8 research outputs found

    Prioritized Repairing and Consistent Query Answering in Relational Databases

    Get PDF
    A consistent query answer in an inconsistent database is an answer obtained in every (minimal) repair. The repairs are obtained by resolving all conflicts in all possible ways. Often, however, the user is able to provide a preference on how conflicts should be resolved. We investigate here the framework of preferred consistent query answers, in which user preferences are used to narrow down the set of repairs to a set of preferred repairs. We axiomatize desirable properties of preferred repairs. We present three different families of preferred repairs and study their mutual relationships. Finally, we investigate the complexity of preferred repairing and computing preferred consistent query answers.Comment: Accepted to the special SUM'08 issue of AMA

    Peer Data Management

    Get PDF
    Peer Data Management (PDM) deals with the management of structured data in unstructured peer-to-peer (P2P) networks. Each peer can store data locally and define relationships between its data and the data provided by other peers. Queries posed to any of the peers are then answered by also considering the information implied by those mappings. The overall goal of PDM is to provide semantically well-founded integration and exchange of heterogeneous and distributed data sources. Unlike traditional data integration systems, peer data management systems (PDMSs) thereby allow for full autonomy of each member and need no central coordinator. The promise of such systems is to provide flexible data integration and exchange at low setup and maintenance costs. However, building such systems raises many challenges. Beside the obvious scalability problem, choosing an appropriate semantics that can deal with arbitrary, even cyclic topologies, data inconsistencies, or updates while at the same time allowing for tractable reasoning has been an area of active research in the last decade. In this survey we provide an overview of the different approaches suggested in the literature to tackle these problems, focusing on appropriate semantics for query answering and data exchange rather than on implementation specific problems

    Automated conflict resolution in collaborative data sharing systems using community feedbacks

    Get PDF
    a b s t r a c t In collaborative data sharing systems, groups of users usually work on disparate schemas and database instances, and agree to share the related data among them (periodically). Each group can extend, curate, and revise its own database instance in a disconnected mode. At some later point, the group can publish its updates to other groups and get updates of other ones (if any). The reconciliation operation in the CDSS engine is responsible for propagating updates and handling any data disagreements between the different groups. If a conflict is found, any involved updates are rejected temporally and marked as deferred. Deferred updates are not accepted by the reconciliation operation until a user resolves the conflict manually. In this paper, we propose an automated conflict resolution approach that depends on community feedbacks, to handle the conflicts that may arise in collaborative data sharing communities, with potentially disparate schemas and data instances. The experiment results show that extending the CDSS by our proposed approach can resolve such conflicts in an accurate and efficient manner

    Semantic Web Based Relational Database Access With Conflict Resolution

    Get PDF
    This thesis focuses on (1) accessing relational databases through Semantic Web technologies and (2) resolving conflicts that usually arises when integrating data from heterogeneous source schemas and/or instances. In the first part of the thesis, we present an approach to access relational databases using Semantic Web technologies. Our approach is built on top of Ontop framework for Ontology Based Data Access. It extracts both Ontop mappings and an equivalent OWL ontology from an existing database schema. The end users can then access the underlying data source through SPARQL queries. The proposed approach takes into consideration the different relationships between the entities of the database schema when it extracts the mapping and the equivalent ontology. Instead of extracting a flat ontology that is an exact copy of the database schema, it extracts a rich ontology. The extracted ontology can also be used as an intermediary between a domain ontology and the underlying database schema. Our approach covers independent or master entities that do not have foreign references, dependent or detailed entities that have some foreign keys that reference other entities, recursive entities that contain some self references, binary join entities that relate two entities together, and n-ary join entities that map two or more entities in an n-ary relation. The implementation results indicate that the extracted Ontop mappings and ontology are accurate. i.e., end users can query all data (using SPARQL) from the underlying database source in the same way as if they have written SQL queries. In the second part, we present an overview of the conflict resolution approaches in both conventional data integration systems and collaborative data sharing communities. We focus on the latter as it supports the needs of scientific communities for data sharing and collaboration. We first introduce the purpose of the study, and present a brief overview of data integration. Next, we talk about the problem of inconsistent data in conventional integration systems, and we summarize the conflict handling strategies used to handle such inconsistent data. Then we focus on the problem of conflict resolution in collaborative data sharing communities. A collaborative data sharing community is a group of users who agree to share a common database instance, such that all users have access to the shared instance and they can add to, update, and extend this shared instance. We discuss related works that adopt different conflict resolution strategies in the area of collaborative data sharing, and we provide a comparison between them. We find that a Collaborative Data Sharing System (CDSS) can best support the needs of certain communities such as scientific communities. We then discuss some open research opportunities to improve the efficiency and performance of the CDSS. Finally, we summarize our work so far towards achieving these open research directions

    The Fourth International VLDB Workshop on Management of Uncertain Data

    Get PDF

    Data Conflict Resolution Using Trust Mappings

    No full text
    In massively collaborative projects such as scientific or community databases, users often need to agree or disagree on the content of individual data items. On the other hand, trust relationships often exist between users, allowing them to accept or reject other users ’ beliefs by default. As those trust relationships become complex, however, it becomes difficult to define and compute a consistent snapshot of the conflicting information. Previous solutions to a related problem, the update reconciliation problem, are dependent on the order in which the updates are processed and, therefore, do not guarantee a globally consistent snapshot. This paper proposes the first principled solution to the automatic conflict resolution problem in a community database. Our semantics is based on the certain tuples of all stable models of a logic program. While evaluating stable models in general is well known to be hard, even for very simple logic programs, we show that the conflict resolution problem admits a PTIME solution. To the best of our knowledge, ours is the first PTIME algorithm that allows conflict resolution in a principled way. We further discuss extensions to negative beliefs and prove that some of these extensions are hard. This work is done in the context of the BeliefDB project at the University of Washington, which focuses on the efficient management of conflicts in community databases
    corecore