

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/175252

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/175252
mailto:wrap@warwick.ac.uk

Time Machine: Generative Real-Time Model For
Failure (and Lead Time) Prediction in HPC Systems

Regular Paper

Abstract—High Performance Computing (HPC) systems gen-
erate a large amount of unstructured/alphanumeric log messages
that capture the health state of their components. Due to their
design complexity, HPC systems often undergo failures that halt
applications (e.g., weather prediction, aerodynamics simulation)
execution. However, existing failure prediction methods, which
typically seek to extract some information theoretic features,
fail to scale both in terms of accuracy and prediction speed,
limiting their adoption in real-time production systems. In this
paper, differently from existing work and inspired by current
transformer-based neural networks which have revolutionized the
sequential learning in the NLP tasks, we propose a novel scalable
log-based, self-supervised model (i.e., no need for manual labels),
called Time Machine1, that predicts (i) forthcoming log events
(ii) the upcoming failure and its location and (iii) the expected
lead time to failure. Time Machine is designed by combining
two stacks of transformer-decoders, each employing the self-
attention mechanism. The first stack addresses the failure location
by predicting the sequence of log events and then identifying
if a failure event is part of that sequence. The lead time to
predicted failure is addressed by the second stack. We evaluate
Time machine on four real-world HPC log datasets and compare
it against three state-of-the-art failure prediction approaches.
Results show that Time Machine significantly outperforms the
related works on Bleu, Rouge, MCC, and F1-score in predicting
forthcoming events, failure location, failure lead-time, with higher
prediction speed.

I. INTRODUCTION

Large-scale High Performance Computing (HPC) systems,
such as supercomputers, execute resource-hungry applications
such as weather forecasting, flow dynamics simulations among
many others. These systems, consisting of sophisticated hard-
ware (HW) and software (SW), often fail due to their scale
and their design complexity. The SW components, such as
OS and parallel file systems, typically generate log messages
that capture the health of various components in the system,
such as network and memory, and these log messages are
recorded in a central repository[1], which we call a log
file. As a result, system administrators find it a very useful
source of information when trying to predict system failure
because it contains rich information about normal behavior
(i.e., informational messages) or abnormal behavior (i.e., error
messages) of various system components. As such, failure
log analysis of HPC systems is attracting more and more
researchers from academia and industry in order to improve
the reliability of such systems.

1A Time Machine allows us to travel into the future to observe the health
state of HPC system and report back. Here, we travel into the log extension
to report an upcoming failure.

When errors in the HPC system are not suitably handled,
which can occur at specific components (e.g., nodes), then
a failure of the system, i.e., more specifically, one or more
affected components, may occur. A failure is a special event
in the system and results in a special log (e.g., lockup log) to
be recorded in the log file. The impact of such failures may
be enormous on applications: drastic computational overhead
could be introduced, such as through (partial) re-execution,
thereby having severe impact on application execution. In an
era of exascale computing (i.e., HPC systems executing 1018

floating point operations per second), failures are predicted to
occur more frequently, exacerbating associated overhead.

To mitigate the impact of failure, efficient failure manage-
ment strategies are required. Specifically, failure prediction is
becoming a pressing work, especially when combined with
proactive recovery management techniques such as check-
pointing/restart or job migration [2], [3]. Unfortunately, the
effectiveness of failure prediction tools is still insufficient,
thereby necessitating the development of online failure pre-
diction techniques to flag impending failures and their lead-
times with high prediction accuracy and speed and with lesser
computational overhead. Some works on failure prediction
exists, e.g., [4], [5].

In this paper, we address this important problem of failure
prediction by developing and applying a transformer-decoder
model on HPC log data to build a generative self-supervised
model, which we call Time Machine, to predict two important
failure parameters: (i) the failure location, i.e., which nodes
will crash, and (ii) the lead time to failure, i.e., how long
is left before the predicted failure happens. Our designed
Time Machine works as follows: (i) For the location problem,
it first predicts the future sequence of logs (future health
state) and then identifying if a failure event is part of the
predicted sequence and (ii) for the lead time to failure problem,
Time Machine reduces the time prediction problem (which
is a regression problem) into a self-annotated multi-class
classification problem, by predicting the class for the failure
lead time. We discuss the motivation of modelling the failure
lead time problem in the methodology section, Phase IV-B1.
Note that our work introduces a novel method to construct (no
need for manual labels) and augment a self-time annotated
training dataset on sequential time-based (timestamps) raw
data via an automatic accumulative and iterative process.

Transformers neural networks and transfer learning facili-
tate pre-training natural language processing (NLP) language
models (e.g., GPT2/3, BERT[6]) on a huge dataset and fine-
tuning the model to various standard NLP downstream tasks

(e.g., text generation) which leads to typically much better
performance. However, an area that has not been investigated
for the utility of generative transformers is the failure pre-
diction in high performance computing (HPC) systems. The
use of generative models for failure prediction using HPC
logs is very challenging: (i) erroneous states and failures are
rare(r) events, (ii) logs are often incomplete, duplicate and
(iii) messages are alphanumeric in nature and generally lack a
proper structure [7], which is very different from the context
of, say, text prediction application [8].

There are many state-of-the-art RNN-based failure predic-
tion methods such as Long Short-term Memory (LSTM) [9]
(Desh), Bidirectional Long Short Term Memory (Bi-LSTM)
[10], and Gated Recurrent Unit (GRU) [11], which however
suffer from non-trivial weaknesses: (i) long training time be-
cause of the absence of parallelization in recurrence learning,
and (ii) the vanishing gradient problem with loss of earlier
“memory”, which may cause limited accuracy. Our Time
Machine approach improves on the state-of-the-art failure
prediction approaches through (i) self-attention mechanism
and (ii) parallelization which are the crux of transformer neural
networks and which are explained in detail in IV.

Additional failure prediction models are developed for
HPC systems. However, these solutions are mainly based on
supervised-learning, requiring extensive data labelling such
as [12], [13], [14]. Furthermore, most unsupervised & self-
supervised solutions do not address the problem of predicting
the lead-time to failure, such as Clairvoyant [15]. Specifically,
Clairvoyant used one stack transformer-decoder to predict
failures only. To enable the prediction of failure lead time,
there are several key innovative designs proposed in our
solution. Our Time Machine framework adopts a two-stack
transformer-decoder architecture to predict not only failures
but their lead times. The adaptation of the transformer-decoder
to predict the failure lead times is based on a novel approach
to self-attention: Specifically, the Time Machine framework
demonstrates how the self-attention mechanism developed for
text prediction is used to predict the failure lead times, by
encoding/decoding log events to map each log event onto its
timestamp step during the training and prediction phases. In
many domains (e.g., [16], [17]) except for fault tolerance, other
transformer variants have been utilized for predicting time
series as a regression task (i.e., supervised learning), which
requires label data and results in limited accuracy. However,
Time Machine is the first paper to overcome these limitations
by formulating the time prediction as a self-annotated multi-
class classification problem by predicting the class for the
failure lead time. Moreover, the Time Machine can construct
training instances in real-time because of our novel synthetic
minority oversampling design. The Time Machine method can
be generalized to other domains for similar time-based tasks
(e.g., business, healthcare, booking business).

We evaluate Time Machine on four real-world HPC logs
and we compare it against LSTM [9] (Desh), Bi-LSTM [10],
and GRU [11]. Results show that Time Machine significantly
outperforms the best of them: (I) Log events prediction: Time

Machine obtains a Bleu and Rouge score of up to 0.79 and
0.77 respectively whereas best of the three techniques only has
0.47 and 0.34. (II) Failure Location: Time Machine obtains a
MCC and F1-score of up to 0.80 and 0.87, respectively, while
the best one of the three techniques only has 0.53 and 0.71
respectively. (III) Failure lead time: Time Machine is also
the best in class, with MCC and F1-score of up to 0.87 and
0.95, respectively. (IV) Speed-up of training and prediction:
Time Machine is significantly faster than other approaches
in both training (5.4∼9.4× speed-up on average) and chain
prediction (over 15× faster than the related works), making
Time Machine very suitable for online failure prediction in
real-time production HPC systems.

II. SYSTEM MODEL AND FAULT MODEL

In this section, we present the system model, fault model,
and HPC system component (e.g., node) failure.

A. System Model
We describe the general HPC system model targeted by our

research as follows: In the HPC system, there are a set of
compute nodes C = {C1, . . . , Cm} provided to execute user-
submitted jobs J = {J1, . . . , Jn} (e.g., weather forecasting,
scientific application). A job scheduler is used to assign the
jobs to different production time-slots T = {T1, . . . , Tp}
on specific nodes. As the system operates, a bunch of log
messages are generated to capture the health of the system
and collected on a central log server or file [15].

B. Fault Model
A fault model specifies the way a system is expected to be

affected by faults. Our designed failure prediction framework
can be applied on various types of discrete faults at different
levels, such as hardware, system, application level, file system,
and at an aggregate supercomputer level. As a fault occurs,
the resulting errors will be manifested as error messages
in the system log file. Overlooking the error messages will
likely result in a system/application failure, which will also
be logged. For simplicity of description, we consider node
failures [8] without loss of generality, and focus on the
prediction of node failure events as well as their failure lead-
times through our proposed method (called Time Machine),
which can also be applied to failures of other components
(such as switches, GPUs).

