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Abstract
Peer Data Management (PDM) deals with the management of structured data in unstructured
peer-to-peer (P2P) networks. Each peer can store data locally and define relationships between
its data and the data provided by other peers. Queries posed to any of the peers are then
answered by also considering the information implied by those mappings.

The overall goal of PDM is to provide semantically well-founded integration and exchange
of heterogeneous and distributed data sources. Unlike traditional data integration systems, peer
data management systems (PDMSs) thereby allow for full autonomy of each member and need
no central coordinator. The promise of such systems is to provide flexible data integration and
exchange at low setup and maintenance costs.

However, building such systems raises many challenges. Beside the obvious scalability prob-
lem, choosing an appropriate semantics that can deal with arbitrary, even cyclic topologies, data
inconsistencies, or updates while at the same time allowing for tractable reasoning has been an
area of active research in the last decade. In this survey we provide an overview of the different
approaches suggested in the literature to tackle these problems, focusing on appropriate semantics
for query answering and data exchange rather than on implementation specific problems.
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1 Introduction

Peer Data Management (PDM) on the one hand describes the complete area of data
management in peer-to-peer (P2P) systems, while on the other hand it is also used to denote
a very specific type of data management systems. In this survey, we follow the second
interpretation, referring to management of structured data in unstructured P2P networks
only. Concentrating on Peer Data Management Systems (PDMSs), we provide a summary
of different approaches introduced in the literature to design and create such systems, and
consider both theoretical aspects as well as actual implementations:

PDMSs consist of a set of peers, where each peer offers some data through a so called
peer schema. If a peer is interested in enhancing the information published through its
peer schema with the data provided by some other peer, mappings between these two peers,
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Figure 1 Example of a PDMS. Rectangles with rounded borders represent the peers P1, P2, P3

and the trapezoids the peer schemas. Their schema is depicted next to the peers.

defined either on schema or instance level, are used to express the relationship between the
data offered by these peers. Queries are posed against a single peer schema. Their answers
do not only include the information stored locally at that peer, but also contain all the
information implied by these mappings.

I Example 1. Figure 1 shows an example of a small PDMS. Consider first only the peers P1
and P2, both collecting and providing information about PDMSs. P1 offers a list of prototype
systems (sys(name)) and P2 information about different semantics for PDMSs (sem(name)),
and which prototype implements which semantics (used_in(sys, sem)). Also, P2 retrieves
the information about available prototypes from P1. Now assume another peer P3 joins the
group. It also offers a list of prototype systems, which contains beside the name of the system
also the organization that built it (sys(name, org)). P3 enhances its list by the data provided
from P1, and P2 tries to complete its data by defining a mapping from P3 to itself. J

Example 1 already illustrates some of the main advantages of PDMSs: They can be easily
set up, members can join and leave the network at will, they support heterogeneous schemas
and domains, and there is no need for global coordination, as e.g. required in typical data
integration or multi-database systems. This allows each peer to take care of the mappings
it is interested in only and no global coordination mechanism is required. However, the
example also raises some questions. The probably most interesting one among them is how
such mappings between two peers really look like and, related to this, how data sharing along
them works. For example, P3 could either import all relevant data from P1, or retrieve the
required information only at query time by answering queries not only on its local data, but
also by forwarding them to P1.

In fact, while PDMSs possess very promising properties, building such a system is a
challenging task. One of the main problems is to find an appropriate formalism for defining
the mappings between peers that is powerful enough to be useful, but at the same time
allows for decidable (or preferably: efficient) reasoning (e.g., query answering). As a result,
several different formalisms and semantics have been suggested in the literature for the
specification of such mappings. Obviously, this leads to several different semantics that can
be applied to a PDMS. Beside these problems of creating a suitable theory for PDM (like the
relational model for single databases), due to the distribution and autonomy of the peers,
also implementing such systems is no easy task. In combination with the lack of a clear
semantics, several prototype systems have been created in the last years, addressing specific
problems of building such systems.

In this survey we provide an overview of the different approaches taken so far to overcome
these problems: We describe the most important and influential suggestions for useful
(i.e. powerful, yet efficiently decidable) semantics for mappings in PDMSs, concentrating
on relational systems, but also considering systems using other data models. One focus
of this discussion is how schema mappings from data exchange or data integration have
been applied to PDM. Beside those theoretical frameworks, we also provide an overview
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on existing prototype systems and point out specific and interesting properties of them.
The organization of the paper is as follows: After some preliminary definitions in Section 2,
we discuss general properties and characteristics of PDMSs in Section 3 and point out the
differences between PDMSs, other P2P systems, and other kinds of distributed database
systems. Next (Section 4), we describe the Local Relational Model, a concrete formalism for
modeling PDMSs. Section 5 contains the discussion of the application of schema mappings
to PDM, followed by alternative mapping strategies in Section 6. An overview on system
prototypes is started in Section 7 which is completed in Section 8 with a discussion of PDMSs
not applying the relational data model. We summarize and conclude in Section 9.

2 Preliminaries and System Model

Schemas and instances. A relational schema R = {R1, . . . , Rn} is a set of relation symbols
Ri each of a fixed arity ki and with an assigned sequence of ki attributes (A1, . . . , Aki

).
Unless defined otherwise, an instance (or interpretation) I over a schema R consists of a
ki-ary relation RIi for each relation symbol Ri ∈ R. We write ~x for a tuple (x1, . . . , xn), but
may also use Ri(~s) ∈ I to denote a tuple ~s ∈ RIi . By slight abuse of notation, we also refer to
the set {x1, . . . , xn} as ~x. Hence, we may use expressions like xi ∈ ~x or ~x ⊆ X, etc. Tuples
of the relations may contain two types of terms: constants and labeled nulls, taken from
the sets consts and null respectively. Although (unless stated otherwise) the domain (or
universe) dom = consts ∪ null is considered to be a countable infinite set, we only consider
finite instances here, and denote with dom(I) = consts(I) ∪ null(I) the active domain of I.

Homomorphisms and conjunctive queries. Let I, J be instances. A homomorphism h : I →
J is a mapping dom(I) → dom(J) s.t. (1) h(c) = c for all c ∈ consts(I) and (2) whenever
R(~x) ∈ I, then R(h(~x)) ∈ J , where by slight abuse of notation, for a tuple ~x = (x1, . . . , xn)
we write h(~x) for (h(x1), . . . , h(xn)).

A conjunctive query (CQ) Q on a database schemaR is of the formQ : ans(~x)← ∃~yφ(~x, ~y),
where φ(~x, ~y) =

∧n
i=1 ri is a conjunction of atoms ri = Rj(~z), s.t. Rj ∈ R with arity k, and

~z ⊆ ~x∪ ~y with |~z| = k. A tuple ~s is called an answer or solution to a CQ Q on an instance I
if ~s = µ(~x), where µ : ~x ∪ ~y → dom(I) is a variable assignment on ~x ∪ ~y, s.t. for every atom
Ri(~z) occurring in Q it holds that Ri(µ(~z)) ∈ I.

