight indicates a message with a

normal state or correctable error, and a very negative weight implies that the

message is a failure or non-correctable error. This machine learning technique

automatically computes the scores of lexicon items as follows:

Step 1. We employ the Term Frequency-Inverse Document Frequency

(TF–IDF) representation technique [277] to extract n-gram features f j from log

91

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Algorithm 5.1: SGDLR to construct a sentiment lexicon for large-
scale systems

Input: M log message templates (x, y),Logistic regression h(),Loss function L(),
learning rate η , regularization parameter λ

Output: Log features f with their weights W
1 initial W , b, η ← 0.01, λ;
2 for each (x) ∈M do

1. Tokenization
2. Removal of alphanumeric words, variables, etc.
3. Convert into TF-IDF representation format via Formula (5.1).

3 repeat
4 for (x, y) ∈M randomly do

1. Compute ȳ ← 1
1+e−θT x

2. Compute the loss by Formula (5.5).
3. Compute the gradient g ← η∇L(h(x; θ), y)
4. Update weights and bias θt+1 ← θt − η∇L(h(x; θ), y)

5 until SGD Converged;
6 return (f, W)

message templates xi and convert these features to numerical vectors ∈ R|L|,

where lexicon L is a set of n-gram features. The TF–IDF value of each feature is

calculated by multiplying two metrics: Term Frequency tf(f j , xi) and Inverse

Document Frequency idf(mfj , M) as follows:

tfidf(f j , xi, M) = tf(f j , xi) × idf(mfj , M) (5.1)

In TF-IDF, the TF part measures how frequently a feature f j occurs in a

log message template xi and is defined as follows

tf(fj ,xi) =
nfj ,xi∑
k nfk,xi

(5.2)

where nfj ,xi is the total number of feature f j occurrences in a log message

template xi divided by the total number of features ∑
k nfk,xi in that message

template. The IDF part, idf(f j , M), measures how important a feature f j

is in all message templates M by taking the logarithm of the ratio of the

total number of log message templates M to the total number of log message

templates mfj ≤ M containing the feature f j plus 1, to prevent dividing by

92

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

zero, as follows:

idf(mfj , M) = log (M

mfj + 1) (5.3)

We refer the readers to [277] for more details.

Step 2. We use SGDLR to train our model on log message features to

extract the dense weights vector W as follows:

i. Compute the estimated class ȳ = σ(w.x + b) for each log message template

via the following logistic regression function:

h(x) = 1
1 + e−θT x

(5.4)

where θ includes two types of parameters: features’ weights W and bias

b (we neglect this parameter).

ii. Then, we use the cross-entropy function and L1 regularization (Formula

(5.5)) to compute the loss L(ȳ, y) in order to measure how close ȳ is to the

actual label y.

L(ȳ, y) = −[ylogȳ + (1 − y)log(1 − ȳ)] + λ|w| (5.5)

The weights W of log message features and bias b are learned from labelled

log messages training set through a loss function that must be minimized

to make ȳ for each log message as close as possible to the actual output y.

L1 regularization (i.e., Lasso Regression) λ|w|, where parameter λ > 0, is

added to the cost function to prevent the overfitting problem and improving

model generalization by penalizing weights.

iii. Minimize the loss function in our model via the stochastic gradient descent

technique (Formula (5.6)) to obtain the optimal weights W of log message

features.

θt+1 = θt − η∇L(f(x; θ), y) (5.6)

Stochastic gradient descent is a technique which is used to minimize the loss

function by calculating its gradient after each mini-batch of log messages

and updating the vector’s parameters values θ (weights W and bias b).

Since the loss function for logistic regression is convex, the SGD will reach

93

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

the minimum of a lost function. The learning rate η is a hyper-parameter

to adjust the model based on the calculated loss each time the model

weights W are updated.

Step 3. The dense weight vector W is used as the sentiment scores with

their associated log message features f as our lexicon items. For systematic

observation, we normalize sentiment scores by dividing them by a uniform

coefficient.

5.3.2 Sentiment Polarity-based Error Detection

In this section, we present a novel error message detection algorithm, i.e.,

log message labelling algorithm, exploiting the sentiment lexicon, which is

constructed using stochastic gradient descent logistic regression explained in

the previous Section (5.3.1). We present the approach in Algorithm 2.

Algorithm 5.2: Error detection algorithm based on sentiment lexicon
Input: Unlabelled messages logs (x1, · · · , xn), Sentiment Lexicon

Items(fi, wi),Absolute lexicon threshold µ = µ, detection threshold φ = φ
Output: (x1posScore, · · · , xnposScore), (x1negScore, · · · , xnnegScore),

(x1SentiScore, · · · , xnSentiScore), Labels(yi, · · · , yn)
1 Parsing messages logs (x1, · · · , xn)
2 for i = 1 to n do

3 xiposScore ←
∑

i
wi∑

i
fi

; wi > 0

4 xinegScore ←
∑

i
wi∑

i
fi

; wi < 0

5 xiSentiScore = xiposScore + xinegScore
6 if xiSentiScore < φ then
7 yi ← faulty;
8 else
9 yi ← non-faulty;

The algorithm includes three phases, which are described as follows.

Phase I: Log Parsing

This phase is similar to the log message preprocessing phase presented in Section

5.3.1, where the opensource toolkit LogAider [99] and NLP techniques are

employed to preprocess and clean the system logs. For example, all duplicated

events with spatial or temporal correlations are filtered out by LogAider.

94

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Phase II: Log Message Sentiment Scores Assignment

In this phase, each log message xi is associated with a sentimental polarity

score using an assignment method similar to NLP’s lexicon techniques (e.g.,

Vader [169]), in which the lexicon learned from our model is used to assign

each log message a sentiment score made up of three different scores: positive,

negative, and the overall log sentiment score, as follows:

xiposScore =
∑

i wi∑
i fi

; wi > 0 (5.7)

xinegScore =
∑

i wi∑
i fi

; wi < 0 (5.8)

xiSentiScore = xiposScore + xinegScore (5.9)

In general, the faulty messages contain the system developers’ negative

sentiments expressing concern about unexpected system operations, unusual

situations, serious problems, failed services, and corruption. Consequently, the

xinegScore is calculated by summing the negative valence scores wi < 0 for

each feature fi of a log message that matches the sentiment lexicon features

divided by their total number; the intensity of this score lies between 0 (neutral)

and -1 (extremely negative). Moreover, log messages are generally embedded

with more negative sentiments than positive or neutral ones, as the system

developers tend to be more interested in abnormal systems’ events. On the

other hand, non-faulty messages include neutral sentiments indicating normal

system behaviors and progress of system software (e.g., service started or

stopped); positive sentiments indicate the system issues that are resolved (e.g.,

corrected errors, recovered failures). Therefore, the xiposScore is calculated by

summing the positive valence scores wi > 0 for each feature fi of a log message

that matches the sentiment lexicon features divided by their total number; the

intensity of this score lies between 0 (neutral) and +1 (extremely positive).

The xiSentiScore is the overall log polarity score that combines the xinegScore

and xiposScore. In other words, by summing the valence scores (i.e., whether

it is positive or negative) for each feature fi of a log message that matches

the sentiment lexicon features divided by their total number. This score lies

95

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

between -1 (extremely negative) and +1 (extremely positive). Similar to Vader,

we used the Hutto normalization method (Formula 5.10) to ensure the overall

sentiment score of the log message falls within the range of -1 to 1.

xiSentiScore√
xiSentiScore2 + α

(5.10)

α is a normalization parameter that is set to be 15.

Phase III: Detection Phase

Once system log messages are associated with sentiment polarity scores, the

xiSentiScore, detection threshold φ, and absolute lexicon threshold µ are used

to detect whether these messages are faulty or non-faulty. A log message is

classified as faulty when xiSentiScore < φ and as non-faulty otherwise. We

can refine the φ threshold until we achieve an optimal value which results in

a satisfied classification, however, in our analysis, we note that φ = 0 is a

near-optimal setting. Furthermore, the absolute lexicon threshold µ can be

adjusted until satisfactory classification accuracy with fewer lexicon features is

achieved.

5.3.3 Erroneous Component Identification Based on Sentiment

Polarity Scores

We can use our learned sentiment lexicon to calculate the sentiment polarity

scores of the log messages for a certain time window t over some period (e.g., one

hour time window over one day) for identifying the problematic components

(e.g., nodes). The idea is that based on the sentiment scores, the system

administrators can forecast which components may have erroneous behaviors,

such that the jobs involved can be reassigned to other backup resources, and

the problematic components would be temporally isolated until their problems

are fixed. Specifically, the components’ sentiment scores are anticipated to

be neutral when they work as expected by logging informational messages or

logging nothing. The negative scores are anticipated to associate with some

components experiencing errors, especially when these abnormal states last for

multiple consecutive time windows. However, when the components’ issues

96

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

have been resolved and they start to log the recovery and correction messages,

their sentiment scores are expected to be increased or set to positive, indicating

that they have been recovered well.

Our approach is composed of our sentiment lexicon that was learned in

section 5.3.1, system’s components (Ci, ..., Ck), log messages (x1, ..., xn), time

window t, where the system developers define the start time tS and end time

tE , and a detection sentiment score φ. The phase of erroneous component

identification is similar to that of detecting error message logs; however, the

components’ associated sentiment scores are calculated within a certain time

window specified by the systems’ administrators. We present the pseudo-code

of erroneous component identification algorithm based on a specific window

time [ts, te] in Algorithm 5.3.

Algorithm 5.3: Erroneous component identification in large-scale
system based on sentiment scores

Input: Components (Ci, ..., Ck), Unlabelled messages logs (x1, · · · , xn), Sentiment
Lexicon Items(fi, wi), detection threshold φ , Start time tS ← ts , End time
tE ← te

Output: CiposScore, CinegScore, CiSentiScore, CiState
1 initial φ← φ, CiLogs ← “ ”
2 Parsing messages logs (x1, · · · , xn)
3 for i = 1 to k do
4 for j = 1 to n do
5 CiLogs ← Concatenate (xj , xj+1) ; xj ∈ Ci && ts ≥ t ≤ te

6 for i = 1 to k do

7 CiposScore ←
∑

i
wi∑

i
fi

; wi > 0

8 CinegScore ←
∑

i
wi∑

i
fi

; wi < 0

9 CiSentiScore ← CiposScore + CinegScore
10 if CiSentiScore < φ then
11 CiState ← Erroneous;
12 else
13 CiState ← non-Erroneous;

Phase I: Component’s Log Parsing

Unlike the log parsing phase in the error detection phase, the component’s log

messages should not be filtered out, in order to keep the spatial and temporal

information. Moreover, in this phase, the system administrator are allowed to

specify the time window in which the component logs are grouped together. Our

model aims to assign sentiment polarity scores based on what each component

97

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

logs about its health in a specific time.

Phase II: Component Sentiment Scores Assignment

In this phase, the system’s components are associated with sentimental polarity

scores using an assignment method similar to that used in the second phase of

error detection presented previously. In particular, all negative features and

positive features indicating error correction learned from our model are used to

assign each component a sentiment score for a specified time window. It is com-

posed of three scores: positive, negative, and overall sentiment score (denoted

as CiposScore, CinegScore, and CisentiScore, respectively), whose calculations

are similar to those of the phase II in the error detection (see Formula (5.7),

(5.8) and (5.9)) normalized by Hutto Formula (5.10).

Phase III: The Erroneous Component Identification

Once the system components are associated with sentiment polarity scores,

the CiSentiScore and detection threshold φ, are used to detect whether these

components are erroneous or not. A component is classified as erroneous

when it is attached with CiSentiScore < φ for consecutive time windows and

as non-erroneous otherwise. This model can be plugged into each system’s

components to generate sentiment scores over the time windows customized by

administrators time windows. It works as an assistant tool that continuously

alerts the administrator of erroneous components within negative scores and

positive scores as the components’ issues are corrected.

5.4 Experimental Evaluation

We perform the evaluation by automatically generating a sentiment lexicon from

IBM Blue Gene systems’ distinctive log message templates: BlueGene/L log

templates(2007), BlueGene/P Intrepid log templates(2012), and BlueGene/Q

MIRA log templates. Specifically, we carefully evaluate the viability of our

error detection sentiment-based approach for three systems - Mira (4.2.1) (year

2017&2020), Ranger (4.2.2), and Lonestar4 (4.2.3), respectively. Our model is

implemented using Python 3.8. , Pandas [24], Keras [7] with a TensorFlow [17]

98

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

backend. We verified this test over an environment with the 2.2 GHz 6-Core

Intel Core i7 processor and 16 GB 2400 MHz DDR4 memory. The operating

system is MacOS Catalina version 10.15.x.. In the following, we first describe

our evaluation indicators and then discuss the evaluation results.

5.4.1 Evaluation Metrics

Since our sentiment model not only detects erroneous logs but also accurately

identifies non-erroneous logs, we utilize the weighted-average of (precision,

recall, F1-score) and Matthew’s correlation coefficient (MCC) to measure our

sentiment model’s performance. The precision, recall, F1-score are calculated

for each category (faulty and non-faulty). So, for a given detection category

i, we define: (i) True Positivei (TPi) is the number of logs correctly detected

as belonging to i category, (ii) False Positivei (FPi) is the number of logs

incorrectly detected as belonging to i category, (iii) False Negativei (FNi) is

the number of logs detected as not belonging to i category but, in fact, it

does, and (iv) True Negativei (TNi) is the number of logs correctly detected as

not belonging to i category [241]. Based on TPi, FPi, FNi, and TNi, we then

calculate precisioni and recalli for each category i as follows:

Precisioni = TPi/(TPi + FPi) (5.11)

Recalli = TPi/(TPi + FNi) (5.12)

and the F1-scorei, which is a balanced harmonic average of recall and precision,

as shown below:

F1-scorei = 2 × recalli × precisioni

recalli + precisioni
(5.13)

Lastly, the overall three scores (precision, recall, F1) are weighted by

each category’s support and averaged. The recall, precision and F1-scores

are among the most popular statistical measures for a binary classification

task. However, these measures can show overoptimistic results especially on

imbalanced datasets. Matthew’s correlation coefficient is a more reliable metric

99

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

which produces a high score only if it obtains a good result in all the four

confusion matrix categories (true positive, false positive, false negative and

true negative), proportionally to both the size of positive and negative elements

in the dataset. MCC is defined as [71]:

MCC = TP × TN − FP × FN√
(TP +FP)(TP +FN)(TN +FP)(TN +FN)

(5.14)

MCC returns a score between -1 to 1. A score of 1 represents a perfect

detection. A score of 0 represents a random detection. A score of -1 represents

total disagreement between detection and observation.

5.4.2 Evaluation of Error Detection

Learning Sentiment Lexicon for the IBM Blue Gene system

We use the SGDLR technique to automatically construct the sentiment lexicon

based on the IBM Blue Gene system’s RAS log message templates. We used

3k RAS log message templates as our dataset (detailed in Chapter 4, section

(4.2.1)), whose labels are automatically inferred from the severity level field

contained in a RAS log file. The RAS events are classified into two categories:

faulty messages and non-faulty messages. The former include warnings, failures,

and fatal levels, and the latter indicate informational messages to show the

system software’s progress or correction of errors.

We employ k-fold cross-validation with over-sampling methods to address

the imbalance within RAS dataset. After the NLP text preprocessing phase,

we adopt the Term Frequency-Inverse Document Frequency (TF–IDF) to

transform terms (features) of RAS templates from text format to numerical

vectors. The SGDLR algorithm with L1 regularization and default parameters

are then employed to learn the sentiment lexicon items of the IBM Blue Gene

systems by training RAS log template feature vector with their associated

labels to obtain the dense weights vector W (sentiment scores for lexicon items).

Our model obtains around ∼932 discriminative features associated with their

sentiment scores. Figure 5.1 shows ∼60 lexicon items associated with their

sentiment intensity scores learned automatically. It is clearly observed that

the learned sentiment lexicon of Blue Gene systems consists of the system

100

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

developers’ negative sentiments that show the systems’ issues and the positive

sentiments indicating that the system problems have been corrected or the

system components work as expected. Moreover, the Blue Gene lexicon contains

more negative sentiments than positive and neutral sentiments, demonstrating

that the abnormal system issues are generally paid more attentions in the logs.

The Blue Gene lexicon contains ∼664 negative sentiments, whereas there are

∼268 positive ones.

Mira Error Detection Performance

After the Blue Gene lexicon’s items are generated from the previous phase, we

evaluate its efficacy by detecting error messages using the entire year 2017 of

the Mira RAS logs. The year-2017 RAS log contains 16.5 million messages.

We first filter out the duplicated messages by using the open source toolkit -

LogAider [99] based on the spatial or temporal correlations. The total number

of messages is thus significantly reduced from 16, 772, 894 to 2, 380, 211. Then,

we preprocess the log messages’ content by the NLP techniques. After that, we

classify all events based on their severity attributes into two categories - faulty

and non-faulty - in order to obtain the ground truth for evaluating our error

detection method. Our error detection sentiment-based approach takes the

filtered 2, 380, 211 messages each of which is assigned a sentimental polarity

score, and detects the faulty messages based on comparing the associated scores

with detection threshold φ. Figure 5.2 presents the evaluation results about

error detection accuracy based on the RAS log of year 2017 with different

lexicon absolute threshold µ values(i.e., the number of sentiment lexicon items)

with detection threshold φ = 0. Experiments show that our machine learning-

based sentiment lexicon achieved excellent error detection accuracy for the

RAS log data of the year 2017, 99%, 99%, 99% of recall, precision, and f1-

score, respectively, at lexicon absolute threshold µ = 0, 1, or 2, and detection

threshold φ = 0.

In order to assess the effectiveness of our detection methodology under

different conditions, we evaluate our sentiment lexicon approach with different

values of µ and φ, which also aims at exploring the best threshold values

with respect to high true positives and true negatives. We observe that a

101

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Fi
gu

re
5.

1:
∼

60
of

IB
M

G
en

e
sy

st
em

s
le

xi
co

n’
ite

m
s

as
so

ci
at

ed
w

ith
th

ei
r

se
nt

im
en

t
in

te
ns

ity
sc

or
es

102

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Figure 5.2: Detection with different lexicon absolute threshold µ, with φ = 0

small change to the lexicon absolute threshold µ (i.e., the number of sentiment

lexicon items) and detection threshold φ may have a significant impact on the

detection result. In general, the detection accuracy increases as the former

threshold value decreases, meaning that using fewer lexicon items affects the

detection accuracy. Moreover, the same detection accuracy is reached when

only ∼ 58 sentiment items are used (i.e., µ=2), and when using all the 932

features of our learned lexicon. This result verifies the fact that developers

often use only a few sentiment words to log system issues and operations, as

opposed to similar NLP sentiment analysis tasks that contain a high number

of sentiment words.

We achieve a good error detection for the latter threshold value as the φ is

chosen within the range between 0 and −0.8; this means the developers use

high-intensity sentiments to log the system issues (see Figure 5.3). Moreover,

we observe that our model’s misclassifications occur due to two reasons: the first

reason is the developer’s classification of some logs with the incorrect severity.

For example, the severity level is INFO for the ‘nd receiver link error’ message

and is ERROR for the ‘correctable ecc error threshold’ message in the RAS log.

However, our model correctly classifies the former as faulty since this is what is

103

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Figure 5.3: Mira error detection performance with different detection threshold
φ, with µ = 0

reflected through the feature error, and classifies the latter as non-faulty, since

it shows the ‘ecc error threshold’ is corrected. The second reason is that system

developers tend to log some system events with unstructured text embedded

with mixed negative and positive sentiments. For instance, the log message

‘recoverable error message failed ecc parity error drill down error recoverable overable

error cache parity error’ contains several negative and positive sentiments.

Therefore, our model solves not only the problem of labeling the systems’ logs

with no severity levels but also fixes the misclassified severity levels within

systems containing this feature.

Comparing Our Approach with ML/Deep Learning

New types of unlabelled logs are generated because the operators of large-

scale systems (e.g., clusters, data centers) perpetually upgrade on the system

components (software/hardware) and service to add new features, fix bugs, or

enhance performance [340]. Furthermore, there are several large-scale systems

(i.e., target systems) with non-labeled logs, such as Ranger (4.2.2) and Lonestar4

(4.2.3). Classifying the massive number of unlabeled logs (i.e., millions) of

target systems manually into faulty and healthy is infeasible. Consequently,

104

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

our approach can be used to detect potential faults/failures (classify logs to be

faulty and non-faulty) automatically for the systems with non-labeled logs.

To demonstrate our approach’s effectiveness and generality on cross-systems,

we evaluate our sentiment lexicon’s performance on logs of three large-scale

systems to detect potential errors. We compare our solution with many state-

of-the-art machine/deep learning classification techniques, including Random

Forest (RT), Extreme Gradient Boosting (XGBoost), Multinomial Naive Bayes

(Multinomial NB), K Nearest Neighbor (KNN), Long Short-Term Memory

(LSTM), which have been commonly adopted by state-of-the-art approaches

for error detection/prediction. For fairness, we train the five machine/deep

learning models by using the same data we employed to extract our sentiment

lexicon, and then evaluate those models’ performance versus our sentiment

lexicon model’s performance on logs of three large-scale systems: the first six

months of 2020 Mira (4.2.1) filtered RAS logs, and all distinctive log messages

from Ranger (4.2.2) and Lonestar4 (4.2.3) (i.e., target systems).

Table 5.1: Scores (Recall, precision, f1-score, and MCC) of our lexicon and ML
models on three systems(Mira, Ranger, and Lonestar 4)

RAS Mira Ranger
Technique Recall Precision F1-score MCC Score Recall Precision F1-score MCC Score

Random Forest 96% 96% 96% 91% 55% 74% 51% 31%
XGBoost 96% 96% 96% 91% 50% 74% 44% 26%

Multinomial NB 96% 96% 96% 91% 45% 71% 36% 18%
KNN 96% 96% 96% 91% 50% 66% 46% 19%
LSTM 98% 98% 98% 96% 76% 80% 76% 55%

Our Sol. 99% 99% 99% 98% 94% 94% 94% 87%
Lonestar4 Average of 3 Systems

Technique Recall Precision F1-score MCC Score Recall Precision F1-score MCC Score
Random Forest 57% 78% 57% 35% 69% 83% 68% 52%

XGBoost 52% 78% 51% 32% 66% 83% 64% 50%
Multinomial NB 45% 75% 41% 23% 62% 81% 58% 44%

KNN 54% 71% 55% 25% 67% 78% 66% 45%
LSTM 80% 80% 79% 50% 85% 86% 84% 67%

Our Sol. 95% 95% 95% 87% 96% 96% 96% 91%

As presented in Table 5.1 and Figure 5.4, the results reveal that using

our lexicon achieves an average MCC score and f1-score of 91% and 96%

respectively in error detection in the three large systems’ log messages, whereas

the best machine/deep learning model (LSTM) obtains only 67% and 84%

respectively. The other models RF, KNN, XGBoost, and Multinomial NB

achieve an average MCC score of 52%, 45%, 50%, and 44%, and an average

f1-score of 68%, 66%, 64%, and 58%, respectively.

As mentioned above, new types of unlabelled message logs in such HPC

105

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Figure 5.4: The average of detection performance of our lexicon and ML models
on all three systems

systems were generated because of their upgraded or added components. It is

non-trivial to manually classify a large number of new system log messages

induced by the system upgrades or repairs. To cover this case, we evaluate our

sentiment lexicon in classifying the latest RAS logs of IBM Blue Gene Mira 2020

(i.e., test dataset) and compare its performance with the other machine/deep

learning techniques. The IBM Blue Gene systems’ distinctive log message

templates: BlueGene/L (2007), BlueGene/P (2012), and BlueGene/Q log

templates are combined as our training dataset to learn the lexicon and train

other five machine/deep learning techniques. The results (see Figure 5.5) show

that our sentiment lexicon achieves the best MCC and F1 score among the

six methods, achieving high MCC and F1 scores of 98% and 99% respectively.

All other techniques achieve satisfying accuracy because the training runs on

old RAS message templates and tests on Mira 2020 RAS logs’ messages. The

deep learning technique, LSTM, also achieves a high MCC score of 96% and F1

scores of 98%, respectively, and all other ML models achieve MCC scores (91%)

and f-scores (96%). In general, our sentiment lexicon successfully identified

the developers’ sentiments from old generations Blue Gene supercomputers to

106

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

use them for classifying new types of logs Mira 2020 RAS logs.

Figure 5.5: Detection performance of our lexicon/ML models on 2020 Mira
RAS logs

As we stated before, our approach’s primary goal is accurately identifying

individual errors automatically for those HPC systems with a huge number of

non-labeled logs. For example, the Ranger and Lonestar4 logged around 65

million and 12 million unlabelled messages in July 2011 and February 2013,

respectively. To demonstrate the effectiveness of our solution in addressing this

point, we utilize our sentiment lexicon features learned on labeled log messages

from the source system (i.e., IBM Blue Gene) to detect errors in the target

systems unlabelled log messages (i.e., Ranger and Lonestar4). As illustrated in

Figure 5.6 and Figure 5.7, our lexicon achieves much higher scores in detecting

error messages of Ranger and Lonestar4 logs than other solutions, even though

they are different HPC systems developed by different companies with distinct

logging methodologies. Our lexicon can detect the majority of errors accurately

in Ranger and Lonestar4 unique logs. In absolute terms, the MCC scores reach

up to 87% and 87%, the f-scores reach 94% and 95%, the recalls can get up

to 94% and 95%, and the precisions achieve 94% and 95%, respectively. For

other solutions including LSTM, RN, KNN, XGBoost, and Multinomial NB

107

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

models, on Ranger Logs, the MCC scores are 55%, 31%, 19%, 26%, and 18%,

respectively. The f1-scores are 76%, 51%, 46%, 44%, and 36%, respectively. On

Lonestar4 Logs, those models get the MCC score only 50%, 35%, 25%, 32%,

and 23%, respectively, and the f1-score only 79%, 57%, 55%, 51%, and 41%,

respectively. The major limitations of detection accuracy on target systems for

five machine/deep learning techniques are analyzed as follows: KNN does not

work well because the log messages are imbalanced and contain many outliers,

and LSTM, RF, and XGBoost are prone to overfitting, where Multinomial NB

assumes the logs’ features are independent, despite this not being the case.

Figure 5.6: Detection performance of our lexicon and ML models on Ranger
logs

These results demonstrate the reusable sentiment lexicon’s benefits of

deploying it as an unsupervised log analysis approach on different (target)

systems. The key reason our solution outperforms other ML methods is that

it successfully extracts developers’ sentiment features hidden in labeled log

messages from one source system (i.e., IBM Blue Gene) and transfers these

features with their weights as lexicon items to detect errors in the target

systems with unlabelled log messages (i.e., Ranger and Lonestar4. This verified

the fact that developers of different systems really adopt similar sentiment

features in their logging methodology. Thus, we can utilize a few system logs

108

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Figure 5.7: Detection performance of our lexicon and ML models on Lonestar4.

with severity levels to automatically extract their sentiment features and label

the logs of other target systems with non-labeled logs. These promising results

motivate us to collect more logs from different systems and generate a general

sentiment lexicon using our technique to detect hardware and software issues

in our future work.

5.4.3 Evaluation of Erroneous Component Identification

We evaluate our approach of identifying erroneous components such as compute

nodes (denoted Rxx-Mx-Nxx), I/O nodes (denoted Qxx-Ix-Jxx) and link

modules (denoted Qxx-Ix-Uxx), based on Mira’s RAS logs. We present the

evaluation results based on one-day period (27-March-2017) due to massive

components involved. We employ our sentiment lexicon learned in Section

5.3.1 and detection sentiment score φ=0 to associate each component with 24

sentiment scores for the 24 hours, based on the hourly log messages regarding

these components. Each score is composed of positive and negative scores,

which are then summed up to produce the overall sentiment scores. Thus, each

component is attached with a total of 72 sentiment scores (24 positives + 24

negatives + 24 overall scores).

109

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

Figure 5.8 demonstrates the states of some components in Mira. A gray

color indicates ‘working as expected by logging informational messages or

logging nothing‘; a red color indicates that the component is experiencing some

abnormal events that affect its productivity; a green color indicates that the

issues have been corrected, or silent errors have been fixed.

Figure 5.8: Illustration of The Erroneous Component Identification on Mira

Figure 5.9: Mira Erroneous Component Identification (Q2H-I3-J00∼Q2H-I4-
J05)

We observe that majority of Mira components experienced no issues (e.g.,

Q2H-I0-U02, Q2H-I0-U03, and Q2H-I0-U04). Negative sentiment scores were

attached to a few components (e.g., Q2H-I0-J01, Q2H-I0-J02, Q2H-I5u-J00,

Q2H-I5-J01, and R2B-M0-N00) for consecutive hours, which validates the high

accuracy of our algorithm because each of them crashed due to one or two

fatal events according to the RAS log. Moreover, some components (e.g., the

node R2B-M0-N15) exhibit high negative scores for long consecutive hours

since it was suffering from recurrent abnormal events. Some components such

110

Chapter 5. Sentiment Analysis Model For Errors Detection In Large Scale Systems

as R2B-M0-N00, exhibit positive sentiment scores in later hours (i.e., the 14th

and 15th), as some correction events were triggered. Our technique can assist

the Mira system’s administrator to isolate these faulty components until the

problems are fixed, since there are 152 fatal events occurring in that day, and

our model highlights all the components that triggered them.

Furthermore, as shown in Figure 5.9 from sentiment scores attached to Q2H-

I4-J00 ∼ Q2H-I4-J05, we first observe that components are associated with

similar sentiment scores for a consecutive or recurrent time windows. This can

be explained by the fact that components generate the same logs over those time

windows to convey that they are still facing the same issues. Second, we also

observe that neighboring components are assigned with similar sentiments scores

within similar time windows, indicating that large-scale system components

that exhibit similar behaviors generate similar logs. Thus, one important

observation is that the issues encountered by similar components may result in

the same sentiments, and thus similar sentiment scores, enabling our technique

to be deployed by Mira’s administrators to detect faulty components.

Summary

In this chapter, we leverage the inherent meaning behind the log messages

and propose a novel sentiment analysis-based approach for the error detection

in large-scale systems, by automatically mining the sentiments in the log

messages. Our contributions are four-fold. (i) We develop a machine learning

(ML) based approach to automatically build a sentiment lexicon, based on the

system log message templates. (ii) Using the sentiment lexicon, we develop an

algorithm to detect system errors. (iii) We develop an algorithm to identify the

nodes and components with erroneous behaviors, based on sentiment polarity

scores. (iv) We evaluate our solution vs. other state-of-the-art machine/deep

learning algorithms based on three representative supercomputers’ system

logs. Experiments show that our error detection algorithm can identify error

messages with an average MCC score and f -score of 91% and 96% respectively,

while state of the art ML/deep learning model (LSTM) obtains only 67% and

84%.