C. HPC System Component Failure
HPC component (e.g., node) failure is a state in which

the operating system kernel hang-up, becomes unresponsive,
goes stuck, or loops loop without ends, blocking other pro-
cesses from executing and ultimately causing the nodes to
shutdown. In HPC systems, there could be many factors or
different types of preceding errors (from hardware errors to
software/application faults) that can result in node failures.
The preceding errors that cause node failures are very diverse,
including hardware issue (memory, GPU, network), OS pro-
cess errors, file system errors, application errors, etc [15].

2

The consequence of these preceding errors may differ a lot.
Some errors may induce failures very quickly because of their
fast propagation: i.e., the sequence of log events between the
first error message and the ending failure event could be very
short. On the other hand, some other errors may take a long
time before their corresponding failure occurs, corresponding
to a lengthy sequence of log events with a relatively high delay
between the first error message and the ending failure event.
It is also worth noting that there could be many interleaved &
irrelevant log events recorded between node failures and their
preceding error events, for both short and long sequences. This
makes the failure prediction process more challenging.

III. PROBLEM FORMULATION

We formulate the research problem as below: Given a log
dataset with a sequence of events, our objective is to predict
the upcoming sequence of log events and determine if this
sequence may contain a failure event; if yes, then predict the
lead-time of the failure event as well.

Research challenges: There are two important attributes
of failure prediction: (i) Location: the component (or node)
that would fail/crash should be accurately predicted so that
the failure recovery mechanism can be launched at proper
“location” and (ii) Failure lead time: the time at which
the failure log event is predicted to occur should be simi-
lar/accurate compared to the one in real-time, otherwise, the
failure recovery mechanism would be triggered at wrong time.

We denote the set of log sequences by Lr, where its length
is at most r. Suppose we are given two sets: Lm and Lk(k ≤
m), where the elements in the set Lk are possible extensions
of the elements in Lm. That is, each element in Lm can be
assigned an element from Lk as an output. Accordingly, for
each ei ∈ Lm, e′j ∈ Lk indicates the true prediction outcome
(i.e., the real sequence of log events following ei). Our failure
prediction research is to model a mapping M : Lm → Lk,
in which M(ei) is the predicted sequence which follows ei,
i.e., ei ·M(ei) is a predicted upcoming log sequence of length
(k +m), i.e., ei · M(ei) ∈ Lm+k.

We formulate the two problems as follows:

Definition 1 (Log Events Prediction). For a sequence of log
events ei ∈ Lm, a predictor M is expected to be with the
minimal distance for the log sequences of length (m+k), i.e.,
arg minM D(ei ·M(ei), ei · e′j), where · indicates ‘sequence
concatenation’ and D : Lm+k × Lm+k → R is the distance
measure. D is a distance metric on two log sequences; D=0
means two logs are identical to each other. If the distance is
0, we claim “M correctly extends ei”; or else, we say “M
approximately extends ei”.

Definition 2 (Failure Prediction). For a predictor M on a
log sequence ei ∈ Lm with an extension e′j ∈ Lk, we say
“M accurately solves the failure prediction” iff F ∈ e′j ⇔
F ∈ M(ei). We say “M approximately solves the failure
prediction problem” if F ∈ M(ei) ⇒ F ∈ e′j .

When F ∈ e′j , we say that the extension e′j is a failure
extension of ei and when F ∈ M(ei), we say that M(ei) is

a predicted failure extension of ei. We also say that ei is a
failure precursor sequence. Note that D(ei ·M(ei), ei · e′j)=0
means that the predicted lead time of failure event is accurate
perfectly, i.e., the failure event would occur right at the
predicted moment. Also note that a small value of D indicates
that the failure event occurrence moment is approximately
correct in the sequence.

For the failure lead time [18], due to the non-determinism at
the system level, it is difficult to accurately predict the exact
failure lead time. To circumvent this challenge, we propose
to model the failure lead time prediction as a multi-class
classification problem. We propose a general formal definition
of failure lead time as follows.

Definition 3 (Lead time to Failure). Given a log sequence
ei ∈ Lm, its extension e′j ∈ Lk which is a failure extension
of ei, the failure lead time of ei is the difference between the
timestamp of the last event in ei ∈ Lm and the failure event
in e′j and is equal to TS(F ∈ e′j)− TS(last(ei)), where TS
denotes the timestamp function and last function returns the
last element of a sequence respectively.

Let Lm be the instance space. Every point ei ∈ Lm is a
potential state of the log. Given a pair ⟨ei, F (ei)⟩, where ei ∈
Lm is a failure precursor sequence, e′j is a failure extension
of ei and F (ei) denotes the failure lead time of ei, we wish
to learn an approximation of the unknown F , denoted by F̂
and F̂ (ei) = TS(F ∈ M(ei)) − TS(last(ei)), where M is
a predictor that solves the failure prediction problem.

Definition 4 (Predicted Lead time to Failure). Given a failure
precursor log sequence ei ∈ Lm, its failure extension e′i ∈ Lk,
a set of non-overlapping p ranges R = {R1, . . . , Rp}, Ri ∈
Z+ × Z+, Ri ∩ Rj = ∅ and a predictor M which solves
the failure prediction issue approximately, we say that the
predicted failure lead time is correct if ∃Ri ∈ R · F̂ (ei) ∈
R ⇒ F (ei) ∈ R.

IV. TIME MACHINE METHODOLOGY

Inspired by recent work in (NLP) tasks, we propose a
transformer-decoder based sequential model to predict the
forthcoming events, node failure, and failure lead-time in HPC
systems. In general, we take the self-attention based language
model as an estimator for the posterior probabilities, in which
we consider the log events as input words, a sequence of log
events as a sentence, and the probabilities of failure in HPC
as a context-based generative probabilities. Furthermore, self-
attention is friendly to parallelization, such that the training
and prediction time can be significantly reduced by leveraging
parallel techniques, compared to existing state-of-the-art fail-
ure prediction methods, such as RNN-based methods used in
[9], [10], [11]. To this end, we develop a novel real-time online
approach namely Time Machine which is fully self-supervised
without the need for labeling by HPC system administrators.
As shown in Figure 1, the architecture of our model consists
of two transformer-decoder neural network components, and
both of the two decoders are based on the transformer-decoder

3

variant [19]. The first transformer component aims to predict
HPC node failures with two major steps: (1) for each node, it
predicts the sequence of future events (or future health state);
(2) it determines weather a failure is included in the predicted
sequence. The second transformer component aims to predict
lead times, based on which one or more proactive fault-tolerant
techniques can be accurately selected in time ahead of the
failure occurrence.

As for the Time Machine methodology which adopts two
stacks of transformer-decoder to predict HPC system failures
and their lead-times, its framework design also includes three
key innovative points:

• Transformer neural networks are employed originally for
NLP tasks such as text classification, text generation,
summarisation, while the Time Machine method is the
first work utilizing transformer architecture to predict the
lead-time to failures. This method can be generalized to
other domains for time-based prediction tasks.

• Time Machine introduces a novel Synthetic Minority
Oversampling Technique for online time-based tasks to
construct the training instances in real-time from failure
sequences.

• In the fault tolerance research, our Time Machine method
is the first study to reduce/convert the time prediction
problem (a regression problem) into a self-annotated
multi-class classification problem, by predicting the class
for the failure lead time.

We detail our proposed framework in the rest of this section.

A. Node Failure Prediction
1) Phase I. Log Event Prepossessing: In the first phase,

similar to the tokenization in NLP task, we first convert the log
message into an ID based log event sequence: e1, e2, ..., em,
where m is the length of event sequence, ei ∈ {tj |j =
1, 2, ..., T} represents the i-th event, and tj stands for all
possible event types in the log event prediction. Besides, we
let m < 1024 in order to make it possible that all input event
sequences share similar length for parallel processing, which
is distinct from the existing RNN methods. Moreover, the Byte
Pair Encoding (BPE) method is utilized to tokenize the input
to encode any unusual tokens (IDs of log entries).

2) Phase II. Log Events Learning and Failure Predic-
tion: Our proposed approach aims to take the self-attention
mechanism to improve the connectivity among the events in
log sequences. Accordingly, we utilise transformer-decoder
architecture, a stack of decoder blocks preceded by an input
layer to embed the real-time log events sequence logged by the
HPC system component node, and then followed by linear and
softmax layers to predict failures (e.g., node crashes, networks
failures) by two steps: predicting the future sequence of events
and then identifying if a failure is part of the predicted
sequence. More details are described in the following text.
We refer the readers to read [19] for detailed background of
the transformer variant which we will use to build our model.

We summarize the current masked language (failure and
lead-time prediction in our case) model as follows:

In a typical transformer block ℓ, assuming the input feature
for token ei in l−1-th layer of transformer is el−1

i , the
information propagation process is given by:

vl−1
i = Self-Attention(el−1

i |el−1
1 , el−1

2 , ..., el−1
m) (1)

Φ(vli) = φ(W lvl−1
i + bl) (2)

eli = LayerNorm(Φ(vli) + el−1
i) (3)

where eli is the learned feature for ei in l-th layer, vli is the
corresponding value vector in the regard of the self-attention
mechanism according to eli, φ is an element-wise nonlinear
function applied to a feed-forward layer, whose weight matrix,
W l ∈ Rnl×nl−1 , transforms the feature dimension from nl−1

to nl, Self-Attention(el−1) returns the weighted value vector
of all input representations where weights are derived by
multiplying the query vector of the current input el−1 with the
key vectors from other inputs. Between every two transformer
blocks, there is a skip-connection and a layer normalisation.
The former mechanism bypasses the transformer block ℓ and
adds the input el−1 directly to the output vl of this block, while
the latter normalises the input across the feature dimension.

