377 research outputs found

    New Framework for Code-Mapping-based Reversible Data Hiding in JPEG Images

    Full text link
    Code mapping (CM) is an efficient technique of reversible data hiding (RDH) in JPEG images, which embeds data by constructing the mapping relationship between used codes and unused codes in JPEG bitstream. In this paper, we present a new framework to design the CM-based RDH method. Firstly, to suppress the file size expansion and improve the applicability, a new code mapping strategy is proposed. Based on the proposed strategy, the mapped codes are redefined by customizing a new Huffman table thoroughly rather than selected from the unused codes in the original Huffman table. Afterwards, the key issue of designing the CM-based RDH method, i.e., constructing the code mapping, is converted into solving a combinatorial optimization problem. As a realization, a novel CM-based RDH method is introduced by employing the genetic algorithm (GA). Experimental results show that the efficacy of the proposed method with high embedding capacity and no signal distortion while suppressing file size expansion

    Watermarking on Compressed Image: A New Perspective

    Get PDF

    Quantization Watermarking for Joint Compression and Data Hiding Schemes

    Get PDF
    International audienceEnrichment and protection of JPEG2000 images is an important issue. Data hiding techniques are a good solution to solve these problems. In this context, we can consider the joint approach to introduce data hiding technique into JPEG2000 coding pipeline. Data hiding consists of imperceptibly altering multimedia content, to convey some information. This process is done in such a way that the hidden data is not perceptible to an observer. Digital watermarking is one type of data hiding. In addition to the imperceptibility and payload constraints, the watermark should be robust against a variety of manipulations or attacks. We focus on trellis coded quantization (TCQ) data hiding techniques and propose two JPEG2000 compression and data hiding schemes. The properties of TCQ quantization, defined in JPEG2000 part 2, are used to perform quantization and information embedding during the same time. The first scheme is designed for content description and management applications with the objective of achieving high payloads. The compression rate/imperceptibility/payload trade off is our main concern. The second joint scheme has been developed for robust watermarking and can have consequently many applications. We achieve the better imperceptibility/robustness trade off in the context of JPEG2000 compression. We provide some experimental results on the implementation of these two schemes

    High Dynamic Range Images Coding: Embedded and Multiple Description

    Get PDF
    The aim of this work is to highlight and discuss a new paradigm for representing high-dynamic range (HDR) images that can be used for both its coding and describing its multimedia content. In particular, the new approach defines a new representation domain that, conversely from the classical compressed one, enables to identify and exploit content metadata. Information related to content are used here to control both the encoding and the decoding process and are directly embedded in the compressed data stream. Firstly, thanks to the proposed solution, the content description can be quickly accessed without the need of fully decoding the compressed stream. This fact ensures a significant improvement in the performance of search and retrieval systems, such as for semantic browsing of image databases. Then, other potential benefits can be envisaged especially in the field of management and distribution of multimedia content, because the direct embedding of content metadata preserves the consistency between content stream and content description without the need of other external frameworks, such as MPEG-21. The paradigm proposed here may also be shifted to Multiple description coding, where different representations of the HDR image can be generated accordingly to its content. The advantages provided by the new proposed method are visible at different levels, i.e. when evaluating the redundancy reduction. Moreover, the descriptors extracted from the compressed data stream could be actively used in complex applications, such as fast retrieval of similar images from huge databases

    WG1N5315 - Response to Call for AIC evaluation methodologies and compression technologies for medical images: LAR Codec

    Get PDF
    This document presents the LAR image codec as a response to Call for AIC evaluation methodologies and compression technologies for medical images.This document describes the IETR response to the specific call for contributions of medical imaging technologies to be considered for AIC. The philosophy behind our coder is not to outperform JPEG2000 in compression; our goal is to propose an open source, royalty free, alternative image coder with integrated services. While keeping the compression performances in the same range as JPEG2000 but with lower complexity, our coder also provides services such as scalability, cryptography, data hiding, lossy to lossless compression, region of interest, free region representation and coding

