11 research outputs found

    Applications of Evolutionary Computation

    Get PDF
    This book constitutes the refereed conference proceedings of the 18th International Conference on the Applications of Evolutionary Computation, EvoApplications 2015, held in Copenhagen, Spain, in April 2015, colocated with the Evo* 2015 events EuroGP, EvoCOP, and EvoMUSART. The 72 revised full papers presented were carefully reviewed and selected from 125 submissions. EvoApplications 2015 consisted of the following 13 tracks: EvoBIO (evolutionary computation, machine learning and data mining in computational biology), EvoCOMNET (nature-inspired techniques for telecommunication networks and other parallel and distributed systems), EvoCOMPLEX (evolutionary algorithms and complex systems), EvoENERGY (evolutionary computation in energy applications), EvoFIN (evolutionary and natural computation in finance and economics), EvoGAMES (bio-inspired algorithms in games), EvoIASP (evolutionary computation in image analysis, signal processing, and pattern recognition), EvoINDUSTRY (nature-inspired techniques in industrial settings), EvoNUM (bio-inspired algorithms for continuous parameter optimization), EvoPAR (parallel implementation of evolutionary algorithms), EvoRISK (computational intelligence for risk management, security and defence applications), EvoROBOT (evolutionary computation in robotics), and EvoSTOC (evolutionary algorithms in stochastic and dynamic environments)

    Applications of Evolutionary Computation (Part II)

    Get PDF
    The two volumes LNCS 10199 and 10200 constitute the refereed conference proceedings of the 20th European Conference on the Applications of Evolutionary Computation, EvoApplications 2017, held in Amsterdam, The Netherlands, in April 2017, colocated with the Evo* 2017 events EuroGP, EvoCOP, and EvoMUSART

    Editorial

    Get PDF
    calls & calendarEDITORIA

    MOBAS: identification of disease-associated protein subnetworks using modularity-based scoring

    Get PDF
    Network-based analyses are commonly used as powerful tools to interpret the findings of genome-wide association studies (GWAS) in a functional context. In particular, identification of disease-associated functional modules, i.e., highly connected protein-protein interaction (PPI) subnetworks with high aggregate disease association, are shown to be promising in uncovering the functional relationships among genes and proteins associated with diseases. An important issue in this regard is the scoring of subnetworks by integrating two quantities: disease association of individual gene products and network connectivity among proteins. Current scoring schemes either disregard the level of connectivity and focus on the aggregate disease association of connected proteins or use a linear combination of these two quantities. However, such scoring schemes may produce arbitrarily large subnetworks which are often not statistically significant or require tuning of parameters that are used to weigh the contributions of network connectivity and disease association. Here, we propose a parameter-free scoring scheme that aims to score subnetworks by assessing the disease association of interactions between pairs of gene products. We also incorporate the statistical significance of network connectivity and disease association into the scoring function. We test the proposed scoring scheme on a GWAS dataset for two complex diseases type II diabetes (T2D) and psoriasis (PS). Our results suggest that subnetworks identified by commonly used methods may fail tests of statistical significance after correction for multiple hypothesis testing. In contrast, the proposed scoring scheme yields highly significant subnetworks, which contain biologically relevant proteins that cannot be identified by analysis of genome-wide association data alone. We also show that the proposed scoring scheme identifies subnetworks that are reproducible across different cohorts, and it can robustly recover relevant subnetworks at lower sampling rates

    Incentive and Culture: Shaping Information and Social Dynamics in Online Information Sharing Systems.