STEP 1: Transfer Learning Based Sequence Prediction
The main idea in pre-trained language model, such as GPT-

2/3 [19], aims to predict a particular word based on its context
by: P (ei|e1, e2, ..., ei−1, ei+1, ..., em). However, in the HPC
events prediction, the tokens after expected prediction ei is
unseen to the model. Furthermore, the vocabulary, which
stands for the log events types, is much smaller than NLP
task, which may lead to overfitting if we simply train an over-
parameterised model.

Therefore, we propose to use pre-trained model (GPT-
2) from NLP, which is almost isotropic, to initialise the
transformer-decoder model to predict the future log event
by fine-tuning the parameters on HPC dataset. Here, we
define the probability of future log event by Softmax
P (ê′m+i|e1, e2, ..., em) = Softmax(FNN(eLi |e1, e2, ..., em)),
where the FNN stands for the feedforward neural network and
L is the last layer of transformer block.

According to definition 1, we use the cross-entropy as the
metric to measure the distance between distribution in loss
function,

L =
∑n−m

i=1
P (e′m+i) · log(P (ê′m+i|e1, e2, ..., em)) (4)

where the estimated probabilities of P (ê′m+i) are defined
by the Softmax function with the learned vectors along to
the last FNN layer, and the P (e′m+i) is the true output
from training corpus, which is an advantage that, in such
learning architecture, we do not require a specific annotation
for self-supervised learning. The sequence of log events can
be generated from large scale of raw data automatically. In this
way, the pre-trained language model can be easily adapted to
the log events prediction task in real-time.

STEP 2: Failure Prediction
Based on the prediction of log events, we can generate

a log events sequence by a given {e1, e2, ..., em}, marked
as: {e1, e2, ..., em, e′m+1, ...e

′
n}, where {ei|i ≤ m} is the

4

Positional Encoding Input Embedding

+

IN
P

U
T

 E
M

B
E

D
D

IN
G

Log Failures Chain Sequences

T
ra

in
in

g
 I

n
s
ta

n
c
e

s

&
 L

e
a
d

 t
im

e
s

Decoder

Decoder

Decoder

…

SoftMax Layer

Add & normalize

Multi-head self-attention

Masked multi-head self-attention

Add & normalize

Add & normalize

LT_CLASS

D
E

C
O

D
IN

G
 A

N
D

 L
E

A
R

N
IN

G

F
A

IL
U

R
E

 L
E

A
D

T
IM

E
 P

R
E

D
IC

T
IO

N

P
H

A
S

E
 I

II

Feedforward

Linear Layer

Predicted lead time class

S
ta

c
k
 o

f
T

ra
n
s
fo

rm
e
r-

D
e
c
o
d

e
rs

P
H

A
S

E
 I

V

e1 e2 em-1 em…

Positional Encoding Input Embedding

+

IN
P

U
T

 E
M

B
E

D
D

IN
G

Log Sequences

(input)

Decoder

Decoder

Decoder

…

SoftMax Layer

Add & normalize

Multi-head self-attention

Masked multi-head self-attention

Add & normalize

Add & normalize

em+1 ……

D
E

C
O

D
IN

G
 A

N
D

 L
E

A
R

N
IN

G

P
R

E
D

IC
T

IO
N

 O
F

L
O

G
 E

V
E

N
T

S

P
H

A
S

E
 I

Feedforward

Linear Layer

Checking: failure occurrence en

S
ta

c
k
 o

f
T

ra
n
s
fo

rm
e
r-

D
e
c
o
d
e

rs

P
H

A
S

E
 I
I

em+2 en-1

Predicted Log Events

Log preprocessing

' ' ' '

em

em em+1

em em+1 em+2

em em+1 em+2 em+3

em em+1 em+2 em+3 em+4

0min≤ T≤1min

1min< T≤3min

3min< T≤5min

5min< T≤10min

'

'

'

'

'

'

'

'

' '

3min< T≤5min

…

Fig. 1: Illustration of Health State/Failure/Lead Time Prediction Phases

given event and {e′j |m + 1 ≤ j ≤ n} is the predicted
event. According to definition 2, the failure prediction aims
to identify if the e′j is the failure extension of ei. Hence, we
can convert the generated event e′j to the unique ID to check
if it is the failure. Here, we suppose the whole vocabulary of
log events is V , which contains two subsets, the failure events
Vf , and the normal events Vn, where Vf ∪ Vn = V and
Vf ∩ Vn = ∅. Then, one can easily quantify that a predicted
log event is a failure if it is a member of failure events set
(e′j ∈ Vf).

B. Predicting Lead Times to The Node Failure

One key novelty that is significantly different from existing
transformer based sequence models, is predicting lead times
for the failure events such that appropriate proactive methods
could be triggered in time, which is handled by the Phase III
and Phase IV.

1) Phase III: Failure Sequences Construction for Lead-
Time Prediction: In order to predict the node failures’ lead
times, the first and foremost step is establishing and preparing
a dataset based on failure chains (i.e., the Phase III as
presented in Figure 1). Our framework can be easily deployed
for HPC systems in real-time, because the training/testing
datasets from the failure chains and associated labels (i.e.,
lead times) are created automatically (no need for manual
labelling) based on log events’ timestamps.

We introduces a novel Synthetic Minority Oversampling
Technique for online time-based tasks to construct the training
instances in the real-time from failure sequences as follows.
In our model, predicting a node’s failures ahead is achieved
through accurately predicting the forthcoming log events
{e′m+1, e

′
m+2, ..., e

′
n}. Without loss of generality, we assume

that the predicted log events sequence ends with a failure event
since the motivation of our proposed method aims to predict
the failure. Hence, based on the given log events sequence
{e1, e2, ..., em} and the proposed events/failure prediction
methods, we have a failure chain of {e′m+1, e

′
m+2, ..., e

′
n},

where ∃e′j ∈ Vf .

To predict the lead time for any concrete failure chain,
we then use the timestamp TS(·) to estimate the lead
time when the failure appears for a given sequence of log
events. Intuitively, we only need to predict the TS(e′j), where
{e′j ∈ Vf}. However, considering that the size of Vf is
limited, it is essential to design a smoothing method to
overcome the potential risk caused by over-fitting. Hence, we
propose to utilise the transformer-decoder based method to
approximate the TS(·) for both e′j ∈ Vn and Vf , and take
advantage of sequential model to guarantee the latent pattern
TS(e′i) < TS(e′j)(i < j) is true, to achieve both reasonable
and stable lead-time prediction. Specifically, to make the trade-
off between efficiency and accuracy, we convert the prediction
of lead times from a regression problem to a multi-class
classification problem which predicts the class for the failure
lead time. Such a design is motivated by the fact that there
are only a few proactive recovery techniques used in practice
(e.g., less than 10 techniques), and each technique requires a
specific lead time to launch. Moreover, the correction/proactive
actions generally require approximately estimated lead times
instead of the exact lead times. Accordingly, we define 6 lead-
time classes ŷj in our study: ŷj ∈ {[0min,1min], (1min,3min],
(3min,5min], (5min,10min], (10min,15min], (15min,∞)}. Our
model is flexible in increasing/decreasing lead time classes
based on the system recovery mechanism.

We use an example to describe how to construct the training
instances. Without loss of generality, suppose a failure chain
contains 6 log events including the failure event with
associated timestamps: ((em, 01:00:00), (e′m+1, 01:00:30),
(e′m+2, 01:01:00), (e′m+3, 01:03:10), (e′m+4, 01:04:55),
(e′m+5, 01:07:16)), where the e′m+5 ∈ Vf is the failure
event. The training instances and their associated lead time
classes are constructed automatically in terms of the failure
chain iteratively, as illustrated in Figure 2.

As all log sequences training instances are created from the
failure chains as described above, the lead-times have been
associated/mapped to the corresponding lead-time classes.
Note that this process is conducted during runtime model
deployment, and all log event instances are assigned the same

5

em

em em+1

em em+1 em+2

em em+1 em+2 em+3

em em+1 em+2 em+3 em+4

Training Instances

Tem+1=Tem+1– Tem=30 sec

Tem+2=Tem+2 – Tem=60 sec

Tem+3=Tem+3 – Tem=190 sec

Tem+4=Tem+4 – Tem=295 sec

Tem+5=Tem+5 – Tem=436 sec

0min≤ T≤1min

1min< T≤3min

3min< T≤5min

5min< T≤10min

10min< T≤15min

15min< T

Lead-time classes

'

'

'

'

'

'

'

'

' '

' '

'

'

'

'

'

'

''

Failure

Fig. 2: Lead Time Training Instances Construction

tokens as discussed in IV-A2 before being embedded/fed into
the second transformer-decoder stack.