Constraints, Mappings, and Theories. Given some logic L and a relational schema R, a
(L-)theory over R is a set of formulas of L over the relation symbols in R. A formula that
contains no free variables is called a closed formula or sentence. A relational theory over R
consists of function free FO formulas over R. Two special kinds of FO constraints are very
well studied: A tuple generating dependency (tgd) is a FO formula ∀~x

(
∃~zφ(~x, ~z)→ ∃~yψ(~x, ~y)

)
,

where φ and ψ are conjunctions of atoms. An equality generating dependency (egd) is a FO
formula ∀~x

(
φ(~x)→ x1 = x2

)
where x1, x2 ∈ ~x and φ again is a conjunction of atoms.

Due to the structure of tgds, it is natural to identify a CQ with the lhs and rhs of a
tgd each, i.e. to consider tgds as mappings Q1(~x) → Q2(~x) for CQs Q1, Q2. Intuitively,
a tgd then requests all answers to Q1 also to be answers of Q2. Further (based on this
characterization) note that tgds can define GAV, LAV, and GLAV mappings, well known
from data integration [54]. We therefore consider those mappings as special cases of tgds.

The chase is a well known procedure to repair instances that do not satisfy a set of tgds
and egds by inserting tuples or unifying labeled nulls. For information on the chase, we refer
to Chapter 1 of this book.

Chapte r 07
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The cyclicity of a set of tgds (and mappings/constraints in general) is characterized via
a graph representation of such sets, i.e. they are acyclic iff some corresponding directed
graph is. Typically, for a set of mappings, the nodes of the graph are the relation symbols
occurring in the mappings (or pairs of relation symbols and variables). Directed edges are
added according to the structure of the mappings; for example for tgds from occurrences at
the lhs of a tgd to occurrences on its rhs. Weaker notions of acyclicity do only forbid certain
types of cycles. A prominent such example is weak acyclicity [20].

Peer Data Management Systems. We focus on the class of Peer Data Management
Systems (PDMSs) that offer semantically well founded sharing of structured data. Following
the terminology in [19], we consider a Peer Data Management System (PDMS) as a triple
S = (P,R,M), where P = {P1, . . . , Pn} is a set of autonomous peers, R is a set of peer
schemas (one schema Ri for each Pi ∈ P), andM is a set of mappings. We say that Ri is
the schema of a local database if data is actually stored under Ri. Alternatively, Ri can
also be the global schema of some local data integration system at Pi (in this case, we refer
to the source relations as Li and assume the mappings between Li and Ri for each Pi ∈ P
to be contained inM as well), or a mediator schema (or view) defined by mappings from
other peer schemas. Hence a peer may either bring new data into the system or just act
as a mediator, restructuring (through corresponding mappings) data already present in the
system. For the semantics of a peer, this does not make any difference, as in any case each
peer offers some well defined data through its peer schema. Finally, the mappings inM may
be either defined on schema or instance level, or both. As we will see, this depends on the
concrete formalism used for defining the mappings. We use domi to denote the domain of Pi.

Instances, consistent global instances, and queries for PDMSs. Given a PDMS S, an
instance I for S is either just an instance for R (if each Ri ∈ R is the schema of a local
database) or an instance for

⋃
Pi∈P Li if the peers consist of local data integration systems.

For an instance I for S, let I|Pi denote the restriction of I to the schema Ri (resp. Li).
Given an instance I for S, a consistent global instance I ′ for S w.r.t. I is in general an
instance of R, s.t. (i) I ′ satisfies M and (ii) if I is already an instance for R, then there
exists a homomorphism h : I → I ′. Thereby the notion “I ′ satisfies M” depends on the
concrete semantics applied, and will be a main focus of this survey. We denote with II
the set of all consistent global instances w.r.t. I, and drop the I if clear from the context.
However, some systems do not define a global instance for S as an instance for R, but as a
tuple (II [Ri])Ri∈R, where each II [Ri] is a set of instances for Ri.

A query to a PDMS S is formulated over a single peer schema Ri ∈ R. Given an
instance I for S, the result of a query Q usually is defined as the certain answers Qc(I) =⋂
I′∈II

Q(I ′), where Q(I ′) denotes the evaluation of Q over I ′. If only II [Ri] is defined, then
Qc(I) =

⋂
I′∈II [Ri] Q(I ′). Unless stated otherwise, we always assume Q to be a CQ.

3 PDMS: Characterization and Properties

In this section, we start with a quick overview over a classification of P2P systems and
discuss how PDM fits into these concepts. We then relate PDMSs to traditional database
systems, and finally take a look onto properties specific for PDMSs.

P2P systems are nowadays wide spread and used for a variety of applications in many
different areas. Tasks solved by P2P systems cover, among others, sharing of data (e.g.,
Gnutella, BitTorrent) and other resources, communication (e.g. Skype), or the implementation
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of fail-safe systems. The reasons for the success of P2P systems include their scalability, low
setup costs, the lack of need for central coordination, or a high reliability (since replicating
and shifting resources and tasks between different nodes allows to compensate node failures).

A prominent way to classify P2P systems is according to the logical structure of the
resulting P2P network (overlay network). In pure P2P systems, all peers are conceptually
equal and have the same role, while in hybrid systems so called super-peers (which have more
knowledge about the current state of the system) act as servers and control and coordinate
the system. In the extreme case of centralized P2P systems, all requests are issued against a
single central server who dispatches them to an appropriate network node. Pure P2P systems
are further divided into unstructured and structured systems. In unstructured systems, each
peer is free to choose which data to store, which peers to communicate with, or which requests
to accept. In structured P2P systems, data placement or message routing follows strict rules
determined by the system, which are enforced by the peers in a distributed manner. A
prominent example for structured P2P systems are distributed hash tables (DHTs), where
the placement of a data item is determined by a key or hash value assigned to each item:
Each peer gets assigned a (not necessarily distinct) part of the keyspace, and items are stored
at exactly those peers that cover their key values. The reason that we will concentrate on
the management of structured data in unstructured P2P systems is that while most of the
aspects and applications of P2P systems described above are already covered by surveys
or books, to the best of our knowledge, a summary of Peer Data Management Systems is
missing: We refer to [73] for a general introduction to – and overview on – P2P systems,
including characterizations, architectures, applications and systems as well as aspects like
routing, load balancing, security or trust. [69] provides an extensive summary of applications
for P2P systems and general P2P techniques, including three chapters on DHTs. A specific
overview over data management P2P systems can be found in [5, Chapter 16] with a focus on
query evaluation and replica management. A short classification of P2P data management
systems based on their structure is presented in [11]. Finally [68] provides an introduction
into the combination of P2P and Semantic Web techniques and applications. However, the
only overview paper in the area of PDMSs is [41], reviewing design and implementation
aspects and challenges for PDMSs, but not providing a comprehensive summary of existing
approaches. It can therefore be considered as a complement to the present paper.

One of the initial goals of PDMSs was to extend the idea of unstructured P2P file sharing
systems to structured data [32], i.e. to allow for data sharing between a large number of highly
autonomous participants, but supporting a rich semantics and expressive query languages
(see [32, 6] for early visions of this idea). Note that PDMSs are not primarily intended to
provide a distributed, fail safe storage system (like DHTs) or to provide load distribution, but
just to provide an easy way to allow participants to share their data with others. Each peer
can freely select its neighbors and define mappings to them. Data is shared according to the
semantics of the mappings only, such that each peer has full control over the data it stores.
Following these ideas, PDMSs obviously belong to the group of unstructured P2P-systems.