111

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

Chapter 6

Clairvoyant: A Log-Based

Transformer-Decoder for Failure Prediction

in Large-Scale Systems

Preface

The transformer-based pre-trained language models, such as GPT-2/3, have

revolutionized the representations and transfer learning of the NLP downstream

tasks; however, their applications to areas such as failure prediction in HPC

systems are unknown.

System failures are expected to be frequent in the exascale era such as

Petascale systems. The health of such systems is usually determined from

challenging analysis of large amounts of unstructured & redundant log data.

In this chapter, we leverage log data and propose Clairvoyant, a novel self-

supervised (i.e., no labels needed) model to predict node failures in HPC

systems based on a modern deep learning approach called transformer-decoder

and the self-attention mechanism. Clairvoyant predicts node failures by (i)

predicting a sequence of log events and then (ii) identifying if a failure is a

part of that sequence. We carefully evaluate Clairvoyant and another state-

of-the-art failure prediction approach – Desh, based on two real-world system

log datasets. Our experiments show that Clairvoyant outperforms Desh with

faster training and prediction time.

112

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

6.1 Introduction

Failures1 in HPC systems can occur as a result of the scale and design complexity

of the systems or due to faults occurring elsewhere in the system. Such failures

typically lead to a significant computational overhead which, in turn, may have

severe impact of system throughput.

In HPC systems, popular proactive failure management techniques are used

such as task migration and checkpointing/restart. However, both techniques

are expensive procedures and need to be used only when required, e.g., the

computational overhead associated with these techniques may be exacerbated

if they are wrongly triggered due to wrong failure prediction. Thus, it is

important to develop efficient failure prediction techniques so that the overhead

can be kept tractable. Effectiveness of current failure prediction approaches

show a true positive rate of 50% in terms of actual failure identification and a

false positive rate of less than 10%, meaning that the overhead of proactive

techniques can be bounded [91, 102].

The SW of these HPC systems, such as OS and parallel file systems,

typically generate a large volume of valuable log messages that are recorded in

a centralised log file. These log messages typically capture the health states of

every component (e.g., nodes). For example, a log message may state that the

memory of a particular node has been corrupted. As such, these event logs are

critical for system administrators to assess the state of the system.

Although log files are nontrivial for analysis (e.g., they are often unstruc-

tured, duplicated or even incomplete [77]), extensive research on failure-related

analysis using HPC system logs has been undertaken such as detecting an-

omalies (e.g., [54], [161], [59]), diagnosing the root causes of failures (e.g.,

[77, 88, 93]), and detecting the errors that lead to system failures (e.g.,

[34, 148, 241, 346]).

While error detection is important at system runtime, not all errors will lead

to system failure due to in-built recovery procedures such as the use of ECCs.

As such, any premature triggering of an error recovery technique would likely

introduce extra overhead. Accordingly, to mitigate the impact of system failures
1In the context of HPC systems, we will use node failures and system failures interchange-

ably.

113

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

on applications, it is critical to develop an efficient failure prediction mechanism

alongside proactive failure management techniques [126]. Unfortunately, the

failure prediction tools that determine when proactive failure management

techniques should be activated is still insufficient [91]. This necessitates the

development of failure prediction techniques that can flag impending failures

ahead of time. Techniques that have been employed for failure prediction in

HPC systems are, for example, support vector machines (SVM) [123], principal

component analysis (PCA) [204], learning message patterns [315], Bayesian

networks for hierarchical online failure prediction [266], and hidden semi-

Markov models (HSMMs) [279]. Despite these contributions, these solutions

have limited prediction accuracy or suffer from high computational overhead.

The proposed Long Short-term Memory (LSTM) and Bidirectional Long

Short Term Memory (Bi-LSTM), used in [91] and [131] respectively, have been

the most effective techniques for log-based failure prediction. However, they

both suffer non-trivial weaknesses, e.g., due to recurrence learning, it is difficult

to parallelize those approaches, leading to long training time. Another problem

is the vanishing gradient problem, that causes the loss of earlier "memory"

resulting in limited accuracy, i.e., long-range dependencies cannot be adequately

captured.

As such, we develop Clairvoyant, a self-supervised (no need for labels)

transformer-decoder based model to predict node failures in HPC systems

by first predicting the future sequence of events (future health state) and

then identifying if a failure is part of the sequence. Clairvoyant rectifies the

limitations of LSTM implementations through the self-attention mechanism and

parallelization. Denoting the predicted log sequence as S and a failure log event

by F , we then capture failure prediction of the node if F ∈ S, i.e., if a failure

event appears in the predicted output log sequence. We run Clairvoyant on

real-world datasets and the results obtained show that Clairvoyant significantly

outperforms the state-of-the-art HPC failure predictor – Desh [91]. To the best

of our knowledge, this chapter is the first attempt to leverage the self-attention

and transformer-decoder techniques to predict node failures in HPC systems.

However, different log-based studies have utilized self-attention with different

transformers variants for anomaly detection and log parsing, such as Trine

114

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

[348], LAMA [144], LAnoBERT[207], NuLog[256], and [285].

We make the following contributions. (i) We develop Clairvoyant, a

transformer-decoder based technique to predict component (node) failures

in HPC systems. This is a generic model that can be applied to any other HPC

systems or components since it is very common that the system failures are

more or less correlated to the error messages. (ii) We evaluate the efficiency of

Clairvoyant and Desh using two real-world logs from the Ranger supercomputer.

The log data used in our experiments are very good representatives of large-

scale HPC systems for failure analysis, as they are unlabelled, unstructured,

and more complex than other HPC system logs. (iii) Our results show that

Clairvoyant significantly outperforms Desh both in prediction accuracy and in

training and prediction time.

Chapter structure: In Section 6.2, we present the problem formulation.

Section 6.3 presents the methodology behind Clairvoyant, and we present the

metrics used for performance evaluation in Section 6.4. We highlight the cluster

system and its log datasets in Section 6.5, and we discuss the evaluation results

in Section 6.6. A summary is provided at the end of this chapter.

6.2 Problem Formulation

Challenges in log-based failure prediction: Informally, our approach for

log-based failure prediction is as follows: given a sequence of log events, predict

an incoming log sequence and identify if a failure log event is in the predicted

sequence. However, there are two critical challenges, which are: (i) The instant

at which the failure log event appears in the predicted sequence should neither

be too soon nor too late as the failure management mechanism may be triggered

at the wrong time and (ii) The component (i.e, node) that is going to fail needs

to be clearly identified so that failure management mechanism is triggered at

right “location”.

We denote by Lr, the set of log sequences of length at most r. Consider

two sets: Lm and Lk, k ≤ m. The individuals in set Lk are called the possible

extensions of the individuals in Lm. Each individual in Lm can be assigned an

output from Lk, i.e., for each si ∈ Lm, let ei ∈ Lk be the true outcome to be

115

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

predicted (i.e., the true log sequence that follows si). We model a (possibly

randomised) predictor by a mapping M : Lm → Lk such that M(si) is the

predicted log sequence to follow si, i.e., si · M(si) is a (future) predicted log

sequence of length (k + m), i.e., si · M(si) ∈ Lm+k.

The two problems we address in this chapter can be formulated as follows:

Definition 6.2.1 (Log Prediction). Given a log sequence si ∈ Lm, obtain

a predictor M such that arg minM D(si · M(si), si · ei), where D : Lm+k ×

Lm+k → R represents a distance metric for log sequences of length (m + k)

and where (·) represents sequence concatenation.

In this case, we say that M correctly extends si if the distance is 0. Other-

wise, we say that M approximately extends si. D is a distance metric on log

sequences such that the distance is 0 when the logs are identical.

Definition 6.2.2 (Failure Prediction). Given a log sequence si ∈ Lm, its

extension ei ∈ Lk and a predictor M that approximately extends si, we say that

M accurately solves the failure prediction iff F ∈ ei ⇔ F ∈ M(si). We say that

M approximately solves the failure prediction problem if F ∈ M(si) ⇒ F ∈ ei.

It is interesting to observe that the (predicted) failure lead time is exact

when D(si · M(si), si · ei) is 0, i.e., the failure event log does neither appear too

soon nor too late. It is also worth noting that D will have a small value when

the failure event appears at ’roughly’ the correct time, i.e., at the correct place

in the sequence. As such, developing an efficient mapping will help towards

addressing the first challenge explained above.

So, for each node Cj ∈ C, given an input of a (previous) sequence of m

log events E1, . . . , Em logged as node Cj ’s current health state, the aim of

our transformer-decoder based model is to predict the sequence Em+1, . . . , En

future log events (i.e., the extension of E1, . . . , Em), including failure events.

The failure prediction is repeated for every node in Cj ∈ C and the identity of

the node that is predicted to fail will be known, thereby addressing the second

challenge mentioned above regarding the failure location. The model calculates

and predicts an upcoming log event probability P (E(m+1):n) as follows:

P (E(m+1):n) =
n∏

i=m+1
P (Ei|E1, ..., Ei−1) (6.1)

116

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

6.3 Methodology for Clairvoyant

In this section, we first provide a high level overview of the proposed approach

followed by a detailed description.

An Overview of the Proposed Approach Due to the serious limitations of

existing techniques (e.g., LSTM based methods) and challenges of the failure

prediction problem, novel and scalable approaches are needed. Transformer

neural network has made tremendous progress, primarily in Natural Language

Processing (NLP) tasks (e.g., text prediction) and tackled LSTM limitations,

through the self-attention mechanism and parallelization processing.

These properties benefit log-based analysis in multiple ways: (i) The self-

attention mechanism emphasizes the important part of the input data and fades

out the rest. Focusing on log-based analysis where, by analogy, we consider

an event log entry as a word and a sequence of log entries as a sentence;

self-attention will help focus on the important event log entries while moving

focus away from irrelevant events. (ii) The self-attention feature is amenable

to parallelization, meaning that training and prediction time can be drastically

reduced, compared to LSTM.

Driven by the self-attention and parallelization learning – the crux mechan-

isms of the transformers neural network [305], we develop a novel approach

namely Clairvoyant based on the transformer-decoder variant [272] to predict

HPC nodes’ failures by first predicting the future sequence of events (future

health state) for each node and then identifying if a failure is part of the

sequence. Predicting a compute node’s (or a component’s) failures ahead is

achieved through accurately predicting the forthcoming log events Em+1, ..., En

based on the previous log events E1, . . . , Em by that node. Our proposed

transformer-decoder-based technique can be deployed in real-time to assist

the large-scale systems administrator as nodes’ failure predictor. As shown in

Figure 7.12, the proposed model is based on a transformer-decoder consisting

of a stack of attention blocks, preceded by log message preprocessing and an

input embedding, followed by a log events prediction. We can incorporate

these steps as two main phases; log message preprocessing and log events (log

sequence) learning&(prediction), which are described in detail as follows.
2For simplicity, Figure 1 shows the prediction phases for one node.

117

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

L
o
g

s

P
re

p
ro

c
e

s
s
in

g

E
1

E
2

E
m

-1
E

m
…

L
o
g

S
e

q
u
e

n
c
e
s

(i
n

p
u
t)

Positional

Encoding
Input Embedding

+

Decoder

Decoder

Decoder

…

S
ta

c
k
 o

f
T

ra
n
s
fo

rm
e

r-
D

e
c
o

d
e
rs

L
in

e
a
r

L
a

y
e

r

S
o

ft
M

a
x

L
a
y
e
r

P
re

d
ic

te
d

L
o

g
 E

v
e

n
ts

C
h
e

c
k
in

g
:

F
a
ilu

re
 O

c
c
u
ri
n

g

Add & normalize

Feedforward

Multi-head self-

attention

Masked multi-head

self-attention

Add & normalize

Add & normalize

E
m

+
1

E
m

+
2

E
n

-1
E

n
…

IN
P

U
T

 E
M

B
E

D
D

IN
G

D
E

C
O

D
IN

G
 A

N
D

 L
E

A
R

N
IN

G
L
O

G
 E

V
E

N
T

S
 P

R
E

D
IC

T
IO

N

P
H

A
S

E
 I

P
H

A
S

E
 I

I

Fi
gu

re
6.

1:
Fa

ilu
re

an
d

H
ea

lth
St

at
e

Pr
ed

ic
tio

n
Ph

as
es

fo
r

Ea
ch

C
om

po
ne

nt
(i.

e.
,n

od
e)

118

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

6.3.1 Phase I. Log Message Preprocessing

In the first phase, standard NLP methods are used to clean textual log messages

from all alphanumeric words, punctuation, stop words, variables that are not

strings from log messages. After that, the duplicate messages are removed

based on a time window as determined by an expert. Then, (unique) text log

messages are mapped onto corresponding log event IDs based on the unique

events (templates) from log message preprocessing. Next, each node’s log event

IDs are concatenated into sequences (log event sequences) sequentially based

on their timestamps, where each sequence contains 1024 events at most. Hence,

the number of sequences from each node can be calculated by dividing the

number of log events generated by that node on 1024. Each node’s sequences

of log events is tokenized by breaking them up and transforming them to

their associated indices (i.e., numbers). Those indices are generated by taking

all events present in the log data and creating a vocabulary dictionary. The

decoder blocks is fed by nodes’ log sequences one after another. Besides,

transformer-decoder can, in parallel, perform until 1024 log events within

the input sequence, which is an advantage over the recurrent neural network

(RNN) architectures such as Long Short Term Memory networks (LSTM). Also,

the Byte Pair Encoding (BPE) technique is employed in transformer-decoder

architecture to tokenize the input, allowing the encoding of any unusual tokens,

which are the IDs of log events in our case. BPE is a compression NLP

technique that repeatedly replaces the most common pair of adjacent bytes

with a new byte that does not exist in the original data [124].

6.3.2 Phase II. Log Events Learning and Prediction

As stated before, in this chapter, we aim to predict the failures of HPC

system components (nodes) and the entire health state through generating

a sequence of forthcoming log events based on their preceding log events

sequence. Thus, our proposed approach is based on the transformer-decoder

deep neural networks designed for sequence processing. The transformer’s core

component’s self-attention mechanism considerably improves the connectivity

among the elements in long sequences. Accordingly, we employ transformer-

decoder neural network, a stack of decoder attention blocks preceded by an

119

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

input layer to embed the sequence of real-time log events logged by the HPC

node, and followed by linear and softmax layers to predict failures by two steps:

predicting the future sequence of events and then identifying if a failure is

part of the sequence. More design details are described in the following text.

We refer the readers to read [272] for detailed background of the transformer

variant which we will use to build our model.

Step 1: Input Embedding

This step incorporates two types of encoding: log event embedding and log

event’s positional encoding, which are merged element-wise by dot-matrix

multiplication:

Log Embedding: Each log event ID in input sequences is mapped into a

vector of dmodel dimension size, with continuous numeric values to represent

that event learned through neural networks. By the end of the training, log

event vectors’ values represent the relation and dependency among these events.

Log Positional Encoding: Transformer avoids the recursion mechanism

that is employed by RNNs, in order to enable parallel computation to minimize

training time as well as the reduction in performance caused by lengthy

dependencies. To this end, input embedding is associated with positional

embedding to encode the order of the tokens (in our case, log events) and

determine distances between the log events in the log sequences to the decoder

blocks. The log event position i is encoded using sin and cosine periodic

functions as follows:

P(pos,2i) = sin(pos

10000
2i

dmodel

)

P(pos,2i+1) = cos(pos

10000
2i

dmodel

)
(6.2)

The even positions in the input vectors of log events in the sequence are

calculated via the sin function, and the cos function is used for the calculation

of odd positions. The benefit of utilizing sin and cos functions for positional

encoding is periodicity. So, whether the model is learning on any length of

tokens (events) in a sequence, the positions will always have the same range

([-1,1]) to project each position to a unique code during parallel computation.

The positional vectors are then added to their corresponding log events

120

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

input embeddings. Based on transformer-decoder architecture, each log event

embedding in the input sequence incorporates one positional encoding vector

for each of the 1024 positions(pos) [272] in the input; dmodel refers to the size

dimension (which is 768 in our design), and i refers to the index within the

vector of log event.

Positional encoding is added to the input embedding to construct the input

matrix X before being passed to the decoder stack to provide information

about the position of those corresponding inputs (log events). For an input log

event Ei, its embedding xi in the input matrix X is defined as:

xi = Wembedding ∗ Ei + PEi , i ∈ 0, ..., I − 1 (6.3)

where I denotes the number of log events in the input sequence, PEi is positional

encoding of Ei, and the Wembedding ∈ REsize×Vsize is the log event embedding

matrix with embedding size Esize and the log events vocabulary size Vsize.

Step 2: Decoding and Learning

In the next phase, the input matrix X, which is log events embedding vectors,

is passed forward to a stack of decoders (12 decoder blocks) one after the

another forming the main part of the model. These decoders are identical

in their architecture and functions in which each decoder block consists of a

multi-headed masked self-attention layer, feed-forward neural network (FNN)

layer, and some normalization layers. Each decoder has its own weights in

both sublayers (self-attention and FNN). The following details show how the

decoder layers work.

(1) Masked Self-Attention: The masked self-attention mechanism allows

the model to associate each individual log event to its preceding log events in

the input sequences; this leads to understanding and capturing the relation,

dependencies, and order occurrence among the log events in the input log

sequences. Therefore, all associated and relevant log events in the sequence

that reveal the connection with a particular log event are identified. As the

correlation between those log events preceding that log event as these events

receive higher scores (given more attention). The self-attention is achieved

121

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

by creating three matrices for the decoder’s input sequence X (in our case,

a sequence of log events embedding). As stated in the previous step, the log

events embeddings are combined into the input matrix X, where each row in

X corresponds to a log event in the input sentence. A Query matrix (Q), a

Key matrix (K), and a Value matrix (V) are created by multiplying X by

three weight matrices, Query weight matrix (WQ), a Key weight matrix (WK),

and a Value weight matrix (WV), are trained during the training process. The

matrices (WQ), (WK), and (WV) have a smaller size dimension (64) than

the log events embedding vectors (768) for better performance calculation

of multiheaded attention(explained later). The input matrix X is passed

through three linear layers WQ, WK , and WV to produce the Query (Q), Key

matrix (K), and Value matrix (V) matrices, respectively, where each row

associated with a log event in the input sequence is defined by the following

three equations:

Q = WQ · X + bQ

K = WK · X + bK

V = WV · X + bV

(6.4)

After the three matrices are created, several calculations are conducted to

generate the masked self-attention Z, which can be depicted in the following

formula:

Z = MaskAttention(Q, K, V)

= Softmax(mask(Q.KT
√

dk
)V

(6.5)

The masked self-attention is calculating the score for each log event against

the preceding log events in the sequence by multiplying the dot product of that

log event’s query vector with its key qx ·kx, where qx and kx refer to the vectors

of Q and K, respectively. As the correlation between the log event and its

preceding log events increases, these events receive higher scores (given more

attention). Then, those scores are divided by the square root of the dimension

of the key vectors. The results are then passed to a softmax layer and they

will be normalized all positive numbers with a sum being equal to 1. The

obtained score from the softmax operation decides how much each individual

122

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

event receives attention (focus) with respect to its current position in the input

sequence. The relevant log events receive higher scores than other irrelevant

ones. Next, the softmax scores are multiplying by each value vector vx. This

process keeps the relevant log events gaining high scores in the previous step

and opting out unrelated log events because they are multiplied by tiny scores.

Lastly, the output of the self-attention layer for that log event at that position

is calculated by summing up the weighted value vector and send this vector

along to the FNN layer. All these processes are performed in the form of matrix

calculation in parallel for all sequence log events.

A "multi-headed" attention technique is employed (8 attention heads) to

improve the self-attention layer’s performance for two reasons. First, the ability

of the transformer can be increased to extend attention to various positions.

Second, the input embeddings can be projected into a varied representation

subspace. Multiplying the input matrix X by the 8 multi-headed attention

separate sets WQ, WK , and WV weight matrices produces 8 sets of Query (Q),

Key matrix (K), and Value matrix (V) matrices, respectively. Then, 8 different

Zi matrices are obtained. The FNN layer is expecting a single matrix to handle,

thus the Z matrices are concatenated and multiplied with an additional weight

matrix WO to obtain the attention layer’s output Z matrix that captures the

information from all multi-heads.

(2) Residual Connection and Normalization Layers: Each transformer-

decoder contains residual connection and normalization layers to make the

training (learning) more effective. The layer normalization is calculated as:

Normlayer(Z) = γ
Z − µ

σ
+ β (6.6)

where γ and β are learnable parameters, µ and σ are the mean and standard

deviation of the Z’ vector’s elements [272, 305].

(3) Feed-Forward Neural Networks: Each transformer-decoder also

contains two-layer feed-forward networks with a ReLU activation function

applied to each position separately and identically. The first layer is the input

layer to receive the output of the preceding layer, hidden layers that capture

the hidden correlations among those input log events. The second layer is the

123

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

output layer to pass forward what has been captured to the next step. Given a

log sequence of vectors h1, ..., hn, the calculation of a position-wise FNN layer

on a hi is represented as:

FNN(hi) = ReLU(hi · Znormalized + b1) · W 2 + b2 (6.7)

where the Znormalized, W 2, b1, and b2 are learnable parameters.

The other decoders work as the first decoder, and the output of each

decoder is sent to the next decoder. The output of the final decoder is passed

on to the linear and softmax layers.

Step 3: Log Events and Failure Prediction

The vector of float values returned by the last decoder in the stack is transformed

into a vector (logits vector) via a dense linear layer whose size is equal to

the number of unique log events (vocabulary size). For instance, in our case,

if there are V unique log events in log dataset, this would result in a logits

vector of V cells values where each cell corresponds to a unique log event score.

Finally, those scores are converted into positive probabilities with a total sum

of up to 1 through a softmax layer, and the index of logit cell with the highest

probability is selected. Based on the model vocabulary, the log event associated

with that index cell is predicted at this time step as the output (the predicted

log event). A log sequence of desired length of events is predicted via a loop

that begins by predicting the next event based on its preceding events, then

appends it to the input log sequence, and continues to return the subsequent

events. The outcome of this looping process is a prediction of the health state

of the entire HPC component system. Consequently, a failure is predicted if

it appears in the predicted log sequence (our main goal). This means that

Clairvoyant predicts a node failure by first predicting its forthcoming sequence

of events and then identifying if a failure is part of the sequence.

6.4 Evaluation Metrics

To demonstrate the viability of Clairvoyant for failure prediction of HPC

systems, we examine two large datasets, obtained from two different logging

124

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

mechanisms operational at different times, from the same HPC system, namely

Ranger (4.2.2). In this section, we mainly introduce our evaluation metrics,

and then we present the system, datasets, the evaluation results in the next

sections.

Clairvoyant predicts not only future failures for HPC nodes but also the

entire health state of every node. Thus, our model will be evaluated in two

aspects. First, we evaluate the accuracy with which our model generates (i.e.,

predicts) log events of HPC nodes before the actual log events are generated.

Second, we evaluate the accuracy with which our model predicts nodes’ failures.

For that purpose, two prediction-accuracy metrics supported by standard

metrics including recall, precision, F1-score, Matthew’s correlation coefficient

(MCC), false-positive rate and false-negative rate, are utilized to evaluate our

model.

Evaluating text generation (i.e., text prediction) in the NLP domain remains

challenging because the generation task is open-ended. However, after a careful

analysis of different text prediction evaluation metrics, we make use of the

following metrics, namely Bleu and Rouge, which will be detailed below. The

reason for choosing Bleu and Rouge is that they complement each other for

the text prediction task as Bleu measures the precision of generated text (log

events in our case) while Rouge measures recall. We detail the metrics below.

Bleu (Bilingual Evaluation Understudy [263])

Bleu is a precision-based metric calculated by comparing the degree of similarity

between a text candidate to one or more text references (in our case, just one

reference). It was initially designed as a translation evaluation metric, but later

it was used to evaluate text generation tasks, more specifically, to compare a

generated text sequence (candidate) against a reference sequence. A Bleu score

ranges from 0 to 1, with 0 indicating a complete mismatch and 1 a perfect

match, and 0.6 or above indicating a good result.

In this chapter, we use Bleu to measure how many log events predicted

by our model (candidate) appear in (i.e., overlap with) the actual log events

generated by the HPC system (reference).

125

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

The Bleu metric is defined as shown in Eq 6.8 [263]:

Bleu = BP × e(
∑N

n=1 wn log pn) (6.8)

where BP indicates the brevity penalty. BP = 1 when r ≤ c (Long candidates

are not penalised, and only penalise short candidates) and BP = e(1− r
c

) when

r > c, and where r indicates the length of the reference sequence (events

generated by the HPC system) while c indicates the length of the candidate

sequence (log events predicted by the model). N represents the length of the

ngrams; wn = 1
N indicates the positive weights, and pn is the modified precision

score as defined in Eq 6.9 [263].

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)∑
Ć∈{Candidates}

∑
n-gram∈Ć

Count(n-gram) (6.9)

where Count(ngram) is the number of ngrams for the candidate in the test

set, and Countclip(ngram) is the number of clipped ngrams for the candidate

log sequence.

Rouge (Recall-Oriented Understudy for Gisting Evaluation N-gram

Co-Occurrence Statistics) [216])

Rouge is a recall-based metric calculated by counting the number of text

reference ngrams (in our case, just one reference) that appear in the text

candidate (i.e., predicted sequence). A Rouge score can range from 0 to 1,

with 0 indicating a complete mismatch, 1 a perfect match, and 0.6 and above

indicating a good result.

In our case, we use Rouge to measure the recall how many of the actual

log events generated by the HPC system (reference) appear in (overlap with)

log events predicted by our model (candidate), as defined in Eq 6.10 [216]:

Rouge=

∑
S∈{Reference}

∑
(gramn)∈S

Countmatch(gramn)∑
S∈{Reference}

∑
(gramn)∈S

Count(gramn) (6.10)

in which n indicates the number of ngrams, Count(gramn) is the count of

126

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

ngrams that appear in the reference, and Countmatch(gramn) refers to the

maximum ngrams number occurring in both reference and candidate sets.

The standard metrics that are used are defined in equations (6.11) to (6.15).

The symbols TP, FP, FN, and TN refer to True Positives (failures are predicted

correctly), False Positives (failures are predicted incorrectly), False Negatives

(failures are missed by our model) and True Negatives (non-failures correctly

predicted by our model), respectively3.

In addition, we compute the following metrics: (i) the F1-Score that

indicates the overall failure prediction accuracy with regards to the weighted

average between recall and precision, (ii) The Matthew’s correlation coefficient

(MCC) is an adequate metric as it only returns a high score if it performs well

in all four confusion matrix categories (TP, FP, FN, and TN), proportionate

to the quantity of positive and negative classes in the test dataset. The

MCC score can range from −1 to 1 where a score of −1 indicates a complete

discrepancy between the actual and predicted results, a 0 score represents a

random prediction and a score of 1 indicates that the prediction is perfect.

(failure)Recall, Precision = T P
T P +F N , T P

T P +F P
(6.11)

(nonfailure)Recall, Precision = T N
T N+F P , T N

T N+F N
(6.12)

F1 Score = 2 Recall·P recision
Recall+P recision

(6.13)

MCC = TP × TN − FP × FN√
(TP +FP)(TP +FN)(TN +FP)(TN +FN)

(6.14)

FPRate, FNRate = F P
F P +T N , F N

T P +F N
(6.15)

In comparison to classification tasks, the automatic evaluation of text

prediction tasks is a significant challenge [278]. Even though Bleu and Rouge

are two of the few main metrics for Natural Language Generation (NLG),
3Precision and recall are calculated for both classes (failures and non-failures) and high-

lighted in the experimental results section even our test datasets are balanced.

127

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

Table 6.1: Data Logs before and after the Preprocessing Phase

Log Data Duration From To # Before # After
Syslogs 5 mon Jan-11 May-11 43,639,722 2,346,780
RatLogs 6 mon June-11 Nov-11 144,836,950 8,068,752

they have some drawbacks. However, and most importantly, most of these

drawbacks do not apply to the problem of evaluating our model because only

one reference and one candidate are used in our case. Nevertheless, for failure

prediction experiments evaluation, Bleu and Rouge metrics are complemented

using the standard metrics4. To use specific standard metrics, we use failure

events and ignored all other log events from the candidate and reference.

6.5 Evaluation System, Datasets, and Soft Lockup

Failure

In our experiments in this chapter, we adopt two real-world supercomputer

system logs both generated by Ranger system (4.2.2), which detailed along with

its two data logs in chapter 4 and have been widely used for failure analysis

[34, 104, 149, 289].

The two different system logs generated based on two different logging

frameworks, namely SysLogs (4.2.2) and Rationalized Logs (4.2.2). As shown

in Table 6.1, our SysLogs dataset spans across five months (January to May

2011), while Rationalized Logs span six months (June to November 2011). We

use both of them in our experiments and analysis.

Ranger Compute Node Failures (Soft Lockup Failures): Ranger

administrators at TACC frequently encounter “compute node soft lockup” log

events, indicating failures. A soft lockup is a state that causes the kernel of

Linux OS to panic, be unresponsive, stuck, and loop endlessly, preventing other

processes from being completed and eventually causing the nodes to crash.

Soft lockup failures are recognized in log data by searching for the term soft

lockup. Accordingly, the failures we aim to predict in this work are those soft

lockups, which can be used to guide administrators in using mechanisms that
4The results show the validity of using Bleu and Rouge to evaluate the health state

and failure prediction because both correlate highly with the results of standard evaluation
metrics.

128

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

will reduce the number of applications from failing [73]. Several types of errors

precede the failure of Ranger compute nodes (soft lock up), including Linux

OS process errors, Lustre file-system errors, storage errors, network errors and

software errors among others.