2) Phase IV: Lead-Time Learning and Prediction:
Based on the prediction of log events, we can generate a
log events sequence by a given {e1, e2, ..., em}, marked as:
{e1, e2, ..., em, e′m+1, ...e

′
n}, where ei is the given event and

e′j is the predicted event. According to sequence generation
in section IV-B1, the lead-time prediction aims to identify
the label of yj for the failure extension of ei with length
j, a.k.a {e1, e2, ..., em, e1, ...ej}. Hence, we convert this task
into sequence classification, in which we employ the fine-
tuned transformer-decoder-based model to extract the last rep-
resentation Rej of the token ej , to approximate the posterior
probability according to the failure label in real-world datasets,
by a Softmax probability:

P (yj) =
Softmax(FNN(decoder(R[e′j]|e1, ..., em, e′m+1, ..., e

′
j)))

(5)

In general, any loss function or pre-trained language model
can be deployed for the approximation. Without loss of
generality, we choose the cross-entropy as loss function and
the GPT-2 as decoder in our implementation. In summary, ∀
log events sequence e1, e2, ..., em, we can predict the failure
extension of e′m+1, ..., e

′
n by minimising the loss function

defined by equation.4. According to equation.5, we can then
predict the lead time to failure of TS(e′j) − TS(em). This
proposed framework requires no annotation or supervised
signal but facilitates optimising the process which can select
the lowest computation cost correction/recovery mechanisms
to correct and fix HPC system errors before the failures occur.

C. Featuring Real-Time in Time Machine
Deploying the Time Machine online in real-time requires

fine-tuning the model parameters in case new log sequences
and failure patterns are encountered. Thus, the teacher forcing
technique [20] is proposed to complement Time Machine in
real-time. The integration between the Time Machine and
teacher forcing approach enables online training, learning, and
prediction by using ground truth input instead of our model
output (the log events predicted by Time Machine) from a
previous time step as an input. The truth input in our case is
the actual log events generated by HPC system components
(e.g., compute nodes). This integration can cope with any
new types of log sequences and emerging failure patterns
because of various cases, such as upgrade of the HPC system
components (i.e., software, hardware, services). The new jobs
(e.g., applications) running on HPC systems can also induce

new log patterns that have not been met before. Moreover,
the teacher-forcing technique forces the real-time log event
learning/prediction under the Time Machine to be conducted
on correct log events (i.e., the correct log sequences generated
by the system) rather than log sequences predicted ahead by
Time Machine (which may be incorrect prediction).

V. SYSTEM, DATASETS, AND EVALUATION METRICS

A. Systems and Log Data
Table I shows the the four unlabeled log datasets and

their supercomputers characteristics which used in our study.
The four data logs are generated from three different real-
world supercomputers clusters. Specifically, these system are
of various scales (from 200 nodes to 5600 nodes), various
interconnects (Infiniband and Aries Dragonfly), different file
systems (Luster, MarFS, etc.), different processors, and differ-
ent logging mechanism. The log datasets are (i) Syslogs, (ii)
Rationalized Logs (abbreviated as RatLogs). Both Syslogs and
RatLogs are collected form Ranger supercomputer(operated by
Texas Advanced Computing Center (TACC)) [21] at different
time and have been widely used for failure analysis [22], [23],
[8], [24]. Rationalized Logs is upgraded logs based on a new
logging framework called Rationalized logging framework for
Ranger supercomputer which replaced Sys logging framework.
Unlike Syslogs, RatLogs has a few additional fields to record
more information, for example, job-ID to identify each running
job. (iii) Cray XC30 logs [18] generated by Cray XC30
supercomputer , and (iv) Cray XC40 logs [25] generated from
Cray XC40 (Mutrino) supercomputer which was managed
under a joint effort between Los Alamos National Laboratory
(LANL) and Sandia National Laboraties (SNL). Mutrino, sited
at SNL. Both Cray XC30 logs and Cray XC40 logs consist of
two different types of logs (console and message).

B. Evaluation Metrics
Time Machine predicts (i) forthcoming log events (the entire

health state of each node in the system) (ii) the node failure,
and (ii) the expected lead time to failure. Therefore, our model
is evaluated in three aspects. (1) We evaluate the accuracy by
comparing the log events predicted by Time Machine versus
the actual log events generated in reality by the four HPC sys-
tems using two text generation metrics (Bleu and Rouge). Bleu
and Rouge metrics can complement each other for the NLP
text generation (upcoming log events prediction in our case)
tasks evaluation. Specifically, they correspond to the precision
measure and recall measure, respectively. (2) We evaluate
the prediction accuracy of our model regarding the nodes’
failure events using several standard metrics including recall,
precision, F1 score, Matthew’s correlation coefficient (MCC),
false-positive rate, and false-negative rate. We removed the
log events predicted by our model (candidate) and the actual
log events generated by the HPC system (reference) except
failures in order to employ these metrics. (3) We evaluate
the prediction accuracy of our model regarding the lead-time
to node failures based on standard metrics: recall, precision,
F1 score, and Matthew’s correlation coefficient (MCC).

6

1) Log Events Prediction Evaluation Metrics: Bleu and
Rouge are used to evaluate the prediction accuracy of the log
events predicted by our model versus the actual log events
generated by the four HPC systems in real-time as follows:
(i) Bleu (Bilingual Evaluation Understudy [26])

Bleu is an important indicator to measure the percentage
of log events predicted by our model correctly (candidate)
compared with the real log events as recorded by the HPC
system (reference). A Bleu score is in the range of [0,1], where
0 indicates a mismatch and 1 means a perfect match.

The Bleu metric is defined in Equation 6 [26]:

Bleu = BP × e(
∑N

n=1 wn log pn)

where BP =

{
1, c > r
e1−r/c, c ≤ r

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)∑
Ć∈{Candidates}

∑
n-gram∈Ć

Count(n-gram)

(6)

where BP refers to brevity penalty , r refers to the length of
the reference event sequence in the HPC system, c is the length
of the candidate log sequence predicted by our model, N refers
to the length of ngrams, wn = 1

N means the positive weights.
As for the formula of pn in Equation 6, Count(ngram) and
Countclip(ngram) refer to the number of ngrams for the
candidate in the test set and the number of clipped ngrams
for the candidate log sequence, respectively.
(ii) Rouge (Recall-Oriented Understudy for Gisting Evaluation
N-gram Co-Occurrence Statistics) [27])

We use Rouge to measure the recall – the percentage of
the real log events (reference) overlapped with the log events
predicted by our model (candidate). The rouge score is always
in the range of 0 to 1, where 0 indicates a mismatch and 1
means a perfect match. We present its definition in Equation
7 [27]:

Rouge=

∑
S∈{Reference}

∑
(gramn)∈S

Countmatch(gramn)∑
S∈{Reference}

∑
(gramn)∈S

Count(gramn)
(7)

where n refers to the number of ngrams, Count(gramn) is the
number of ngrams in the reference, and Countmatch(gramn)
means the maximum number of ngrams included by both
reference set and candidate set.

2) Node Failure and Lead-Time Evaluation Metrics: We
use some other well-known metrics to evaluate node failure
prediction, which are summarized in Equations (8) to (13),
where TP, FP, FN, and TN refer to True Positives (failure
events are predicted correctly), False Positives (failure events
are predicted incorrectly), False Negatives (failure events are
missed by our model) and True Negatives (normal events are
predicted correctly by our model), respectively. Precision and
recall are two typical widely measures for failure prediction
accuracy. F1 score is an aggregated metric by merging pre-
cision and recall. Matthew’s correlation coefficient (MCC) is
another aggregated metric which returns a high score if and
only if the model performs well in all the four categories (TP,

FP, FN, and TN).

Precision = TP
TP+FP (8)

Recall = TP
TP+FN (9)

F1 Score = 2 Recall·Precision
Recall+Precision (10)

MCC =
TP × TN − FP × FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(11)

FPRate = FP
FP+TN (12)

FNRate = FN
TP+FN (13)

As for the evaluation of lead-time prediction, we also use the
above standard metrics including recall, precision, F1 score,
and Matthew’s correlation coefficient (MCC).

VI. PERFORMANCE EVALUATION

To show the efficacy and applicability of our failure&lead-
time prediction method, we carefully evaluate the performance
of our model on four real-world supercomputer system logs:
(i) SysLogs, (ii) Rationalized logs, (iii) Cray XC30 logs and
(iv) Cray XC40 logs. They were logged by three differ-
ent supercomputers and four different logging mechanisms
at different operational times, which are all unlabeled. We
compare our approach to three state-of-the-art deep learning
prediction techniques (a.k.a., baselines in the following text):
Desh (LTSM) [9], Bi-LSTM [10],and GRU [11]. These three
related works employ LSTM, Bi-LSTM, and GRU neural
networks to predict HPC failures, respectively, and they have
been verified as the best in class. We do not compare our work
to traditional machine learning (ML) (e.g., Random Forest,
SVM, DT, KNN) for two reasons. First, our model is a self-
supervised learning that does not need labels whereas ML
methods depend on labeled data (i.e., supervised learning-
based techniques). Second, even ML algorithms can be utilised
for classification (e.g., anomaly detection) and regression
tasks, however, they are not designed to resolve text generation
(prediction) tasks which is our research problem. In what
follows, we show and discuss the major evaluation results.