Compared to other distributed database systems like multi-databases [12], which allow for
a similar distribution and heterogeneity of their members, PDMSs provide a higher autonomy
for each peer. A classification and description of PDMSs w.r.t. traditional database approaches
is given in [11]. Higher autonomy of each member in the network also distinguishes PDMSs
from traditional data integration systems [54]. There, the data provided by each peer is
integrated in terms of a global schema instead of pairwise mappings.

While the above discussion holds for all PDMSs, we next take a look onto properties that
characterize and distinguish different approaches to PDM and shortly summarize the most
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important aspects of PDM that influence those properties. We start with considering design
choices that influence the semantics of a PDMS, continue with characteristics resulting from
these choices and finish with choices that deal with the concrete implementation but do not
influence the semantics. Obviously a fundamental property of a PDMS with heavy influence
on its semantics is the supported data model (e.g., relational, XML, RDF). Another important
aspect are the P2P mappings, as they define what data is exchanged and how. The exchange
could be either done by enforcing the constraints defined through the mappings on the data,
i.e. by indeed materializing tuples in the different peers such that the mappings are satisfied
over the stored instances (we refer to corresponding systems as exchange systems). In general
there exist several (up to infinitely many) possible instances that could be materialized to
satisfy the mappings. In this case, the goal is to identify some “best” instance to materialize.
Most of the time, this means to materialize some most general instance that only contains
information indeed implied by the mappings. Another desired property of the chosen instance
is to allow to compute the certain answers for some query w.r.t. all these possible instances
from the information in the instance only. Another possibility is not to materialize these
extra information, but to use the mappings to infer additional information only for query
answering at query time (integration systems), or to consider mappings only as rules for how
to translate updates made at one peer to an update on another peer and to exchange only
updates. Further aspects of mappings are the mapping language (e.g., FOL or restrictions
thereof, coordination formulas — cf. Section 4, mapping tables — cf. Section 6.1), the
semantics under which they are evaluated (e.g., local reasoning or global reasoning for FOL
mappings — cf. Section 5.1), whether they are defined e.g. on schema or instance level, and
whether they support different domains for each peer or assume a shared domain among
all peers. The supported query language is another interesting property of a PDMS, just
like the technique used for query answering. For example, the latter could be based on
query rewriting, answering queries using views, temporarily materialization of data (universal
solutions), or using logic programs (e.g., under the stable model semantics). Further aspects
are the incorporation of trust, the capability to deal with inconsistencies in the data in a
meaningful way, or the maintenance and use of data quality metrics.

Choices on the above properties have a direct influence on properties like the concrete
degree of the autonomy, modularity or heterogeneity of the peers or the decidability and
complexity of query answering. Finally, further properties of PDMSs arise from aspects
related directly with the implementation of such systems. Those include the query planning
algorithm (which can be centralized or distributed), the incorporation of query optimization
(including relaxations on the correctness or completeness of answers), the maintenance of
indices and/or replica, or optimizations of the inter peer mappings.

For a throughout discussion of these aspects related to PDM as well as pointers to
different solutions for them, we refer to the recent survey in [41]. Further discussions of these
topics can be found e.g. in [73, Chapter 4] and [5, Chapter 16]. In this paper, we provide a
summary of different approaches to PDM and PDMSs. Thereby the main focus will be on
the way the P2P mappings are defined and formalized, as they are the central component of
PDMSs. Beside describing these approaches, we will use (some of) the properties listed above
to discuss the effects of different approaches and to characterize them, but the main focus
lies on their descriptions. We will further give an overview of prototype implementations of
PDMSs, pointing out interesting or notable design decisions or specifics of these systems.
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4 A Model for PDM: The Local Relational Model

After the rather general last section, we now start to take a look onto concrete approaches
taken to formalize and implement PDMSs. One such proposal was the Local Relational
Model (LRM) [6, 67], one of the first models proposed for PDMSs. Because it addresses
several problems of PDM we use it to illustrate several different key concepts for PDMSs: In
the LRM, dependencies between the different databases can be expressed by mappings on
schema level. Peers are allowed to use different domains by providing a domain translation
mechanism with a meaningful, well-defined semantic. Finally, queries can exploit all these
mechanisms to incorporate information stored at several peers into the answer.

Because the LRM is a powerful mechanism addressing several problems of PDM, we will
use it as a reference model and compare other approaches with it, or – if appropriate – will
even describe other approaches in terms of the LRM.

I Definition 2. A LRM-PDMS is a PDMS SLRM = (P,R,M), where each Ri ∈ R is the
schema of a local database andM =MT ∪MCF ∪MR, s.t.MT contains for each Pi ∈ P
a relational theory Ti over Ri ∈ R,MCF is a set of coordination formulas, andMR is a set
of domain relations.

Domain relations rij ⊆ domi × domj provide domain translations between pairs (Pi, Pj) of
peers in P. They allow to support different domains domi (which, unlike in most other
formalisms, are assumed to be finite) at each Pi ∈ P . Domain relations need not be symmetric.
In the following let C = {i | Pi ∈ P}. A coordination formula (CF) is an expression of the
form CF ::= i : φ | CF → CF | CF ∧ CF | CF ∨ CF | ∃i : x(CF ) | ∀i : x(CF ), where φ
is a function free FO formula over some Ri ∈ R and i ∈ C. Their intuition is as follows:
∀i :x(CF ) denotes that the universal quantification of x is over the domain domi (similar for
∃), while i :φ indicates that variables in φ shall be evaluated w.r.t. Pi (i.e. under domi). For
variables occurring free in φ this may require to incorporate domain translation: If such a free
variable is bound outside i :φ by a quantifier under a different context Pj (i.e. bound under
domain domj), the translation from domj to domi must be considered for evaluation (see
below for a formal definition of the semantic of such a translation). Although not required in
[67], here we consider all CFs inM to be closed. Recall that a relational theory Ti over Ri
consists of function free FO sentences over Ri (i.e. function free FO constraints over Ri) with
constants from domi. Obviously, each theory Ti can be easily encoded as a set {i :φ | φ ∈ Ti}
of CFs. Further, in [67] it was shown that also domain relations may be expressed as CFs.
HenceM may be considered to contain coordination formulas only.

I Example 3. The following coordination formula adapted from [67] creates a record in the
Person relation of peer Hospital based on the data in Patient at peer Doc:

∀(Doc : fName, lName, gender).(Doc : Patient(SSN, fName, lName, gender) →
Hospital : ∃(persID, name, age).P erson(persID, SSN, name, gender, age,Doc)∧
name = concat(fName, lName))).