Figure 6.2 and Figure 6.3 show the recorded number of “compute node soft

lockup” failure log entries for the Ranger logs per month. These failures are

distributed over most of each month’s dates; Figure 6.4 and Figure 6.5 show

the dates and distribution of soft lockup failures that occurred in March and

July, with a similar distribution pattern for other months. These months were

chosen to showcase the distribution pattern, which also remains similar for

other months. The distributions would likely exhibit a similar pattern if other

months were chosen.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Jan Feb Mar Apr May

N
u
m

b
e
r

o
f
F

a
ilu

re
s

Month

Before Preprocessing
After Preprocessing

2
3

4
9

8
8

3

2
0

3
1

9
1
1

9
3

2
5

6
4

7
9

1
2

5
9

6

1
0

0
8

3

3
3

6
9

5

3
0

0
8

7

Figure 6.2: Monthly Compute Node Soft Lockup Failure Messages on SysLogs

6.6 Evaluation Results

To show the efficacy and applicability of our technique across log data, we

evaluate the performance of our model on two unlabeled real-world log

datasets with different logging frameworks, SysLogs and Rationalized Logs,

to predict potential soft lockup failures. Moreover, we compare our method

to a state-of-the-art deep learning prediction technique, Desh [91], the best

in class, which employs LSTM to predict HPC node failures. There are good

failure prediction approaches as well such as CNN-LSTM based and Bi-LSTM

129

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

 0

 20000

 40000

 60000

 80000

 100000

 120000

Jun Jul Aug Sep Oct Nov

N
u
m

b
e
r

o
f
F

a
ilu

re
s

Month

Before Preprocessing
After Preprocessing

1
3

2
7

3
1

2
7

6
3

3
6

6
1

2
3

2
2

8
8

3
8

5
5

2
2

4
9

0
2

6
1

4
4

1

1
5

2
8

0
1

3
6

8
0

2
5

5
0

2
2

4
6

90647

Figure 6.3: Monthly Compute Node Soft Lockup Failure Messages on Ration-
alized Logs

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 1
0

1
2

1
3

1
4

1
5

1
6

1
8

1
9

2
1

2
7

2
9

N
u
m

b
e
r

o
f
F

a
ilu

re
s

Day

Figure 6.4: Daily Compute Node Soft Lockup Failure Messages in March

 1

 10

 100

 1000

 10000

 100000

4 5 6 7 1
0

1
1

1
8

1
9

2
3

2
4

2
5

2
6

2
7

3
0

3
1

N
u
m

b
e
r

o
f
F

a
ilu

re
s

Day

Figure 6.5: Daily Compute Node Soft Lockup Failure Messages in July

based approaches proposed in [225] and [131], respectively. However, both

techniques require long training time with slower prediction because they

combine two neural networks CNN+LSTM and Bi-LSTM, respectively, with

similar accuracy to Desh. In addition, our model is a self-supervised learning

that does not need labels, unlike the supervised learning based methods (such

130

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

as SVM, Random Forest, KNN, etc.) that depends on the labels.

6.6.1 Log Data Preprocessing

We developed a log preprocessor to sort the log events based on their timestamps,

clean raw log messages, and remove the duplicate ones based on the spatial and

temporal correlations, as determined by an expert. After that, log messages are

transformed into log sequences based on their associated nodes, as explained

in the first phase of our methodology. Table 6.1 shows the quantities of both

datasets’ log messages before and after the preprocessing phase. 83087 log

sequences are constructed from Syslogs, and 25272 log sequences are constructed

from Rationalized Logs. Both logs are divided into training part and testing

part. The training part accounts for 80% of the logs’ data, while the testing

part accounts for the remaining 20%.

6.6.2 Predicting Entire Health State of Ranger Performance

Evaluation

Clairvoyant is implemented using Python 3.8., Pandas [24], Keras [7] with a

TensorFlow [17] backend, PyTorch [13]. We verified the experiments over the

environment of Google Colab [20] by leveraging NVIDIA Tesla V100 GPU,

Intel Xeon 2.30 GHz processor, and 52 GB RAM. We build our technique using

a neural network architecture similar to the GPT2 model, which has a stack of

12 transformer-decoders with 12 attention heads for each layer, 768 dimensional

states to encode log events into their embeddings, 1024 feed-forward sizes,

and maximum log sequence input length being set to 1024. Additionally, we

implement the baseline (Desh) model as explained in [91]. The training is

conducted for 10 epochs and a batch size of 16 for our model as well as the

baseline model.

Training and Prediction Time Performance

Table 6.2 shows that the training time for learning using our model is drastically

reduced 25.2× compared to Desh on average. Our approach requires only 1.64

and 0.71 hours in training on SysLogs and Rationalized Logs, respectively.

By comparison, Desh requires at least 41 and 18 hours on both training

131

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

sets, respectively. Reducing training time is critical because deploying the

model online in real-time necessitates continuous training and fine-tuning

parameters in case new forms of failure patterns are created. These new

failure sequences can be created because the operators of large-scale systems

(e.g., supercomputers and data centers) are frequently upgrading the system

components (software and hardware) and services in order to add new features,

repair faults, or improve performance. Also, new high-end scientific applications,

such as scientific applications, which are executed on these high-performance

computing (HPC) systems could create different failures patterns that the

model has not learned before.

Table 6.2: Training Time Performance in Hours

Clairvoyant Desh
SysLogs R. Logs SysLogs R. Logs

1 Epoch 0.16 0.07 4.17 1.82
Entire Training 1.64 0.71 41.74 18.23

Furthermore, our model predicts the forthcoming log sequence of events

15.4× faster than Desh during the testing. As illustrated in Figure 6.6, only

0.30−5.78 secs are needed to predict a log sequence chain of lengths 64 to

1024 respectively, whereas the Desh technique requires 3.36−98.00 secs, where

the chain length indicates the length of the predicted log events. This can be

explained by the transformer-decoder mechanism’s parallelization capabilities

and positional encoding, which takes substantially less training and prediction

time than the RNN models such as LSTM, which lack parallel training and

require sequential learning. Therefore, the prediction of upcoming events

using our solution on the testing data is very suitable for the real-time failure

prediction scenario that requires fast forecasting to trigger the appropriate

proactive recovery actions and avoid costly failures.

Overall Learning and Log Events Prediction Performance

We employ Bleu and Rouge metrics to measure our model’s overall accuracy

in generating (predicting) the nodes’ forthcoming log events (whether inform-

ational, errors, or failures) before the actual log events are generated, with

respect to the entire system future health state. Bleu and Rouge measure the

132

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 64 256 512 1024
P

re
d
ic

ti
o
n
 T

im
e

 (
in

 s
e
c
o
n
d
)

Chain Length

Out Solution
Desh

15.4

37.8

98

2.56 5.78

3.36

1.28

0.08

0.05
 0
 1
 2
 3
 4
 5

1 64

0.30

Figure 6.6: Chain Lengths(# Log Events) Prediction Time

degree of similarity (overlapping) between the candidate (predicted log events

by our model and the baseline (Desh)) and the reference (log events generated

by the Ranger system in realtime).

0%

20%

40%

60%

80%

100%

Bleu Rouge

S
c
o
re

Our Solution
Desh

Figure 6.7: Bleu and Rouge for Entire Health State Prediction on Syslogs

0%

20%

40%

60%

80%

100%

Bleu Rouge

S
c
o
re

Our Solution
Desh

Figure 6.8: Bleu and Rouge for Entire Health State Prediction on Ratlogs

As can be seen in Figures 6.7 and 6.8, our transformer decoder-based

approach achieves a Bleu score of 0.70 and 0.73 on SysLogs and Rationalized

Logs, respectively, in predicting forthcoming log events. In contrast, the Desh

baseline obtains only 0.45 and 0.46, respectively. This means that on average,

72% of log events predicted by our model (the candidate) appeared in the

133

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

events generated by the HPC system (the reference), compared to just 45.5%by

Desh.

Also, as illustrated in Figures 6.7 and 6.8, results demonstrate that our

technique obtains Rouge scores of 0.60 and 0.67 on SysLogs and Rationalized

Logs, respectively. Desh, however, obtains only 0.30 and 0.38, respectively.

This means that on average, 63.5% of events generated by the HPC system

appear in the log events predicted by our model, compared to Desh’s 34%.

The Bleu and Rouge scores imply that it is difficult for Desh, an LSTM-

based model, to capture long-range dependencies/correlations between events

in long sequences due to a loss of memory for earlier events caused by the

vanishing gradient problem. On the other hand, our technique successfully

predicts the future log events sequence depending on the preceding lengthy

log sequence (predicting the upcoming health state from previous& current

health state). This is indicated by a high match (overlap with) between the

forthcoming log events predicted by our model(candidate), and the events

generated by the HPC system (reference). The key reason is that the masked

self-attention mechanism, which is the crux of our model, efficiently identifies

the log entries of important events while moving the focus away from irrelevant

ones and capturing long-range dependencies/correlations between events in

long sequences.

6.6.3 Node Failure Prediction Performance Evaluation

The main objective of this research is to predict the failures of nodes in an

HPC system. As explained, our solution, Clairvoyant, predicts node failures by

first predicting the future sequence of events for every node as evaluated above

and then identifying if a failure is part of the sequence, as evaluated below

using Bleu and Rouge, and the standard metrics mentioned in the Section 6.4.

To this end, we calculate the values of the evaluation metrics by focusing on

only failure prediction events, unlike the evaluation of the prediction of the

entire health state, which involves multiple log events predicted by our model

and the events generated by the HPC system.

Ranger often encountered compute node lockup failures; thus, our goal is to

predict those soft lockup failures ahead of their occurrences, to trigger proactive

134

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

Table 6.3: Failure Prediction Performance Evaluation on Both Data Logs5

SysLogs Rationalized Logs
Our Sol Desh Our Sol Desh

Bleu 0.89 0.56 0.91 0.59
Rouge 0.75 0.57 0.80 0.59

Failure Precision 0.97 0.76 0.99 0.86
Failure Recall 0.52 0.21 0.61 0.21

non-Failure Precision 0.67 0.54 0.72 0.55
non-Failure Recall 0.98 0.93 0.99 0.96
Overall Precision 0.82 0.65 0.86 0.70

Overall Recall 0.74 0.57 0.80 0.59
F1-Score 0.74 0.51 0.80 0.52

MCC Score 0.6 0.2 0.7 0.3
FP-Rate 0.02 0.07 0.01 0.04
FN-Rate 0.48 0.79 0.39 0.79

failure management procedures in the system. Accordingly, we demonstrate

our approach’s effectiveness by evaluating the performance of our technique

and comparing the results with baseline results on two different logs as follows:

As presented in Table 6.3, Figure 6.9, and Figure 6.10, our model predicts

upcoming failures with a Bleu score of 0.89 and 0.91 on SysLogs and Rational-

ized Logs, respectively. In comparison, the Desh baseline scores just 0.56 and

0.59. In other words, on average, 90.0% of Ranger failures predicted by our

model (the candidate) appear in the events generated by the HPC system (the

reference), compared to only 57.5% by Desh.

Moreover, results show that our technique obtains better recall accuracy.

Specifically, Clairvoyant achieves a Rouge score of 0.75 and .80 on SysLogs and

Rationalized Logs, respectively. Desh obtains only 0.57 and 0.59, respectively.

This means that on average, 77.5% of failures generated by the Ranger appear

in the log events predicted by our model, compared to Desh’s 58%.

 0

 0.2

 0.4

 0.6

 0.8

 1

B
LE

U

R
O

U
G

E

F
A
ILU

R
E
 P

R
E
C
IS

IO
N

F
A
ILU

R
E
 R

E
C
A
LL

N
O

N
-F

A
ILU

R
E
 P

R
E
C
IS

IO
N

N
O

N
-F

A
ILU

R
E
 R

E
C
A
LL

F
1-S

C
O

R
E

M
C
C
 S

C
O

R
E

F
P
-R

A
T
E

F
N
-R

A
T
E

S
c
o

re

Our Solution

Desh

 0
.8

9
 0

.5
6

 0
.7

5
 0

.5
7

 0
.9

7

 0
.7

6

 0
.5

2
 0

.2
1

 0
.6

7
 0

.5
4

 0
.9

8

0
.9

3

 0
.7

4

 0
.5

1

 0
.6

 0
.2

 0
.0

2

 0
.0

7

 0
.4

8
 0

.7
9

Figure 6.9: Failure Prediction Performance on SysLogs

135

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

B
LE

U

R
O

U
G

E

F
A
ILU

R
E
 P

R
E
C
IS

IO
N

F
A
ILU

R
E
 R

E
C
A
LL

N
O

N
-F

A
ILU

R
E
 P

R
E
C
IS

IO
N

N
O

N
-F

A
ILU

R
E
 R

E
C
A
LL

F
1-S

C
O

R
E

M
C
C
 S

C
O

R
E

F
P
-R

A
T
E

F
N
-R

A
T
E

S
c
o

re

Our Solution

Desh 0
.9

1
 0

.5
9

 0
.8

8
 0

.5
9

 0
.9

9

 0
.8

6

 0
.6

1
 0

.2
1

 0
.7

2

 0
.5

5

 0
.9

9

0
.9

6

 0
.8

0

 0
.5

2 0
.7

 0
.3

 0
.0

1

 0
.0

4

 0
.3

9

 0
.7

9

Figure 6.10: Failure Prediction Performance on RatLogs

As presented in Table 6.3, Figure 6.9, and Figure 6.10, the result of standard

metrics shows that Clairvoyant predicts failures on SysLogs and Rationalized

Logs with a high-precision score of 0.97 and 0.99, and the recalls can reach

up to 0.52 and 0.61, respectively. In comparison, the Desh baseline achieves

lower precision scores of 0.76 and 0.86 and lower recall scores of 0.21 and 0.21,

respectively. Also, Clairvoyant predicts non-failure sequences correctly (benign

sequences) on SysLogs and Rationalized Logs with a precision score of 0.67

and 0.72, and its recalls can reach up to 0.99 and 0.99, respectively. The Desh

baseline, on the other hand, achieves lower precision scores (0.54 and 0.55) and

also high recall scores (0.93 and 0.96), respectively.

We also check MCC, which is a reliable metric as it only returns a high

score if it performs well in all four confusion matrix categories (TP, FP, FN,

and TN), proportionate to the quantity of positive class (failure) and negative

(non-failure) class in the test dataset. Moreover, we also utilize the weighted

average of f1-score from the positive class (failure) and negative (non-failure)

class for more accurate evaluation even our test set is balanced between the two

classes. The results (see Table 6.3, Figure 6.9, and Figure 6.10) show that our

model (Clairvoyant) achieves better prediction on SysLogs and Rationalized

Logs with MCC scores of .6 and 0.7, and the f1-scores reach 0.74 and 0.80,

respectively. In comparison, the Desh baseline achieves MCC scores of 0.2 and

0.3 and f1-scores of 0.51 and 0.52, respectively.

Moreover, false positive rate (FP-rate) and false negative rate (FN-rate)

also demonstrates the substantial improvement of our model. The FP-rate

136

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

shows that 7% and 4% of Desh alarms on SysLogs and Rationalized Logs are

false alarms (which would cause incorrect recovery actions), respectively. On

the other hand, our model only drives 2% and 1% false alarms, leading to rare

incorrect trigger recovery actions. Also, based on FN-rate, Desh significantly

missed real node failures on SysLogs and Rationalized Logs (both 79%), while

Clairvoyant missed only 48% and 39%.

As follows, we give a detailed explanation why our model significantly

advances Desh in node failure prediction. As stated before, different lengths

of log sequences are observed between Ranger’s node failures and their asso-

ciated errors&faults (such as software& kernel OS process, file-system errors,

memory&storage errors, and network errors) for each Ranger component (e.g.,

nodes). Those sequences contain numerous interleaved & irrelevant log events,

making the failure prediction process more challenging. For example, some

errors take many hours to trigger the associated failures, resulting in extended

and lengthy log sequences (e.g., over 2000 events even after the preprocessing

phase). Nevertheless, due to multi-head masked attention layers and the posi-

tional encoding technique, our transformer-decoder-based model outperforms

the recurrent neural network baseline (Desh) in that it completely avoids

recursion, processing log sentences as a whole and understanding associations

between log events. In other words, our approach’s effectiveness in identifying

the relationship between Ranger soft lockup failures and their preceding indu-

cing errors comes from masked attention neural networks, which is the main

component of the transformer-decoder and positional encoding layer that is

combined with log events embedding. Accordingly, our solution can successfully

predict node failures before they occur based on evaluation scores. The baseline

– Desh, however, achieved lower accuracy and slower prediction because it is an

RNN-based model that requires recurring learning and sequential processing

(log sequences processed event by event). Moreover, some log sequences are

too long, and LSTM fails to capture the long relationship dependency range

between failures and inducing error events as a result of the vanishing gradient

problem, causing memory loss for earlier occurring events.

137

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

6.6.4 Node Failure Prediction Performance with Different De-

coding Techniques

Transformer-decoder neural networks can be employed for text prediction

with different decoding methods, including greedy search, beam search, basic

sampling, top-K sampling, and top-P (Nucleus) sampling, and our model can

work with each of them flexibly. This section examines the performance of

two of these techniques on Rationalized Logs (similar results appeared with

Syslogs) and how they affect the node failure prediction accuracy.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 0.2 0.4 0.6 0.8 1

F
a
ilu

re
 P

re
d
ic

ti
o
n
 A

c
c
u
ra

c
y

Temperature

Bleu
Rouge
f1-score
MCC

0.89 0.9 0.9
0.91 0.91

0.76 0.77 0.78 0.79
0.80

0.64 0.65

0.68
0.70 0.700.74 0.74

0.76 0.77

Figure 6.11: Failure Prediction with Different Temperature Scale based on
Sampling Decoding

Greedy Search

In the greedy search decoding technique, the next log event is predicted as

the log event with the highest probability, and the next log event is updated

through the following Eq 6.16 at each time step t.

Et = argmaxEP (Et|E1:t−1) (6.16)

Using the greedy technique, our model achieves high scores of Bleu and Rouge,

f1-score, MCC 0.91, 0.80, 0.80, and 0.7 respectively, in predicting future soft

lockup failures in Ranger Rationalized Logs.

138

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

Sampling Decoding with Different Temperature Values

In NLP prediction task, the unpredictability of the predicted text (log events in

our case) is controlled by a temperature (hyper-parameter), so we explored our

model performance using basic sampling decoding with different temperature

values. As shown in Figure 6.11, we observe that the failure prediction accuracy

increases as the temperature value decreases, meaning that log events with

high probability will be selected over the ones with low probability. Thus, we

suggest using low-temperature values (≤ 0.5) to predict HPC systems to avoid

predicting log events with low probability over those with high probability. In

contrast, it is recommended to use ≥ 0.7 to perform well with NLP open-ended

tasks.

Summary

In this chapter, we propose a novel self-supervised log-based approach called

Clairvoyant to predict node failures. Clairvoyant solves two main problems

with state of the art solution, such as Desh, by (i) being able to capture

long-range dependencies and (ii) being amenable to parallelisation. To the best

of our knowledge, Clairvoyant is the first attempt to leverage the transformer-

decoder technique for failure prediction. Our experiments using two different

datasets demonstrate a significant improvement in both prediction accuracy

and learning/training performance over Desh – a LSTM-based failure predictor

that has been verified as the best in class. The key findings are summarized as

follows:

• Clairvoyant can obtain much higher Bleu score (0.90), Rouge score (0.78),

MCC score (0.65) and F1-score (0.77) than Desh does (0.58, 0.58, 0.25,

and 0.52, respectively).

• Clairvoyant is about 25× and 15× faster than Desh, respectively, during

the training and prediction phases.

Clairvoyant significantly enhanced the reliability of HPC systems by predict-

ing their potential failures with high accuracy and speed. However, predicting

the lead time of these failures with high accuracy is crucial for proactive man-

139

Chapter 6. Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in
Large-Scale Systems

agement solutions to be scheduled on time. Hence, there is a need to extend

and improve the Clairvoyant model to predict the failures and their lead times

meanwhile. The next chapter addresses this problem.

140

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

Chapter 7

Time Machine: Generative Real-Time

Model For Predicting Failure and Lead

Time in HPC Systems

Preface

Existing failure prediction methods, which typically seek to extract some

information theoretic features to learn failure patterns, fail to scale both in terms

of accuracy and prediction speed, limiting their adoption in real-time production

systems. Most importantly, current failure prediction solutions do not address

the problem of predicting the lead-time to failure, such as Clairvoyant [35]

which was presented in the previous chapter. Specifically, Clairvoyant was

developed to predict failures only. However, in this chapter, differently from

existing work and inspired by current transformer-based neural networks which

have revolutionized the sequential learning in the NLP tasks, we propose a

novel scalable log-based, self-supervised model (i.e., no need for manual labels),

called Time Machine1, predicting (i) forthcoming log events (ii) the upcoming

failure and its location and (iii) the expected lead time to failure. Time Machine

is designed by combining two stacks of transformer-decoders, each employing

the self-attention mechanism. The first stack addresses the failure location by

predicting the sequence of log events and then identifying if a failure event is part

of that sequence. The lead time to predicted failure is addressed by the second

stack. Also, we introduce a novel synthetic minority oversampling technique
1A Time Machine allows us to travel into the future to observe the health state of HPC

system and report back. Here, we travel into the log extension to report an upcoming failure.

141

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

for online time-based tasks to construct the training instances from failure

sequences in the real-time which can be generalized to other domains for time-

based tasks (e.g., business, healthcare, etc,). Furthermore, in fault tolerance

research, Time Machine is the first framework to convert the prediction of lead

times from a regression problem to a multiclass classification problem, which

predicts the class for the failure lead time. This method also can be generalized

to other domains for similar time-based tasks.

We evaluate Time machine on four real-world HPC log datasets and compare

it against three state-of-the-art failure prediction approaches. Results show

that Time Machine significantly outperforms the related works on Bleu, Rouge,

MCC, and F1-score in predicting forthcoming events, failure location, failure

lead-time, with higher prediction speed.

Finally, this chapter shows experimental results by evaluating the impact of

our Time Machine on checkpointing-based jobs execution using a discrete event-

driven simulator. Evaluation results show that the Time Machine predictor

can significantly reduce the total execution overhead, and it is also immune to

the inaccurate estimation of the mean time between failures (MTBF).

7.1 Introduction

When errors in the HPC system are not suitably handled, which can occur

at specific components (e.g., nodes), then a failure of the system, i.e., more

specifically, one or more affected components, may occur. A failure is a

special event in the system and results in a special log (e.g., lockup log) to

be recorded in the log file. The impact of such failures may be enormous on

applications: drastic computational overhead could be introduced, such as

through (partial) re-execution, thereby having severe impact on application

execution. In an era of exascale computing (i.e., HPC systems executing 1018

floating point operations per second), failures are predicted to occur more

frequently, exacerbating associated overhead.

To mitigate the impact of failure, efficient failure management strategies are

required. Specifically, the development of accurate failure prediction is becom-

ing important, to support the timely deployment of proactive recovery man-

142

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

agement techniques such as checkpointing/restart or job migration [127, 129].

Unfortunately, the effectiveness of failure prediction tools is still insufficient,

thereby necessitating the development of online failure prediction techniques

to flag impending failures and their lead-times with high prediction accuracy

and speed and with lesser computational overhead. Some works on failure

prediction exists, e.g., [92, 126].

In this chapter , we address this important problem of failure prediction

by developing and applying a transformer-decoder model on HPC log data to

build a generative self-supervised model, which we call Time Machine, to

predict two important failure parameters: (i) the failure location, i.e., which

nodes will crash, and (ii) the lead time to failure, i.e., how long is left before

the predicted failure happens. Our designed Time Machine works as follows:

(i) for the location problem, it first predicts the future sequence of logs (future

health state) and then identifying if a failure event is part of the predicted

sequence and (ii) for the lead time to failure problem, Time Machine reduces the

time prediction problem (which is a regression problem) into a self-annotated

multi-class classification problem, by predicting the class for the failure lead

time. We discuss the motivation of modelling the failure lead time problem

in our methodology, section 7.3.2. Note that our work introduces a novel

method to construct (no need for manual labels) and augment a self-time

annotated training dataset on sequential time-based (timestamps) raw data

via an automatic accumulative and iterative process.

The use of generative models for failure prediction is very challenging: (i)

erroneous states and failures are rare(r) events, (ii) logs are often incomplete,

duplicate, and (iii) messages are alphanumeric in nature and generally lack

a proper structure [77], which is very different from the context of, say, text

prediction application [34]. Nonetheless, there are many state-of-the-art RNN-

based failure prediction methods such as Long Short-term Memory (LSTM)

[91] (Desh), Bidirectional Long Short Term Memory (Bi-LSTM) [131], and

Gated Recurrent Unit (GRU) [171], which however suffer from non-trivial

weaknesses: (i) long training time because of the absence of parallelization in

recurrence learning, and (ii) the vanishing gradient problem with loss of earlier

“memory”, which may cause limited accuracy.

143

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

To address the above limitations, we propose using transformer-decoder

based model (called Time Machine), which can improve failure prediction

accuracy and speed regarding both locations and lead times, through (i) self-

attention mechanism and (ii) parallelization which are the crux of transformer

neural networks. The reason why transformer-decoder model may work well on

failure prediction is that it has the ability to capture long-term dependencies

in sequential data (i.e., text) and understand the relationship/order between

the words in the sequence (i.e., sentence, paragraph, etc.) via attention

mechanism and parallelization. Similarly, the health state for HPC systems

can be represented by the sequence of log events (i.e., sequential) generated

by their components (e.g., compute nodes) based on timestamps associated

with each log event. These consecutive log events are usually related to each

other and generated one after another similar to words in the text corpus.

For example, failure events usually occur after a sequence of preceding events,

including errors/faults that cause those failures. As such, if we consider a log

event as a word and a log sequence as a text sequence (e.g., a sentence), we

can explore the auto-correlation of event sequences by the transformer-decoder

model, which in turn can perform the prediction work.

Additional failure prediction models are developed for HPC systems, how-

ever these solutions are mainly based on supervised-learning, requiring extensive

data labelling such as [202, 266, 349]. Most unsupervised & self-supervised solu-

tions do not address the problem of predicting the lead-time to failure, such as

Clairvoyant [35]. Specifically, Clairvoyant used one stack transformer-decoder

to predict failures only. To enable the prediction of failure lead time, there are

several key innovative designs proposed in our solution. Our Time Machine

framework adopts a two-stack transformer-decoder architecture to predict not

only failures but their lead times. The adaptation of the transformer-decoder

to predict the failure lead times is based on a novel approach to self-attention:

Specifically, the Time Machine framework demonstrates how the self-attention

mechanism developed for text prediction is used to predict the failure lead times,

by encoding/decoding log events to map each log event onto its timestamp

step during the training and prediction phases. This the first work to overcome

these limitations by formulating the time prediction as a self-annotated multi-

144

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

class classification problem by predicting the class for the failure lead time.

Moreover, the Time Machine can construct training instances in real-time

because of our novel synthetic minority oversampling design.

We evaluate Time Machine on four real-world HPC logs and we compare

it against LSTM [91] (Desh), Bi-LSTM [131], and GRU [171]. Results show

that Time Machine significantly outperforms the best of them: (I) Log events

prediction: Time Machine obtains a Bleu and Rouge score of up to 0.79 and

0.77 respectively whereas best of the three techniques only has 0.47 and 0.34.

(II) Failure Location: Time Machine obtains a MCC and F1-score of up to

0.80 and 0.87, respectively, while the best one of the three techniques only has

0.53 and 0.71 respectively. (III) Failure lead time: Time Machine is also

the best in class, with MCC and F1-score of up to 0.87 and 0.95, respectively.

(IV) Speed-up of training and prediction: Time Machine is significantly

faster than other approaches in both training (5.4∼9.4× speed-up on average)

and chain prediction (over 15× faster than the related works), making Time

Machine very suitable for online failure prediction in real-time production HPC

systems.

This chapter is organized as follows: Section 7.2 formulates the research

problem. Section 7.3 presents our methodology. In Section 7.4 and Section 7.5,

we present the HPC systems and datasets, and evaluation metrics that were

used for performance evaluation. Section 7.6 shows the results of our evaluation.

We provide a summary at the end of this chapter.

7.2 Problem Formulation

We formulate the research problem as below: Given a log dataset with a

sequence of events, our objective is to predict the upcoming sequence of log

events and determine if this sequence may contain a failure event; if yes, then

predict the lead-time of the failure event as well.

Research challenges: There are two important attributes of failure

prediction: (i) Location: the component (or node) that would fail/crash

should be accurately predicted so that the failure recovery mechanism can be

launched at proper “location” and (ii) Failure lead time: the time at which

145

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

the failure log event is predicted to occur should be similar/accurate compared

to the one in real-time, otherwise, the failure recovery mechanism would be

triggered at wrong time.

We denote the set of log sequences by Lr, where its length is at most r.

Suppose we are given two sets: Lm and Lk(k ≤ m), where the elements in the

set Lk are possible extensions of the elements in Lm. That is, each element

in Lm can be assigned an element from Lk as an output. Accordingly, for

each ϵi ∈ Lm, ϵ′
j ∈ Lk indicates the true prediction outcome (i.e., the real

sequence of log events following ϵi). Our failure prediction research is to model

a mapping M : Lm → Lk, in which M(ϵi) is the predicted sequence which

follows ϵi, i.e., ϵi ·M(ϵi) is a predicted upcoming log sequence of length (k +m),

i.e., ϵi · M(ϵi) ∈ Lm+k.

We formulate the two problems as follows:

Definition 7.2.1 (Log Events Prediction). For a sequence of log events

ϵi ∈ Lm, a predictor M is expected to be with the minimal distance for the

log sequences of length (m+k), i.e., arg minM D(ϵi · M(ϵi), ϵi · e′
j), where (·)

indicates ‘sequence concatenation’ and D : Lm+k × Lm+k → R is the distance

measure. D is a distance metric on two log sequences; D=0 means two logs

are identical to each other. If the distance is 0, we claim “M correctly extends

ϵi”; or else, we say “M approximately extends ϵi”.

Definition 7.2.2 (Failure Prediction). For a predictor M on a log sequence

ϵi ∈ Lm with an extension e′
j ∈ Lk, we say “M accurately solves the failure

prediction” iff F ∈ e′
j ⇔ F ∈ M(ϵi). We say “M approximately solves the

failure prediction problem” if F ∈ M(ϵi) ⇒ F ∈ e′
j .

When F ∈ e′
j , we say that the extension e′

j is a failure extension of ϵi and

when F ∈ M(ϵi), we say that M(ϵi) is a predicted failure extension of ϵi. We

also say that ϵi is a failure precursor sequence. Note that D(ϵi ·M(ϵi), ϵi ·e′
j)=0

means that the predicted lead time of failure event is accurate perfectly, i.e., the

failure event would occur right at the predicted moment. Also note that a small

value of D indicates that the failure event occurrence moment is approximately

correct in the sequence.

For the failure lead time [93], due to the non-determinism at the system

146

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

level, it is difficult to accurately predict the exact failure lead time. To

circumvent this challenge, we propose to model the failure lead time prediction

as a multi-class classification problem. We propose a general formal definition

of failure lead time as follows.