A. Log Data Preprocessing

We preprocess the log data by sorting the log events ac-
cording to timestamps, cleaning raw messages, and removing
the duplicate messages in terms of the spatial and temporal
correlations. Consequently, these log messages are converted
to log sequences regarding their associated nodes, which
corresponds to the phase I of our methodology. As shown
in Table I, the quantities of the datasets’ log messages are
reduced significantly after the preprocessing step. Specifically,
a total of 83087, 25272, 127161, and 49391 log sequences
are constructed from Syslogs, Rationalized logs, Cray XC 30
logs, and Cray XC 40 logs, respectively. Each of the four
logs is divided into training part and testing part. The training
part accounts for 80% of the logs’ data, while the testing part
accounts for the remaining 20%.

7

TABLE I: Data Logs before and after the Preprocessing Phase

Log Name # nodes processors Duration # raw logs # filtered logs
Syslogs 4,084 AMD Opteron 5 mon 43.6 m 2.3 m
RatLogs 4,084 AMD Opteron 6 mon 361 m 8.1 m

Cray XC30 5,600 IvyBridge 1 mon 133 m 15.3 m
Cray XC40 200 Haswell/KNL 16 mon 237 m 5.9 m

B. Training and Prediction Time Performance

Time Machine remarkably decreases the overall training
time compared to the three state-of-the-art prediction ap-
proaches (LTSM (Desh), BiLSTM, and GRU). The overall
training time includes two parts: (i) the training time in the
regard of the prediction of the log event patterns and (ii)
the training time for the prediction of the lead time to node
failures. For the 4 HPC Systems Data Logs, Time Machine
takes only 3.53 hours for the overall training on average, while
other related works (LTSM, BiLSTM, and GRU) require 14.54
hours, 25.53 hours, and 13.22 hours, respectively. Also, our
model is 15× faster over all baseline solutions in predicting
the forthcoming log sequence of events. The training and
prediction time speed-up results are detailed as follows.

1) Log Events Training Time Performance: The training
time for learning to predict the log sequences and identifying
failure patterns, which is addressed by the first transformer-
decoder stack, is drastically reduced 5.4 ∼ 9.4× compared
to three other state-of-the-arts on average as shown in Table
II. Time Machine requires only 0.7∼3.83 hours in training,
while LTSM, BiLSTM, and GRU require 3.79∼20.75 hours,
6.69∼36.66 hours, and 5.74∼18.88 hours, respectively.

TABLE II: Log Events Training Time Performance in Hours
Time Machine LSTM Bi-LSTM GRU

SysLogs 1.60 8.86 15.30 7.89
Rationalized Logs 0.70 3.79 6.69 3.66

Cray XC 30 3.83 20.75 36.66 18.88
Cray XC 40 1.17 6.31 10.33 5.74

Average 1.83 9.93 17.25 9.04

2) Lead Time Prediction Training Time Performance:
The training time for learning to predict the lead time to node
failures, which is addressed by the second transformer-decoder
stack, also drastically decreased 3.74 ∼ 7.23× compared to
three other state-of-the-arts, as illustrated in Table III. Based
on all the 4 HPC Systems Data Logs, Time Machine requires
only 1.71 hours of training on average, while the other related
works (LTSM, BiLSTM, and GRU) require 4.61 hours, 8.29
hours, and 4.17 hours, respectively.

TABLE III: Lead Time Training Time Performance in Hours
Time Machine LSTM Bi-LSTM GRU

SysLogs 1.2 3.17 5.91 2.84
Rationalized Logs 0.54 1.49 2.69 1.34

Cray XC 30 3.86 10.42 18.32 9.44
Cray XC 40 1.24 3.35 6.24 3.09

Average 1.71 4.61 8.29 4.17

3) Log Events Prediction Time Speed-up Performance:
Our model has the highest speed on the prediction of forth-

coming log sequence of events (chain lengths), as shown in
Figure 3. As evaluated in our experiments, the speedup of our
model in predicting the forthcoming log sequence of events
is 15× faster over all baseline solutions (LSTM (Desh), Bi-
LSTM and GRU). The Figure 3 shows that only 5.78 secs
are needed to predict a log sequence with the chain length of
1024, whereas state-of-the-art methods require 96∼167 secs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 64 256 512 1024

P
re

d
ic

ti
o

n
 T

im
e

 i
n

 s
e

c
o

n
d

s

Chain Length

Our Solution
LSTM
Bi-LSTM
GRU

 0

 4

 8

 12

 16

 20

 1 64 256

8.47

18.6

14.7

2.78

15.4

3.36

96

35.3

98

37.8

52.8

167

0.05

Fig. 3: Prediction Time of Chain Lengths

The low training time and high prediction performance of
our model are attributed to the transformer-decoder mecha-
nism’s parallelization capability and positional encoding. More
specifically, it takes considerably less time than the RNN
models (baselines) because the RNN model lacks parallel
training and requires sequential learning. On the one hand,
optimization of training time in HPC systems is significant
because deploying the model online in real-time requires
multiple fine-tunings of the model parameters over time in
case of new log sequences and failure patterns appear. HPC
system operators frequently elevate system components (soft-
ware/hardware) and services to add new components (i.e.,
hardware or software) to improve high-performance comput-
ing demands. The increased number of high-resources-hungry
jobs (e.g., applications) scheduled day-to-day on HPC systems
also induces the logging management systems to generate new
log patterns that have not been learned. On the other hand,
Machine Time is particularly suitable for real-time failure
prediction because of the high-speed prediction of forthcoming
log sequence of events (chain lengths). It is noted that the
growth of the number of events in the log chain does not
come up with higher prediction times using Time Machine,
whereas the baselines consume a long time to predict the
same log sequence, and the speedup turns more and more
obvious with increasing log chain lengths. So, our model
is suitable for the real-time use-case with vast amount of
logs generated in a short time (seconds), especially when the
HPC components face erroneous behaviors that may lead to
component crashes. Consequently, the high-speed prediction
achieved by our model can boost the selection of the most
suitable failure recovery action.

C. Overall Learning & Log Events Prediction Performance

We also evaluate the overall accuracy of our model in
predicting the forthcoming log events (e.g., normal, errors, or

8

failures) before the actual events occur, with respect to predict
the entire system health state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

SysLogs

Rat. Logs

Cray XC30

Cray XC40

Our Solution
LSTM

Bi-LSTM
GRU

 0
.7

 0
.4

5
0
.4

6
0
.4

4

 0
.7

3
 0

.4
6

 0
.4

6
 0

.4
2

 0
.9

9
 0

.4
6

 0
.4

7
 0

.4
0

 0
.7

5
 0

.4
9

 0
.4

8
 0

.4
7

(a) Bleu

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

SysLogs

Rat. Logs

Cray XC30

Cray XC40

Our Solution
LSTM

Bi-LSTM
GRU

0
.6

0
.3 0
.3

3
0
.2

8

0
.6

7
0
.3

8
0
.3

9
0
.3

5

0
.9

9
0
.3

5
0
.3

7
0
.2

8

0
.8

3

0
.2

8
0
.2

2

0
.2

3

(b) Rouge

Fig. 4: Entire Health State Prediction Accuracy

Figure 4 (a) and (b) show the Bleu measure and Rouge
measure of the entire health state prediction. Bleu and Rouge
measure the degree of similarity (overlapping) between the
candidate solution (predicted log events by our model or the
baselines (LSTM, Bi-LSTM and GRU)) and the reference (log
events generated by the supercomputer system in realtime). As
shown in the figure, our transformer decoder-based approach
achieves a Bleu score of 0.70∼0.99 in predicting forthcoming
log events based on the four system logs. In contrast, the
other three state-of-the-arts have much lower Bleu scores (in
the range of only 0.4∼0.5). On average, 79% of log events
predicted by our model appeared in the events generated by
the HPC system (the reference), compared to just 47% by Bi-
LSTM (the best score from among the three baselines).

Also, our solution has a significantly higher Rouge score
than the other three methods as depicted in Figure 4 (b). Time
Machine obtains Rouge scores of 0.60, 0.67, 0.99 and 0.83
on the four system logs (SysLogs, Rationalized logs, Cray
XC30 logs, and Cray XC40 logs), respectively. The Bi-LSTM
baseline, however, obtains the Bleu scores of only 0.33, 0.39,
0.37 and 0.28, respectively. Similarly, both LSTM (Desh) and
GRU based prediction solutions also have fairly low Rouge
scores, which are in the range of 0.22 ∼ 0.39. On average,
≈ 77% of events generated by the supercomputer systems in
real-time (the reference) appear in the log events predicted by
Time Machine (candidate), compared to just ≈ 34% by the
best state-of-the-art prediction solution (i.e., Bi-LSTM).

We note that all the baseline solutions (related works) can
hardly capture long-range dependencies/correlations between
the events of long sequences, because they all depend on RNN
model, which suffers from the memory loss issue for earlier
events because of the vanishing gradients. By comparison, our
solution is able to predict the upcoming log event sequence
as long as it correlates to the preceding log sequence, as
manifested by a high match between the forthcoming log
events under our prediction model, and the events generated
on the real system. In particular, the masked self-attention
mechanism can efficiently identify the log entries of important
events while moving the focus away from irrelevant ones
and capturing long-range dependencies/correlations between
events in long sequences.