A unique value for persID has to be generated and the unknown age has to be filled with a
so-called Skolem constant. J

In the LRM, an instance I for S is not defined as an instance for R, but I = (I[Ri])i∈C is
a tuple of databases I[Ri] for each Ri ∈ R. Each such database I[Ri] in turn is considered to
consist of a set of instances I ′ of Ri that satisfy Ti while interpreting constants as themselves.
Thereby the idea is that while |I[Ri]| = 1 describes the case of a traditional database instance,
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|I[Ri]| = 0 indicates an inconsistent database at peer Pi and |I[Ri]| > 1 models incomplete
databases. Next we define satisfiability of CFs. To be able to deal with domain translations,
in the LRM a variable assignment µ for a set ~x of variables is a set of mappings µ = {µi}i∈C
with µi : ~x→ domi. For i ∈ C and J ⊂ C, µ is an i-to-J-assignment (i-from-J-assignment)
of a variable x if for all j ∈ J with j 6= i, (µi(x), µj(x)) ∈ rij ((µj(x), µi(x)) ∈ rji, resp.),
i.e. if µ sticks to the domain translations defined by the domain relations between domi

and domj for all j ∈ J . Now given I, MR, and an assignment µ, a CF i : φ is satisfied
by (I,MR) under µ (denoted (I,MR) |= i :φ[µ]) if for each I ′ ∈ I[Ri] it holds I ′ |= φ[µi].
I.e. i : φ is satisfied if φ, interpreted under the scope of Pi (in terms of the assignment
µi), is satisfied over all instances in I[Ri]. For CFs ∀i :x(A)[µ] (∃i :x(A)[µ]) on the other
hand let J ⊂ C contain all j ∈ C s.t. x occurs free in a subformula j : φ of A. The idea
is, that while x is quantified over domi, it is evaluated in A under the scopes of the peers
Pj (j ∈ J), i.e. under the domains domj . Hence when evaluating A, for every possible
value for x over domi, the corresponding domain translations must be taken into account.
Therefore (I,MR) |= ∀i : x(A)[µ] if (I,MR) |= A[µ′] for all i-to-J-assignments µ′ on x

that differ from µ only on x. Further, (I,MR) |= ∃i :x(A)[µ] if (I,MR) |= A[µ′] for some
i-from-J-assignments µ′ on x that differ from µ only on x. Intuitively, in case of universal
quantification, for each possible assignment µi on x, each subformula j :φ must be satisfied
under each translation of µi(x) to domj . The case for the existential quantification is similar,
but a little bit more involved (note that in i-from-J-assignments we have rji instead of rij).
Due to space restrictions, for a discussion of this we have to refer to [67]. Satisfaction of the
connectives →,∧,∨ is defined as usual.

Queries Q against some Pi ∈ P are of the form (i : q(~x)) ← A(~x), where A(~x) is a
coordination formula with free variables ~x, |~x| = n, and q is a new n-ary relation symbol.
Given (I,MR), the answer to such a query is defined as {~d ∈ domn

i | (I,MR) |= ∃i :
~x(A(~x) ∧ i : (~x = ~d))}. Queries can be defined recursively, i.e. A(~x) may use the result q′ of
another query Q′ (these recursions may be cyclic).

Note that while this defines how a query is evaluated over (I,MR),MCF is not taken
into account for query answering. Originally, in the LRM P2P mappings were not considered
for information exchange or reasoning, but just to express constraints between peers. For a
query to also include data stored at different peers, the corresponding CFs need to be specified
explicitly as part of the (recursive) query. As a result, there is no concept like consistent
global instances (w.r.t. some instance I for S). Also, while all I ′ ∈ I[Ri] must satisfy Ti,
it is not required that I[Ri] contains indeed all models of Ti. So, given a pair (I,MR) as
input, the LRM only defines if a CF is satisfied by (I,MR) and the result of a query over
this instance. If I contains incomplete databases, then this answer is however certain w.r.t.
this incompleteness (but not w.r.t. to possible repairs). Restricting to a certain class of
CFs, [22] extends the LRM by a notion of certain answers also takingMCF into account.
Therefore it is assumed that some input instance I is already encoded into

⋃
i∈C Ti, i.e. the

tuples in I are expressed as part of the theory Ti. Basically [22] then defines the notion of
global consistent instances by considering I[Ri] to consist of all interpretations of the theory
Ti (i.e. instances of Ri that satisfy Ti). This is then used to define the set of certain answers
w.r.t. I as those answers that occur in each such instance I ′ ∈ I[Ri]. Obviously, this idea
could be extended to the LRM in general. I.e. given I encoded intoM, the certain answers
to a query would be

⋂
{I|(I,MR)|=M}{~d ∈ domn

i | (I,MR) |= ∃i :~x(A(~x) ∧ i : (~x = ~d))}.
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5 Schema Mappings for PDMSs

We have seen that the LRM provides mappings on schema and instance level and supports
different domains at each peer. Many approaches to PDM however assume a unique domain
shared by all peers, and consider schema level mappings only. They can be generally described
as PDMSs SS = (P,R,M) whereM is a set of formulas of some logic L over R. In this
section, we will show how such settings can be used to express various semantics for PDMSs.

The characterization of SS is reminiscent of schema mappings as considered for example
in data exchange [46]. And in fact, like for data exchange, most schema level mapping based
PDM settings use tgds (or slight variations thereof) to define P2P mappings, and sets of
tgds and egds on single peer schemas Ri ∈ R to define local constraints. Unfortunately,
just applying the typical semantics of schema mappings to PDMSs is no satisfying solution,
as reasoning becomes undecidable and the structure of the system cannot be modeled
appropriately, leading to a loss of peer autonomy. As this raised a lot of work on identifying
suitable semantics that on the one hand resolve these problems and on the other hand support
a wider range of applications, we devote this section to the discussion of these suggestions.

5.1 Global and Local Reasoning
A major distinction between such PDMSs SS is made according to whetherM is interpreted
under global or local reasoning1. Global reasoning means thatM is interpreted as a single
(global) FO theory. This is the semantics obtained by extending data exchange [46] and data
integration [54] scenarios to P2P settings. Under local reasoning, each peer is modeled as a
distinct (local) theory, and inter-peer mappings are interpreted as to exchange certain facts
between such theories only. It was explicitly suggested in [14, 16], and occurs implicitly in
the LRM on implicational coordination formulas.

It is easy to see that under global reasoning, deriving all certain answers may become
an undecidable problem, due to the network topology (e.g., P2P mappings could form not
weakly acyclic sets of tgds [20], or in combination with local egds could form sets of 1-key
conflicting inclusion dependencies [13]). Global reasoning further does not completely reflect
the modularity of PDMSs [16]. On the other hand, it allows to derive more information than
local reasoning. The latter two properties are illustrated in the following example.

I Example 4 (cf. [22]). Assume a PDMS SS = (P,R,M), with P = {P1,P2,P3}, R1 = {C},
R2 = {M,F}, R3 = {TP}, (let C stand for Citizen, F for Female, M for Male, TP for
TaxPayer , and let all be unary) andM = {C(x)→M(x) ∨ F (x),M(x)→ TP(x), F (x)→
TP(x)}2, and queries Q1 : q(x)← TP(x), Q2 : q(x)←M(x), and Q3 : q(x)← F (x).

For an instance I = {C(alice)}, Qc2(I) = Qc3(I) = ∅ (under both kinds of reasoning), as
II contains two instances not containing F (alice) and M(alice) respectively. Under global
reasoning however, Qc1(I) = {q(alice)}, as TP(alice) is derivable in any I ′ ∈ II . While
entailing a maximal amount of information, this contradicts modularity in a way as mappings
not only transfer the “visible” content of a peer, but the information exchanged depends
on the complete structure of the network (hence it is to some extend unpredictable for a
single peer). Under local reasoning on the other hand Qc1(I) = ∅, as mappings only exchange
information present in every I ′ ∈ II , which is neither the case for F (alice) nor M(alice). J

1 Do not confuse the notions of global and local reasoning here with the global and local semantics in [22].
The (equivalent) latter two notions are concrete formalizations of local reasoning.