Definition 7.2.3 (Lead time to Failure). Given a log sequence ϵi ∈ Lm,

its extension ϵ′
j ∈ Lk which is a failure extension of ϵi, the failure lead time of

ϵi is the difference between the timestamp of the last event in ϵi ∈ Lm and

the failure event in ϵ′
j and is equal to TS(F ∈ e′

j) − TS(last(ϵi)), where TS

denotes the timestamp function and last function returns the last element of a

sequence respectively.

Let Lm be the instance space. Every point ϵi ∈ Lm is a potential state of

the log. Given a pair ⟨ϵi, F (ϵi)⟩, where ϵi ∈ Lm is a failure precursor sequence,

ϵ′
j is a failure extension of ϵi and F (ϵi) denotes the failure lead time of ϵi,

we wish to learn an approximation of the unknown F , denoted by F̂ and

F̂ (ϵi) = TS(F ∈ M(ϵi)) − TS(last(ϵi)), where M is a predictor that solves

the failure prediction problem.

Definition 7.2.4 (Predicted Lead time to Failure). Given a failure

precursor log sequence ϵi ∈ Lm, its failure extension ϵ′
i ∈ Lk, a set of non-

overlapping p ranges R = {R1, . . . , Rp}, Ri ∈ Z+ × Z+, Ri ∩ Rj = ∅ and a

predictor M which solves the failure prediction issue approximately, we say

that the predicted failure lead time is correct for ϵi if ∃Ri ∈ R · F̂ (ϵi) ∈ R ⇒

F (ϵi) ∈ R.

7.3 Time Machine Methodology

Inspired by modern work in NLP tasks, we propose a transformer-decoder

based sequential model to predict the forthcoming events, node failure, and

failure lead-time in HPC systems. In general, we take the self-attention

based language model as an estimator for the posterior probabilities, in which

we consider the log events as input words, a sequence of log events as a

sentence, and the probabilities of failure in HPC as a context-based generative

probabilities. Furthermore, self-attention is friendly to parallelization, such

147

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

that the training and prediction time can be significantly reduced by leveraging

parallel techniques, compared to existing state-of-the-art failure prediction

methods, such as RNN-based methods used in [91, 131, 171]. To this end, we

develop a novel real-time online approach namely Time Machine which is fully

self-supervised without the need for labeling by HPC system administrators. As

shown in Figure 7.1, the architecture of our model consists of two transformer-

decoder neural network components, and both of the two decoders are based

on the transformer-decoder variant [272]. The first transformer component

aims to predict HPC node failures with two major steps: (1) for each node, it

predicts the sequence of future events (or future health state); (2) it determines

weather a failure is included in the predicted sequence. The second transformer

component aims to predict lead times, based on which one or more proactive

fault-tolerant techniques can be accurately selected in time ahead of the failure

occurrence.

As for the Time Machine methodology which adopts two stacks of transformer-

decoder to predict HPC system failures and their lead-times, its framework

design also includes three key innovative points:

• Transformer neural networks are employed originally for NLP tasks such

as text classification, text generation, summarisation, while the Time

Machine method is the first framework utilizing transformer architecture

to predict the lead-time to failures. This method can be generalized to

other domains for time-based prediction tasks.

• Time Machine introduces a novel synthetic minority oversampling tech-

nique for online time-based tasks to construct the training instances from

failure sequences. This method can be generalized to other domains for

time-based tasks (e.g., business, healthcare, booking business).

• In the fault tolerance research, our Time Machine method is the first study

to reduce/convert the time prediction problem (a regression problem)

into a self-annotated multi-class classification problem, by predicting the

class for the failure lead time. Also, This method also can be generalized

to other domains for similar time-based tasks (e.g., business, healthcare,

booking business).

148

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

We detail our proposed framework in the rest of this section.

7.3.1 Node Failure Prediction

Phase I. Log Event Prepossessing

In the first phase, similar to the tokenization in NLP task, we first convert

the log message into an ID based log event sequence: e1, e2, ..., em, where m is

the length of event sequence, ei ∈ {tj |j = 1, 2, ..., T} represents the i-th event,

and tj stands for all possible event types in the log event prediction. Besides,

we let m < 1024 in order to make it possible that all input event sequences

share similar length for parallel processing, which is distinct from the existing

RNN methods. Moreover, the Byte Pair Encoding (BPE) method is utilized

to tokenize the input to encode any unusual tokens (IDs of log entries).

Phase II. Log Events Learning and Failure Prediction

Our proposed approach aims to take the self-attention mechanism to improve

the connectivity among the events in log sequences. Accordingly, we utilise

transformer-decoder architecture, a stack of decoder blocks preceded by an

input layer to embed the real-time log events sequence logged by the HPC

system component node, and then followed by linear and softmax layers to

predict failures (e.g., node crashes, networks failures) by two steps: predicting

the future sequence of events and then identifying if a failure is part of the

predicted sequence. More details are described in the following text. We refer

the readers to read [272] for detailed background of the transformer variant

which we will use to build our model.

We summarize the current masked language (failure and lead-time predic-

tion in our case) model as follows:

In a typical transformer block ℓ, assuming the input feature for token ei

in l−1-th layer of transformer is el−1
i , the information propagation process is

given by:
vl−1

i = Self-Attention(el−1
i |el−1

1 , el−1
2 , ..., el−1

m) (7.1)

Φ(vl
i) = φ(W lvl−1

i + bl) (7.2)

el
i = LayerNorm(Φ(vl

i) + el−1
i) (7.3)

149

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

P
os

iti
on

al
 E

nc
od

in
g

In
pu

t E
m

be
dd

in
g

+

INPUT EMBEDDING

Lo
g

Fa
ilu

re
s

C
ha

in
 S

eq
ue

nc
es

Training Instances

& Lead times

D
ec

od
er

D
ec

od
er

D
ec

od
er

…

S
of

tM
ax

 L
ay

er

A
dd

 &
 n

or
m

al
iz

e

M
ul

ti-
he

ad
 s

el
f-a

tte
nt

io
n

M
as

ke
d

m
ul

ti-
he

ad
 s

el
f-a

tte
nt

io
n

A
dd

 &
 n

or
m

al
iz

e

A
dd

 &
 n

or
m

al
iz

e

LT
_C

LA
S

S

DECODING AND LEARNING

FAILURE LEAD

TIME PREDICTION

PHASE III

Fe
ed

fo
rw

ar
d

Li
ne

ar
 L

ay
er

P
re

di
ct

ed
 le

ad
 ti

m
e

cl
as

s Stack of Transformer-Decoders

PHASE IV

e 1
e 2

e m
-1

e m
…

P
os

iti
on

al
 E

nc
od

in
g

In
pu

t E
m

be
dd

in
g

+

INPUT EMBEDDING Lo
g

S
eq

ue
nc

es

(in
pu

t)

D
ec

od
er

D
ec

od
er

D
ec

od
er

…

S
of

tM
ax

 L
ay

er

A
dd

 &
 n

or
m

al
iz

e

M
ul

ti-
he

ad
 s

el
f-a

tte
nt

io
n

M
as

ke
d

m
ul

ti-
he

ad
 s

el
f-a

tte
nt

io
n

A
dd

 &
 n

or
m

al
iz

e

A
dd

 &
 n

or
m

al
iz

e

e m
+1

…
…

DECODING AND LEARNING

PREDICTION OF

LOG EVENTS

PHASE I

Fe
ed

fo
rw

ar
d

Li
ne

ar
 L

ay
er

C
he

ck
in

g:
 fa

ilu
re

 o
cc

ur
re

nc
e

e n

Stack of Transformer-Decoders

PHASE II

e m
+2

e n
-1

P
re

di
ct

ed
 L

og
 E

ve
nt

s

Lo
g

pr
ep

ro
ce

ss
in

g

'
'

'
'

e m e m
e m

+1

e m
e m

+1
e m

+2

e m
e m

+1
e m

+2
e m

+3

e m
e m

+1
e m

+2
e m

+3
e m

+4

0m
in

≤
T≤

1m
in

1m
in

<
T≤

3m
in

3m
in

<
T≤

5m
in

5m
in

<
T≤

10
m

in

' ' ' '

' ' '

' '
'

3m
in

<
T≤

5m
in

…

Fi
gu

re
7.

1:
Ill

us
tr

at
io

n
of

H
ea

lth
St

at
e/

Fa
ilu

re
/L

ea
d

T
im

e
Pr

ed
ic

tio
n

Ph
as

es
in

T
im

e
M

ac
hi

ne

150

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

where el
i is the learned feature for ei in l-th layer, vl

i is the corresponding

value vector in the regard of the self-attention mechanism according to el
i, φ

is an element-wise nonlinear function applied to a feed-forward layer, whose

weight matrix, W l ∈ Rnl×nl−1 , transforms the feature dimension from nl−1 to

nl, Self-Attention(el−1) returns the weighted value vector of all input repres-

entations where weights are derived by multiplying the query vector of the

current input el−1 with the key vectors from other inputs. Between every two

transformer blocks, there is a skip-connection and a layer normalisation. The

former mechanism bypasses the transformer block ℓ and adds the input el−1

directly to the output vl of this block, while the latter normalises the input

across the feature dimension.

STEP 1: Transfer Learning Based Sequence Prediction

The main idea in pre-trained language model, such as GPT-2 [272], aims to

predict a particular word based on its context by: P (ei|e1, e2, ..., ei−1, ei+1, ..., em).

However, in the prediction of HPC log events, the tokens that follow the

expected prediction ei are unseen by the model. Furthermore, the vocab-

ulary used to represent log event types is much smaller than that used

in typical NLP tasks, which may lead to overfitting if we simply train an

over-parameterised model. Therefore, we propose to use pre-trained model

(GPT-2) from NLP, which is almost isotropic, to initialise the transformer-

decoder model to predict the future log event by fine-tuning the parameters

on HPC dataset. Here, we define the probability of future log event by Soft-

max P (ê′
m+i|e1, e2, ..., em) = Softmax(FNN(eL

i |e1, e2, ..., em)), where the FNN

stands for the feedforward neural network which is a linear layer to transform

the last decoder outputs L into higher-dimensional logits vectors using a linear

transformation and non-linear activation function. Softmax layer is the final

layer applying softmax function to the linear layer’s output and converts it to a

probability distribution. According to definition 7.2.1, we use the cross-entropy

as the metric to measure the distance between distribution in loss function,

L =
∑n−m

i=1
P (e′

m+i) · log(P (ê′
m+i|e1, e2, ..., em)) (7.4)

where the estimated probabilities of P (ê′
m+i) are defined by the softmax

function with the learned vectors along to the last FNN layer, and the P (e′
m+i)

151

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

is the true output from training corpus, which is an advantage that, in such

learning architecture, we do not require a specific annotation for self-supervised

learning. The sequence of log events can be generated from large scale of raw

data automatically. In this way, the pre-trained language model can be easily

adapted to the log events prediction task in real-time.

STEP 2: Failure Prediction: Based on the prediction of log events,

we can generate a log events sequence by a given {e1, e2, ..., em}, marked as:

{e1, e2, ..., em, e′
m+1, ...e′

n}, where {ei|i ≤ m} is the given event and {e′
j |m+1 ≤

j ≤ n} is the predicted event. According to definition 7.2.2, the failure

prediction aims to identify if the e′
j is the failure extension of ei. Hence, we

can convert the generated event e′
j to the unique ID to check if it is the failure.

Here, we suppose the whole vocabulary of log events is V, which contains two

subsets, the failure events Vf , and the normal events Vn, where Vf ∪ Vn = V

and Vf ∩ Vn = ∅. Then, one can easily quantify that a predicted log event is a

failure if it is a member of failure events set (e′
j ∈ Vf).

7.3.2 Predicting Lead Times to The Node Failure

One key novelty in this chapter that is significantly different from existing

transformer based sequence models used for NLP tasks, is predicting lead

times for the failure events such that appropriate proactive methods could be

triggered in time, which is handled by Phase III and Phase IV.

Phase III: Failure Sequences Construction for Lead-Time Prediction

In order to predict the node failures’ lead times, the first and foremost step is

establishing and preparing a dataset based on failure chains (i.e., the Phase III

as presented in Figure 7.1). Our framework can be easily deployed for HPC

systems in real-time, because the training/testing datasets from the failure

chains and associated labels (i.e., lead times) are created automatically (no

need for manual labelling) based on log events’ timestamps.

We introduce a novel synthetic minority oversampling technique

for online time-based tasks to construct the training instances in the real-

time from failure sequences as follows. In our model, predicting a node’s

failures ahead is achieved through accurately predicting the forthcoming log

152

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

events {e′
m+1, e′

m+2, ..., e′
n}. Without loss of generality, we assume that the

predicted log events sequence ends with a failure event since the motivation of

our proposed method aims to predict the failure. Hence, based on the given

log events sequence {e1, e2, ..., em} and the proposed events/failure prediction

methods, we have a failure chain of {e′
m+1, e′

m+2, ..., e′
n}, where ∃e′

j ∈ Vf .

To predict the lead time for any concrete failure chain, we then use the

timestamp TS(·) to estimate the lead time when the failure appears for a

given sequence of log events. Intuitively, we only need to predict the TS(e′
j),

where {e′
j ∈ Vf }. However, considering that the size of Vf is limited, it is

essential to design a smoothing method to overcome the potential risk caused

by over-fitting. Hence, we propose to utilise the transformer-decoder based

method to approximate the TS(·) for both e′
j ∈ Vn and Vf , and take advantage

of sequential model to guarantee the latent pattern TS(e′
i) < TS(e′

j)(i < j) is

true, to achieve both reasonable and stable lead-time prediction. Specifically, to

make the trade-off between efficiency and accuracy, we convert the prediction

of lead times from a regression problem to a multi-class classification problem

which predicts the class for the failure lead time. Such a design is motivated

by the fact that there are only a few proactive recovery techniques used in

practice (e.g., less than 10 techniques), and each technique requires a specific

lead time to launch. Moreover, the correction/proactive actions generally

require approximately estimated lead times instead of the exact lead times.

Accordingly, we define 6 lead-time classes ŷj in our study: ŷj ∈ {[0min,1min],

(1min,3min], (3min,5min], (5min,10min], (10min,15min], (15min,∞)}. Our

model is flexible in increasing/decreasing lead time classes based on the system

recovery mechanism.

We use an example to describe how to construct the training instances.

Without loss of generality, suppose a failure chain contains 6 log events including

the failure event with associated timestamps: ((em, 01:00:00), (e′
m+1, 01:00:30),

(e′
m+2, 01:01:00), (e′

m+3, 01:03:10), (e′
m+4, 01:04:55), (e′

m+5, 01:07:16)), where

the e′
m+5 ∈ Vf is the failure event. The training instances and their associated

lead time classes are constructed automatically in terms of the failure chain

iteratively, as illustrated in Figure 7.2.

As all log sequences training instances are created from the failure chains

153

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

em

em em+1

em em+1 em+2

em em+1 em+2 em+3

em em+1 em+2 em+3 em+4

Training Instances

Tem+1=Tem+1– Tem=30 sec

Tem+2=Tem+2 – Tem=60 sec

Tem+3=Tem+3 – Tem=190 sec

Tem+4=Tem+4 – Tem=295 sec

Tem+5=Tem+5 – Tem=436 sec

0min≤ T≤1min

1min< T≤3min

3min< T≤5min

5min< T≤10min

10min< T≤15min

15min< T

Lead-time classes

'

'

'

'

'

'

'

'

' '

' '

'

'

'

'

'

'

''

Failure

Figure 7.2: Lead Time Training Instances Construction

as described above, the lead-times have been associated/mapped to the corres-

ponding lead-time classes. Note that this process is conducted during runtime

model deployment, and all log event instances are assigned the same tokens

as discussed in 7.3.1 before being embedded/fed into the second transformer-

decoder stack.

Phase IV: Lead-Time Learning and Prediction

Based on the prediction of log events, we can generate a log events sequence by

a given {e1, e2, ..., em}, marked as: {e1, e2, ..., em, e′
m+1, ...e′

n}, where ei is the

given event and e′
j is the predicted event. According to sequence generation in

section 7.3.2, the lead-time prediction aims to identify the label of yj for the

failure extension of ei with length j, a.k.a {e1, e2, ..., em, e1, ...ej}. Hence, we

convert this task into sequence classification, in which we employ the fine-tuned

transformer-decoder-based model to extract the last representation Rej of the

token ej , to approximate the posterior probability according to the failure label

in real-world datasets, by a softmax probability:

P (yj) =

Softmax(FNN(decoder(R[e′
j]|e1, ..., em, e′

m+1, ..., e′
j)))

(7.5)

In general, any loss function or pre-trained language model can be deployed

for the approximation. Without loss of generality, we choose the cross-entropy

as loss function and the GPT-2 as decoder in our implementation. In summary,

∀ log events sequence e1, e2, ..., em, we can predict the failure extension of

e′
m+1, ..., e′

n by minimising the loss function defined by equation.7.4. According

154

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

to equation.7.5, we can then predict the lead time to failure of TS(e′
j)−TS(em).

This proposed framework requires no annotation or supervised signal but

facilitates optimising the process which can select the lowest computation cost

correction/recovery mechanisms to correct and fix HPC system errors before

the failures occur.

7.3.3 Featuring Real-Time in Time Machine

Deploying the Time Machine online in real-time requires fine-tuning the model

parameters in case new log sequences and failure patterns are encountered.

Thus, the teacher forcing technique [317] is proposed to complement Time

Machine in real-time. The integration between the Time Machine and teacher

forcing approach enables online training, learning, and prediction by using

ground truth input (i.e., the real log events generated by the HPC system

in real-time) instead of our model output (the log events predicted by Time

Machine) from a previous time step as an input. This integration can cope

with any new types of log sequences and emerging failure patterns because of

various cases, such as upgrade of the HPC system components (i.e., software,

hardware, services). The new jobs (e.g., applications) running on HPC systems

can also induce new log patterns that have not been met before. Moreover,

the teacher-forcing technique forces the real-time log event learning/prediction

under the Time Machine to be conducted on correct log events (i.e., the correct

log sequences generated by the system) rather than log sequences predicted

ahead by Time Machine (which may be incorrect prediction).

End-to-end use: Once the model is trained, it is deployed onto a super-

computer to predict its failures in real-time. As the jobs are launched on the

allocated compute nodes, log messages will be generated on system components

and mapped to associated log IDs by our log parser. Then, our model simul-

taneously begins to predict a sequence of log events for each component (e.g.,

compute node) using the first stack of transformer-decoder. The predicted log

sequence will be updated as a new event is generated on each component. If the

predicted sequence contains a failure event, our model immediately calculates

its predicted lead-time class to the actual occurrence based on the log sequence,

via the second stack of transformer-decoder in our framework. This can inform

155

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

a failure handling mechanism, e.g., checkpointing. Depending on the predicted

lead-time to the failure, a low-cost recovery mechanism is chosen to trigger at

an appropriate time.

7.4 Production Systems and Datasets

Table 7.1 shows the four unlabeled log datasets and their supercomputers

characteristics which used in our experiments in this chapter. The four system

logs are generated from three different real-world supercomputers clusters.

Specifically, these system are of various scales (from 200 nodes to 5600 nodes),

various interconnects (Infiniband and Aries Dragonfly), different file systems

(Luster, MarFS, etc.), different processors, and different logging mechanism.

The log datasets are (i) Syslogs (4.2.2), (ii) Rationalized Logs (abbreviated

as RatLogs) (4.2.2). Both Syslogs and RatLogs are collected form Ranger

supercomputer(operated by Texas Advanced Computing Center (TACC)) at

different time. (iii) Cray XC30 logs (4.2.4) generated by Cray XC30 supercom-

puter , and (iv) Cray XC40 logs generated from Cray XC40 (Mutrino) (4.2.5)

supercomputer which was managed under a joint effort between Los Alamos

National Laboratory (LANL) and Sandia National Laboraties (SNL). Mutrino,

sited at SNL. Both Cray XC30 logs and Cray XC40 logs consist of two different

types of logs (console and message). More details about the four system logs

and their supercomputers clusters are found in Chapter 4, Section (4.2).

7.5 Evaluation Metrics

Time Machine predicts (i) forthcoming log events (the entire health state of

each node in the system) (ii) the node failure, and (ii) the expected lead time to

failure. Therefore, our model is evaluated in three aspects. (1) We evaluate the

accuracy by comparing the log events predicted by Time Machine versus the

actual log events generated in reality by the four HPC systems using two text

generation metrics (Bleu and Rouge). Bleu and Rouge metrics can complement

each other for the NLP text generation (upcoming log events prediction in our

case) tasks evaluation. Specifically, they correspond to the precision measure

and recall measure, respectively. More details about these two metrics and

156

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

how we use them to evaluate our model performance are found in the previous

chapter 6.4. (2) We evaluate the prediction accuracy of our model regarding the

nodes’ failure events using several standard metrics including recall, precision,

F1_score, MCC, false-positive rate, and false-negative rate. We removed

the log events predicted by our model (candidate) and the actual log events

generated by the HPC system (reference) except failures in order to employ

these metrics. More details about these metrics are also found in the previous

chapter 6.4. (3) We evaluate the prediction accuracy of our model regarding

the lead-time to node failures based on standard metrics: recall, precision,

F1_score, and MCC. In this case, however, TP, FP, FN, and TN refer to

True Positive (the actual time class is predicted correctly), False Positive (the

actual time class is predicted incorrectly), False Negative (the actual time class

is missed by our model) and True Negative (the negative class is predicted

correctly), respectively.

7.6 Performance Evaluation

To show the efficacy and applicability of our failure&lead-time prediction

method, we carefully evaluate the performance of our model on four real-world

supercomputer system logs: (i) SysLogs (4.2.2), (ii) Rationalized logs (4.2.2),

(iii) Cray XC30 logs (4.2.4), and (iv) Cray XC40 logs (4.2.5). They were

logged by three different supercomputers and four different logging mechanisms

at different operational times, which are all unlabeled. We compare our

approach to three state-of-the-art deep learning prediction techniques (a.k.a.,

baselines in the following text): Desh (LSTM) [91], Bi-LSTM [131], and GRU

[171]. These three related works employ LSTM, Bi-LSTM, and GRU neural

networks to predict HPC failures, respectively, and they have been verified as

the best in class. We do not compare our work to traditional machine learning

(ML) (e.g., Random Forest, SVM, DT, KNN) for two reasons. First, our model

is a self-supervised learning that does not need labels whereas ML methods

depend on labeled data (i.e., supervised learning-based techniques). Second,

even ML algorithms can be utilised for classification (e.g., anomaly detection)

and regression tasks, however, they are not designed to resolve text generation

157

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

(prediction) tasks which is our research problem.

Time Machine is implemented using Python 3.8, Pandas [24], Keras [7]

with a TensorFlow [17] backend, PyTorch [13]. We verified the experiments

over the environment of Google Colab [20] by leveraging NVIDIA Tesla V100

GPU, Intel Xeon 2.30 GHz processor, and 52 GB RAM. In what follows, we

show and discuss the major evaluation results.

7.6.1 Log Data Preprocessing

We preprocess the log data by sorting the log events according to timestamps,

cleaning raw messages, and removing the duplicate messages in terms of

the spatial and temporal correlations. Consequently, these log messages are

converted to log sequences regarding their associated nodes, which corresponds

to the phase I of our methodology. As shown in Table 7.1, the quantities of

the datasets’ log messages are reduced significantly after the preprocessing

step. Specifically, a total of 83087, 25272, 127161, and 49391 log sequences are

constructed from Syslogs, Rationalized logs, Cray XC 30 logs, and Cray XC

40 logs, respectively. Each of the four logs is divided into training part and

testing part. The training part accounts for 80% of the logs’ data, while the

testing part accounts for the remaining 20%.

Table 7.1: Analysis Logs before and after the Preprocessing Phase

Log name Duration # raw logs # filtered logs Percentage decrease
Syslogs 5 mon 43.6 m 2.3 m 94.7 %
RatLogs 6 mon 361 m 8.1 m 97.8 %

Cray XC30 1 mon 133 m 15.3 m 88.5 %
Cray XC40 16 mon 237 m 5.9 m 97.5 %

7.6.2 Training and Prediction Time Performance

Time Machine remarkably decreases the overall training time compared to

the three state-of-the-art prediction approaches (LTSM (Desh), BiLSTM, and

GRU). The overall training time includes two parts: (i) the training time in

the regard of the prediction of the log event patterns and (ii) the training

time for the prediction of the lead time to node failures. For the four HPC

Systems data logs, Time Machine takes only 3.53 hours for the overall training

158

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

on average, while other related works (LTSM, BiLSTM, and GRU) require

14.54 hours, 25.53 hours, and 13.22 hours, respectively. Also, our model is 15×

faster over all baseline solutions in predicting the forthcoming log sequence

of events. The training and prediction time speed-up results are detailed as

follows.

Log Events Training Time Performance

The training time for learning to predict the log sequences and identifying

failure patterns, which is addressed by the first transformer-decoder stack,

is drastically reduced 5.4 ∼ 9.4× compared to three other state-of-the-art

methods on average as shown in Table 7.2. Time Machine requires only

0.7∼3.83 hours in training, while LTSM, BiLSTM, and GRU require 3.79∼20.75

hours, 6.69∼36.66 hours, and 3.66 ∼18.88 hours, respectively.

Table 7.2: Log Events Training Time Performance in Hours
Time Machine LSTM Bi-LSTM GRU

SysLogs 1.60 8.86 15.30 7.89
Rationalized Logs 0.70 3.79 6.69 3.66

Cray XC 30 3.83 20.75 36.66 18.88
Cray XC 40 1.17 6.31 10.33 5.74

Average 1.83 9.93 17.25 9.04

Lead Time Prediction Training Time Performance

The training time for learning to predict the lead time to node failures, which is

addressed by the second transformer-decoder stack, also drastically decreased

3.74 ∼ 7.23× compared to three other state-of-the-art strategies, as illustrated

in Table 7.3. Based on all the four HPC systems data logs, Time Machine

requires only 1.71 hours of training on average, while the other related works

(LTSM, BiLSTM, and GRU) require 4.61 hours, 8.29 hours, and 4.17 hours,

respectively.

Log Events Prediction Time Speed-up Performance

Our model has the highest speed on the prediction of forthcoming log sequence

of events (chain lengths), as shown in Figure 7.3. As evaluated in our experi-

ments, the speedup of our model in predicting the forthcoming log sequence

159

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

Table 7.3: Lead Time Training Time Performance in Hours
Time Machine LSTM Bi-LSTM GRU

SysLogs 1.2 3.17 5.91 2.84
Rationalized Logs 0.54 1.49 2.69 1.34

Cray XC 30 3.86 10.42 18.32 9.44
Cray XC 40 1.24 3.35 6.24 3.09

Average 1.71 4.61 8.29 4.17

of events is 15× faster over all baseline solutions (LSTM (Desh), Bi-LSTM

and GRU). The Figure 7.3 shows that only 5.78 secs are needed to predict a

log sequence with the chain length of 1024, whereas state-of-the-art methods

require 96∼167 secs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 64 256 512 1024

P
re

d
ic

ti
o

n
 T

im
e

 i
n

 s
e

c
o

n
d

s

Chain Length

Our Solution
LSTM
Bi-LSTM
GRU

 0

 4

 8

 12

 16

 20

 1 64 256

8.47

18.6

14.7

2.78

15.4

3.36

96

35.3

98

37.8

52.8

167

0.05

Figure 7.3: Prediction Time of Chain Lengths

The low training time and high prediction performance of our model are

attributed to the transformer-decoder mechanism’s parallelization capability

and positional encoding. More specifically, it takes considerably less time than

the RNN models (baselines) because the RNN model lacks parallel training

and requires sequential learning. On the one hand, optimization of training

time in HPC systems is significant because deploying the model online in

real-time requires multiple fine-tunings of the model parameters over time in

case of new log sequences and failure patterns appear. HPC system operators

frequently elevate system components (software/hardware) and services to add

new components (i.e., hardware or software) to improve high-performance

computing demands. The increased number of high-resources-hungry jobs (e.g.,

applications) scheduled day-to-day on HPC systems also induces the logging

management systems to generate new log patterns that have not been learned.

160

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

On the other hand, Time Machine is particularly suitable for real-time failure

prediction because of the high-speed prediction of forthcoming log sequence

of events (chain lengths). It is noted that the growth of the number of events

in the log chain does not come up with higher prediction times using Time

Machine, whereas the baselines consume a long time to predict the same log

sequence, and the speedup turns more and more obvious with increasing log

chain lengths. So, our model is suitable for the real-time use-case with vast

amount of logs generated in a short time (seconds), especially when the HPC

components face erroneous behaviors that may lead to component crashes.

Consequently, the high-speed prediction achieved by our model can boost the

selection of the most suitable failure recovery action.

7.6.3 Overall Learning & Log Events Prediction Performance

We also evaluate the overall accuracy of our model in predicting the forthcoming

log events (e.g., normal, errors, or failures) before the actual events occur, with

respect to predict the entire system health state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

SysLogs

Rat. Logs

Cray XC30

Cray XC40

Our Solution
LSTM

Bi-LSTM
GRU

 0
.7

 0
.4

5
0

.4
6

0
.4

4

 0
.7

3
 0

.4
6

 0
.4

6
 0

.4
2

 0
.9

9
 0

.4
6

 0
.4

7
 0

.4
0

 0
.7

5
 0

.4
9

 0
.4

8
 0

.4
7

(a) Bleu

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

SysLogs

Rat. Logs

Cray XC30

Cray XC40

Our Solution
LSTM

Bi-LSTM
GRU

0
.6

0
.3 0
.3

3
0
.2

8

0
.6

7
0
.3

8
0
.3

9
0
.3

5

0
.9

9
0
.3

5
0
.3

7
0
.2

8

0
.8

3

0
.2

8
0
.2

2

0
.2

3

(b) Rouge
Figure 7.4: Entire Health State Prediction Accuracy

Figure 7.4 (a) and (b) show the Bleu measure and Rouge measure of the

entire health state prediction. Bleu and Rouge measure the degree of similarity

(overlapping) between the candidate solution (predicted log events by our model

or the baselines (LSTM, Bi-LSTM and GRU)) and the reference (log events

generated by the supercomputer system in realtime). As shown in the figure 7.4

(a), our transformer decoder-based approach achieves a Bleu score of 0.70∼0.99

in predicting forthcoming log events based on the four system logs. In contrast,

the other three state-of-the-arts have much lower Bleu scores (in the range of

161

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

only 0.4∼0.5). On average, 79% of log events predicted by our model appeared

in the events generated by the HPC system (the reference), compared to just

47% by Bi-LSTM (the best score from among the three baselines).