D. Node Failure Prediction Performance Evaluation

Figure 5 shows the prediction accuracy of failure events
under our model and baselines. We apply six measurements
(Recall, Precision, MCC Score, F1-score FP-Rate, and FN-
Rate) to evaluate our candidate solution and reference, based
on logs with removed non-failure events.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Precision

Recall

F1-Score

M
CC Score

FP-Rate

FN-Rate

Our Solution

LSTM

Bi-LSTM

GRU

0
.0

2
0
.0

7
0
.0

5
0
.0

9

0
.8

2
0
.6

5
0
.6

6
0
.6

3 0
.7

4
0
.5

7
0
.5

9
0
.5

4

0
.7

4
0
.5

1
0
.5

2
0
.5

0
.6

0
.2

1
0
.2

2
0
.2

0
.4

8
0
.7

9
0
.7

5
0
.8

(a) SysLogs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Precision

Recall

F1-Score

M
CC Score

FP-Rate

FN-Rate

Our Solution

LSTM

Bi-LSTM

GRU

0
.8

6
0
.7

0
.7

1
0
.6

7

0
.8

0
.5

9
0
.5

9
0
.5

6

0
.8

0
.5

2
0
.5

3
0
.4

8

0
.7

0
.3 0
.3

2
0
.3

7

0
.0

1
0
.0

4
0
.0

4
0
.0

8

0
.3

9
0
.7

9
0
.7

8
0
.8

1

(b) Rationalized Logs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Precision

Recall

F1-Score

M
CC Score

FP-Rate

FN-Rate

Our Sol

LSTM

Bi-LSTM

GRU

0
.9

9
0
.9

4
0
.9

3
0
.9

4

0
.9

9
0
.9

4
0
.9

3
0
.9

4

0
.9

9
0
.9

4
0
.9

3
0
.9

4

0
9
8

0
.8

7
0
.8

6
0
.8

7

0
.0

0
1

0
.0

2
0
.0

4
0
.0

2

0
.0

1 0
.1

0
.1

0
.1

(c) Cray XC30 Logs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Precision

Recall

F1-Score

M
CC Score

FP-Rate

FN-Rate

Our Sol

LSTM

Bi-LSTM

GRU

0
.9

5
0
.8

7
0
.8

7
0
.8

6 0
.9

5
0
.8

6
0
.8

6
0
.8

5 0
.9

5
0
.8

6
0
.8

6
0
.8

5

0
.9

2
0
.7

3
0
.7

3
0
.7

1

0
.0

1
0
.0

6
0
.0

6
0
.0

6

0
.0

8
0
.2

1
0
.2

4
0
.2

4

(d) Cray XC40

Fig. 5: Failure Prediction Performance

As presented in Figure 5, Time Machine predicts upcoming
node failures with high average precision score (0.91) on
the four HPC system logs. In comparison, the best baselines
are LSTM and Bi-LSTM, whose average scores (0.79) are
lower than our model. For example, 82% of Ranger SysLogs
node failures predicted by Time Machine indeed appear in the
actual events generated by Ranger HPC system, compared to
only 66% by Bi-LSTM (the best score from among the three
baselines). Also, the results show that our technique obtains
a better recall accuracy with an average score of 0.87 on
the four HPC system logs. In comparison, the best baseline
(both LSTM and Bi-LSTM) obtains the average score of only
0.74. Time Machine achieves a recall score of 0.74 on Ranger
SysLogs; Bi-LSTM (best-baseline score) obtains a recall score
only 0.59. This means on average, 74% of actual node failures
generated by Ranger appear in SysLogs can be predicted by
Time Machine, compared to only 59% by Bi-LSTM.

According to Figure 5, our solution has much higher MCC
scores and F1-scores than all other baselines. Specifically, our
model achieves better prediction on the four system logs with
MCC scores of 0.6∼0.92, and the f-scores reach 0.74∼0.99,
which are both much higher than that of other baselines. For
example, for SysLogs and Rationalized Logs, the MCC scores
of our model can reach 0.6 and 0.7, respectively, which are
much higher than the baselines’ (0.2∼0.22 and 0.3∼0.37).

Furthermore, the significant improvement of our model over

9

baselines is also manifested by false positive rate (FP-rate)
and false negative rate (FN-rate) as as shown in Figure 5. For
example, our model drives only 1% false failure alarms and
only 24% false non-failure reports on average for all the four
system logs, indicating fairly rare incorrect trigger recovery
actions. However, the three baselines face higher FP-rate (5%)
and FN-rate (47%), respectively.

We explain why our model significantly advances the base-
lines in the failure prediction as follows. As mentioned before,
different lengths of log sequences are observed between the
failure events and their associated errors and faults (such as
software and kernel OS process, file-system errors, memory
and storage errors, and network errors). Those sequences
contain numerous interleaved and irrelevant log events, making
the failure prediction process more challenging. For instance,
some errors take many hours to trigger the associated fail-
ures, resulting in extended and lengthy log sequences (e.g.,
there are still 3000+ events after the logs filtering phase).
In contrast, our transformer-decoder-based model leverages
multi-head masked attention layers and the positional encoding
technique, which can completely avoid recursion, processing
log sentences as a whole and understands associations between
log events, leading to higher prediction accuracy/capability.

E. Lead Time Prediction Performance Evaluation
This section presents details about the performance of

the prediction of lead-time to failure events. As mentioned
previously, the second key primary goal is to predict not
only node failures but their lead times, in order to choose
appropriate recovery and correction techniques that can be
executed in time based on the remaining time to the failures.

Three key points need to be clarified first as follows:
• The failure prediction techniques (Bi-LSTM approach

[10] and GRU-based approach [11]) do not support lead-
time prediction originally. In our research work, we
implement a lead time component for each of them based
on Bi-LSTM and GRU neural networks, respectively, so
that they are enabled to predict lead-time classes.

• For fairness, we reduce the time-lead prediction problem
into a self-annotated multi-class classification problem for
all the baselines (RNN-based, Desh(LSTM based) [9], Bi-
LSTM based [10], and GRU based [11]).

• We define 6 lead-time classes; however our model is
flexible in increasing/decreasing lead time classes based
on the HPC system recovery mechanisms.

Figure 6 shows the failure lead-time prediction results with
two critical observations. On the one hand, our model always
has the highest accuracy from among all the four solutions. In
absolute terms, the MCC and F1-score under our model can
reach up to 0.87 and 0.95, respectively, which are higher than
the scores resulted from the three state-of-the-arts (0.87 and
0.94, respectively). In particular, for SysLogs and Rationalized
Logs, the MCC scores of Time Machine can get up to 0.76 and
0.83, respectively, while the baselines’ MMC scores are 0.74
and 0.78. On the other hand, all the four prediction methods
have relatively high accuracy in predicting failure lead-times

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Precision

Recall
F1 MCC

L
e

a
d

-t
im

e
 P

re
d

ic
ti
o

n
 A

c
c
u

ra
c
y Our Sol.

LSTM
Bi-LSTM
GRU

Max

Min

Avg

Fig. 6: Lead Time Prediction Performance

on the four real-world system logs. Such a high accuracy is
primarily attributed to modelling the lead-time prediction as a
classification task rather than a regression task. The reason
we can model the lead-time prediction as a classification
task is two fold: (i) there are only a few correction/recovery
actions in total, and each action requires approximate lead
times rather than exact lead times. The proactive recovery
and error correction approaches may have largely different
triggering/recovery costs. The typical proactive fault toler-
ance methods include job migration, checkpointing, process
cloning, node quarantine, error correction code (ECC)), and
so on. The generic live process migration technology, for
example, may require a prior notice of less than 10 seconds
according to the experiments conducted by [28], while similar
OS virtualization technologies may call for much longer lead
times (a warning of 13-24 seconds in general). To assist
redundant execution during failures, Rezaei et al. [29] showed
that node cloning requires less than 200 seconds. Gupta et al.
[30] demonstrated 5-9% of future failures may be prevented
when quarantining the blades/cabinets by stopping scheduling
jobs on the nodes for a few hours after a failure is manifested.

There are four key points about predicting the lead-time
analysis,which are noteworthy being mentioned as follows:

• Our model and baselines can all accurately forecast a
variety of the lead times to different types of their asso-
ciated failures. For example, the lead times (60 seconds,
80 seconds, 120 seconds, 160 seconds) of Cray supercom-
puter failures due to different errors of OS kernel panic,
job scheduler Slurm, a hardware non-maskable interrupt
(NMI), and Machine Check Exceptions, respectively).

• Our model predicts some failures of Ranger and Cray
HPC systems that occurred with a very short lead time
(only 5 seconds) after the occurrence of their associated
errors. Some types of segmentation faults and memory
corruption failures are examples of this class. Thus, In
these cases, the HPC system management control should
first quarantine the corresponding failure-prone nodes
for a couple of hours to avoid waste of the compute
resources. Second, the system should use a recovery
action that takes less time (e.g., the generic live process
migration) or avoid triggering any correction/recovery
actions as most failures have already occurred in this case.

• Our model predicts accurately many failures with rela-
tively long lead times. For instance, The lead times to

10

different node soft lockups failures in the TACC Ranger
supercomputer are ≈ 100minutes,≈ 125minutes,≈
300minutes of their associated errors (general protec-
tion, page fault, loss of service connection by via Network
Interface Device (NID)). In this case, our technique
(Time Machine) can help the HPC system’s administra-
tor choose the best suitable lightweight error correction
approach instead of an expensive solution. Also, it is
practical to postpone triggering the recovery mechanism
technique until a certain short period before the actual
failure occurrence because most of these kinds of failures
can be corrected themselves automatically.