2 We use disjunctive tgds for the sake of illustration only. Similar effects occur with ordinary tgds as well.
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Note that mappings defined over a single peer schema behave equivalent under both kinds of
reasoning. We next take a closer look onto these two formalisms and two concrete examples.

5.1.1 Global Reasoning & PPL
If we consider a PDMS S = (P,R,M) whereM consists of FO formulas, the typical semantic
of S under global reasoning is defined in terms of a FO theory T that contains all formulas in
M. Given an instance I for S (i.e. either for R or for the source relations Li), II is defined
by all models of T that agree with I. As already noted, considering inter-peer tgds and local
tgds and egds leads to settings where query answering becomes undecidable (cf. [20, 16, 38])
as it requires to derive all information implied by T . The only ways to overcome this are
either to drastically restrict the allowed mapping language or to restrict the structure of T ,
and therefore the topology of the inter-peer mappings. While the first choice often requires
weak mapping languages that render the complete system useless, the latter reduces the
autonomy of the peers, as they are no longer free to define mappings to neighbors arbitrarily.
Hence, one has to find a trade-off between these two possibilities.

One of the first and most prominent examples for a PDMSs dealing with this trade-off
is the Piazza PDMS [35, 36, 37, 38, 71]. Mappings in Piazza are defined using the Peer
Programming Language (PPL), introduced for this purpose in [37, 38].

I Definition 5. A PPL-PDMS SPPL = (P,R,M) is a PDMS where each Ri ∈ R is the
schema of a local data integration system (where possibly Li = ∅), andM =ML ∪MP is a
set of mappings defined in PPL. TherebyML contains the mappings between all Li and
Ri, whileMP contains the mappings and constraints on R.

Due to space restrictions, we can only give a short overview on PPL. PPL distinguishes
two general kinds of mappings, storage descriptions (used to defineML) and peer mappings
(forMP ). Storage descriptions are either exact or sound LAV mappings between Li ∈ L
and Ri ∈ R. Peer mappings are either exact or sound GLAV mappings or certain GAV-style
mappings (definitional mappings; defined as datalog rules with a single atom in the head and
a CQ in the body) between two (not necessarily distinct) peer schemas Ri,Rj ∈ R. ([37, 38]
allow all mappings in M to refer to arbitrary relations in R. However, by introducing
additional relations and mediator peers, the above definition is equally expressive, but more
modular.) Given an instance I for L, an instance I ′ for R satisfies all LAV and GLAV
mappings according to the usual semantics (cf. [54]). The definitional mappings are satisfied
by I ′ if for each relation R occurring in the head of such a mapping, RI′ =

⋃n
i=1 Qi(I ′),

where the Qi are the bodies of the n definitional mappings where R is the head predicate
symbol. Given I, the goal is not to materialize any data under R, but at query time to
return the certain answers w.r.t. all instances I ′ satisfyingM that are equal to I on L.

The expressive power of PPL requires to constrain the topology of mappings inM in
order to allow for decidable query answering. Following the notion of acyclicity defined in
Section 2, we obtain the following results.

I Theorem 6 ([38]). Given a PPL-PDMS SPPL, a CQ Q, and an instance I for SPPL,
computing Qc(I) is undecidable. IfM contains only sound LAV and sound GLAV mappings,
andM is acyclic, then computing Qc(I) is in polynomial time (data complexity).

[38] also presented an algorithm that runs in polynomial time (data complexity) and computes
certain answers w.r.t. a PPL-mapping. While it is guaranteed to always return only certain
answers, it also returns all of them for acyclic mappings. One key observation for this
algorithm is that each GLAV mappings can be split into one LAV and one GAV mapping.
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The algorithm then creates a rule-goal tree, by interleaving steps of query unfolding (for
GAV style mappings) and answering queries using views [34] for LAV style mappings. At
the end, the query is rewritten in terms of the local schemas Li.

Although the border of decidability and tractability can be pushed further by resorting
to a little bit less restrictive constraints onM that still allow for decidable (tractable) query
answering (see [38]), the general problem of using global constraints remains.

5.1.2 Local Reasoning: Exchanging Certain Answers

Local reasoning applies an interpretation to inter-peer tgds that allows for decidable query
answering whenever query answering over each isolated peer can be decided. The basic idea
is that P2P mappings are not satisfied by a single consistent global instance, but by the set
of all such instances. Intuitively, they only exchange certain answers. This idea has been
formalized in several (equivalent) ways: It was explicitly introduced in [14] by using the
modal logic KT45 (by modeling a tgd as sentence ∀~x

(
K(∃~zφ(~x, ~z))→ ∃~yψ(~x, ~y)

)
, where K

is a modal operator expressing certainty) together with a distributed algorithm for query
answering, and shown to support modularity better than global reasoning in [16]. In [22], two
further formalisms for defining the semantics of a PDMS were introduced. Based on ideas
of the LRM they consider a restricted form of coordination formulas and were shown to be
equivalent with the formalism in [14]. Finally, in [27] local reasoning was formalized directly
via sets of global consistent instances. Here, we follow this approach: Assume a PDMS
S = (P,R,M) withM = CM ∪MM , where CM = {Ci | Pi ∈ P} are formulas of some logic
L defined over single peer schemas (including, if present, the mappings between Li and Ri),
andMM is a set of inter-peer tgds. Satisfiability of CM is still defined for single instances:
Given an instance I for R, some instance I ′ satisfies CM w.r.t. I if, for every Ri ∈ R, it
satisfies the logical theory containing Ci and the facts in I. ForMM on the other hand, being
satisfied is defined for sets of instances: Given an instance I, a set Î of ground instances
I ′ for R satisfies M w.r.t. I if (i) each I ′ ∈ Î satisfies CM w.r.t. I, and (ii) for each tgd
τ ∈ MM with τ = ∀~x(∃~zφ(~x, ~z) → ∃~yψ(~x, ~y)), it holds that

⋂
I′∈Î Qφ(I ′) ⊆

⋂
I′∈Î Qψ(I ′),

where Qφ, Qψ are the CQs associated to the lhs and rhs of τ , respectively. I.e., instead of
testing for each instance I ′ ∈ Î if all answers to Qφ are also answers to Qψ, under local
reasoning the certain answers to Qφ w.r.t. Î must be contained in the certain answers to Qψ.

Hence, given some instance I the semantics of S (i.e. the information implied by M)
depends on the set Î. Since there may exist more than one possible set to choose from, the
question is which is the “right” one. However, note that if two distinct sets Î and Î ′ satisfy
M, so does Î ∪ Î ′. Hence there exists a unique maximal set that satisfiesM. The set II
is thus defined as this maximal set, and mappings in MM are interpreted w.r.t. II . I.e.,
the data implied by MM is defined as those information shared by all instances I ′ ∈ II .
Given some instance I, all information implied byMM can be efficiently (data complexity)
materialized using a variant of the chase. Recall that the chase “repairs” violations of tgds
(witnessed by tuples ~t ∈ Qφ(I) \Qψ(I)) by adding tuples into I s.t. ~t is also an answer to
Qψ in the resulting instance. Now while the traditional chase considers all tuples ~t, for local
reasoning it suffices to only consider tuples that contain no labeled nulls. Beside efficient
reasoning, this procedure thus provides also an alternative, procedural description of the
semantics of local reasoning: tgds (an thus, peers) exchange only ground tuples.