Also, our solution has a significantly higher Rouge score than the other three

methods as depicted in Figure 7.4 (b). Time Machine obtains Rouge scores of

0.60, 0.67, 0.99 and 0.83 on the four system logs (SysLogs, Rationalized logs,

Cray XC30 logs, and Cray XC40 logs), respectively. The Bi-LSTM baseline,

however, obtains the Bleu scores of only 0.33, 0.39, 0.37 and 0.28, respectively.

Similarly, both LSTM (Desh) and GRU based prediction solutions also have

fairly low Rouge scores, which are in the range of 0.22 ∼ 0.39. On average,

≈ 77% of events generated by the supercomputer systems in real-time (the

reference) appear in the log events predicted by Time Machine (candidate),

compared to just ≈ 34% by the best state-of-the-art prediction solution (i.e.,

Bi-LSTM).

We note that all the baseline solutions can hardly capture long-range

dependencies/correlations between the events of long sequences, because they

are all RNN-based models, which suffer from the memory loss issue for earlier

events because of the vanishing gradients. By comparison, our solution is able

to predict the upcoming log sequence as long as it correlates to the preceding

events, as manifested by a high match between the forthcoming log events

under our prediction model, and the events generated on the real system. In

particular, the self-attention mechanism can efficiently identify the log entries

of important events while moving the focus away from irrelevant ones and

capturing long-range dependencies and correlations between events in long

sequences.

7.6.4 Node Failure Prediction Performance Evaluation

Figure 7.5 shows the prediction accuracy of failure events under our model and

baselines. We apply six measurements (Recall, Precision, MCC Score, F1-score

FP-Rate, and FN-Rate) to evaluate our candidate solution and reference, based

on logs with removed non-failure events.

As presented in Figure 7.5, Time Machine predicts upcoming node failures

with high average precision score (0.91) on the four HPC system logs. In

162

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Precision

Recall

F1-Score

M
CC Score

FP-Rate

FN-Rate

Our Solution

LSTM

Bi-LSTM

GRU

0
.0

2
0
.0

7
0
.0

5
0
.0

9

0
.8

2
0
.6

5
0
.6

6
0
.6

3 0
.7

4
0

.5
7

0
.5

9
0
.5

4

0
.7

4
0

.5
1

0
.5

2
0
.5

0
.6

0
.2

1
0
.2

2
0
.2

0
.4

8
0
.7

9
0
.7

5
0

.8

(a) SysLogs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Precision

Recall

F1-Score

M
CC Score

FP-Rate

FN-Rate

Our Solution

LSTM

Bi-LSTM

GRU

0
.8

6
0

.7
0

.7
1

0
.6

7

0
.8

0
.5

9
0
.5

9
0
.5

6

0
.8

0
.5

2
0
.5

3
0
.4

8

0
.7

0
.3 0
.3

2
0

.3
7

0
.0

1
0
.0

4
0
.0

4
0
.0

8

0
.3

9
0

.7
9

0
.7

8
0
.8

1

(b) Rationalized Logs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Precision

Recall

F1-Score

M
CC Score

FP-Rate

FN-Rate

Our Sol

LSTM

Bi-LSTM

GRU

0
.9

9
0

.9
4

0
.9

3
0
.9

4

0
.9

9
0

.9
4

0
.9

3
0
.9

4

0
.9

9
0
.9

4
0

.9
3

0
.9

4

0
9
8

0
.8

7
0

.8
6

0
.8

7

0
.0

0
1

0
.0

2
0

.0
4

0
.0

2

0
.0

1 0
.1

0
.1

0
.1

(c) Cray XC30 Logs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Precision

Recall

F1-Score

M
CC Score

FP-Rate

FN-Rate

Our Sol

LSTM

Bi-LSTM

GRU

0
.9

5
0

.8
7

0
.8

7
0
.8

6 0
.9

5
0

.8
6

0
.8

6
0
.8

5 0
.9

5
0

.8
6

0
.8

6
0
.8

5

0
.9

2
0

.7
3

0
.7

3
0
.7

1

0
.0

1
0
.0

6
0
.0

6
0
.0

6

0
.0

8
0
.2

1
0
.2

4
0
.2

4

(d) Cray XC40

Figure 7.5: Failure Prediction Performance

comparison, the best baselines are LSTM and Bi-LSTM, whose average scores

(0.79) are lower than our model. For example, 82% of Ranger SysLogs node

failures predicted by Time Machine indeed appear in the actual events generated

by Ranger HPC system, compared to only 66% by Bi-LSTM (the best score

from among the three baselines). Also, the results show that our technique

obtains a better recall accuracy with an average score of 0.87 on the four HPC

system logs. In comparison, the best baseline (both LSTM and Bi-LSTM)

obtains the average score of only 0.74. Time Machine achieves a recall score of

0.74 on Ranger SysLogs; Bi-LSTM (best-baseline score) obtains a recall score

only 0.59. This means on average, 74% of actual node failures generated by

Ranger appear in SysLogs can be predicted by Time Machine, compared to

only 59% by Bi-LSTM.

According to Figure 7.5, our solution has much higher MCC scores and

F1-scores than all other baselines. Specifically, our model achieves better

prediction on the four system logs with MCC scores of 0.6∼0.92, and the f-

163

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

scores reach 0.74∼0.99, which are both much higher than that of other baselines.

For example, for SysLogs and Rationalized Logs, the MCC scores of our model

can reach 0.6 and 0.7, respectively, which are much higher than the baselines’

(0.2∼0.22 and 0.3∼0.37).

Furthermore, the significant improvement of our model over baselines is also

manifested by false positive rate (FP-rate) and false negative rate (FN-rate)

(see Figure 7.5). For example, our model incurs only 1% FP-rate and only

24% FN-rate on average for all the four system logs, indicating that incorrect

recovery actions are seldom triggered. However, the three baselines face higher

FP-rate (5%) and FN-rate (47%). FN-rate is high in Syslogs and Rationalized

Logs because the four models are not exposed to enough failure patterns for

the prediction. Also, the interleaved logs are not removed before predicting

failures. Thus, FN-rate could be significantly reduced in real production

where our model trains on the massive amount of log data where most of

the failure patterns can be encountered and learned and when a log parser is

used to remove unimportant interleaved logs. Moreover, experts agree that

the prediction model’s usefulness remains highly valuable despite its limited

accuracy. Even if only half of the failures are accurately predicted, half of the

expensive global coordination needed for recovery management actions (e.g.,

checkpoints) can be avoided [91].

We explain the significant performance gain of our model over baseline

models: Different log sequences are observed between the failure events and their

associated errors, (e.g., kernel OS process, memory errors and network errors

etc). Both failure relevant and irrelevant logs will interleave in such sequences,

resulting in lengthy log sequences. As such, it may take hours for failure to

ensue following an error message. In contrast, our transformer-decoder-based

model leverages multi-head masked attention layers and the positional encoding

technique, which can completely avoid recursion, processing log sentences as

a whole and understands associations between log events, leading to higher

prediction capability.

In recent years, the time between failures has shrunk from hours to minutes

[132]. This is because of significant HPC systems components’ expansion in

scale and design. Also, it is observed that most node failures are attributed to

164

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

applications (jobs) job issues [79], meaning that the applications’ bugs lead

to most of the node failures, especially when the job’s requirements exceed

a node’s resource capacity [93]. For instance, some applications cause out-

of-memory (OOM) problems, eventually leading to node crashes. Moreover,

multiple errors are related to the jobs’ configuration problems, which may

indirectly lead to other file-system and hardware errors. Furthermore, most of

the failed nodes at similar times usually share the same job ID.

7.6.5 Lead Time Prediction Performance Evaluation

This section details the performance of the lead-time prediction to failure

events. As mentioned previously, the main goal of this chapter is to predict

not only node failures but their lead times. This is important as appropriate

recovery techniques can be triggered in timely manner, based on the failure

lead-time.

Three key points need to be clarified first as follows:

• The failure prediction techniques (Bi-LSTM based method [131] and GRU-

based approach [171]) do not support lead-time prediction originally. In

our research work, we implement a lead time component for each of them

based on Bi-LSTM and GRU neural networks, respectively, so that they

are enabled to predict lead-time classes.

• For fairness, we reduce the time-lead prediction problem into a self-

annotated multi-class classification problem for the baselines (LSTM [91],

Bi-LSTM [131], and GRU [171]).

• We define 6 lead-time classes; however our model is flexible in increas-

ing/decreasing lead time classes or increasing/decreasing the time range

for each class based on the HPC system recovery mechanisms require-

ments. Accordingly, HPC system administrators can decide the number

of classes and their time ranges. We also recommend the number of

classes, and their time ranges are selected based on the number of existing

recovery techniques and the times they take from the triggering until

complete. Furthermore, the number of these classes and their criteria

can be modified and updated for any reason, such as if new recovery

165

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

Table 7.4: Lead Time To Failure Prediction Performance Evaluation on 4 HPC
Systems Data Logs

Time Machine LSTM Bi-LSTM GRU

SysLogs

Precision 0.92 0.91 0.87 0.91
Recall 0.93 0.93 0.91 0.93

F1-Score 0.92 0.91 0.89 0.91
MCC Score 0.76 0.74 0.68 0.74

Rationalized Logs

Precision 0.92 0.89 0.89 0.89
Recall 0.92 0.90 0.91 0.91

F1-Score 0.92 0.89 0.89 0.89
MCC Score 0.83 0.77 0.78 0.77

Cray XC30 Logs

Precision 0.99 0.99 0.99 0.99
Recall 0.99 0.99 0.99 0.99

F1-Score 0.99 0.99 0.99 0.99
MCC Score 0.95 0.91 0.92 0.92

Cray XC40 Logs

Precision 0.97 0.95 0.95 0.95
Recall 0.97 0.95 0.95 0.95

F1-Score 0.97 0.95 0.95 0.95
MCC Score 0.94 0.91 0.92 0.91

techniques and features have emerged with launch times that cannot fit

into pre-selected classes. This flexibility feature allows our model to work

for any system.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Precision

Recall
F1 MCC

L
e
a
d
-t

im
e
 P

re
d
ic

ti
o
n
 A

c
c
u
ra

c
y Our Sol.

LSTM
Bi-LSTM
GRU

Max

Min

Avg

Figure 7.6: Lead Time Prediction Performance

Table 7.4 and Figure 7.6 show the failure lead-time prediction results with

two critical observations. On the one hand, our model always has the highest

accuracy from among all the four solutions. In absolute terms, the MCC and

F1-score under our model can reach up to 0.87 and 0.95, respectively, which are

higher than the scores resulted from the three state-of-the-arts (0.87 and 0.94,

respectively). In particular, for SysLogs and Rationalized Logs, the MCC scores

of Time Machine can get up to 0.76 and 0.83, respectively, while the baselines’

166

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

MCC scores are 0.74 and 0.78. On the other hand, all the four prediction

methods have relatively high and similar accuracy in predicting failure lead-

times on the four real-world system logs. Such a high and similar accuracy is

primarily attributed to two reasons (i) modelling the lead-time prediction as a

classification task rather than a regression task, (ii) our novel oversampling

technique constructs massive, sufficient, and self-supervised training datasets.

That is, the four prediction techniques are trained efficiently to learn each

individual log event weight to estimate the class for the failure lead time.

The reason we can model the lead-time prediction as a classification task

is that there are only a few correction/recovery actions in total, and each

action requires approximate lead times rather than exact lead times. The

proactive recovery and error correction approaches may have largely different

triggering/recovery costs. The typical proactive fault tolerance methods include

job migration, checkpointing, process cloning, node quarantine, error correction

code (ECC), and so on. The generic live process migration technology, for

example, may require a prior notice of less than 10 seconds according to the

experiments conducted by [308], while similar OS virtualization technologies

may call for much longer lead times (a warning of 13-24 seconds in general). To

assist redundant execution during failures, Rezaei et al. [276] showed that node

cloning requires less than 200 seconds. Gupta et al. [145] demonstrated 5-9%

of future failures may be prevented when quarantining the blades/cabinets

by stopping scheduling jobs on the nodes for a few hours after a failure is

manifested.

There are three key points about predicting the lead-time analysis, which

are noteworthy being mentioned as follows:

• Our model and baselines can all accurately forecast a variety of the lead

times to different types of their associated failures. For example, the

lead times (60 seconds, 80 seconds, 120 seconds, 160 seconds) of Cray

supercomputer failures due to different errors of OS kernel panic, job

scheduler Slurm, a hardware non-maskable interrupt (NMI), and Machine

Check Exceptions, respectively. It is essential to predict lead times to

failures accurately in HPC systems. As the lead time accuracy increases,

recovery solutions can be scheduled at the optimal time (not sooner or

167

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

later), minimizing downtime and reducing costs. For instance, if the

lead-time predicted is too early, unnecessary recovery actions may be

executed, resulting in unnecessary costs. On the other hand, if the lead-

time prediction is too late, the system component (e.g., nodes) may fail

before proactive measures are finished, resulting in job failure, unplanned

downtime and lost productivity.

• Our model predicts some failures of Ranger and Cray HPC systems

that occurred with a very short lead time (only 5 seconds) after the

occurrence of their associated errors. Some types of segmentation faults

and memory corruption failures are examples of this class. Thus, In these

cases, the HPC system management control should first quarantine the

corresponding failure-prone nodes for a couple of hours to avoid waste of

the compute resources. Second, the system should use a recovery action

that takes less time (e.g., the generic live process migration) or avoid

triggering any correction/recovery actions as most failures have already

occurred in this case.

• Our model predicts accurately many failures with relatively long lead

times. For instance, the lead times to different node soft lockups failures

in the TACC Ranger supercomputer are ≈ 100 minutes, ≈ 125 minutes, ≈

300 minutes of their associated errors (general protection, page fault, loss

of service connection by via Network Interface Device (NID)). In this case,

our technique (Time Machine) can help the HPC system’s administrator

choose the best suitable lightweight error correction approach instead

of an expensive solution. Also, it is practical to postpone triggering the

recovery mechanism technique until a certain short period before the

actual failure occurrence because most of these kinds of failures can be

corrected themselves automatically.

7.6.6 Impact of Time Machine on Checkpoint-based Execution

We show how Time Machine can significantly reduce the execution overhead

for the checkpointing-facilitated jobs, by leveraging a discrete event driven

simulator [23], which can simulate the failure occurrence, job execution, check-

pointing, and recovery from failures. Since the mean time between failures

168

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

(MTBF) could be hourly or even less than a hour according to [221], we set

the MTBF in our experiment to be 1 hour. The failure events are generated

following a Poisson process with an average failure interval of 1 hour. The

checkpointing and recovery time overhead2 are set to 60 seconds and 30 seconds,

respectively. We evaluate two cases with different job workload lengths (6

hours and 12 hours). We compare four solutions as listed below:

• Ckpt (Young): This is a baseline solution, which adopts optimal check-

pointing intervals calculated by Young’s formula [332], as shown in

Formula 7.6.

Tinterval =
√

2 · µ · C (7.6)

where µ and C represent the MTBF and checkpointing time overhead,

respectively. Whenever a failure occurs, the job would roll back to the

latest checkpoint to restart the execution. According to our experimental

setting, the optimal checkpointing interval is 657.3 seconds.

• Ckpt (2000): We evaluate the execution with a sub-optimal checkpoint

interval (2k seconds), considering the practical situation with potentially

inaccurate MTBF.

• TimeMachine + Ckpt(Young): We combine our failure lead time predictor

(Time Machine) and Young’s checkpoint intervals [332]. The lead times

of the failures are predicted with a precision of 92% according to the

worst case shown in Figure 7.6. That is, there is only one failed/missed

prediction every ten failure events. For any failure predicted by Time

Machine, we set the checkpoint ahead of the failure occurrence proactively.

Since 92% failure events can be successfully predicted in time, the essential

MTBF to the job execution is 10×MTBF, which leads to a different

optimal checkpointing interval (2078 seconds).

• TimeMachine + Ckpt(4000): We evaluate TimeMachine+Ckpt in the

case with inaccurate MTBF, which has an inferior setting of checkpoint

interval (4k secs).

2Checkpointing time overhead means the time cost when setting/saving one checkpoint dur-
ing the execution; recover time overhead means the time cost when restarting the application
from a checkpoint.

169

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20%
40%

60%
80%

 100%
120%

P
D

F

Total Overhead

TimeMachine+Ckpt(Young)
TimeMachine+Ckpt(4000)

Ckpt(Young)
Ckpt(2000)

(a) workload=21600

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10%
20%

30%
40%

50%
60%

70%
80%

90%

P
D

F

Total Overhead

TimeMachine+Ckpt(Young)
TimeMachine+Ckpt(4000)

Ckpt(Young)
Ckpt(2000)

(b) workload=43200

Figure 7.7: Distribution of Total Execution Overhead

Table 7.5: Performance Breakdown of Simulation (job workload = 6 hours)
based on 1000 tests (in seconds)

Solution stat Load Ckpt Recv RB loss overhead
TimeMachine min 21600 660 30 2 3.2%

+ avg 21600 992 154 432 7.3%
Ckpt(Young) max 21600 1642 162 2092 16.9%

min 21600 1920 30 48 9.3%
Ckpt(Young) avg 21600 1930 192 2007 19.1%

max 21600 2120 450 5434 36.1%

Figure 7.7 shows the probability density function (PDF) of the job execution

overhead (=wallclock−job_workload
job_workload ×100%), based on 1000 tests with different

series of random failure events for each solution. We observe that combining

TimeMachine with checkpointing can significantly reduce the execution over-

head from ∼20% down to ∼7% in the execution environment. It is also worth

noting that the TimeMachine+checkpointing is immune to inaccurate MTBF

estimation (see red curve vs. blue curve), while the traditional checkpointing

suffers from substantially higher overhead when the MTBF is inaccurate (see

black curve vs. green curve). The key reason for the above result is that the

checkpoints can be set more efficiently with Time Machine predictor, leading to

significantly lower roll-back loss (abbreviated as RB Loss) during the execution,

as demonstrated in Table 7.5.

Summary

In this chapter, we employ the transformer-decoder neural networks to build a

novel real-time model called Time Machine to predict log events, failures, and

170

Chapter 7. Time Machine: Generative Real-Time Model For Predicting Failure and Lead
Time in HPC Systems

their lead-times in HPC system’s components (e.g, nodes). Time machine and

three state-of-the-art techniques are evaluated on four HPC log data. Time

Machine achieves considerably higher accuracy in predicting upcoming log

events, failure location, and failure lead-time. As for log prediction, Time

Machine obtains a Bleu and Rouge score of up to 0.79 and 0.77 respectively,

much higher than the best of the three techniques (only 0.47 and 0.34 respect-

ively). As for the failure location prediction, our Time Machine obtains the

MCC and F1-score up to 0.80 and 0.87, respectively, which are much higher

than that of the best one from the three state-of-the-arts (only 0.53 and 0.71

respectively). As for the lead-time prediction, Time Machine is also the best

in class: specifically, its MCC and F1-score can reach up to 0.87 and 0.95,

respectively. Time Machine is significantly faster than other approaches in

both training (5.4∼9.4× speed-up on average) and chain prediction (over 15×

faster than the related works). We also demonstrate the significant reduction

in execution overhead for the checkpointing-facilitated jobs through the utilisa-

tion of Time Machine, by leveraging a discrete event-driven simulator. Our

model can trigger recovery solutions at the right places and right time with

substantially reduced cost. Note that the Time Machine framework introduces

a novel method to automatically (no need for labels) construct and augment a

self-time annotated training dataset on sequential time-based (timestamps) raw

data via automatic accumulative and iterative process. Also, Time Machine is

the first model to convert the time prediction (a regression problem) into a

self-annotated multi-class classification problem by predicting the class for the

failure lead time.

171

Chapter 8. Conclusions and Future Work

Chapter 8

Conclusions and Future Work

Preface

This thesis is motivated by the necessity of creating dependable HPC distributed

systems with minimised costly failure occurrences. As such, we explored several

new AI-based models for error detection and failure prediction utilising the log

data generated by the system components which capture their health states.

The log messages are stored in a textual format, which motivates us to develop

an NLP and AI based approaches to predict the failures’ location (spatial) and

the occurrence time (temporal), so that the failure management mechanism

can be activated at the correct location and time. This chapter summarizes the

key contributions made by each chapter in this thesis, points out the existing

limitations, and discusses the possible future research directions.

8.1 Conclusion

In this thesis, we propose three novel machine/deep learning based methods,

which target the error detection, failure location prediction and failure lead-time

prediction, respectively.

Sentiment Analysis based Error Detection. Today’s resource-hungry

applications require to be executed on HPC environments such as supercom-

puters and datacentres. These HPC systems comprise hundreds of thousands

of complicated hardware/software components, which are in charge of various

data and execution services. These resident components together produce a

large volume of log messages on a centralised log server. These log messages

172

Chapter 8. Conclusions and Future Work

typically capture the health status of the various components (e.g., computer

nodes, network). However, most large-scale systems logs are generated with

non-labels, so manually classifying the massive number of unlabeled logs (i.e.,

millions) into faulty and healthy is infeasible. Hence, it is important to develop

error detection approaches to identify faulty events from non-faulty ones for

unlabelled system log data. As such, we addressed error detection in large-

scale HPC systems generating unlabelled logs by proposing a novel sentiment

analysis-based approach and leveraging log events’ sentiment polarity and

intensity to represent the system state. To accomplish this, we employed a

ML model to build a sentiment lexicon. The sentiment scores of the lexicon

elements allow log messages and the system components to be associated with

sentiment polarity and intensity scores for error detection and fault localisation.

Failure location/lead-time prediction. Serious failures (e.g., node

shutdowns) may occur in a large-scale system, because of the ever-increasing

complexity of HPC systems and high-demanding applications. The consequence

of the failures is tremendous: extreme computational overhead could be in-

troduced, thus severely affecting application execution. Particularly, with

breaking the barrier of exascale computing nowadays, such failures will occur

at least as frequently as in the petascale era, thereby severely impacting the

dependability of such systems to provide services. To mitigate the impact,

failure prediction is becoming a pressing problem, especially when combined

with a proactive recovery management process to mitigate the impact of such

failures. The existing works on failure prediction, however, are still insufficient

because relatively low accuracy and efficiency. For example, the state-of-the-art

RNN-based failure prediction methods (e.g., LSTM [91], Bi-LSTM [131], and

GRU [171]) suffer from non-trivial weaknesses: (i) long training time because

of the absence of parallelization in recurrence learning, and (ii) the vanishing

gradient problem with loss of earlier “memory”, which result in limited accuracy.

Thus, it is essential to develop online failure prediction techniques that can

accurately and rapidly predict forthcoming failures with minimal computa-

tional overhead. As such, we introduced two novel solutions (Clairvoyant and

Time Machine) for predicting failures and the lead time to these failures in

HPC systems. Both rely on a self-supervised deep learning approach utilising

173

Chapter 8. Conclusions and Future Work

a transformer-decoder, the self-attention mechanism, and parallel processing.

Our solutions facilitate determining the appropriate proactive management

mechanism with low cost, avoiding failure propagation, reducing the system

maintenance cost, and preventing breakdowns/outages in large systems that

provide critical services such as healthcare, emergency, education services,

social media, etc.

The summary of this thesis is organised into two categories. First, we

highlight the contents of the four introductory chapters, which include the

introduction (Chapter 1), the background (Chapter 2), a survey of previous

related work (Chapter 3) and the description of the cluster system used, the

data and fault models (Chapter 4). Then, the main methodologies are presented

in (Chapters 5 - 7), which discuss the key contributions, the limitations of our

solutions, and future work.

8.1.1 Introductory Chapters

Chapters 1 to 4 of this thesis include the introduction, the background, the

literature review of the related work, and the general description of the system

used, the log data, and fault models, respectively. The following is a recap of

the main points presented in the introductory chapters:

• Chapter 1: This chapter summarises the entire thesis. It defines the

overarching objectives, motivation, research problem, as well as the

proposed approach and contributions made in this thesis.

• Chapter 2: This chapter covers the pertinent background information

regarding the machine and deep learning models we employed to build

our error detection and failure prediction models in chapters 5, 6, and

7. Additionally, we highlight the state-of-the-art methods we used to

compare our proposed solutions.

• Chapter 3 This chapter introduces a taxonomy survey of the related

works of the proposed automated log analysis research. The previous

research is divided into four domains aiming to address the previous four

log-based research perspectives. The first domain focus is log parsing

which involves methods that aim to convert raw logs of HPC systems into

174

Chapter 8. Conclusions and Future Work

structured data. The second domain summarises the related techniques

that utilised different approaches (e,g., machine and deep learning) for

error detection, which helps to determine abnormal behaviour patterns

and normal activity in log messages. The third domain discusses failure

diagnosis techniques that aim to identify the underlying causes (i.e.,

errors and faults) of component failures in large-scale systems; finally, we

survey the previous failure prediction studies that aim for early warnings

of failures occurrence in HPC systems.

Chapter 4: This chapter describes the generic system model of cluster

systems for which the approaches can be applied. We summarise five

supercomputer clusters and their six log datasets used in our experiments.

Furthermore, this chapter presents a description of the fault model in

HPC systems. It also clarifies fundamental terms related to log messages

and fault tolerance.

8.1.2 The Chapters Discussing Summary of Contributions,

Limitations, and Future Work

Chapters (5 - 7) of this thesis present in detail our novel approaches proposed

for error detection and failure prediction in large-scale distributed systems.

The following is a summary of the main points presented in these chapters,

their limitation, and future work.

• Chapter 5 (GitHub [5]): This chapter presents our sentiment analysis

techniques on log events of complex HPC systems, which is an efficient

solution to detect errors and identify failed components. In particular,

we propose a novel approach for the automated generation of a reusable

sentiment lexicon to support log analysis of different large-scale systems,

since these large systems often share similar components. Our contri-

butions are four-fold in this chapter (i) In terms of the system logs, we

develop a machine learning-based approach by using stochastic gradient

descent logistic regression to automatically build a sentiment lexicon.

(ii) We develop an algorithm based on the sentiment features of the

lexicon to detect whether a message corresponds to an error/failure or

175

Chapter 8. Conclusions and Future Work

just informational, (iii) We develop an algorithm to determine whether a

component is faulty in a given time window based on sentiment polarity

scores. (iv) Using logs from three HPC systems of different vendors,

we compare our solution to a broad range of state-of-the-art ML/deep

techniques. Our results show that: (1) The learnt sentiment lexicon does

consist of system developers’ sentiments accurately, (2) Our technique

successfully extracted developers’ sentiment features with their weights

from the source system with labelled log messages(i.e., IBM Blue Gene)

to automatically construct lexicon items which can be used to detect the

errors in the target systems with unlabelled log messages (i.e., Ranger

and Lonestar4), with an average MCC score and f-score of 91% and 96%

respectively, while the state of the art machine and deep learning model

(LSTM) obtains only 67% and 84%.

Limitations and Future Work:

– The approach proposed in this chapter demonstrates the use of sen-

timent scores for transfer learning between different HPC datasets,

where data is annotated with a varying amount of information (i.e.

severity). However, our method is limited to classifying all events

based on their severity attributes into two categories - faulty and

non-faulty, which could be a future work. Specifically, we plan to

classify the log messages into multiple classes based on multi-level

severity messages (e.g., failure (fatal), error, warning, debug, inform-

ation, etc.) in the real HPC systems logs. As a potential future

work, our existing approach can be modified to extract developers’

sentiment features with their weights from the source system log

messages with multiple classes labels (multiple severity levels) to

automatically construct sentiment lexicon items, which can classify

log messages into multiple severity levels (classes) in the target

systems with unlabelled logs.

– The approach proposed in this chapter is applied to logs generated

from supercomputer clusters. As a potential future work, the ap-

proach can be extended to be applied to different systems such as

176

Chapter 8. Conclusions and Future Work

datacenters logs or other components (e.g., switches, GPUs).

– As a potential future work, the approach proposed in this chapter can

be replaced by any modern NLP approach, especially transformer-

based language models such as BERT, GPT-4, RoBERTa, etc. This

can be achieved by fine-tuning the pre-trained models on large log

data to learn the relationships between log messages with their

assigned labels from source systems to classify log messages of the

target systems with unlabelled logs.

• Chapter 6 (GitHub [4]): This chapter developed, Clairvoyant, a novel

solution for predicting compute node failures in HPC systems. It relies on

a self-supervised deep learning approach utilising a transformer-decoder

and a self-attention mechanism. It predicts node failures by predicting a

sequence of log events and then identifying if a failure is a part of that

predicted sequence. The proposed approach has been evaluated with

metrics such as Blue, Rouge, F1-score, and MCC. Clairvoyant compared

with an HPC node-failure method called Desh [91] using datasets from two

datasets of a supercomputer system. The results show that Clairvoyant

is significantly more accurate in predicting node failures and faster than

Desh due to observing long-range dependencies in the log events and a

model that can be parallelised.

Limitations:

– The model presented in this chapter focuses on only one failure, soft

lockup, that can be caused by several high-impact errors. Second

and most importantly, the Clairvoyant framework aims to predict

the existence of an upcoming failure only without predicting the

lead time to the failure. Predicting the lead time of failures is

very challenging because of many possible time moments the failure

may occur in a very long/short upcoming sequence of log events.

All these limitations are resolved by proposing the Time Machine

framework to predict any possible types of failures and the failure

lead-time accurately.

• Chapter 7 (GitHub [23]): This chapter presents Time Machine, a

177

Chapter 8. Conclusions and Future Work

novel generative self-supervised model that predicts the failure status of

the HPC systems. Two transformer-decoder based sequential stacks have

been combined. One is to predict the next state of the system that can

be used to generate a possible future log event sequence. If the sequence

contains a log indicating a failure and its possible location, the second

will be used to predict the lead time to failure. With an analogy to text

prediction in NLP tasks, Time Machine uses log events as input, where

each event is considered a word and a sequence of events is considered a

sentence. It uses the self-attention-based language model as an estimator

for the posterior probabilities to predict the probabilities of failure in HPC

systems. Time Machine is evaluated on four real-world HPC clusters logs

and compared against three state-of-the-art approaches. Time Machine

achieves better results than the top-performing model option them: (i)

Log events prediction: With scores of up to 0.79 and 0.77 in Bleu and

Rouge, respectively, Time Machine significantly outperforms the best of

the three techniques, whose scores are only 0.47 and 0.34. (ii) Failure

Location: Time Machine achieves a MCC and F1-scores of up to 0.80

and 0.87, respectively, while the best scores of the three baselines are

only 0.53 and 0.71, respectively. (iii) Failure lead time: Time Machine is

also the best in class, with MCC and F1-scores of up to 0.87 and 0.95,

respectively. (iv) Speed-up of training and prediction: Time Machine

is significantly faster than other techniques in both training (5.4∼9.4×

speed-up on average) and chain prediction (over 15× faster than the

related works), thus, Time Machine is well-suited for real-time online

failure prediction in HPC distributed systems.