• Time Machine can be considered the best optimization
failure prediction solution since it reports the failures
and their lead time at the same time their associated
causes (i.e., errors) appear. That means our transformer
neural networks based method exhibits the most efficient
prediction of lead times to node failures solution.

VII. RELATED WORK

Log messages are utilized based on statistical and ma-
chine/deep learning approaches for the log based reliability
analysis in today’s HPC systems: log preprocessing/filtering,
anomaly detection, and failure prediction.

First, multiple machine learning and deep learning tech-
niques have been employed for log parsing/filtering, For
example, LogAider[31], Logram [32], DIP [33], LSWE[34].
Recently, different parsers that rely on transformer variants
have also been proposed, e.g., [35], [36].

Second, various machine and deep learning approaches
(e.g., SVM, Random Forest, LSTM) are utilized for anomaly
detection: classifying the log events or sequences as normal
or anomaly (similar to anomaly classification in NLP). For
instance, [8], Logclass [37], Deeplog [38], [39], SiaLog [40],
PLELog [41], and CNN-based studies (e.g.,[42], [43], [44]).
Some studies [45], [46], [47] proposed anomaly detection
methods based on Generative Adversarial Networks (GANs).
Several studies have proposed to use self-attention with dif-
ferent transformer variants to detect HPC anomalies. These
approaches rely on self-attention-based transformer-decoder
[48], self-attention with different transformer-encoder variants
[49], [50]. Compared to these approaches, our Time Machine
is a real-time generative model for predicting log events,
components (e.g., node) failures, and the lead time to the
predicted failures in HPC systems via utilizing two stacks of
self-supervised transformer-decoders.

In order to ensure the mitigation techniques effective upon
failures, the corresponding failures need to be predicted early
enough compared with their occurrence moment. That is,
it is critical to predict not only failure locations but also
the lead times to these failures accurately, in order to trig-
ger appropriate recovery and correction approaches in time.
This makes this problem more complex than the previous
three log analysis tasks (log parsing, anomaly detection,
and failure diagnosis). Several failure prediction methods for
HPC systems are proposed, including rule-based method and

mathematics/analytics-based method (e.g., [51], [52], [53],
[54], [55], [56], [57]). In comparison, our solution focuses
on machine and deep learning categories. Many studies [58],
[59], [14], [60], [61], [62], [63], [64], [65], [66], [67] leveraged
ML techniques to predict the largescale systems failures based
on calculating correlation association scores between the log
events and failures, however extensive data engineering efforts
and manual labelling are required to transform log messages
to the numerical & statistical data before applying these solu-
tions, and they are lack of predicting the failures’ lead-time.
Moreover, machine learning-based approaches generally lead
to lower prediction accuracy compared to the deep learning
methods which are the best related works. Different models
have been proposed to predict failures in HPC systems based
on deep learning algorithms. Similar to the ML-based meth-
ods, most of them do not perform inference leadtime analysis
such as [68], [69], [10], [11], [15], and few frameworks include
sub-models to predict the leadtime of failures such as Desh [9]
and its extension Aarohi [5]. In comparison with deep learning
methods, Time Machine is a more efficient failure and lead
time prediction technique, which outperforms all RNN-based
methods in all evaluation metrics based on our experiments.
Clairvoyant [15] utilized transformer-decoder to predict only
the soft lockup failures. In comparison, Time Machine uses
two stacks of transformer decoders to predict any possible
types of failures and the lead time of failures accurately as
detailed in the introduction.

VIII. CONCLUSION

In this paper, we employ the transformer-decoder neural
networks to build a novel real-time model called Time Machine
to predict log events, failures, and their lead-times in HPC
system’s components (e.g, nodes). Time machine and three
state-of-the-art techniques are evaluated on four HPC log data.
Experiments show that our model significantly outperforms
other state-of-the-arts in both accuracy and speed. Our model
can trigger recovery solutions at right places and right time
with substantially reduced cost. Note that this work intro-
duces a novel method to automatically (no need for labels)
construct and augment a self-time annotated training dataset
on sequential time-based (timestamps) raw data via automatic
accumulative and iterative process. Also, Time Machine is
the first paper to formulate the time prediction (a regression
problem) as a self-annotated multi-class classification problem
by predicting the class for the failure lead time. Motivated
by the promising results of our solution, in future, we will
explore other generative models such as T5, GANs, BART
for the prediction of HPC failures and lead-times.

REFERENCES

[1] E. Chuah, A. Jhumka, S. Alt, J. J. Villalobos, J. Fryman, W. Barth, and
M. Parashar, “Using resource use data and system logs for HPC system
error propagation and recovery diagnosis,” in 2019 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social Com-
puting & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE,
2019, pp. 458–467.

11

[2] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault prediction
under the microscope: A closer look into hpc systems,” in SC’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–
11.

[3] ——, “Failure prediction for hpc systems and applications: Current sit-
uation and open issues,” The International journal of high performance
computing applications, vol. 27, no. 3, pp. 273–282, 2013.

[4] ——, “Fault prediction under the microscope: A closer look into hpc
systems,” in SC ’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, 2012,
pp. 1–11.

[5] A. Das, F. Mueller, and B. Rountree, “Aarohi: Making real-time node
failure prediction feasible,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2020, pp. 1092–1101.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[7] E. Chuah, A. Jhumka, S. Alt, D. Balouek-Thomert, J. C. Browne,
and M. Parashar, “Towards comprehensive dependability-driven resource
use and message log-analysis for HPC systems diagnosis,” Journal of
Parallel and Distributed Computing, vol. 132, pp. 95–112, 2019.

[8] K. A. Alharthi, A. Jhumka, S. Di, F. Cappello, and E. Chuah, “Sentiment
analysis based error detection for large-scale systems,” in 2021 51st
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2021, pp. 237–249.

[9] A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: deep learning for
system health prediction of lead times to failure in HPC,” in Proceedings
of the 27th International Symposium on High-Performance Parallel and
Distributed Computing, 2018, pp. 40–51.

[10] J. Gao, H. Wang, and H. Shen, “Task failure prediction in cloud data
centers using deep learning,” IEEE Transactions on Services Computing,
2020.

[11] M. S. Islam and A. Miranskyy, “Anomaly detection in cloud compo-
nents,” in 2020 IEEE 13th International Conference on Cloud Comput-
ing (CLOUD). IEEE, 2020, pp. 1–3.

[12] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman, “A practical
failure prediction with location and lead time for blue gene/p,” in
2010 International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2010, pp. 15–22.

[13] T. Pitakrat, D. Okanović, A. van Hoorn, and L. Grunske, “Hora:
Architecture-aware online failure prediction,” Journal of Systems and
Software, vol. 137, pp. 669–685, 2018.

[14] J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Müller, “Data mining-
based analysis of hpc center operations,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), 2017, pp. 766–773.

[15] K. A. Alharthi, A. Jhumka, S. Di, and F. Cappello, “Clairvoyant:
a log-based transformer-decoder for failure prediction in large-scale
systems,” in Proceedings of the 36th ACM International Conference on
Supercomputing, 2022, pp. 1–14.

[16] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[17] L. Cai, K. Janowicz, G. Mai, B. Yan, and R. Zhu, “Traffic transformer:
Capturing the continuity and periodicity of time series for traffic
forecasting,” Transactions in GIS, vol. 24, no. 3, pp. 736–755, 2020.

[18] A. Das, F. Mueller, and B. Rountree, “Systemic assessment of node
failures in hpc production platforms,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021,
pp. 267–276.

[19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[20] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural computation, vol. 1,
no. 2, pp. 270–280, 1989.

[21] “Ranger supercomputer begins new life - latest news - texas
advanced computing center,” https://www.tacc.utexas.edu/-/
ranger-supercomputer-begins-new-life, (Accessed on 11/30/2022).

[22] N. A. Simakov, J. P. White, R. L. DeLeon, S. M. Gallo, M. D. Jones,
J. T. Palmer, B. Plessinger, and T. R. Furlani, “A workload analysis of
nsf’s innovative hpc resources using xdmod,” 2018.

[23] J. Dongarra, T. Herault, and Y. Robert, Fault Tolerance Techniques for
High-Performance Computing, 05 2015.

[24] N. Gurumdimma, G. D. Bibu, D. B. Bisandu, and M. T. Alams,
“Identifying recovery patterns from resource usage data of cluster
systems,” Science World Journal, vol. 13, no. 4, pp. 87–94, 2018.

[25] mutrino, “The mutrino 2/15-6/16 dataset (12/16 release),”
https://portal.nersc.gov/project/m888/resilience/datasets/mutrino/
about-mutrino1yr-v122016.pdf, 2016.

[26] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[27] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[28] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive process-
level live migration in hpc environments,” in SC’08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing. IEEE, 2008, pp. 1–12.

[29] A. Rezaei, F. Mueller, P. Hargrove, and E. Roman, “Dino: Divergent
node cloning for sustained redundancy in hpc,” Journal of Parallel and
Distributed Computing, vol. 109, pp. 350–362, 2017.

[30] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understand-
ing and exploiting spatial properties of system failures on extreme-scale
hpc systems,” in 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2015, pp. 37–44.

[31] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello, “Logaider:
A tool for mining potential correlations of HPC log events,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2017, pp. 442–451.

[32] H. Dai, H. Li, C. S. Chen, W. Shang, and T.-H. Chen, “Logram: Efficient
log parsing using n-gram dictionaries,” IEEE Transactions on Software
Engineering, 2020.