    Full text link
    The most revolutionary power of the Internet lies in the way it changes people’s collaborative work, aggregating social knowledge at an ever-increasing speed. This trend has been manifested in a variety of social information sharing and augmenting systems, such as Wikipedia, Question-and-Answer (Q&A) forums, and crowdsourcing websites. Understanding the information and social dynamics involved in these systems is crucial to improve their design and truly harness their power. This dissertation is devoted to investigating how two important factors, incentive and culture, significantly and interactively shaped users’ information and social behavior in the information-sharing websites I studied. This dissertation is organized by four interlinked studies, which address incentive design in online information sharing systems from four perspectives: how users learn and adapt their behavior to an incentive design dynamically; how users’ adaptation dynamics contribute to a positive feedback mechanism that sustains the community; how culture deeply influences information and social dynamics, even given with very similar virtual point incentive designs and system platforms; and how incentive design can interact with a particular community structure and cultural context in a very comprehensive and complex way, and how the interaction can lead to a co-evolution process between the users and the way users perceive and use the incentive design.Ph.D.InformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89786/1/yangjian_1.pd

    Genetic Programming for Biomarker Detection in Classification of Mass Spectrometry Data

    No full text
    Mass spectrometry (MS) is currently the most commonly used technology in biochemical research for proteomic analysis. The primary goal of proteomic profiling using mass spectrometry is the classification of samples from different experimental states. To classify the MS samples, the identification of protein or peptides (biomarker detection) that are expressed differently between the classes, is required. However, due to the high dimensionality of the data and the small number of samples, classification of MS data is extremely challenging. Another important aspect of biomarker detection is the verification of the detected biomarker that acts as an intermediate step before passing these biomarkers to the experimental validation stage. Biomarker detection aims at altering the input space of the learning algorithm for improving classification of proteomic or metabolomic data. This task is performed through feature manipulation. Feature manipulation consists of three aspects: feature ranking, feature selection, and feature construction. Genetic programming (GP) is an evolutionary computation algorithm that has the intrinsic capability for the three aspects of feature manipulation. The ability of GP for feature manipulation in proteomic biomarker discovery has not been fully investigated. This thesis, therefore, proposes an embedded methodology for these three aspects of feature manipulation in high dimensional MS data using GP. The thesis also presents a method for biomarker verification, using GP. The thesis investigates the use of GP for both single-objective and multi-objective feature selection and construction. In feature ranking, the thesis proposes a GP-based method for ranking subsets of features by using GP as an ensemble approach. The proposed algorithm uses GP capability to combine the advantages of different feature ranking metrics and evolve a new ranking scheme for the subset of the features selected from the top ranked features. The capability of GP as a classifier is also investigated by this method. The results show that GP can select a smaller number of features and provide a better ranking of the selected features, which can improve the classification performance of five classifiers. In feature construction, this thesis proposes a novel multiple feature construction method, which uses a single GP tree to generate a new set of high-level features from the original set of selected features. The results show that the proposed new algorithm outperforms two feature selection algorithms. In feature selection, the thesis introduces the first GP multi-objective method for biomarker detection, which simultaneously increase the classification accuracy and reduce the number of detected features. The proposed multi-objective method can obtain better subsets of features than the single-objective algorithm and two traditional multi-objective approaches for feature selection. This thesis also develops the first multi-objective multiple feature construction algorithm for MS data. The proposed method aims at both maximising the classification performance and minimizing the cardinality of the constructed new high-level features. The results show that GP can dis- cover the complex relationships between the features and can significantly improve classification performance and reduce the cardinality. For biomarker verification, the thesis proposes the first GP biomarker verification method through measuring the peptide detectability. The method solves the imbalance problem in the data and shows improvement over the benchmark algorithms. Also, the algorithm outperforms a well-known peptide detection method. The thesis also introduces a new GP method for alignment of MS data as a preprocessing stage, which will further help in improving the biomarker detection process

    Metaheurísticas, optimización multiobjetivo y paralelismo para descubrir motifs en secuencias de ADN