Moreover, Time Machine framework presented a novel synthetic minor-

ity oversampling technique for online time-based tasks to construct the

training instances in real-time from failure sequences. This method has

never been discovered before in AI or other domains and can be gener-

alised to other domains for time-based tasks (e.g., business, healthcare,

booking business). Furthermore, the Time Machine is the first model to

reduce/convert the time prediction problem (a regression problem) into

a self-annotated multi-class classification problem by predicting the class

178

Chapter 8. Conclusions and Future Work

for the failure lead time. This method can also be generalised to other

domains for similar time-based tasks (e.g., business, healthcare, booking

business).

Limitation and Future Work:

– Predicting failures in large cloud IT systems is a crucial area of

research as supercomputer clusters, especially some large IT HPC

machines can generate millions of logs (depending on the verbosity)

per minute. The approach proposed in this chapter is limited to

the logs generated from supercomputer clusters. As a potential

future work, further research and improvements may be needed to

enhance the model’s generality beyond HPC logs, such as logs of

datacenters and other cloud services. We expect our model will

successfully predict those large systems also for two reasons. First,

large IT systems (e.g., cloud systems) and supercomputer systems

share several similarities, such as components (hardware (compute

nodes/GPUs) and software), high-performance power to handle

large amounts of data, high-speed networking, scalability, parallel

processing, etc. Accordingly, while there may be some discrepancies

in the logs of large IT systems and supercomputer clusters, their

logs (whether log messages or metric data) share many similarities,

which include logs format/structure, the information they contain,

normal and failure patterns, type of metric data, and the challenges

of preprocessing them. Therefore, we expect our model can be

applied to predict large IT systems failures similar to large cluster

supercomputers with high prediction accuracy. For example, some

of the supercomputers which were involved in our study can be

highly verbose and contain millions of messages per minute: this

is similar to some large cloud systems. Our model overcomes these

logs overhead and predicts their failures with high accuracy. Second,

Time Machine outperforms the baseline models in our study, and

some of the baselines have demonstrated their good performance in

predicting large IT systems failures based on metric data. Hence,

we expect our model will also exhibit its superiority in predicting

179

Chapter 8. Conclusions and Future Work

large IT systems’ failures.

– Motivated by the promising results of our solution, in future, we

will explore other generative models such as Text-to-Text Transfer

Transformer (T5), Bidirectional and Auto-Regressive Transformers

(BART) for the prediction of HPC failures and lead-times. Moreover,

we will explore different ratio for training and testing (e.g., 70/30)

and different parameters such as self-attention layer number, head

number, embedding size, etc., which may improve the prediction

accuracy or at least maintains similar performance with a smaller

number of parameters. For instance, Time Machine may achieve

similar failure prediction accuracy with fewer self-attention layers

or attention heads.

180

Bibliography

Bibliography

[1] Aurora supercomputer. https://www.intel.co.uk/content/

www/uk/en/high-performance-computing/supercomputing/

exascale-computing.html. (Accessed on 04/25/2023).

[2] Facebook lost about $65 million during hours-long out-

age. https://www.forbes.com/sites/abrambrown/2021/10/05/

facebook-outage-lost-revenue/?sh=2076d190231a. (Accessed

on 03/13/2023).

[3] Frontier. https://www.olcf.ornl.gov/frontier/. (Accessed on

04/25/2023).

[4] Github - khalid8alharthi/clairvoyant: Clairvoyant: A log-based

transformer-decoder for failure prediction in large-scale systems.

https://github.com/khalid8alharthi/Clairvoyant, . (Ac-

cessed on 05/29/2023).

[5] Github - khalid8alharthi/sentiment_analysis_model_for_errors_detection_in_large_scale_systems:

Sentiment analysis based error detection for large-scale systems.

https://github.com/khalid8alharthi/Sentiment_Analysis_

Model_For_Errors_Detection_In_Large_Scale_Systems, .

(Accessed on 05/29/2023).

[6] Hyperion: Hpc market is stabilizing and headed to

$50b by 2026. https://www.hpcwire.com/2022/05/30/

hyperion-hpc-market-is-stabilizing-and-headed-to-50b-by-2026/.

(Accessed on 04/25/2023).

[7] Keras: Deep learning for humans. https://keras.io/. (Accessed

on 05/26/2023).

181

https://www.intel.co.uk/content/www/uk/en/high-performance-computing/supercomputing/exascale-computing.html
https://www.intel.co.uk/content/www/uk/en/high-performance-computing/supercomputing/exascale-computing.html
https://www.intel.co.uk/content/www/uk/en/high-performance-computing/supercomputing/exascale-computing.html
https://www.forbes.com/sites/abrambrown/2021/10/05/facebook-outage-lost-revenue/?sh=2076d190231a
https://www.forbes.com/sites/abrambrown/2021/10/05/facebook-outage-lost-revenue/?sh=2076d190231a
https://www.olcf.ornl.gov/frontier/
https://github.com/khalid8alharthi/Clairvoyant
https://github.com/khalid8alharthi/Sentiment_Analysis_Model_For_Errors_Detection_In_Large_Scale_Systems
https://github.com/khalid8alharthi/Sentiment_Analysis_Model_For_Errors_Detection_In_Large_Scale_Systems
https://www.hpcwire.com/2022/05/30/hyperion-hpc-market-is-stabilizing-and-headed-to-50b-by-2026/
https://www.hpcwire.com/2022/05/30/hyperion-hpc-market-is-stabilizing-and-headed-to-50b-by-2026/
https://keras.io/

Bibliography

[8] Legacy computing program. https://www.tacc.utexas.edu/

partnerships/legacy-computing-program/. (Accessed on

05/29/2023).

[9] Log management & analysis software made easy | logentries. https:

//logentries.com/, . (Accessed on 06/17/2022).

[10] Logstash: Collect, parse, transform logs | elastic. https://www.

elastic.co/logstash/, . (Accessed on 06/22/2022).

[11] Mira | argonne leadership computing facility. https://www.alcf.

anl.gov/alcf-resources/mira. (Accessed on 04/06/2023).

[12] Privacy error. https://sequencer.io/. (Accessed on

06/20/2022).

[13] Pytorch. https://pytorch.org/. (Accessed on 05/26/2023).

[14] Splunk | the data platform for the hybrid world. https://www.

splunk.com/. (Accessed on 06/17/2022).

[15] Tacc lonestar 4 user guide - tacc user portal. https://

portal.tacc.utexas.edu/archives/lonestar4. (Accessed on

04/06/2023).

[16] Technical specifications. https://www.lanl.gov/projects/

trinity/specifications.php. (Accessed on 05/29/2023).

[17] Tensorflow. https://www.tensorflow.org/. (Accessed on

05/26/2023).

[18] Texas advanced computing center. https://www.tacc.utexas.

edu/. (Accessed on 05/29/2023).

[19] Transformers in action: Attention is all you need | by soran ghaderi

| towards data science. https://towardsdatascience.com/

transformers-in-action-attention-is-all-you-need-ac10338a023a.

(Accessed on 06/01/2023).

[20] Welcome to colaboratory - colaboratory. https://colab.

research.google.com/. (Accessed on 05/26/2023).

182

https://www.tacc.utexas.edu/partnerships/legacy-computing-program/
https://www.tacc.utexas.edu/partnerships/legacy-computing-program/
https://logentries.com/
https://logentries.com/
https://www.elastic.co/logstash/
https://www.elastic.co/logstash/
https://www.alcf.anl.gov/alcf-resources/mira
https://www.alcf.anl.gov/alcf-resources/mira
https://sequencer.io/
https://pytorch.org/
https://www.splunk.com/
https://www.splunk.com/
https://portal.tacc.utexas.edu/archives/lonestar4
https://portal.tacc.utexas.edu/archives/lonestar4
https://www.lanl.gov/projects/trinity/specifications.php
https://www.lanl.gov/projects/trinity/specifications.php
https://www.tensorflow.org/
https://www.tacc.utexas.edu/
https://www.tacc.utexas.edu/
https://towardsdatascience.com/transformers-in-action-attention-is-all-you-need-ac10338a023a
https://towardsdatascience.com/transformers-in-action-attention-is-all-you-need-ac10338a023a
https://colab.research.google.com/
https://colab.research.google.com/

Bibliography

[21] about-logs.051715.pdf. https://portal.nersc.gov/project/

m888/resilience/datasets/mutrino/about-logs.051715.pdf.

(Accessed on 04/07/2023).

[22] el capitan supercomputer at lawrence livermore national lab |

hpe united kingdom. https://www.hpe.com/uk/en/compute/

hpc/cray/doe-el-capitan-press-release.html. (Accessed on

04/25/2023).

[23] khalid8alharthi/time-machine: Code and datasets for a research pa-

per accepted at dsn’23. https://github.com/khalid8alharthi/

Time-Machine. (Accessed on 04/10/2023).

[24] pandas - python data analysis library. https://pandas.pydata.

org/. (Accessed on 05/26/2023).

[25] Ieee standard for information technology–portable operating system

interface (posix(tm)) base specifications, issue 7. IEEE Std 1003.1-

2017 (Revision of IEEE Std 1003.1-2008), pages 1–3951, 2018. doi:

10.1109/IEEESTD.2018.8277153.

[26] Muhammad Abbas, K Ali Memon, A Aleem Jamali, Saleemullah

Memon, and Anees Ahmed. Multinomial naive bayes classification

model for sentiment analysis. IJCSNS Int. J. Comput. Sci. Netw.

Secur, 19(3):62, 2019.

[27] Dilmi Abdelbaqi. Failure prediction in cloud environment using

deep learning. PhD thesis, University of M’sila, 2020.

[28] Sheikh Abujar, Abu Kaisar Mohammad Masum,

SM Mazharul Hoque Chowdhury, Mahmudul Hasan, and

Syed Akhter Hossain. Bengali text generation using bi-directional

rnn. In 2019 10th International Conference on Computing,

Communication and Networking Technologies (ICCCNT), pages

1–5. IEEE, 2019.

[29] Khansa Afifah, Intan Nurma Yulita, and Indra Sarathan. Sentiment

analysis on telemedicine app reviews using xgboost classifier. In

183

https://portal.nersc.gov/project/m888/resilience/datasets/mutrino/about-logs.051715.pdf
https://portal.nersc.gov/project/m888/resilience/datasets/mutrino/about-logs.051715.pdf
https://www.hpe.com/uk/en/compute/hpc/cray/doe-el-capitan-press-release.html
https://www.hpe.com/uk/en/compute/hpc/cray/doe-el-capitan-press-release.html
https://github.com/khalid8alharthi/Time-Machine
https://github.com/khalid8alharthi/Time-Machine
https://pandas.pydata.org/
https://pandas.pydata.org/

Bibliography

2021 International Conference on Artificial Intelligence and Big

Data Analytics, pages 22–27. IEEE, 2021.

[30] Bikash Agrawal, Tomasz Wiktorski, and Chunming Rong. Ana-

lyzing and predicting failure in hadoop clusters using distributed

hidden markov model. In Weizhong Qiang, Xianghan Zheng, and

Ching-Hsien Hsu, editors, Cloud Computing and Big Data, pages

232–246, Cham, 2015. Springer International Publishing. ISBN

978-3-319-28430-9.

[31] Fawaz S Al-Anzi. An effective hybrid stochastic gradient descent

for classification of short text communication in e-learning environ-

ments. In 2022 8th International Conference on Control, Decision

and Information Technologies (CoDIT), volume 1, pages 1096–1101.

IEEE, 2022.

[32] Jay Alammar. The illustrated transformer. The Illustrated

Transformer–Jay Alammar–Visualizing Machine Learning One

Concept at a Time, 27, 2018.

[33] Jay Alammar. The illustrated gpt-2 (visualizing transformer lan-

guage models). 2019.

[34] Khalid Ayedh Alharthi, Arshad Jhumka, Sheng Di, Franck Cappello,

and Edward Chuah. Sentiment analysis based error detection for

large-scale systems. In 2021 51st Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages

237–249. IEEE, 2021.

[35] Khalid Ayedh Alharthi, Arshad Jhumka, Sheng Di, and Franck

Cappello. Clairvoyant: a log-based transformer-decoder for failure

prediction in large-scale systems. In Proceedings of the 36th ACM

International Conference on Supercomputing, pages 1–14, 2022.

[36] Khalid Ayedh Alharthi, Arshad Jhumka, Sheng Di, Lin Gui, Franck

Cappello, and Simon McIntosh-Smith. Time machine: Generative

real-time model for failure (and lead time) prediction in hpc sys-

184

Bibliography

tems. In 2023 53st Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN). IEEE, 2023.

[37] Sara Ashour Aljuhani and Norah Saleh Alghamdi. A compar-

ison of sentiment analysis methods on amazon reviews of mobile

phones. International Journal of Advanced Computer Science and

Applications, 10(6), 2019.

[38] Corville O Allen, Kevin B Haverlock, and Michael D Whitley. Sen-

timent analysis of data logs, January 3 2017. US Patent 9,536,200.

[39] Corville O Allen, Andrew R Freed, Scott N Gerard, and Dorian B

Miller. Applying consistent log levels to application log messages,

June 11 2019. US Patent 10,318,405.

[40] Sujit S Amin and Lata Ragha. Text generation and enhanced

evaluation of metric for machine translation. In Data Intelligence

and Cognitive Informatics: Proceedings of ICDICI 2020, pages 1–17.

Springer, 2021.

[41] Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. An

evolutionary algorithm that constructs recurrent neural networks.

IEEE transactions on Neural Networks, 5(1):54–65, 1994.

[42] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg

Sander. Optics: Ordering points to identify the clustering structure.

ACM Sigmod record, 28(2):49–60, 1999.

[43] Ameen Abdullah Qaid Aqlan, B Manjula, and R Lakshman Naik.

A study of sentiment analysis: concepts, techniques, and challenges.

In Proceedings of International Conference on Computational Intel-

ligence and Data Engineering: Proceedings of ICCIDE 2018, pages

147–162. Springer, 2019.

[44] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fun-

damental concepts of dependability. Department of Computing

Science Technical Report Series, 2001.

185

Bibliography

[45] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr.

Basic concepts and taxonomy of dependable and secure computing.

IEEE transactions on dependable and secure computing, 1(1):11–33,

2004.

[46] Roberto Baldoni, Luca Montanari, and Marco Rizzuto. On-line

failure prediction in safety-critical systems. Future Generation

Computer Systems, 45:123–132, 2015.

[47] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani,

Olivier Midy, and Mathru Janakiraman. Decaf: Diagnosing and

triaging performance issues in large-scale cloud services. In Proceed-

ings of the ACM/IEEE 42nd International Conference on Software

Engineering: Software Engineering in Practice, pages 201–210,

2020.

[48] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The

consensus problem in fault-tolerant computing. ACM Computing

Surveys (CSur), 25(2):171–220, 1993.

[49] Anne Benoit, Aurélien Cavelan, Valentin Le Fèvre, Yves Robert,

and Hongyang Sun. Towards optimal multi-level checkpointing.

IEEE Transactions on Computers, 66(7):1212–1226, 2016.

[50] Eduardo Berrocal, Li Yu, Sean Wallace, Michael E Papka, and

Zhiling Lan. Exploring void search for fault detection on extreme

scale systems. In 2014 IEEE International Conference on Cluster

Computing (CLUSTER), pages 1–9. IEEE, 2014.

[51] Jasmine Bhaskar, K Sruthi, and Prema Nedungadi. Hybrid ap-

proach for emotion classification of audio conversation based on

text and speech mining. Procedia Computer Science, 46:635–643,

2015.

[52] Marouane Birjali, Mohammed Kasri, and Abderrahim Beni-Hssane.

A comprehensive survey on sentiment analysis: Approaches, chal-

lenges and trends. Knowledge-Based Systems, 226:107134, 2021.

186

Bibliography

[53] David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet

allocation. Advances in neural information processing systems, 14,

2001.

[54] Andrea Borghesi, Antonio Libri, Luca Benini, and Andrea Bartolini.

Online anomaly detection in HPC systems. In 2019 IEEE Interna-

tional Conference on Artificial Intelligence Circuits and Systems

(AICAS), pages 229–233. IEEE, 2019.

[55] Jim Brandt, Ann Gentile, Jackson Mayo, Philippe Pébay, Diana

Roe, David Thompson, and Matthew Wong. Methodologies for

advance warning of compute cluster problems via statistical analysis:

A case study. In Proceedings of the 2009 Workshop on Resiliency in

High Performance, Resilience ’09, page 7–14, New York, NY, USA,

2009. Association for Computing Machinery. ISBN 9781605585932.

[56] Jim Brandt, Ann Gentile, Cindy Martin, Jason Repik, and Narate

Taerat. New systems, new behaviors, new patterns: Monitoring in-

sights from system standup. In 2015 IEEE International Conference

on Cluster Computing, pages 658–665. IEEE, 2015.

[57] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[58] Harsha Vardhana Krishna Sai Buddana, Surampudi Sai Kaushik,

PVS Manogna, and Shijin Kumar PS. Word level lstm and recurrent

neural network for automatic text generation. In 2021 International

Conference on Computer Communication and Informatics (ICCCI),

pages 1–4. IEEE, 2021.

[59] Sathya Bursic, Vittorio Cuculo, and Alessandro D’Amelio. An-

omaly detection from log files using unsupervised deep learning.

In International Symposium on Formal Methods, pages 200–207.

Springer, 2019.

[60] Carlos A. C. Rincon, Jehan-François Pâris, Ricardo Vilalta, Albert

M. K. Cheng, and Darrell D. E. Long. Disk failure prediction in

heterogeneous environments. In 2017 International Symposium

187

Bibliography

on Performance Evaluation of Computer and Telecommunication

Systems (SPECTS), pages 1–7, 2017. doi: 10.23919/SPECTS.2017.

8046776.

[61] Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui

Zhu. Traffic transformer: Capturing the continuity and periodicity

of time series for traffic forecasting. Transactions in GIS, 24(3):

736–755, 2020.

[62] Thanyalak Chalermarrewong, Tiranee Achalakul, and Simon

Chong Wee See. Failure prediction of data centers using time

series and fault tree analysis. In 2012 IEEE 18th International

Conference on Parallel and Distributed Systems, pages 794–799,

2012. doi: 10.1109/ICPADS.2012.129.

[63] Thanyalak Chalermarrewong, Tiranee Achalakul, and Simon

Chong Wee See. Failure prediction of data centers using time

series and fault tree analysis. In 2012 IEEE 18th International

Conference on Parallel and Distributed Systems, pages 794–799.

IEEE, 2012.

[64] Purimpat Cheansunan and Phond Phunchongharn. Detecting an-

omalous events on distributed systems using convolutional neural

networks. In 2019 IEEE 10th International Conference on Aware-

ness Science and Technology (iCAST), pages 1–5. IEEE, 2019.

[65] An Ran Chen. An empirical study on leveraging logs for debugging

production failures. In 2019 IEEE/ACM 41st International Con-

ference on Software Engineering: Companion Proceedings (ICSE-

Companion), pages 126–128. IEEE, 2019.

[66] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric

Brewer. Failure diagnosis using decision trees. In International

Conference on Autonomic Computing, 2004. Proceedings., pages

36–43. IEEE, 2004.

[67] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boost-

ing system. In Proceedings of the 22nd acm sigkdd international

188

Bibliography

conference on knowledge discovery and data mining, pages 785–794,

2016.

[68] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. Failure

analysis of jobs in compute clouds: A google cluster case study. In

2014 IEEE 25th International Symposium on Software Reliability

Engineering, pages 167–177. IEEE, 2014.

[69] Yiwei Cheng, Haiping Zhu, Jun Wu, and Xinyu Shao. Machine

health monitoring using adaptive kernel spectral clustering and

deep long short-term memory recurrent neural networks. IEEE

Transactions on Industrial Informatics, 15(2):987–997, 2018.

[70] Ilia Chetviorkin and Natalia Loukachevitch. Extraction of russian

sentiment lexicon for product meta-domain. In Proceedings of

COLING 2012, pages 593–610, 2012.

[71] Davide Chicco and Giuseppe Jurman. The advantages of the

Matthews correlation coefficient (MCC) over f1 score and accuracy

in binary classification evaluation. BMC Genomics, 21, 2020.

[72] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry

Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.

Learning phrase representations using rnn encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078,

2014.

[73] Edward Chuah. Features correlation-based workflows for high-

performance computing systems diagnosis. PhD thesis, University

of Warwick, 2020.

[74] Edward Chuah, Shyh-hao Kuo, Paul Hiew, William-Chandra Tjhi,

Gary Lee, John Hammond, Marek T Michalewicz, Terence Hung,

and James C Browne. Diagnosing the root-causes of failures from

cluster log files. In 2010 International Conference on High Per-

formance Computing, pages 1–10. IEEE, 2010.

189

Bibliography

[75] Edward Chuah, Arshad Jhumka, Sai Narasimhamurthy, John Ham-

mond, James C Browne, and Bill Barth. Linking resource usage

anomalies with system failures from cluster log data. In 2013 IEEE

32nd International Symposium on Reliable Distributed Systems,

pages 111–120. IEEE, 2013.

[76] Edward Chuah, Arshad Jhumka, James C Browne, Bill Barth, and

Sai Narasimhamurthy. Insights into the diagnosis of system failures

from cluster message logs. In 2015 11th European Dependable

Computing Conference (EDCC), pages 225–232. IEEE, 2015.

[77] Edward Chuah, Arshad Jhumka, Samantha Alt, Daniel Balouek-

Thomert, James C Browne, and Manish Parashar. Towards compre-

hensive dependability-driven resource use and message log-analysis

for HPC systems diagnosis. Journal of Parallel and Distributed

Computing, 132:95–112, 2019.

[78] Edward Chuah, Arshad Jhumka, Samantha Alt, Juan J Villalobos,

Joshua Fryman, William Barth, and Manish Parashar. Using re-

source use data and system logs for HPC system error propagation

and recovery diagnosis. In 2019 IEEE Intl Conf on Parallel & Dis-

tributed Processing with Applications, Big Data & Cloud Computing,

Sustainable Computing & Communications, Social Computing &

Networking (ISPA/BDCloud/SocialCom/SustainCom), pages 458–

467. IEEE, 2019.

[79] Edward ChuahM, Arshad Jhumka, Samantha Alt, R Todd Evans,

and Neeraj Suri. Failure diagnosis for cluster systems using par-

tial correlations. In 2021 IEEE Intl Conf on Parallel & Distrib-

uted Processing with Applications, Big Data & Cloud Computing,

Sustainable Computing & Communications, Social Computing &

Networking (ISPA/BDCloud/SocialCom/SustainCom), pages 1091–

1101. IEEE, 2021.

[80] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua

190

Bibliography

Bengio. Empirical evaluation of gated recurrent neural networks

on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[81] Marcello Cinque, Raffaele Della Corte, Vincenzo Moscato, and

Giancarlo Sperlí. A graph-based approach to detect unexplained

sequences in a log. Expert Systems with Applications, 171:114556,

2021.

[82] Carlos H.A. Costa, Yoonho Park, Bryan S. Rosenburg, Chen-Yong

Cher, and Kyung Dong Ryu. A system software approach to

proactive memory-error avoidance. In SC ’14: Proceedings of

the International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 707–718, 2014. doi: 10.

1109/SC.2014.63.

[83] Novelty Octaviani Faomasi Daeli and Adiwijaya Adiwijaya. Senti-

ment analysis on movie reviews using information gain and k-nearest

neighbor. Journal of Data Science and Its Applications, 3(1):1–7,

2020.

[84] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun

Chen. Logram: Efficient log parsing using n-gram dictionaries.

IEEE Transactions on Software Engineering, 2020.

[85] Dinh Dai Vu, Xuan Tuong Vu, and Younghan Kim. Deep learning-

based fault prediction in cloud system. In 2021 International

Conference on Information and Communication Technology Con-

vergence (ICTC), pages 1826–1829. IEEE, 2021.

[86] R Damarta, A Hidayat, and AS Abdullah. The application of k-

nearest neighbors classifier for sentiment analysis of pt pln (persero)

twitter account service quality. In Journal of Physics: Conference

Series, volume 1722, page 012002. IOP Publishing, 2021.

[87] A. Das, F. Mueller, and B. Rountree. Aarohi: Making real-time

node failure prediction feasible. In 2020 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pages 1092–1101,

2020.

191

Bibliography

[88] Anwesha Das and Frank Mueller. Holistic root cause analysis of

node failures in production HPC. SC Poster Session, 2018.

[89] Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and

Scott Baden. Doomsday: predicting which node will fail when

on supercomputers. In SC18: International Conference for High

Performance Computing, Networking, Storage and Analysis, pages

108–121. IEEE, 2018.

[90] Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and

Scott Baden. Doomsday: Predicting which node will fail when

on supercomputers. In SC18: International Conference for High

Performance Computing, Networking, Storage and Analysis, pages

108–121, 2018. doi: 10.1109/SC.2018.00012.

[91] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu.

Desh: deep learning for system health prediction of lead times to

failure in HPC. In Proceedings of the 27th International Symposium

on High-Performance Parallel and Distributed Computing, pages

40–51, 2018.

[92] Anwesha Das, Frank Mueller, and Barry Rountree. Aarohi: Making

real-time node failure prediction feasible. In 2020 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS),

pages 1092–1101, 2020. doi: 10.1109/IPDPS47924.2020.00115.

[93] Anwesha Das, Frank Mueller, and Barry Rountree. Systemic as-

sessment of node failures in hpc production platforms. In 2021

IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 267–276. IEEE, 2021.

[94] Kia Dashtipour, Mandar Gogate, Jingpeng Li, Fengling Jiang, Bin

Kong, and Amir Hussain. A hybrid persian sentiment analysis

framework: Integrating dependency grammar based rules and deep

neural networks. Neurocomputing, 380:1–10, 2020.

[95] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Me-

yarivan. A fast and elitist multiobjective genetic algorithm: Nsga-

192

Bibliography

ii. IEEE transactions on evolutionary computation, 6(2):182–197,

2002.

[96] Mitali Desai and Mayuri A Mehta. Techniques for sentiment ana-

lysis of twitter data: A comprehensive survey. In 2016 International

Conference on Computing, Communication and Automation (IC-

CCA), pages 149–154. IEEE, 2016.

[97] S. Di, H. Guo, R. Gupta, E. R. Pershey, M. Snir, and F. Cappello.

Exploring properties and correlations of fatal events in a large-

scale hpc system. IEEE Transactions on Parallel and Distributed

Systems, 30(2):361–374, 2019. doi: 10.1109/TPDS.2018.2864184.

[98] S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello. Characterizing

and understanding HPC job failures over the 2k-day life of IBM

bluegene/q system. In 2019 49th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages

473–484, 2019.

[99] Sheng Di, Rinku Gupta, Marc Snir, Eric Pershey, and Franck

Cappello. Logaider: A tool for mining potential correlations of

HPC log events. In 2017 17th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGRID), pages 442–451.

IEEE, 2017.

[100] Sheng Di, Hanqi Guo, Eric Pershey, Marc Snir, and Franck Cappello.

Characterizing and understanding hpc job failures over the 2k-day

life of ibm bluegene/q system. In 2019 49th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks

(DSN), pages 473–484, 2019. doi: 10.1109/DSN.2019.00055.

[101] Karim Djemame and Hamish Carr. Exascale computing deploy-

ment challenges. In Economics of Grids, Clouds, Systems, and

Services: 17th International Conference, GECON 2020, Izola, Slov-

enia, September 15–17, 2020, Revised Selected Papers 17, pages

211–216. Springer, 2020.

193

Bibliography

[102] John Daly DOD, Bill Harrod, Thuc Hoang, Lucy Nowell, Bob

Adolf, Shekhar Borkar, Nathan DeBardeleben, Mike Heroux, David

Rogers, Vivek Sarkar, et al. Inter-agency workshop on hpc

resilience at extreme scale. http://www.rdadolf.com/papers/

daly2012report.pdf, 2012.

[103] Chenhe Dong, Yinghui Li, Haifan Gong, Miaoxin Chen, Junxin Li,

Ying Shen, and Min Yang. A survey of natural language generation.

ACM Computing Surveys, 55(8):1–38, 2022.

[104] Jack Dongarra, Thomas Herault, and Yves Robert. Fault Tolerance

Techniques for High-Performance Computing. 05 2015. ISBN

978-3-319-20942-5. doi: 10.1007/978-3-319-20943-2_1.

[105] Fernando Dione dos Santos Lima, Gabriel Maia Rocha Amaral,

Lucas Goncalves de Moura Leite, João Paulo Pordeus Gomes, and

Javam de Castro Machado. Predicting failures in hard drives with

lstm networks. In 2017 Brazilian Conference on Intelligent Systems

(BRACIS), pages 222–227. IEEE, 2017.

[106] Min Du and Feifei Li. Spell: Streaming parsing of system event

logs. In 2016 IEEE 16th International Conference on Data Mining

(ICDM), pages 859–864. IEEE, 2016.

[107] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:

Anomaly detection and diagnosis from system logs through deep

learning. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 1285–1298, 2017.

[108] Qingfeng Du, Liang Zhao, Jincheng Xu, Yongqi Han, and Shuangli

Zhang. Log-based anomaly detection with multi-head scaled dot-

product attention mechanism. In International Conference on

Database and Expert Systems Applications, pages 335–347. Springer,

2021.

[109] Rehab M Duwairi and Islam Qarqaz. Arabic sentiment analysis

using supervised classification. In 2014 International Conference on

Future Internet of Things and Cloud, pages 579–583. IEEE, 2014.

194

http://www.rdadolf.com/papers/daly2012report.pdf
http://www.rdadolf.com/papers/daly2012report.pdf

Bibliography

[110] Abhishek Dwaraki, Shachi Kumary, and Tilman Wolf. Automated

event identification from system logs using natural language pro-

cessing. In 2020 International Conference on Computing, Network-

ing and Communications (ICNC), pages 209–215. IEEE, 2020.

[111] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder. Learning

from failure across multiple clusters: A trace-driven approach

to understanding, predicting, and mitigating job terminations. In

2017 IEEE 37th International Conference on Distributed Computing

Systems (ICDCS), pages 1333–1344, 2017. doi: 10.1109/ICDCS.