One of the most elaborated frameworks based on this semantics is the PDEI-system also
defined in [27], which we discuss next and use to illustrate the above definitions.
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I Definition 7. A PDEI-System (Peer Data Exchange and Integration) SPDEI = (P,R,M)
is a PDMS where each Ri ∈ R is the schema of a local database instance, and M =
CE ∪ CI ∪ME ∪MI , where CE and CI are sets of tgds and egds defined over single peer
schemas Ri ∈ R, andME andMI are sets of inter-peer tgds.

According to the semantics described above, CE and CI are interpreted as FO-theories over
R, whileME andMI only need to be satisfied w.r.t. tuples that are present in all I ′ ∈ II .
In addition, PDEI-systems allow for both materialization of data and “virtual” exchange:
The mappings in CE ∪ME are enforced on the instance on R, i.e. tuples are materialized to
satisfy them, while those in CI ∪MI are only considered for query answering (if some tuple
can be derived by both kinds of mappings, it needs not to be materialized). Hence reasoning
over a PDEI-system is twofold: Given some instance I for R, the goal is on the one hand
to materialize an instance over R that satisfies CE ∪ME (“admissible instance”), and on
the other hand to answer queries over such an instance by returning certain answers also
w.r.t. CI ∪MI . For these tasks to be decidable, a PDEI-system S has to be stratified, i.e.
CE is weakly acyclic, CI consists of legal key constraints and foreign key dependencies (FK)
only, and no head of a FK appears in the lhs of any tgd in CE . Note that these are local
constraints only, verifiable by each peer Pi ∈ P in separation. For such systems, computing
admissible instances and query answering can be done by combining a variant of the chase
that considers the special semantics of inter-peer tgds (to retrieve information implied by
CE ∪ME ∪MI) with query rewriting (to access information implied by CI).

I Theorem 8 ([27]). Let S = (P,R,M) be a PDEI-System, and I an instance for R. If S
is stratified, then an admissible state I ′ for R and Qc(I ′) for a CQ Q can be computed in
polynomial time (data complexity).

5.1.3 Schema Mappings and the LRM
We shortly comment on the relationship between global and local reasoning over schema
mappings and the LRM by discussing the translation of some schema mapping based PDMS
S = (P,R,M) into a LRM-PDMS. Assuming a shared domain dom between all peers (i.e.
ri,j = {(a, a) | a ∈ dom} for all Pi, Pj ∈ P), we can neglect the effect of the domain relations.

For global reasoning, assume thatM is a set of function free FO formulas over R. This
corresponds to a LRM-PDMS Ŝ = ({P̂1}, {R̂1},M̂), where M̂ = {1:φ | φ ∈M}. This also
illustrates nicely how the structure of the PDMS is lost under global reasoning. Given an
instance I for S, II w.r.t. S contains exactly those instances I ′ for Ŝ that satisfy M̂ and s.t.
there is a homomorphism from I into I ′.

We already mentioned that when considering certain implicational coordination formu-
las, the LRM exhibits exactly the semantics of local reasoning. To see this, assume in
accordance with the last subsection, thatM contains function free FO formulas over single
peer schemas and inter-peer tgds only. This translates to a LRM-PDMS Ŝ = (P,R,M̂),
where M̂ contains one coordination formula i : φ for each formula φ ∈ M over Ri, and
for each tgd ∀~x

(
∃~zφ(~x, ~z) → ∃~yψ(~x, ~y)

)
between peers Pi, Pj one coordination formula

∀i : ~x
(
i : (∃~zφ(~x, ~z))→ j : (∃~yψ(~x, ~y))

)
. Again, for an instance I for S, II w.r.t. S contains

exactly those instances I ′ for Ŝ that satisfy M̂ and agree with I.

5.2 Inconsistency Handling
Given a PDMS S, we say an instance I for S is inconsistent (w.r.t. S) if II = ∅. One drawback
of the semantics and approaches seen so far is that they cannot deal with such a situation.
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They do not have sensible notions for query answering nor materialization in this case, and
therefore their algorithms will either fail or return useless results. This is unsatisfactory, as it
is very unlikely that a complete PDMS is consistent. In general, two kinds of inconsistencies
are distinguished. Local inconsistency occurs if the data stored at a single peer is already
inconsistent. In case of P2P inconsistency each peer is locally consistent, but the local data
contradicts data implied by inter-peer mappings, or a peer imports contradicting information
from different sources. In both cases, inconsistency occurring at a single peer immediately
renders the complete system useless (as it leads to global inconsistency).

Local inconsistency is in general addressed by “excluding” locally inconsistent peers,
i.e. by defining semantics that behave as if these peers were not part of the network. P2P
inconsistency on the other hand is tackled by defining semantics that consider suitable repairs
of the data, either by not importing contradicting facts or by ignoring the local data.

In [15], the first approach has been taken: In case of P2P inconsistencies, the local data
at each peer is preferred, and a maximal amount of consistent data is imported. Applying
local reasoning and considering an integration system, this semantics is formalized as an
extension of [16] using the nonmonotonic, multi-modal epistemic logic K45An .

I Definition 9 ([15]). A P2PDIS is a PDMS SP2PDIS = (P,R,M) where each Ri ∈ R is
the schema of a local data integration system andM =ML ∪MR ∪MP . MR is a set of
constraints Kiφ where φ is a function free FO formula over a single peer schema Ri ∈ R. ML

is a set of mappings Ki(∀~x(∃~zφ(~x, ~z)) → (∃~yψ(~x, ~y))) between some Li and Ri, and MP

contains inter peer mappings ∀~x(¬Ai⊥i∧Ki(∃~zφ(~x, ~z))∧¬Aj(¬∃~yψ(~x, ~y))→ Kj(∃~yψ(~x, ~y)))
from Pi to Pj , where φ and ψ are conjunctions of atoms.

Again, Ki and Ai are modal operators from K45An . Let I be an instance for S. Intuitively,
MR and ML express that the local mappings and constraints must be satisfied in each
I ′ ∈ II . The intuitive reading of the P2P mappings is as follows: If peer Pi is not locally
inconsistent, and ∃~zφ(~x, ~z) holds in every I ′ ∈ II , and ∃~yψ(~x, ~y) is consistent with the data
at Pj , then ∃~yψ(~x, ~y) should hold at Pj . Being a proper extension of local reasoning as
described before, the drawback of the approach is the high complexity of query answering.

I Theorem 10 ([15]). Let SP2PDIS be a P2PDIS whereML is a set of GAV mappings and
MR contains key constraints only, and Q a CQ over some Ri ∈ R. Given an instance I for
L, and tuple t, deciding if t ∈ Qc(I) is coNP-complete (data complexity).

Using repairs, [7, 8] considered both, omitting imported data and local data to resolve
inconsistencies. This approach is able to deal with inconsistencies between imported and
local data, but not with inconsistencies between data imported from different sources.