    Framework for reversible data hiding using cost-effective encoding system for video steganography

    Get PDF
    Importances of reversible data hiding practices are always higher in contrast to any conventional data hiding schemes owing to its capability to generate distortion free cover media. Review of existing approaches on reversible data hiding approaches shows variable scheme mainly focussing on the embedding mechanism; however, such schemes could be furthermore improved using encoding scheme for optimal embedding performance. Therefore, the proposed manuscript discusses about a cost-effective scheme where a novel encoding scheme has been used with larger block sizes which reduces the dependencies over larger number of blocks. Further a gradient-based image registration technique is applied to ensure higher quality of the reconstructed signal over the decoding end. The study outcome shows that proposed data hiding technique is proven better than existing data hiding scheme with good balance between security and restored signal quality upon extraction of data

    WAVELET BASED DATA HIDING OF DEM IN THE CONTEXT OF REALTIME 3D VISUALIZATION (Visualisation 3D Temps-Réel à Distance de MNT par Insertion de Données Cachées Basée Ondelettes)

    No full text
    The use of aerial photographs, satellite images, scanned maps and digital elevation models necessitates the setting up of strategies for the storage and visualization of these data. In order to obtain a three dimensional visualization it is necessary to drape the images, called textures, onto the terrain geometry, called Digital Elevation Model (DEM). Practically, all these information are stored in three different files: DEM, texture and position/projection of the data in a geo-referential system. In this paper we propose to stock all these information in a single file for the purpose of synchronization. For this we have developed a wavelet-based embedding method for hiding the data in a colored image. The texture images containing hidden DEM data can then be sent from the server to a client in order to effect 3D visualization of terrains. The embedding method is integrable with the JPEG2000 coder to accommodate compression and multi-resolution visualization. Résumé L'utilisation de photographies aériennes, d'images satellites, de cartes scannées et de modèles numériques de terrains amène à mettre en place des stratégies de stockage et de visualisation de ces données. Afin d'obtenir une visualisation en trois dimensions, il est nécessaire de lier ces images appelées textures avec la géométrie du terrain nommée Modèle Numérique de Terrain (MNT). Ces informations sont en pratiques stockées dans trois fichiers différents : MNT, texture, position et projection des données dans un système géo-référencé. Dans cet article, nous proposons de stocker toutes ces informations dans un seul fichier afin de les synchroniser. Nous avons développé pour cela une méthode d'insertion de données cachées basée ondelettes dans une image couleur. Les images de texture contenant les données MNT cachées peuvent ensuite être envoyées du serveur au client afin d'effectuer une visualisation 3D de terrains. Afin de combiner une visualisation en multirésolution et une compression, l'insertion des données cachées est intégrable dans le codeur JPEG 2000

    HyperThumbnail: Real-time 6K Image Rescaling with Rate-distortion Optimization

    Full text link
    Contemporary image rescaling aims at embedding a high-resolution (HR) image into a low-resolution (LR) thumbnail image that contains embedded information for HR image reconstruction. Unlike traditional image super-resolution, this enables high-fidelity HR image restoration faithful to the original one, given the embedded information in the LR thumbnail. However, state-of-the-art image rescaling methods do not optimize the LR image file size for efficient sharing and fall short of real-time performance for ultra-high-resolution (e.g., 6K) image reconstruction. To address these two challenges, we propose a novel framework (HyperThumbnail) for real-time 6K rate-distortion-aware image rescaling. Our framework first embeds an HR image into a JPEG LR thumbnail by an encoder with our proposed quantization prediction module, which minimizes the file size of the embedding LR JPEG thumbnail while maximizing HR reconstruction quality. Then, an efficient frequency-aware decoder reconstructs a high-fidelity HR image from the LR one in real time. Extensive experiments demonstrate that our framework outperforms previous image rescaling baselines in rate-distortion performance and can perform 6K image reconstruction in real time.Comment: Accepted by CVPR 2023; Github Repository: https://github.com/AbnerVictor/HyperThumbnai
    • …
    corecore