2017.317.

[112] Oracle/Sun Grid Engine. https://www.oracle.com/

it-infrastructure/. Online.

[113] R Todd Evans, James C Browne, and William L Barth. Under-

standing application and system performance through system-wide

monitoring. In 2016 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), pages 1702–1710.

IEEE, 2016.

[114] Arif Abdurrahman Farisi, Yuliant Sibaroni, and Said Al Faraby.

Sentiment analysis on hotel reviews using multinomial naïve bayes

classifier. In Journal of Physics: Conference Series, volume 1192,

page 012024. IOP Publishing, 2019.

[115] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John

Grundy. Experience report: Anomaly detection of cloud application

operations using log and cloud metric correlation analysis. In

2015 IEEE 26th international symposium on software reliability

engineering (ISSRE), pages 24–34. IEEE, 2015.

[116] M Ali Fauzi. Random forest approach fo sentiment analysis in

indonesian. Indones. J. Electr. Eng. Comput. Sci, 12:46–50, 2018.

[117] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, and

Jelena Vlasenko. Failure prediction based on log files using random

195

https://www.oracle.com/it-infrastructure/
https://www.oracle.com/it-infrastructure/

Bibliography

indexing and support vector machines. Journal of Systems and

Software, 86(1):2–11, 2013.

[118] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution

anomaly detection in distributed systems through unstructured

log analysis. In 2009 ninth IEEE international conference on data

mining, pages 149–158. IEEE, 2009.

[119] Xiaoyu Fu, Rui Ren, Jianfeng Zhan, Wei Zhou, Zhen Jia, and

Gang Lu. Logmaster: Mining event correlations in logs of large-

scale cluster systems. In 2012 IEEE 31st Symposium on Reliable

Distributed Systems, pages 71–80. IEEE, 2012.

[120] Xiaoyu Fu, Rui Ren, Sally A. McKee, Jianfeng Zhan, and Ninghui

Sun. Digging deeper into cluster system logs for failure prediction

and root cause diagnosis. In 2014 IEEE International Conference

on Cluster Computing (CLUSTER), pages 103–112, 2014. doi:

10.1109/CLUSTER.2014.6968768.

[121] Xiaoyu Fu, Rui Ren, Sally A McKee, Jianfeng Zhan, and Ninghui

Sun. Digging deeper into cluster system logs for failure prediction

and root cause diagnosis. In 2014 IEEE International Conference

on Cluster Computing (CLUSTER), pages 103–112. IEEE, 2014.

[122] Zhe Fu, Shijie Zhou, and Jun Li. bitfa: A novel data structure for

fast and update-friendly regular expression matching. In Proceedings

of the SIGCOMM Posters and Demos, pages 130–132. 2017.

[123] Errin W Fulp, Glenn A Fink, and Jereme N Haack. Predicting

computer system failures using support vector machines. WASL, 8:

5–5, 2008.

[124] Philip Gage. A new algorithm for data compression. C Users

Journal, 12(2):23–38, 1994.

[125] Ana Gainaru, Franck Cappello, and William Kramer. Taming of

the shrew: Modeling the normal and faulty behaviour of large-

196

Bibliography

scale HPC systems. In 2012 IEEE 26th International Parallel and

Distributed Processing Symposium, pages 1168–1179. IEEE, 2012.

[126] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer.

Fault prediction under the microscope: A closer look into hpc

systems. In SC ’12: Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis,

pages 1–11, 2012. doi: 10.1109/SC.2012.57.

[127] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer.

Fault prediction under the microscope: A closer look into hpc

systems. In SC’12: Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis,

pages 1–11. IEEE, 2012.

[128] Ana Gainaru, Mohamed-Slim Bouguerra, Franck Cappello, Marc

Snir, and William T. C. Kramer. Navigating the blue waters :

Online failure prediction in the petascale era. 2013.

[129] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer.

Failure prediction for hpc systems and applications: Current situ-

ation and open issues. The International journal of high perform-

ance computing applications, 27(3):273–282, 2013.

[130] Sandipan Ganguly, Ashish Consul, Ali Khan, Brian Bussone, Jac-

queline Richards, and Alejandro Miguel. A practical approach

to hard disk failure prediction in cloud platforms: Big data

model for failure management in datacenters. In 2016 IEEE

Second International Conference on Big Data Computing Ser-

vice and Applications (BigDataService), pages 105–116, 2016. doi:

10.1109/BigDataService.2016.10.

[131] Jiechao Gao, Haoyu Wang, and Haiying Shen. Task failure predic-

tion in cloud data centers using deep learning. IEEE Transactions

on Services Computing, 2020.

[132] Peter Garraghan, Ismael Solis Moreno, Paul Townend, and Jie Xu.

An analysis of failure-related energy waste in a large-scale cloud

197

Bibliography

environment. IEEE Transactions on Emerging topics in Computing,

2(2):166–180, 2014.

[133] Babacar Gaye, Dezheng Zhang, and Aziguli Wulamu. Senti-

ment classification for employees reviews using regression vector-

stochastic gradient descent classifier (rv-sgdc). PeerJ Computer

Science, 7:e712, 2021.

[134] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning

to forget: Continual prediction with lstm. Neural computation, 12

(10):2451–2471, 2000.

[135] Markus Goldstein and Andreas Dengel. Histogram-based outlier

score (hbos): A fast unsupervised anomaly detection algorithm.

KI-2012: poster and demo track, 1:59–63, 2012.

[136] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

Generative adversarial networks. Communications of the ACM, 63

(11):139–144, 2014.

[137] Arepalli Peda Gopi, R Naga Sravana Jyothi, V Lakshman Narayana,

and K Satya Sandeep. Classification of tweets data based on

polarity using improved rbf kernel of svm. International Journal

of Information Technology, pages 1–16, 2020.

[138] Jim Gray and Andreas Reuter. Transaction processing: concepts

and techniques. Elsevier, 1992.

[139] Jiexing Gu, Ziming Zheng, Zhiling Lan, John White, Eva Hocks,

and Byung-Hoon Park. Dynamic meta-learning for failure predic-

tion in large-scale systems: A case study. In 2008 37th Interna-

tional Conference on Parallel Processing, pages 157–164, 2008. doi:

10.1109/ICPP.2008.17.

[140] Qiang Guan, Ziming Zhang, and Song Fu. Proactive failure manage-

ment by integrated unsupervised and semi-supervised learning for

dependable cloud systems. In 2011 Sixth International Conference

198

Bibliography

on Availability, Reliability and Security, pages 83–90, 2011. doi:

10.1109/ARES.2011.20.

[141] Qiang Guan, Ziming Zhang, and Song Fu. Ensemble of bayesian

predictors and decision trees for proactive failure management in

cloud computing systems. J. Commun., 7(1):52–61, 2012.

[142] Lin Gui, Yu Zhou, Ruifeng Xu, Yulan He, and Qin Lu. Learning

representations from heterogeneous network for sentiment classi-

fication of product reviews. Knowledge-Based Systems, 124:34–45,

2017.

[143] Luanzheng Guo, Dong Li, Ignacio Laguna, and Martin Schulz.

Fliptracker: Understanding natural error resilience in hpc applic-

ations. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis, SC

’18. IEEE Press, 2018.

[144] Yicheng Guo, Yujin Wen, Congwei Jiang, Yixin Lian, and Yi Wan.

Detecting log anomalies with multi-head attention (lama). arXiv

preprint arXiv:2101.02392, 2021.

[145] Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James Rogers,

and Don Maxwell. Understanding and exploiting spatial properties

of system failures on extreme-scale hpc systems. In 2015 45th An-

nual IEEE/IFIP International Conference on Dependable Systems

and Networks, pages 37–44. IEEE, 2015.

[146] Nentawe Gurumdimma and Arshad Jhumka. Detection of recovery

patterns in cluster systems using resource usage data. In 2017

IEEE 22nd Pacific Rim International Symposium on Dependable

Computing (PRDC), pages 58–67. IEEE, 2017.

[147] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward

Chuah, and James Browne. Towards detecting patterns in failure

logs of large-scale distributed systems. In 2015 IEEE International

Parallel and Distributed Processing Symposium Workshop, pages

1052–1061. IEEE, 2015.

199

Bibliography

[148] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward

Chuah, and James Browne. Crude: Combining resource usage data

and error logs for accurate error detection in large-scale distributed

systems. In 2016 IEEE 35th Symposium on Reliable Distributed

Systems (SRDS), pages 51–60. IEEE, 2016.

[149] Nentawe Gurumdimma, Gideon Dadik Bibu, Desmond Bala Bis-

andu, and Mammuan Titus Alams. Identifying recovery patterns

from resource usage data of cluster systems. Science World Journal,

13(4):87–94, 2018.

[150] Nentawe Y Gurumdimma. Towards efficient error detection in

large-scale HPC systems. PhD thesis, University of Warwick, 2016.

[151] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin

Heitmann, David Daniel, Patricia Fasel, Vitali Morozov, George

Zagaris, Tom Peterka, et al. Hacc: Simulating sky surveys on

state-of-the-art supercomputing architectures. New Astronomy, 42:

49–65, 2016.

[152] John L Hammond, Tommy Minyard, and Jim Browne. End-to-end

framework for fault management for open source clusters: Ranger.

In Proceedings of the 2010 TeraGrid Conference, pages 1–6, 2010.

[153] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei

Jiang, and Abdullah Mueen. Logmine: Fast pattern recognition

for log analytics. In Proceedings of the 25th ACM International

on Conference on Information and Knowledge Management, pages

1573–1582, 2016.

[154] Hongyu Han, Jianpei Zhang, Jing Yang, Yiran Shen, and Yongshi

Zhang. Generate domain-specific sentiment lexicon for review

sentiment analysis. Multimedia Tools and Applications, 77:21265–

21280, 2018.

[155] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns

without candidate generation. ACM sigmod record, 29(2):1–12,

2000.

200

Bibliography

[156] Tanvi Hardeniya and Dilipkumar A Borikar. Dictionary based

approach to sentiment analysis-a review. International Journal

of Advanced Engineering, Management and Science, 2(5):239438,

2016.

[157] Louise Harding, Fabien Wernli, and Frédéric Suter. Sequence-

rtg: Efficient and production-ready pattern mining in system log

messages. In 2021 IEEE International Conference on Cluster

Computing (CLUSTER), pages 623–631. IEEE, 2021.

[158] Shayan Hashemi and Mika Mäntylä. Onelog: Towards end-to-

end training in software log anomaly detection. arXiv preprint

arXiv:2104.07324, 2021.

[159] Shayan Hashemi and Mika Mäntylä. Sialog: detecting anomalies

in software execution logs using the siamese network. Automated

Software Engineering, 29(2):1–28, 2022.

[160] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain:

An online log parsing approach with fixed depth tree. In 2017

IEEE International Conference on Web Services (ICWS), pages

33–40. IEEE, 2017.

[161] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience

report: System log analysis for anomaly detection. In 2016 IEEE

27th International Symposium on Software Reliability Engineering

(ISSRE), pages 207–218. IEEE, 2016.

[162] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R

Lyu, and Dongmei Zhang. Identifying impactful service system

problems via log analysis. In Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pages

60–70, 2018.

[163] Hani D Hejazi, Ahmed A Khamees, Muhammad Alshurideh, and

Said A Salloum. Arabic text generation: Deep learning for poetry

201

Bibliography

synthesis. In Advanced Machine Learning Technologies and Ap-

plications: Proceedings of AMLTA 2021, pages 104–116. Springer,

2021.

[164] ChukFong Ho, Masrah Azrifah Azmi Murad, Shyamala Doraisamy,

and Rabiah Abdul Kadir. Extracting lexical and phrasal para-

phrases: a review of the literature. Artificial Intelligence Review,

42:851–894, 2014.

[165] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[166] Soudamini Hota and Sudhir Pathak. Knn classifier based approach

for multi-class sentiment analysis of twitter data. Int. J. Eng.

Technol, 7(3):1372–1375, 2018.

[167] Lihan Hu, Lixin Han, Zhenyuan Xu, Tianming Jiang, and Huijun

Qi. A disk failure prediction method based on lstm network due to

its individual specificity. Procedia Computer Science, 176:791–799,

2020.

[168] Yonghua Huo, Jing Dong, Zhongdi Ge, Ping Xie, Na An, and Yang

Yang. Iwapriori: An association rule mining and self-updating

method based on weighted increment. In 2020 21st Asia-Pacific Net-

work Operations and Management Symposium (APNOMS), pages

167–172. IEEE, 2020.

[169] Clayton J Hutto and Eric Gilbert. Vader: A parsimonious rule-

based model for sentiment analysis of social media text. In Eighth

international AAAI conference on weblogs and social media, 2014.

[170] Touseef Iqbal and Shaima Qureshi. The survey: Text generation

models in deep learning. Journal of King Saud University-Computer

and Information Sciences, 34(6):2515–2528, 2022.

[171] Mohammad Saiful Islam and Andriy Miranskyy. Anomaly detection

in cloud components. In 2020 IEEE 13th International Conference

on Cloud Computing (CLOUD), pages 1–3. IEEE, 2020.

202

Bibliography

[172] Tariqul Islam and Dakshnamoorthy Manivannan. Predicting ap-

plication failure in cloud: A machine learning approach. In 2017

IEEE International Conference on Cognitive Computing (ICCC),

pages 24–31, 2017. doi: 10.1109/IEEE.ICCC.2017.11.

[173] Tariqul Islam and Dakshnamoorthy Manivannan. Predicting ap-

plication failure in cloud: A machine learning approach. In 2017

IEEE International Conference on Cognitive Computing (ICCC),

pages 24–31. IEEE, 2017.

[174] David Jauk, Dai Yang, and Martin Schulz. Predicting faults in high

performance computing systems: An in-depth survey of the state-

of-the-practice. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis,

pages 1–13, 2019.

[175] Arshad Jhumka. Automated design of efficient fail-safe fault toler-

ance. PhD thesis, Technische Universität, 2004.

[176] Arshad Jhumka. Dependability in service-oriented computing.

Agent-Based Service-Oriented Computing, pages 141–160, 2010.

[177] Arshad Jhumka and Matt Leeke. Issues on the design of efficient

fail-safe fault tolerance. In 2009 20th International Symposium on

Software Reliability Engineering, pages 155–164. IEEE, 2009.

[178] Arshad Jhumka and Neeraj Suri. Designing efficient fail-safe mul-

titolerant systems. In Formal Techniques for Networked and Dis-

tributed Systems-FORTE 2005: 25th IFIP WG 6.1 International

Conference, Taipei, Taiwan, October 2-5, 2005. Proceedings 25,

pages 428–442. Springer, 2005.

[179] Arshad Jhumka, Martin Hiller, and Neeraj Suri. Assessing inter-

modular error propagation in distributed software. In Proceedings

20th IEEE Symposium on Reliable Distributed Systems, pages 152–

161. IEEE, 2001.

203

Bibliography

[180] Arshad Jhumka, Felix C Gärtner, Christof Fetzer, and Neeraj Suri.

On systematic design of fast and perfect detectors. Technical report,

2002.

[181] Arshad Jhumka, Martin Hiller, and Neeraj Suri. Component-based

synthesis of dependable embedded software. In Formal Techniques

in Real-Time and Fault-Tolerant Systems: 7th International Sym-

posium, FTRTFT 2002 Co-sponsored by IFIP WG 2.2 Oldenburg,

Germany, September 9–12, 2002 Proceedings 7, pages 111–128.

Springer, 2002.

[182] Arshad Jhumka, Neeraj Suri, and Martin Hiller. A framework for

the design and validation of efficient fail-safe fault-tolerant programs.

In Software and Compilers for Embedded Systems: 7th International

Workshop, SCOPES 2003, Vienna, Austria, September 24-26, 2003.

Proceedings 7, pages 182–197. Springer, 2003.

[183] Arshad Jhumka, Martin Hiller, and Neeraj Suri. An approach

for designing and assessing detectors for dependable component-

based systems. In Eighth IEEE International Symposium on High

Assurance Systems Engineering, 2004. Proceedings., pages 69–78.

IEEE Computer Society, 2004.

[184] Arshad Jhumka, Felix Freiling, Christof Fetzer, and Neeraj Suri.

An approach to synthesise safe systems. International Journal of

Security and Networks, 1(1-2):62–74, 2006.

[185] Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora, and Gilbert

Hamann. Abstracting execution logs to execution events for enter-

prise applications (short paper). In 2008 The Eighth International

Conference on Quality Software, pages 181–186. IEEE, 2008.

[186] Sian Jin, Pascal Grosset, Christopher M Biwer, Jesus Pulido, Ji-

annan Tian, Dingwen Tao, and James Ahrens. Understanding

gpu-based lossy compression for extreme-scale cosmological sim-

ulations. In 2020 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 105–115. IEEE, 2020.

204

Bibliography

[187] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze,

Hérve Jégou, and Tomas Mikolov. Fasttext. zip: Compressing text

classification models. arXiv preprint arXiv:1612.03651, 2016.

[188] Daniel Jurafsky and James H Martin. Speech and language pro-

cessing: An introduction to natural language processing, computa-

tional linguistics, and speech recognition.

[189] Daniel Jurafsky and James H Martin. Speech and language pro-

cessing. Chapter A: Hidden Markov Models (Draft of October 2,

2019). Retrieved October, 19:2019, 2019.

[190] Mohammed Kaity and Vimala Balakrishnan. Sentiment lexicons

and non-english languages: a survey. Knowledge and Information

Systems, 62(12):4445–4480, 2020.

[191] Irfan Ali Kandhro, Muhammad Ameen Chhajro, Kamlesh Kumar,

Haque Nawaz Lashari, and Usman Khan. Student feedback sen-

timent analysis model using various machine learning schemes: a

review. Indian Journal of Science and Technology, 12(14):1–9,

2019.

[192] P Karthika, R Murugeswari, and R Manoranjithem. Sentiment

analysis of social media network using random forest algorithm.

In 2019 IEEE international conference on intelligent techniques

in control, optimization and signal processing (INCOS), pages 1–5.

IEEE, 2019.

[193] Chhinder Kaur and Anand Sharma. Sentiment analysis of tweets

on social issues using machine learning approach. International

Journal, 9(4), 2020.

[194] Fatema Khatun, SM Mazharul Hoque Chowdhury, Zerin Nasrin

Tumpa, SK Fazlee Rabby, Syed Akhter Hossain, and Sheikh Abujar.

Sentiment analysis of amazon book review data using lexicon based

analysis. In Computational Vision and Bio-Inspired Computing:

ICCVBIC 2019, pages 1303–1309. Springer, 2020.

205

Bibliography

[195] Subhendu Khatuya, Niloy Ganguly, Jayanta Basak, Madhumita

Bharde, and Bivas Mitra. Adele: Anomaly detection from event

log empiricism. In IEEE INFOCOM 2018-IEEE Conference on

Computer Communications, pages 2114–2122. IEEE, 2018.

[196] Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi. Globally coher-

ent text generation with neural checklist models. In Proceedings

of the 2016 conference on empirical methods in natural language

processing, pages 329–339, 2016.

[197] Tatsuaki Kimura, Keisuke Ishibashi, Tatsuya Mori, Hiroshi Sawada,

Tsuyoshi Toyono, Ken Nishimatsu, Akio Watanabe, Akihiro

Shimoda, and Kohei Shiomoto. Spatio-temporal factorization of log

data for understanding network events. In IEEE INFOCOM 2014-

IEEE Conference on Computer Communications, pages 610–618.

IEEE, 2014.

[198] Tatsuaki Kimura, Akio Watanabe, Tsuyoshi Toyono, and Keisuke

Ishibashi. Proactive failure detection learning generation patterns of

large-scale network logs. IEICE Transactions on Communications,

102(2):306–316, 2019.

[199] Kaitlin Kirasich, Trace Smith, and Bivin Sadler. Random forest vs

logistic regression: binary classification for heterogeneous datasets.

SMU Data Science Review, 1(3):9, 2018.

[200] Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mohammad. Sen-

timent analysis of short informal texts. Journal of Artificial Intel-

ligence Research, 50:723–762, 2014.

[201] Jannis Klinkenberg, Christian Terboven, Stefan Lankes, and Mat-

thias S Müller. Data mining-based analysis of hpc center operations.

In 2017 IEEE International Conference on Cluster Computing

(CLUSTER), pages 766–773. IEEE, 2017.

[202] Jannis Klinkenberg, Christian Terboven, Stefan Lankes, and Mat-

thias S. Müller. Data mining-based analysis of hpc center operations.

206

Bibliography

In 2017 IEEE International Conference on Cluster Computing

(CLUSTER), pages 766–773, 2017. doi: 10.1109/CLUSTER.2017.

23.

[203] Satoru Kobayashi, Yuya Yamashiro, Kazuki Otomo, and Kensuke

Fukuda. amulog: A general log analysis framework for diverse tem-

plate generation methods. In 2020 16th International Conference

on Network and Service Management (CNSM), pages 1–5. IEEE,

2020.

[204] Zhiling Lan, Ziming Zheng, and Yawei Li. Toward automated

anomaly identification in large-scale systems. IEEE Transactions

on Parallel and Distributed Systems, 21(2):174–187, 2009.

[205] Jean-Claude Laprie. Dependable computing: Concepts, limits,

challenges. In Special issue of the 25th international symposium on

fault-tolerant computing, pages 42–54. Citeseer, 1995.

[206] Van-Hoang Le and Hongyu Zhang. Log-based anomaly detection

without log parsing. arXiv preprint arXiv:2108.01955, 2021.

[207] Yukyung Lee, Jina Kim, and Pilsung Kang. Lanobert: System log

anomaly detection based on bert masked language model. arXiv

preprint arXiv:2111.09564, 2021.

[208] Dan Li and Jiang Qian. Text sentiment analysis based on long

short-term memory. In 2016 First IEEE International Conference

on Computer Communication and the Internet (ICCCI), pages

471–475. IEEE, 2016.

[209] Longhao Li and Taieb Znati. Atfp: Attention-based failure predictor

for extreme-scale computing. In 2022 13th International Conference

on Reliability, Maintainability, and Safety (ICRMS), pages 23–27.

IEEE, 2022.

[210] Yangguang Li, Zhen Ming Jiang, Heng Li, Ahmed E Hassan, Cheng

He, Ruirui Huang, Zhengda Zeng, Mian Wang, and Pinan Chen.

Predicting node failures in an ultra-large-scale cloud computing

207

Bibliography

platform: an aiops solution. ACM Transactions on Software En-

gineering and Methodology (TOSEM), 29(2):1–24, 2020.

[211] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu.

Copod: copula-based outlier detection. In 2020 IEEE international

conference on data mining (ICDM), pages 1118–1123. IEEE, 2020.

[212] Yinglung Liang, Yanyong Zhang, A. Sivasubramaniam, M. Jette,

and R. Sahoo. Bluegene/l failure analysis and prediction models.

In International Conference on Dependable Systems and Networks

(DSN’06), pages 425–434, 2006. doi: 10.1109/DSN.2006.18.

[213] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Morris

Jette, and Ramendra Sahoo. Bluegene/l failure analysis and predic-

tion models. In International Conference on Dependable Systems

and Networks (DSN’06), pages 425–434. IEEE, 2006.

[214] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo.

Failure prediction in IBM bluegene/l event logs. In Seventh IEEE

International Conference on Data Mining (ICDM 2007), pages

583–588. IEEE, 2007.

[215] Chinghway Lim, Navjot Singh, and Shalini Yajnik. A log mining

approach to failure analysis of enterprise telephony systems. In

2008 IEEE International Conference on Dependable Systems and

Networks With FTCS and DCC (DSN), pages 398–403. IEEE, 2008.

[216] Chin-Yew Lin. Rouge: A package for automatic evaluation of

summaries. In Text summarization branches out, pages 74–81,

2004.

[217] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and

Xuewei Chen. Log clustering based problem identification for

online service systems. In 2016 IEEE/ACM 38th International

Conference on Software Engineering Companion (ICSE-C), pages

102–111. IEEE, 2016.

208

Bibliography

[218] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin

Sui, Yong Xu, Jian-Guang Lou, Chenggang Li, Youjiang Wu, Ran-

dolph Yao, et al. Predicting node failure in cloud service systems.

In Proceedings of the 2018 26th ACM joint meeting on European

software engineering conference and symposium on the foundations

of software engineering, pages 480–490, 2018.

[219] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based

anomaly detection. ACM Transactions on Knowledge Discovery

from Data (TKDD), 6(1):1–39, 2012.

[220] Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu. Learning

semantic word embeddings based on ordinal knowledge constraints.

In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Confer-

ence on Natural Language Processing (Volume 1: Long Papers),

pages 1501–1511, 2015.

[221] Rui-Tao Liu and Zuo-Ning Chen. A large-scale study of failures

on petascale supercomputers. Journal of Computer Science and

Technology, 33(1):24–41, 2018.

[222] Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang

Sui. Table-to-text generation by structure-aware seq2seq learning.

In Proceedings of the AAAI conference on artificial intelligence,

volume 32, 2018.

[223] Jian-Guang Lou, Qiang Fu, Shenqi Yang, Ye Xu, and Jiang Li.

Mining invariants from console logs for system problem detection.

In 2010 USENIX Annual Technical Conference (USENIX ATC 10),

2010.

[224] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. Cloudraid: hunting

concurrency bugs in the cloud via log-mining. In Proceedings of

the 2018 26th ACM joint meeting on European software engin-

eering conference and symposium on the foundations of software

engineering, pages 3–14, 2018.

209

Bibliography

[225] Sidi Lu, Bing Luo, Tirthak Patel, Yongtao Yao, Devesh Tiwari,

and Weisong Shi. Making disk failure predictions smarter! In 18th

{USENIX} Conference on File and Storage Technologies ({FAST}

20), pages 151–167, 2020.

[226] Siyang Lu, BingBing Rao, Xiang Wei, Byungchul Tak, Long Wang,

and Liqiang Wang. Log-based abnormal task detection and root

cause analysis for spark. In 2017 IEEE International Conference

on Web Services (ICWS), pages 389–396. IEEE, 2017.

[227] Siyang Lu, Xiang Wei, Yandong Li, and Liqiang Wang. Detect-

ing anomaly in big data system logs using convolutional neural

network. In 2018 IEEE 16th Intl Conf on Dependable, Auto-

nomic and Secure Computing, 16th Intl Conf on Pervasive In-

telligence and Computing, 4th Intl Conf on Big Data Intelli-

gence and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech), pages 151–158. IEEE,

2018.

[228] Xu LU, Hui qiang WANG, Ren jie ZHOU, and Bao yu GE. Auto-

nomic failure prediction based on manifold learning for large-

scale distributed systems. The Journal of China Universities

of Posts and Telecommunications, 17(4):116–124, 2010. ISSN

1005-8885. doi: https://doi.org/10.1016/S1005-8885(09)60497-0.

URL https://www.sciencedirect.com/science/article/pii/

S1005888509604970.

[229] Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer, Surendar

Chandra, and Windsor Hsu. Raidshield: Characterizing, monitor-

ing, and proactively protecting against disk failures. In Proceedings

of the 13th USENIX Conference on File and Storage Technologies,

FAST’15, page 241–256, USA, 2015. USENIX Association. ISBN

9781931971201.

[230] Ao Ma, Rachel Traylor, Fred Douglis, Mark Chamness, Guanlin Lu,

Darren Sawyer, Surendar Chandra, and Windsor Hsu. Raidshield:

210

https://www.sciencedirect.com/science/article/pii/S1005888509604970
https://www.sciencedirect.com/science/article/pii/S1005888509604970

Bibliography

characterizing, monitoring, and proactively protecting against disk

failures. ACM Transactions on Storage (TOS), 11(4):1–28, 2015.

[231] Yukun Ma, Haiyun Peng, Tahir Khan, Erik Cambria, and Amir

Hussain. Sentic lstm: a hybrid network for targeted aspect-based

sentiment analysis. Cognitive Computation, 10:639–650, 2018.

[232] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E

Milios. Clustering event logs using iterative partitioning. In Pro-

ceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 1255–1264, 2009.

[233] Addi Malviya-Thakur, David E Bernholdt, William F Godoy,

Gregory R Watson, Mathieu Doucet, Mark A Coletti, David M Ro-

gers, Marshall McDonnell, Jay Jay Billings, and Barney Maccabe.

Research software engineering at oak ridge national laboratory.

Computing in Science & Engineering, 2023.

[234] Angelos K Marnerides, Simon Malinowski, Ricardo Morla, and

Hyong S Kim. Fault diagnosis in dsl networks using support vector

machines. Computer Communications, 62:72–84, 2015.

[235] Maha Mdini, Gwendal Simon, Alberto Blanc, and Julien Lecoeuvre.

Arcd: a solution for root cause diagnosis in mobile networks. In 2018

14th International Conference on Network and Service Management

(CNSM), pages 280–284. IEEE, 2018.

[236] Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment ana-

lysis algorithms and applications: A survey. Ain Shams engineering

journal, 5(4):1093–1113, 2014.

[237] Weibin Meng, Ying Liu, Shenglin Zhang, Dan Pei, Hui Dong, Lei

Song, and Xulong Luo. Device-agnostic log anomaly classifica-

tion with partial labels. In 2018 IEEE/ACM 26th International

Symposium on Quality of Service (IWQoS), pages 1–6. IEEE, 2018.

[238] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei,

Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al.

211

Bibliography

Loganomaly: Unsupervised detection of sequential and quantitative

anomalies in unstructured logs. In IJCAI, volume 19, pages 4739–

4745, 2019.

[239] Weibin Meng, Ying Liu, Yuheng Huang, Shenglin Zhang, Federico

Zaiter, Bingjin Chen, and Dan Pei. A semantic-aware representation

framework for online log analysis. In 2020 29th International

Conference on Computer Communications and Networks (ICCCN),

pages 1–7. IEEE, 2020.

[240] Weibin Meng, Ying Liu, Federico Zaiter, Shenglin Zhang, Yihao

Chen, Yuzhe Zhang, Yichen Zhu, En Wang, Ruizhi Zhang, Shimin

Tao, et al. Logparse: Making log parsing adaptive through word

classification. In 2020 29th International Conference on Computer

Communications and Networks (ICCCN), pages 1–9. IEEE, 2020.

[241] Weibin Meng, Ying Liu, Shenglin Zhang, Federico Zaiter, Yuzhe

Zhang, Yuheng Huang, Zhaoyang Yu, Yuzhi Zhang, Lei Song,

Ming Zhang, et al. Logclass: Anomalous log identification and

classification with partial labels. IEEE Transactions on Network

and Service Management, 2021.