I Definition 11 ([7]). A CPDE-System is a PDMS SCPDE = (P,R,M), where each Ri ∈ R
is the schema of a local database instance andM =

⋃
Pi,Pj∈PM(Pi,Pj) ∪

⋃
Pi∈PMPi

. Each
M(Pi,Pj) andMPi

may be empty or contain full disjunctive tgds and tgds with one atom
in the lhs and rhs, defined over a single Ri ∈ R (MPi

) or two Ri,Rj ∈ R (M(Pi,Pj)). In
addition, eachM(Pi,Pj) 6= ∅ is annotated with a trust relation (Pi, [< | =], Pj).

Pj is a neighbor of Pi ifM(Pi,Pj) 6= ∅, andM(Pi,Pj) 6=M(Pj ,Pi) is allowed. Based on the
assumption that the transitive closure of the neighbor relation is acyclic, the semantics is
inductively defined based on neighborhood solutions and solution instances: Given an instance
I for S, for a peer Pi with

⋃
Pj∈PM(Pi,Pj) = ∅, the set of solution instances II [Pi] for Pi is

defined as the set of minimal repairs of I|Pi, and a solution S(Pi) =
⋂
I′∈II [Pi] I

′. For a peer
with neighbors P 1, . . . , Pn, the neighborhood solutions are defined via repairs of the instance
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Î = I|Pi ∪
⋃
P j S(P j) over the combined schemas of these peers, satisfyingMPi and all P2P

mappingsMPi,P j . Thereby only those repairs are considered that are “closest” (cf. [7]) to Î
and agree with Î on all Rj s.t. (Pi, <, Pj), i.e. on data from neighbors trusted more than the
local data. II [Pi] is then defined as the set of all neighborhood solutions restricted to Ri.

Being an integration system, no data is materialized, but the goal is, given a query over
some peer Pi and an instance I to compute the certain answers w.r.t. II [Pi]. As shown in
[7, 8], the problem can be encoded as answer set program. However, due to the disjunctive
tgds and the repair semantics, it is intractable in general.

I Theorem 12 ([7]). Let S be an acyclic CPDE-System and Q a FO query over an Ri ∈ R.
Given instance I for R and a tuple t, deciding if t ∈ Qc(I) is ΠP

2 -complete (data complexity).

In [22], the formalization of local reasoning presented there was also extended to address
local inconsistency by redefining the semantics of mappings from locally inconsistent peers.

5.3 Update Exchange
Another problem not considered by the approaches presented so far are updates. For
integration systems, in fact nothing changes in case of an update, as a query is answered on
the data present at query time. In exchange systems however, updates pose several problems,
based on the fact that later updates may revise and contradict earlier ones. Think e.g. of
changing a non-key value. Standard methods like the chase would lead to inconsistencies.
Another problem are e.g. deletions that lead to a mapping violation. Again, the chase would
just undo this deletion, which is not satisfactory. Hence the methods discussed previously may
not be appropriate in such settings, where data is both materialized and continuously changed
(often referred to as Collaborative Data Sharing (CDS) or Collaborative Data Integration).
The main idea behind approaches addressing these specific problems is not to exchange the
information directly, but to exchange information about the updates. We will next take a
look onto the most prominent examples of this approach.

5.3.1 Orchestra
One of the first and most cited approaches to realize CDS was formulated in the Orchestra
project [43, 72, 31, 28]. Most notably its semantics can be defined almost completely in
terms of schema mappings, although it differs a lot from the semantics seen so far.

I Definition 13. An O-PDMS is a PDMS SOrchestra = (P,R,M) where each Ri ∈ R is
the schema of a local database instances, andM is a weakly acyclic set of tgds τi and key
constraints. Each τi ∈M may contain relations from several peer schemas in both, its lhs
and rhs and has a trust condition θi attached.

Trust conditions assign to each update propagated by a tgd a numerical priority, based on
the content and the provenance of the update. The restriction to weak acyclicity is only
made to guarantee the termination of the chase, so every set of tgds on which the chase
terminates can be used.

So far, the setting looks similar to the previous ones. However, a different scenario is
assumed, resulting in a completely different semantics. Here, every user works on its local
database instance, i.e. queries are answered only locally and updates only affect the local
instance. Further, updates done by users on their local databases are not immediately visible
to the other peers in the network, but recorded in a local update log. At any time, a peer
can decide to either publish its updates, which means that they are copied into some global
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update store. Or he can decide to import updates done at other peers into his local database.
In this case, all updates published to the global update store by any peer since the last
import are first translated according to the mappingsM, then filtered according to the trust
conditions, and finally checked for mutual conflicts between these updates as well as for
conflicts with the local updates. Thereby the system is explicitly designed to handle such
conflicting updates: Local updates are always preferred to updates done at other peers, and
conflicts between imported updates are either resolved using the trust conditions, and if this
is not possible, the updates are deferred and a user has to select which to apply.

Formally, assume peer Pu chooses to import updates published by the others. Then the
content of its peer relations is defined by the following PDMS S ′ = (P,R′,M′), where R′
contains for each peer relation R ∈

⋃
Ri∈R,Rj∈Ri

Rj five relations: R` (local contributions
table), Rr (rejections table), Ri (input table), Rt (trusted input table), and Ro (output table).
Further, M′ contains the following mappings: For each τ ∈ M, M′ contains a mapping
τ ′ obtained from τ by replacing any relation symbol in the lhs by the corresponding Ro,
and each relation symbol on the rhs by Ri. Further, for each R, M′ contains the tgds
Ri(~x)∧ trusted(~x)→ Rt(~x), Rt(~x)∧¬Rr(~x)→ Ro(~x), and R`(~x)→ Ro(~x). Thereby trusted
is no real relation, but just denotes the filtering of updates according to the trust conditions
and resolving of conflicts using priorities (see below). In fact, in [28], Rt(~x) was defined as
Rt(~x) = trusted(Ri(~x)).

The content of the relations in R′ is defined based on the information retrieved from
the global update store: First, the sequence of updates in the store is flattened [43], i.e.
dependencies between updates are removed (if for example a tuple t is first inserted and then
changed to t′, these updates are replaced by just inserting t′. Also, if a tuple is first inserted
and then deleted, both updates are removed), such that no update depends on another one.
Based on this flattened update sequence, an instance I for the relations in R′ is defined as
follows: Each R` contains all tuples locally inserted into R. Rr contains all tuples that were
not inserted locally into R, but were delete from R according to the log (this means, the
tuple was imported during an earlier update, and then deleted. It should therefore not be
reinserted). Ri, Rt, and Ro are left empty. For each R ∈ Ru, the content of R after the
update is now defined as the content of Ro after chasing I withM′.

Inconsistencies occur whenever for the same key values, different updates show up (e.g.,
if two different values are assigned to the non-key values). Due to space restrictions, we only
sketch the basic idea of the conflict resolution algorithm (for details see [72, 28]): Updates in
Ri are considered as candidate updates. If such a candidate update conflicts with local data,
always the local data is preferred. Conflicts between candidate updates are resolved by the
trust mappings: The update with the higher priority is chosen, the other discarded. In case
that several conflicting updates have the same priority, the update is deferred until the user
selected one to apply. As the priority value of an update depends heavily on its provenance,
using an appropriate provenance model is important. In Orchestra, provenance semirings
are used, as on the one hand they are powerful enough to provide all required information,
and on the other hand their provenance expressions can be nicely transformed into trust
expressions. A description of the provenance model of provenance semirings can be found in
[29], a detailed discussion of how trust (trust or distrust an update) can be derived from
provenance expression is given in [28]. The reconciliation algorithm for conflicting updates
based on priorities was presented in [72], and recently developed further in [26].