[33] D. Plaisted and M. Xie, “Dip: a log parser based on” disagreement
index token” conditions,” in Proceedings of the 2022 ACM Southeast
Conference, 2022, pp. 113–122.

[34] W. Meng, Y. Liu, Y. Huang, S. Zhang, F. Zaiter, B. Chen, and D. Pei,
“A semantic-aware representation framework for online log analysis,” in
2020 29th International Conference on Computer Communications and
Networks (ICCCN). IEEE, 2020, pp. 1–7.

[35] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, “Self-
supervised log parsing,” arXiv preprint arXiv:2003.07905, 2020.

[36] F. Setianto, E. Tsani, F. Sadiq, G. Domalis, D. Tsakalidis, and
P. Kostakos, “Gpt-2c: A gpt-2 parser for cowrie honeypot logs,” arXiv
preprint arXiv:2109.06595, 2021.

[37] W. Meng, Y. Liu, S. Zhang, F. Zaiter, Y. Zhang, Y. Huang, Z. Yu,
Y. Zhang, L. Song, M. Zhang et al., “Logclass: Anomalous log iden-
tification and classification with partial labels,” IEEE Transactions on
Network and Service Management, 2021.

[38] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017, pp. 1285–1298.

[39] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[40] S. Hashemi and M. Mäntylä, “Sialog: detecting anomalies in software
execution logs using the siamese network,” Automated Software Engi-
neering, vol. 29, no. 2, pp. 1–28, 2022.

[41] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label
estimation,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 1448–1460.

[42] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data
system logs using convolutional neural network,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp.
151–158.

[43] P. Cheansunan and P. Phunchongharn, “Detecting anomalous events on
distributed systems using convolutional neural networks,” in 2019 IEEE
10th International Conference on Awareness Science and Technology
(iCAST). IEEE, 2019, pp. 1–5.

12

https://www.tacc.utexas.edu/-/ranger-supercomputer-begins-new-life
https://www.tacc.utexas.edu/-/ranger-supercomputer-begins-new-life
https://portal.nersc.gov/project/m888/resilience/datasets/mutrino/about-mutrino1yr-v122016.pdf
https://portal.nersc.gov/project/m888/resilience/datasets/mutrino/about-mutrino1yr-v122016.pdf

[44] Z. Wang, J. Tian, H. Fang, L. Chen, and J. Qin, “Lightlog: A lightweight
temporal convolutional network for log anomaly detection on the edge,”
Computer Networks, vol. 203, p. 108616, 2022.

[45] Z. Zhao, W. Niu, X. Zhang, R. Zhang, Z. Yu, and C. Huang, “Trine: Sys-
log anomaly detection with three transformer encoders in one generative
adversarial network,” Applied Intelligence, pp. 1–10, 2021.

[46] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2014.

[47] B. Xia, Y. Bai, J. Yin, Y. Li, and J. Xu, “Loggan: A log-level generative
adversarial network for anomaly detection using permutation event
modeling,” Information Systems Frontiers, vol. 23, no. 2, pp. 285–298,
2021.

[48] Y. Guo, Y. Wen, C. Jiang, Y. Lian, and Y. Wan, “Detecting log anomalies
with multi-head attention (lama),” arXiv preprint arXiv:2101.02392,
2021.

[49] Y. Lee, J. Kim, and P. Kang, “Lanobert: System log anomaly
detection based on bert masked language model,” arXiv preprint
arXiv:2111.09564, 2021.

[50] V.-H. Le and H. Zhang, “Log-based anomaly detection without log
parsing,” arXiv preprint arXiv:2108.01955, 2021.

[51] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden, “Doomsday:
Predicting which node will fail when on supercomputers,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2018, pp. 108–121.

[52] L. Guo, D. Li, I. Laguna, and M. Schulz, “Fliptracker: Understanding
natural error resilience in hpc applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, ser. SC ’18. IEEE Press, 2018.

[53] A. Ma, F. Douglis, G. Lu, D. Sawyer, S. Chandra, and W. Hsu, “Raid-
shield: Characterizing, monitoring, and proactively protecting against
disk failures,” in Proceedings of the 13th USENIX Conference on File
and Storage Technologies, ser. FAST’15. USA: USENIX Association,
2015, p. 241–256.

[54] Y. Watanabe and Y. Matsumoto, “Online failure prediction in cloud
datacenters,” Fujitsu scientific & technical journal, vol. 50, no. 1, pp.
67–71, 2014.

[55] C. H. Costa, Y. Park, B. S. Rosenburg, C.-Y. Cher, and K. D. Ryu, “A
system software approach to proactive memory-error avoidance,” in SC
’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2014, pp. 707–718.

[56] A. Gainaru, M.-S. Bouguerra, F. Cappello, M. Snir, and W. T. C. Kramer,
“Navigating the blue waters : Online failure prediction in the petascale
era,” 2013.

[57] X. Fu, R. Ren, S. A. McKee, J. Zhan, and N. Sun, “Digging deeper into
cluster system logs for failure prediction and root cause diagnosis,” in
2014 IEEE International Conference on Cluster Computing (CLUSTER),
2014, pp. 103–112.

[58] S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards, and A. Miguel,
“A practical approach to hard disk failure prediction in cloud platforms:
Big data model for failure management in datacenters,” in 2016 IEEE
Second International Conference on Big Data Computing Service and
Applications (BigDataService), 2016, pp. 105–116.

[59] C. A. C. Rincon, J.-F. Pâris, R. Vilalta, A. M. K. Cheng, and D. D. E.
Long, “Disk failure prediction in heterogeneous environments,” in 2017
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), 2017, pp. 1–7.

[60] M. Soualhia, F. Khomh, and S. Tahar, “Predicting scheduling failures in
the cloud: A case study with google clusters and hadoop on amazon
emr,” in 2015 IEEE 17th International Conference on High Perfor-
mance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems, 2015,
pp. 58–65.

[61] N. El-Sayed, H. Zhu, and B. Schroeder, “Learning from failure across
multiple clusters: A trace-driven approach to understanding, predicting,
and mitigating job terminations,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), 2017, pp.
1333–1344.

[62] T. Chalermarrewong, T. Achalakul, and S. C. W. See, “Failure prediction
of data centers using time series and fault tree analysis,” in 2012 IEEE
18th International Conference on Parallel and Distributed Systems,
2012, pp. 794–799.

[63] Q. Guan, Z. Zhang, and S. Fu, “Proactive failure management by
integrated unsupervised and semi-supervised learning for dependable
cloud systems,” in 2011 Sixth International Conference on Availability,
Reliability and Security, 2011, pp. 83–90.

[64] A. Sı̂rbu and Ö. Babaoglu, “Towards operator-less data centers
through data-driven, predictive, proactive autonomics,” CoRR, vol.
abs/1606.04456, 2016. [Online]. Available: http://arxiv.org/abs/1606.
04456

[65] X. LU, H. qiang WANG, R. jie ZHOU, and B. yu GE,
“Autonomic failure prediction based on manifold learning for large-
scale distributed systems,” The Journal of China Universities of
Posts and Telecommunications, vol. 17, no. 4, pp. 116–124, 2010.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1005888509604970

[66] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma, “Proactive drive
failure prediction for large scale storage systems,” in 2013 IEEE 29th
Symposium on Mass Storage Systems and Technologies (MSST), 2013,
pp. 1–5.

[67] A. Pelaez, A. Quiroz, J. C. Browne, E. Chuah, and M. Parashar, “Online
failure prediction for hpc resources using decentralized clustering,” in
2014 21st International Conference on High Performance Computing
(HiPC), 2014, pp. 1–9.

[68] T. Islam and D. Manivannan, “Predicting application failure in cloud:
A machine learning approach,” in 2017 IEEE International Conference
on Cognitive Computing (ICCC), 2017, pp. 24–31.

[69] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi, “Making disk
failure predictions smarter!” in 18th {USENIX} Conference on File and
Storage Technologies ({FAST} 20), 2020, pp. 151–167.

13

http://arxiv.org/abs/1606.04456
http://arxiv.org/abs/1606.04456
https://www.sciencedirect.com/science/article/pii/S1005888509604970
https://www.sciencedirect.com/science/article/pii/S1005888509604970

	Introduction
	System Model and Fault Model
	System Model
	Fault Model
	HPC System Component Failure

	Problem Formulation
	Time Machine Methodology
	Node Failure Prediction
	Phase I. Log Event Prepossessing
	Phase II. Log Events Learning and Failure Prediction

	Predicting Lead Times to The Node Failure
	Phase III: Failure Sequences Construction for Lead-Time Prediction
	Phase IV: Lead-Time Learning and Prediction

	Featuring Real-Time in Time Machine

	System, Datasets, and Evaluation Metrics
	Systems and Log Data
	Evaluation Metrics
	Log Events Prediction Evaluation Metrics
	Node Failure and Lead-Time Evaluation Metrics

	Performance Evaluation
	Log Data Preprocessing
	Training and Prediction Time Performance
	Log Events Training Time Performance
	Lead Time Prediction Training Time Performance
	Log Events Prediction Time Speed-up Performance

	Overall Learning & Log Events Prediction Performance
	Node Failure Prediction Performance Evaluation
	Lead Time Prediction Performance Evaluation

	Related work
	Conclusion
	References