[242] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel

Briand, and Raimondas Sasnauskas. A search-based approach for

accurate identification of log message formats. In 2018 IEEE/ACM

26th International Conference on Program Comprehension (ICPC),

pages 167–16710. IEEE, 2018.

[243] Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and Saurabh Bagchi.

Partial-parallel-repair (ppr) a distributed technique for repairing

erasure coded storage. In Proceedings of the eleventh European

conference on computer systems, pages 1–16, 2016.

[244] Saif Mohammad, Cody Dunne, and Bonnie Dorr. Generating high-

coverage semantic orientation lexicons from overtly marked words

and a thesaurus. In Proceedings of the 2009 conference on empirical

methods in natural language processing, pages 599–608, 2009.

212

Bibliography

[245] Bashir Mohammed, Irfan Awan, Hassan Ugail, and Muhammad

Younas. Failure prediction using machine learning in a virtualised

HPC system and application. Cluster Computing, 22(2):471–485,

2019.

[246] Marrin Molan, Andrea Borghesi, Francesco Beneventi, Massimiliano

Guarrasi, and Andrea Bartolini. An explainable model for fault

detection in hpc systems. In International conference on high

performance computing, pages 378–391. Springer, 2021.

[247] Cristian Molinaro, Vincenzo Moscato, Antonio Picariello, Andrea

Pugliese, Antonino Rullo, and VS Subrahmanian. Padua: Parallel

architecture to detect unexplained activities. ACM Transactions

on Internet Technology (TOIT), 14(1):1–28, 2014.

[248] Alejandro Moreo, M Romero, JL Castro, and Jose Manuel Zurita.

Lexicon-based comments-oriented news sentiment analyzer system.

Expert Systems with Applications, 39(10):9166–9180, 2012.

[249] Gihan R Mudalige, IZ Reguly, Satya P Jammy, Christian T Jacobs,

Michael B Giles, and Neil D Sandham. Large-scale performance of

a dsl-based multi-block structured-mesh application for direct nu-

merical simulation. Journal of Parallel and Distributed Computing,

131:130–146, 2019.

[250] Gihan R Mudalige, Istvan Z Reguly, Arun Prabhakar, Dario Amir-

ante, Leigh Lapworth, and Stephen A Jarvis. Towards virtual

certification of gas turbine engines with performance-portable sim-

ulations. In 2022 IEEE International Conference on Cluster Com-

puting (CLUSTER), pages 206–217. IEEE, 2022.

[251] GSN Murthy, Shanmukha Rao Allu, Bhargavi Andhavarapu,

Mounika Bagadi, and Mounika Belusonti. Text based sentiment

analysis using lstm. Int. J. Eng. Res. Tech. Res, 9(05), 2020.

[252] Meiyappan Nagappan and Mladen A Vouk. Abstracting log lines

to log event types for mining software system logs. In 2010 7th

213

Bibliography

IEEE Working Conference on Mining Software Repositories (MSR

2010), pages 114–117. IEEE, 2010.

[253] Nithin Nakka, Ankit Agrawal, and Alok Choudhary. Predicting

node failure in high performance computing systems from failure

and usage logs. In 2011 IEEE International Symposium on Parallel

and Distributed Processing Workshops and Phd Forum, pages 1557–

1566, 2011. doi: 10.1109/IPDPS.2011.310.

[254] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta,

and Subhrajit Bhattacharya. Anomaly detection using program

control flow graph mining from execution logs. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 215–224, 2016.

[255] Pansy Nandwani and Rupali Verma. A review on sentiment analysis

and emotion detection from text. Social Network Analysis and

Mining, 11(1):81, 2021.

[256] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge

Cardoso, and Odej Kao. Self-supervised log parsing. arXiv preprint

arXiv:2003.07905, 2020.

[257] Alessio Netti, Zeynep Kiziltan, Ozalp Babaoglu, Alina Sîrbu, An-

drea Bartolini, and Andrea Borghesi. A machine learning approach

to online fault classification in hpc systems. Future Generation

Computer Systems, 110:1009–1022, 2020.

[258] B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari.

Characterizing temperature, power, and soft-error behaviors in data

center systems: Insights, challenges, and opportunities. In 2017

IEEE 25th International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MAS-

COTS), pages 22–31, 2017.

[259] Bin Nie, Ji Xue, Saurabh Gupta, Tirthak Patel, Christian En-

gelmann, Evgenia Smirni, and Devesh Tiwari. Machine learning

214

Bibliography

models for GPU error prediction in a large scale HPC system. In

2018 48th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN), pages 95–106. IEEE, 2018.

[260] Xia Ning, Geoff Jiang, Haifeng Chen, and Kenji Yoshihira. 1hlaer:

a system for heterogeneous log analysis. 2014.

[261] Gang Niu, Marthinus Christoffel du Plessis, Tomoya Sakai, Yao

Ma, and Masashi Sugiyama. Theoretical comparisons of positive-

unlabeled learning against positive-negative learning. Advances in

neural information processing systems, 29, 2016.

[262] Ahmed Assim Nsaif and Dhafar Hamed Abd. Sentiment analysis

of political post classification based on xgboost. In Proceedings

of International Conference on Computing and Communication

Networks: ICCCN 2021, pages 177–188. Springer, 2022.

[263] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.

Bleu: a method for automatic evaluation of machine translation.

In Proceedings of the 40th annual meeting of the Association for

Computational Linguistics, pages 311–318, 2002.

[264] Wenjie Pei, Tadas Baltrusaitis, David MJ Tax, and Louis-Philippe

Morency. Temporal attention-gated model for robust sequence

classification. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 6730–6739, 2017.

[265] Alejandro Pelaez, Andres Quiroz, James C. Browne, Edward Chuah,

and Manish Parashar. Online failure prediction for hpc resources

using decentralized clustering. In 2014 21st International Confer-

ence on High Performance Computing (HiPC), pages 1–9, 2014.

doi: 10.1109/HiPC.2014.7116903.

[266] Teerat Pitakrat, Dušan Okanović, André van Hoorn, and Lars Grun-

ske. Hora: Architecture-aware online failure prediction. Journal of

Systems and Software, 137:669–685, 2018.

215

Bibliography

[267] Daniel Plaisted and Mengjun Xie. Dip: a log parser based on"

disagreement index token" conditions. In Proceedings of the 2022

ACM Southeast Conference, pages 113–122, 2022.

[268] Marc Platini, Thomas Ropars, Benoit Pelletier, and Noel De Palma.

Logflow: Simplified log analysis for large scale systems. In Interna-

tional Conference on Distributed Computing and Networking 2021,

pages 116–125, 2021.

[269] Guang Qiu, Xiaofei He, Feng Zhang, Yuan Shi, Jiajun Bu, and Chun

Chen. Dasa: dissatisfaction-oriented advertising based on sentiment

analysis. Expert Systems with Applications, 37(9):6182–6191, 2010.

[270] Tongqing Qiu, Zihui Ge, Dan Pei, Jia Wang, and Jun Xu. What

happened in my network: mining network events from router syslogs.

In Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement, pages 472–484, 2010.

[271] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever,

et al. Improving language understanding by generative pre-training.

2018.

[272] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

Ilya Sutskever, et al. Language models are unsupervised multitask

learners. OpenAI blog, 1(8):9, 2019.

[273] Trishna Rajkumar and Johnny Öberg. Anode: A log-based self-

supervised framework to detect scrubber failures in sram-fpga. In

2022 IEEE 27th Pacific Rim International Symposium on Depend-

able Computing (PRDC), pages 164–171. IEEE, 2022.

[274] Ajay Rawat, Rama Sushil, Amit Agarwal, and Afzal Sikander. A

new approach for vm failure prediction using stochastic model in

cloud. IETE Journal of research, 67(2):165–172, 2021.

[275] Rui Ren, Jinheng Li, Yan Yin, and Shuai Tian. Failure prediction

for large-scale clusters logs via mining frequent patterns. In Bench-

216

Bibliography

Council International Federated Intelligent Computing and Block

Chain Conferences, pages 147–165. Springer, 2020.

[276] Arash Rezaei, Frank Mueller, Paul Hargrove, and Eric Roman.

Dino: Divergent node cloning for sustained redundancy in hpc.

Journal of Parallel and Distributed Computing, 109:350–362, 2017.

[277] Stephen Robertson. Understanding inverse document frequency:

on theoretical arguments for idf. Journal of documentation, 2004.

[278] Ananya B Sai, Akash Kumar Mohankumar, and Mitesh M Khapra.

A survey of evaluation metrics used for nlg systems. arXiv preprint

arXiv:2008.12009, 2020.

[279] Felix Salfner and Miroslaw Malek. Using hidden semi-markov

models for effective online failure prediction. In 2007 26th IEEE

International Symposium on Reliable Distributed Systems (SRDS

2007), pages 161–174. IEEE, 2007.

[280] Amina Samih, Abderrahim Ghadi, and Abdelhadi Fennan. En-

hanced sentiment analysis based on improved word embeddings

and xgboost. International Journal of Electrical and Computer

Engineering, 13(2):1827, 2023.

[281] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice

search. In 2012 IEEE international conference on acoustics, speech

and signal processing (ICASSP), pages 5149–5152. IEEE, 2012.

[282] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural

networks. IEEE transactions on Signal Processing, 45(11):2673–

2681, 1997.

[283] Fabrizio Sebastiani and Andrea Esuli. Sentiwordnet: A publicly

available lexical resource for opinion mining. In Proceedings of the

5th international conference on language resources and evaluation,

pages 417–422. European Language Resources Association (ELRA)

Genoa, Italy, 2006.

217

Bibliography

[284] Mina Sedaghat, Eddie Wadbro, John Wilkes, Sara De Luna, Oleg

Seleznjev, and Erik Elmroth. Diehard: reliable scheduling to survive

correlated failures in cloud data centers. In 2016 16th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), pages 52–59. IEEE, 2016.

[285] Febrian Setianto, Erion Tsani, Fatima Sadiq, Georgios Domalis,

Dimitris Tsakalidis, and Panos Kostakos. Gpt-2c: A gpt-2 parser

for cowrie honeypot logs. arXiv preprint arXiv:2109.06595, 2021.

[286] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn)

and long short-term memory (lstm) network. Physica D: Nonlinear

Phenomena, 404:132306, 2020.

[287] Keiichi Shima. Length matters: Clustering system log messages

using length of words. arXiv preprint arXiv:1611.03213, 2016.

[288] Kush Shrivastava and Shishir Kumar. A sentiment analysis system

for the hindi language by integrating gated recurrent unit with

genetic algorithm. Int. Arab J. Inf. Technol., 17(6):954–964, 2020.

[289] Nikolay A. Simakov, Joseph P. White, Robert L. DeLeon, Steven M.

Gallo, Matthew D. Jones, Jeffrey T. Palmer, Benjamin Plessinger,

and Thomas R. Furlani. A workload analysis of nsf’s innovative

hpc resources using xdmod, 2018.

[290] Jyoti Prakash Singh, Seda Irani, Nripendra P Rana, Yogesh K

Dwivedi, Sunil Saumya, and Pradeep Kumar Roy. Predicting the

“helpfulness” of online consumer reviews. Journal of Business

Research, 70:346–355, 2017.

[291] Alina Sîrbu and Özalp Babaoglu. Towards operator-less data centers

through data-driven, predictive, proactive autonomics. CoRR,

abs/1606.04456, 2016. URL http://arxiv.org/abs/1606.04456.

[292] Donghwan Song, Adrian Matias Chung Baek, and Namhun Kim.

Forecasting stock market indices using padding-based fourier trans-

218

http://arxiv.org/abs/1606.04456

Bibliography

form denoising and time series deep learning models. IEEE Access,

9:83786–83796, 2021.

[293] Junseok Song, Kyung Tae Kim, Byungjun Lee, Sangyoung Kim,

and Hee Yong Youn. A novel classification approach based on naïve

bayes for twitter sentiment analysis. KSII Transactions on Internet

and Information Systems (TIIS), 11(6):2996–3011, 2017.

[294] Mbarka Soualhia, Foutse Khomh, and Sofiene Tahar. Predicting

scheduling failures in the cloud: A case study with google clusters

and hadoop on amazon emr. In 2015 IEEE 17th International

Conference on High Performance Computing and Communications,

2015 IEEE 7th International Symposium on Cyberspace Safety

and Security, and 2015 IEEE 12th International Conference on

Embedded Software and Systems, pages 58–65, 2015. doi: 10.1109/

HPCC-CSS-ICESS.2015.170.

[295] Hudan Studiawan, Ferdous Sohel, and Christian Payne. Anom-

aly detection in operating system logs with deep learning-based

sentiment analysis. IEEE Transactions on Dependable and Secure

Computing, 18(5):2136–2148, 2020.

[296] Hudan Studiawan, Ferdous Sohel, and Christian Payne. Sentiment

analysis in a forensic timeline with deep learning. IEEE Access, 8:

60664–60675, 2020.

[297] Aixin Sun. Short text classification using very few words. In

Proceedings of the 35th international ACM SIGIR conference on

Research and development in information retrieval, pages 1145–

1146, 2012.

[298] Luchen Tan, Haotian Zhang, Charles Clarke, and Mark Smucker.

Lexical comparison between wikipedia and twitter corpora by using

word embeddings. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 2: Short

Papers), pages 657–661, 2015.

219

Bibliography

[299] Shimin Tao, Weibin Meng, Yimeng Cheng, Yichen Zhu, Ying Liu,

Chunning Du, Tao Han, Yongpeng Zhao, Xiangguang Wang, and

Hao Yang. Logstamp: Automatic online log parsing based on

sequence labelling. ACM SIGMETRICS Performance Evaluation

Review, 49(4):93–98, 2022.

[300] Harsh Thakkar and Dhiren Patel. Approaches for sentiment analysis

on twitter: A state-of-art study. arXiv preprint arXiv:1512.01043,

2015.

[301] Joshua Thompson, David W. Dreisigmeyer, Terry Jones, Michael

Kirby, and Joshua Ladd. Accurate fault prediction of bluegene/p

ras logs via geometric reduction. In 2010 International Conference

on Dependable Systems and Networks Workshops (DSN-W), pages

8–14, 2010. doi: 10.1109/DSNW.2010.5542626.

[302] Peter D Turney and Michael L Littman. Measuring praise and

criticism: Inference of semantic orientation from association. acm

Transactions on Information Systems (tois), 21(4):315–346, 2003.

[303] Risto Vaarandi and Mauno Pihelgas. Logcluster-a data clustering

and pattern mining algorithm for event logs. In 2015 11th Inter-

national conference on network and service management (CNSM),

pages 1–7. IEEE, 2015.

[304] Maarten Van Steen and Andrew S Tanenbaum. Distributed systems.

Maarten van Steen Leiden, The Netherlands, 2017.

[305] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.

Attention is all you need. In Advances in neural information

processing systems, pages 5998–6008, 2017.

[306] Binita Verma and Ramjeevan Singh Thakur. Sentiment analysis

using lexicon and machine learning-based approaches: A survey. In

Proceedings of International Conference on Recent Advancement

on Computer and Communication: ICRAC 2017, pages 441–447.

Springer, 2018.

220

Bibliography

[307] Arthur Vervaet, Raja Chiky, and Mar Callau-Zori. Ustep: Unfixed

search tree for efficient log parsing. In 2021 IEEE International

Conference on Data Mining (ICDM), pages 659–668. IEEE, 2021.

[308] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L

Scott. Proactive process-level live migration in hpc environments.

In SC’08: Proceedings of the 2008 ACM/IEEE conference on Su-

percomputing, pages 1–12. IEEE, 2008.

[309] Haoyu Wang and Haiying Shen. Proactive incast congestion control

in a datacenter serving web applications. In IEEE INFOCOM

2018-IEEE Conference on Computer Communications, pages 19–

27. IEEE, 2018.

[310] Haoyu Wang, Haiying Shen, and Zhuozhao Li. Approaches for

resilience against cascading failures in cloud datacenters. In 2018

IEEE 38th International Conference on Distributed Computing

Systems (ICDCS), pages 706–717. IEEE, 2018.

[311] Mengying Wang, Lele Xu, and Lili Guo. Anomaly detection of

system logs based on natural language processing and deep learn-

ing. In 2018 4th International Conference on Frontiers of Signal

Processing (ICFSP), pages 140–144. IEEE, 2018.

[312] Xuerui Wang and Andrew McCallum. Topics over time: a non-

markov continuous-time model of topical trends. In Proceedings

of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 424–433, 2006.

[313] Zumin Wang, Jiyu Tian, Hui Fang, Liming Chen, and Jing Qin.

Lightlog: A lightweight temporal convolutional network for log

anomaly detection on the edge. Computer Networks, 203:108616,

2022.

[314] Mayur Wankhade, Annavarapu Chandra Sekhara Rao, and Chait-

anya Kulkarni. A survey on sentiment analysis methods, applic-

ations, and challenges. Artificial Intelligence Review, 55(7):5731–

5780, 2022.

221

Bibliography

[315] Yukihiro Watanabe and Yasuhide Matsumoto. Online failure pre-

diction in cloud datacenters. Fujitsu scientific & technical journal,

50(1):67–71, 2014.

[316] Yukihiro Watanabe, Hiroshi Otsuka, Masataka Sonoda, Shinji

Kikuchi, and Yasuhide Matsumoto. Online failure prediction in

cloud datacenters by real-time message pattern learning. In 4th

IEEE international conference on cloud computing technology and

science proceedings, pages 504–511. IEEE, 2012.

[317] Ronald J Williams and David Zipser. A learning algorithm for

continually running fully recurrent neural networks. Neural compu-

tation, 1(2):270–280, 1989.

[318] Thorsten Wittkopp, Alexander Acker, Sasho Nedelkoski, Jasmin

Bogatinovski, Dominik Scheinert, Wu Fan, and Odej Kao. A2log:

Attentive augmented log anomaly detection, 2021.

[319] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad

Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,

Klaus Macherey, et al. Google’s neural machine translation system:

Bridging the gap between human and machine translation. arXiv

preprint arXiv:1609.08144, 2016.

[320] Zhiyue Wu, Hongzuo Xu, Guansong Pang, Fengyuan Yu, Yijie

Wang, Songlei Jian, and Yongjun Wang. Dram failure prediction

in aiops: Empirical evaluation, challenges and opportunities. arXiv

preprint arXiv:2104.15052, 2021.

[321] Bin Xia, Yuxuan Bai, Junjie Yin, Yun Li, and Jian Xu. Loggan:

A log-level generative adversarial network for anomaly detection

using permutation event modeling. Information Systems Frontiers,

23(2):285–298, 2021.

[322] Chuming Xiao, Jiaming Huang, and Weigang Wu. Detecting an-

omalies in cluster system using hybrid deep learning model. In

International Symposium on Parallel Architectures, Algorithms and

Programming, pages 393–404. Springer, 2019.

222

Bibliography

[323] Yongzheng Xie, Hongyu Zhang, Bo Zhang, Muhammad Ali Babar,

and Sha Lu. Logdp: Combining dependency and proximity for

log-based anomaly detection. In Service-Oriented Computing: 19th

International Conference, ICSOC 2021, Virtual Event, November

22–25, 2021, Proceedings 19, pages 708–716. Springer, 2021.

[324] Yongzheng Xie, Hongyu Zhang, and Muhammad Ali Babar. Loggd:

Detecting anomalies from system logs by graph neural networks.

arXiv preprint arXiv:2209.07869, 2022.

[325] Chang Xu, Gang Wang, Xiaoguang Liu, Dongdong Guo, and Tie-

Yan Liu. Health status assessment and failure prediction for hard

drives with recurrent neural networks. IEEE Transactions on

Computers, 65(11):3502–3508, 2016.

[326] Qianwen Ariel Xu, Victor Chang, and Chrisina Jayne. A systematic

review of social media-based sentiment analysis: Emerging trends

and challenges. Decision Analytics Journal, page 100073, 2022.

[327] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael

Jordan. Online system problem detection by mining patterns of

console logs. In 2009 ninth IEEE international conference on data

mining, pages 588–597. IEEE, 2009.

[328] Sunita A. Yadwad and V. Valli Kumari. Predicting service outages

using tweets. In International Journal of Recent Technology and

Engineering (IJRTE), 2020.

[329] Kenji Yamanishi and Yuko Maruyama. Dynamic syslog mining for

network failure monitoring. In Proceedings of the eleventh ACM

SIGKDD international conference on Knowledge discovery in data

mining, pages 499–508, 2005.

[330] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang,

Xuyuan Dong, and Wenbin Zhang. Semi-supervised log-based anom-

aly detection via probabilistic label estimation. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE),

pages 1448–1460. IEEE, 2021.

223

Bibliography

[331] Ruipeng Yang, Dan Qu, Yekui Qian, Yusheng Dai, and Shaowei Zhu.

An online log template extraction method based on hierarchical

clustering. EURASIP Journal on Wireless Communications and

Networking, 2019(1):1–12, 2019.

[332] John W. Young. A first order approximation to the optimum

checkpoint interval. Commun. ACM, 17(9):530–531, sep 1974.

ISSN 0001-0782. doi: 10.1145/361147.361115. URL https://doi.

org/10.1145/361147.361115.

[333] Li Yu, Ziming Zheng, Zhiling Lan, and Susan Coghlan. Practical

online failure prediction for blue gene/p: Period-based vs event-

driven. In 2011 IEEE/IFIP 41st International Conference on

Dependable Systems and Networks Workshops (DSN-W), pages

259–264, 2011. doi: 10.1109/DSNW.2011.5958823.

[334] Qiao Yu, Zhang Wengui, Haeri Soroush, Notaro Paolo, Jorge Car-

doso, and Odej Kao. Himfp: Hierarchical intelligent memory

failure prediction for cloud service reliability. In 2023 53st Annual

IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). IEEE, 2023.

[335] Yan Yu and Haopeng Chen. An approach to failure prediction in

cluster by self-updating cause-and-effect graph. In International

Conference on Cloud Computing, pages 114–129. Springer, 2019.

[336] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou,

and Shankar Pasupathy. Sherlog: error diagnosis by connecting

clues from run-time logs. In Proceedings of the fifteenth Interna-

tional Conference on Architectural support for programming lan-

guages and operating systems, pages 143–154, 2010.

[337] Nurulhuda Zainuddin, Ali Selamat, and Roliana Ibrahim. Improv-

ing twitter aspect-based sentiment analysis using hybrid approach.

In Intelligent Information and Database Systems: 8th Asian Con-

ference, ACIIDS 2016, Da Nang, Vietnam, March 14–16, 2016,

Proceedings, Part I 8, pages 151–160. Springer, 2016.

224

https://doi.org/10.1145/361147.361115
https://doi.org/10.1145/361147.361115

Bibliography

[338] Di Zhang, Dong Dai, Runzhou Han, and Mai Zheng. Sentilog:

Anomaly detecting on parallel file systems via log-based sentiment

analysis. In Proceedings of the 13th ACM Workshop on Hot Topics

in Storage and File Systems, pages 86–93, 2021.

[339] Lin Zhang, Xueshuo Xie, Kunpeng Xie, Zhi Wang, Ye Lu, and

Yujun Zhang. An efficient log parsing algorithm based on heuristic

rules. In International Symposium on Advanced Parallel Processing

Technologies, pages 123–134. Springer, 2019.

[340] Shenglin Zhang, Ying Liu, Dan Pei, Yu Chen, Xianping Qu, Shimin

Tao, Zhi Zang, Xiaowei Jing, and Mei Feng. Funnel: Assessing

software changes in web-based services. IEEE Transactions on

Services Computing, 11(1):34–48, 2016.

[341] Shenglin Zhang, Weibin Meng, Jiahao Bu, Sen Yang, Ying Liu,

Dan Pei, Jun Xu, Yu Chen, Hui Dong, Xianping Qu, et al. Syslog

processing for switch failure diagnosis and prediction in datacenter

networks. In 2017 IEEE/ACM 25th International Symposium on

Quality of Service (IWQoS), pages 1–10. IEEE, 2017.

[342] Shenglin Zhang, Ying Liu, Weibin Meng, Zhiling Luo, Jiahao Bu,

Sen Yang, Peixian Liang, Dan Pei, Jun Xu, Yuzhi Zhang, et al.

Prefix: Switch failure prediction in datacenter networks. Proceedings

of the ACM on Measurement and Analysis of Computing Systems,

2(1):1–29, 2018.

[343] Tong Zhang. Solving large scale linear prediction problems using

stochastic gradient descent algorithms. In Proceedings of the twenty-

first international conference on Machine learning, page 116, 2004.

[344] Wenhao Zhang, Hua Xu, and Wei Wan. Weakness finder: Find

product weakness from chinese reviews by using aspects based

sentiment analysis. Expert Systems with Applications, 39(11):10283–

10291, 2012.

[345] Xiaobo Zhang and Qingsong Yu. Hotel reviews sentiment analysis

based on word vector clustering. In 2017 2nd IEEE International

225

Bibliography

Conference on Computational Intelligence and Applications (IC-

CIA), pages 260–264. IEEE, 2017.

[346] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang,

Yingnong Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li,

et al. Robust log-based anomaly detection on unstable log data. In

Proceedings of the 2019 27th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations

of Software Engineering, pages 807–817, 2019.

[347] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng. Predicting

disk failures with hmm-and hsmm-based approaches. In Industrial

Conference on Data Mining, pages 390–404. Springer, 2010.

[348] Zhenfei Zhao, Weina Niu, Xiaosong Zhang, Runzi Zhang, Zhenqi

Yu, and Cheng Huang. Trine: Syslog anomaly detection with three

transformer encoders in one generative adversarial network. Applied

Intelligence, pages 1–10, 2021.

[349] Ziming Zheng, Zhiling Lan, Rinku Gupta, Susan Coghlan, and

Peter Beckman. A practical failure prediction with location and

lead time for blue gene/p. In 2010 International Conference on

Dependable Systems and Networks Workshops (DSN-W), pages

15–22, 2010. doi: 10.1109/DSNW.2010.5542627.

[350] Ziming Zheng, Zhiling Lan, Rinku Gupta, Susan Coghlan, and

Peter Beckman. A practical failure prediction with location and

lead time for blue gene/p. In 2010 International Conference on

Dependable Systems and Networks Workshops (DSN-W), pages

15–22. IEEE, 2010.

[351] Ziming Zheng, Li Yu, Zhiling Lan, and Terry Jones. 3-dimensional

root cause diagnosis via co-analysis. In Proceedings of the 9th

international conference on Autonomic computing, pages 181–190,

2012.

[352] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin

Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient

226

Bibliography

transformer for long sequence time-series forecasting. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 35, pages

11106–11115, 2021.

[353] Bingpeng Zhu, Gang Wang, Xiaoguang Liu, Dianming Hu, Sheng

Lin, and Jingwei Ma. Proactive drive failure prediction for large

scale storage systems. In 2013 IEEE 29th Symposium on Mass

Storage Systems and Technologies (MSST), pages 1–5, 2013. doi:

10.1109/MSST.2013.6558427.

227

	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Acronyms
	Chapter Introduction
	Motivation
	Challenges and Opportunities
	Basic Concepts About Dependability
	The Attributes of Dependability
	The Threats to Dependability: Faults, Errors, and Failures
	The Means of Dependability
	Fault Tolerance and Failure Prediction

	Problem Statement
	The Approach
	Thesis Contributions
	Outline of this Thesis

	Chapter Background
	Sentiment Analysis
	Sentiment Analysis Approaches
	Lexicon-based Approach
	Machine and Deep Learning Approach
	Hybrid Approach

	Natural Language Generation (NLG)
	Recurrent Neural Networks (RNN)
	Transformers

	Summary

	Chapter Literature Review
	Preface
	Log Parsing
	Clustering Approach
	Frequent Items Mining Approach
	Tree Structure Approach
	Machine & Deep Learning Approach
	Other techniques

	Error Detection
	Machine Learning Approach
	Deep Learning Approach

	Failure Diagnosis
	Traditional Rule-based Approach
	Statistical Approach
	Machine & Deep Learning Approach

	Failure Prediction
	Rule-based Approach
	Probability and Correlation Approach
	Machine Learning Approach
	Deep Learning Approach

	Summary

	Chapter System Description, Log Data, And Fault Models
	System Model
	Production Systems and Log Data
	Blue Gene/Q Mira Cluster
	TACC Ranger Cluster
	TACC Lonestar4 Cluster
	Cray XC30 Cluster
	Cray XC40 (Mutrino) Cluster

	Fault Model
	Fault Model: HPC Node Failures
	Causes of Node Failures

	Basic Definitions
	Summary

	Chapter Sentiment Analysis Model For Errors Detection In Large Scale Systems
	Preface
	Introduction
	Problem Formulation and Research Objective
	Methodology
	Lexicon Construction Using Stochastic Gradient Descent Logistic Regression
	Sentiment Polarity-based Error Detection
	Erroneous Component Identification Based on Sentiment Polarity Scores

	Experimental Evaluation
	Evaluation Metrics
	Evaluation of Error Detection
	Evaluation of Erroneous Component Identification

	Summary

	Chapter Clairvoyant: A Log-Based Transformer-Decoder for Failure Prediction in Large-Scale Systems
	Preface
	Introduction
	Problem Formulation
	Methodology for Clairvoyant
	Phase I. Log Message Preprocessing
	Phase II. Log Events Learning and Prediction

	Evaluation Metrics
	Evaluation System, Datasets, and Soft Lockup Failure
	Evaluation Results
	Log Data Preprocessing
	Predicting Entire Health State of Ranger Performance Evaluation
	Node Failure Prediction Performance Evaluation
	Node Failure Prediction Performance with Different Decoding Techniques

	Summary

	Chapter Time Machine: Generative Real-Time Model For Predicting Failure and Lead Time in hpc Systems
	Preface
	Introduction
	Problem Formulation
	Time Machine Methodology
	Node Failure Prediction
	Predicting Lead Times to The Node Failure
	Featuring Real-Time in Time Machine

	Production Systems and Datasets
	Evaluation Metrics
	Performance Evaluation
	Log Data Preprocessing
	Training and Prediction Time Performance
	Overall Learning & Log Events Prediction Performance
	Node Failure Prediction Performance Evaluation
	Lead Time Prediction Performance Evaluation
	Impact of Time Machine on Checkpoint-based Execution

	Summary

	Chapter Conclusions and Future Work
	Preface
	Conclusion
	Introductory Chapters
	The Chapters Discussing Summary of Contributions, Limitations, and Future Work

	Insert from: "WRAP_Coversheet_Theses_new3.pdf"
	http://wrap.warwick.ac.uk/179158