    Get PDF
    La resolución de problemas complejos mediante técnicas evolutivas es uno de los aspectos más investigados en Informática. El objetivo principal de esta tesis doctoral es desarrollar nuevos algoritmos capaces de resolver estos problemas con el menor tiempo computacional posible, mejorando la calidad de los resultados obtenidos por los métodos ya existentes. Para ello, combinamos tres conceptos importantes: metaheurísticas, optimización multiobjetivo y paralelismo. Con este fin, primero buscamos un problema de optimización importante que aún no fuese resuelto de forma eficiente y encontramos el Problema del Descubrimiento de Motifs (PDM). El PDM tiene como objetivo descubrir pequeños patrones repetidos (motifs) en conjuntos de secuencias de ADN que puedan poseer cierto significado biológico. Para abordarlo, definimos una formulación multiobjetivo adecuada a los requerimientos del mundo real, implementamos un total de diez algoritmos de distinta naturaleza (población, trayectoria, inteligencia colectiva...), analizando aspectos como la capacidad de escalar y converger. Finalmente, diseñamos diversas técnicas paralelas, haciendo uso de entornos de programación como OpenMP y MPI, que tratan de combinar las propiedades de varias metaheurísticas en una única aplicación. Los resultados obtenidos son estudiados en detalle a través de la aplicación de numerosos test estadísticos, y las predicciones son comparadas con las descubiertas por un total de trece herramientas biológicas bien conocidas en la literatura. Las conclusiones obtenidas demuestran que la utilización de la optimización multiobjetivo en técnicas metaheurísticas favorece el descubrimiento de soluciones de calidad y que el paralelismo es útil para combinar las propiedades evolutivas de diferentes algoritmos.The resolution of complex problems by using evolutionary algorithms is one of the most researched issues in Computer Science. The main goal of this thesis is directly related with the development of new algorithms that can solve this kind of problems with the least possible computational time, improving the results achieved by the existing methods. To this end, we combine three important concepts: metaheuristics, multiobjective optimization, and parallelism. For doing this, we first look for a significant optimization problem that had not been solved in an efficient way and we find the Motif Discovery Problem (MDP). MDP aims to discover over-represented short patterns (motifs) in a set of DNA sequences that may have some biological significance. To address it, we defined a multiobjective formulation adjusted to the real-world biological requirements, we implemented a total of ten algorithms of different nature (population, trajectory, collective intelligence...), analyzing aspects such as the ability to scale and converge. Finally, we designed parallel techniques, by using parallel and distributed programming environments as OpenMP and MPI, which try to combine the properties of several metaheuristics in a single application. The obtained results are discussed in detail through numerous statistical tests, and the achieved predictions are compared with those discovered by a total of thirteen well-known biological tools. The drawn conclusions demonstrate that using multiobjective optimization in metaheuristic techniques favors the discovery of quality solutions, and that parallelism is useful for combining the properties of different evolutionary algorithms.Ministerio de Economía y Competitividad - FEDER (TIN2008-06491-C04-04; TIN2012-30685) Gobierno de Extremadura (GR10025-TIC015

    Toward Complete Genome Data Mining in Computational Biology

    No full text

    Applications of Evolutionary Computation: 18th European Conference, EvoApplications 2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings

    No full text
    This book constitutes the refereed conference proceedings of the 18th International Conference on the Applications of Evolutionary Computation, EvoApplications 2015, held in Copenhagen, Spain, in April 2015, colocated with the Evo 2015 events EuroGP, EvoCOP, and EvoMUSART. The 72 revised full papers presented were carefully reviewed and selected from 125 submissions. EvoApplications 2015 consisted of the following 13 tracks: EvoBIO (evolutionary computation, machine learning and data mining in computational biology), EvoCOMNET (nature-inspired techniques for telecommunication networks and other parallel and distributed systems), EvoCOMPLEX (evolutionary algorithms and complex systems), EvoENERGY (evolutionary computation in energy applications), EvoFIN (evolutionary and natural computation in finance and economics), EvoGAMES (bio-inspired algorithms in games), EvoIASP (evolutionary computation in image analysis, signal processing, and pattern recognition), EvoINDUSTRY (nature-inspired techniques in industrial settings), EvoNUM (bio-inspired algorithms for continuous parameter optimization), EvoPAR (parallel implementation of evolutionary algorithms), EvoRISK (computational intelligence for risk management, security and defence applications), EvoROBOT (evolutionary computation in robotics), and EvoSTOC (evolutionary algorithms in stochastic and dynamic environments)
    corecore