Note that the description above was meant to define what tuples should be contained in
the local instance after the update, and not how these values are indeed computed, as this
would require to recompute the complete content. Instead, the instances can be computed
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incrementally. [28] presents algorithms for both, computing the effect of insertions and
deletions, where the main problem is to determine the effect of a deletion, as propagating
this deletion means to find all tuples that are consequences from the deleted one and can no
longer be derived from other local insertions.

5.3.2 Youtopia
Yet another approach was chosen more recently in the Youtopia system [52].

I Definition 14. A Y-PDMS is a PDMS SYoutopia = (P,R,M) where each Ri ∈ R is the
schema of a local database instance, andM is a set of tgds.

Note that except inter-peer tgds – which<f can always be repaired by inserting tuples – no
further constraints exist on R. Violations of some τi ∈ M introduced by an update are
repaired using a variant of the chase, which, in the presence of tgds only, cannot fail. As
usual, a violation occurs if in an instance I for S, there is a set of tuples (called witness)
matching the lhs of a tgd τ , without appropriate tuples matching the rhs of τ . Youtopia now
distinguishes two kinds of violations: A lhs-violation occurs if the tuple affected by an update
is part of the witness (e.g., after tuple insertion or replacing all occurrences of a labeled null
by the same constant). It is corrected by a forward chase, which means that new tuples are
added to I just like in the traditional chase. If, however, the tuple affected by the update
is not part of the witness (e.g., if the violation is due to a tuple deletion), this is called a
rhs-violation. Repairing such a violation by a forward chase would just undo the update,
which is probably undesired. Therefore, Youtopia resolves this via a backward chase, that
deletes tuples in the witness from I such that the tgd is no longer violated. If this causes
again a violation, it is again a rhs-violation, and therefore resolved the same way.

In this setting, there are now two unresolved problems: First, the forward chase may not
terminate (the backward chase terminates after deleting all tuples the latest), and second,
there might be several possibilities for deleting tuples to satisfy a violated tgd. Both issues
are resolved by asking the user for input: For the backward chase, whenever there is more
than one possibility for deletion, the user is prompted to select one of them. On the other
hand, whenever the forward chase produces a tuple t for some relation RI ∈ I that can be
mapped via a homomorphism h onto a tuple t′ ∈ RI , the chase is stopped, and the user has
to decide whether to add t to RI , or to apply h to I (thus indicating that t contains no new
information). Note that both actions satisfy τ . Then the following was shown.

I Theorem 15 ([52]). Any forward chase will either stop along all paths and ask for user
input or terminate after finitely many steps.

This does still not guarantee the termination of the forward chase, and even if it eventually
terminates, it might be running (or waiting for user interaction) for quite a long time. To not
freeze the system while waiting for termination, Youtopia allows different chase sequences
to run in parallel. A well-defined semantics for these concurrent chases is provided by
defining useful notions of serialization (e.g., extending final-state serializability) and safety
(of executing and interleaving chase steps). A discussion of the concurrency related notions
and results is out of the scope of this survey. We thus have to refer to [52] for any details.

5.3.3 ECA Rules
Event-Condition-Action (ECA) rules are a general, often used technique to coordinate
distributed systems by triggering actions based on the occurrence of certain events. Not
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completely fitting to our definition of schema mapping based PDMSs, their use in PDMSs has
been considered in [44, 45, 74], especially as a possibility for implementing schema mappings
in exchange systems. We therefore close this section by a short review of them.

I Definition 16. A PDMS SECA = (P,R,M) is a PDMS where each Ri ∈ R is the schema
of a local database instance, andM is a set of ECA-rules.

Following [74], we consider ECA rules in a generic way as rules of the form WHEN < event >,
IF < condition >,THEN < action >, where the “IF” part is optional. ECA-rules easily
allow to react to changes and updates in the system. On the other hand, the event based
character makes it hard to formally define II given an instance I for S. The idea is therefore
to see them as an implementation of schema mappings, that ensure that in case of updates a
materialized instance remains consistent w.r.t. a set of schema mappings.

Work done in this area addresses two main topics: Creation and evaluation of ECA-rules.
[45] proposed a distributed evaluation mechanism for ECA-rules: Given one rule including
several peers, the idea is to split it into several subrules that are then distributed among the
peers involved and allow for a distributed evaluation of the rule. [45] further introduces a
powerful event language and algebra. [44, 74] both consider the problem of semi-automatically
creating ECA-rules: Given default rules between standard schemas for a certain domain and
mappings between these schemas and concrete peer schemas, the goal is to translates the
default rules into rules between the peer schemas.

6 Alternative Semantics

In the previous section, we concentrated on approaches based on schema level mappings
between different peers. While they represent an important part of the discussion on PDMSs,
those systems do not represent the complete range of possible semantics. In this section, we
discuss semantics and approaches to PDMSs that are not based on mappings defined on
the schema level. As an example of data mappings, we will take a closer look onto mapping
tables. After this we discuss the idea of not just mapping schemas to schemas and data to
data, but to also map between data and schemas on the example of data-schema interplay.

6.1 Instance based mappings: Mapping Tables
One assumption common to all approaches in the previous section was that all peers share
the same domain, i.e. that they use the same domain elements to represent the real world.
However, this assumption might be too strong for certain applications and, in addition,
restricts peer autonomy. Recall that the LRM uses domain relations to extend the semantics
of schema mappings to also support domain translations. This idea was developed further
by dropping the schema mapping and defining P2P mappings solely on the data level by
specifying value correspondences only. One such approach, that can be considered as an
extension of the LRMs domain relations, are mapping tables [49, 47].

I Definition 17. A MT-PDMS SMT = (P,R,M) is a PDMS where each Ri ∈ R is either
the schema of a local database instance or of a local data integration system, andM is a set
of mapping tables.

Note that in [49, 47], the data is assumed to be stored directly under each Ri only. However,
as we will see, mapping tables are only used to translate queries between peer schemas, so
this does not make any difference. Next we will first describe mapping tables and their
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semantics as introduced in [49], and then, following [47], discuss how they can be used for
query answering in PDMSs.

Mapping tables describe a relationship between data stored under two sets of attributes,
extending domain relations in two ways: First, they need not be binary relations but may
have bigger arities, and second, they may also contain variables and domain restrictions
for these variables instead of just constants from the domain. Also, several mapping tables
between two peers may exist.

In the following, assume that each attribute Ai appearing in R has its own domain
dom(Ai), and let V be a set of variables. An attribute mapping over a set ~A of attributes
is a tuple t that contains for each Ai ∈ ~A either some c ∈ dom(Ai), some v ∈ V, or an
expression v − D where v ∈ V and D is a finite subset of dom(Ai), i.e. t = (t1, . . . , tn)
where ti ∈ (dom(Ai) ∪ V ∪ D) and D is the set of expressions v −D. A mapping table TM
between two sets ~A, ~B of attributes is a set of attribute mappings ti over ~A ∪ ~B s.t. no
variable occurs in two different attribute mappings ti, tj ∈ TM (i 6= j). Further, a mapping
table constraint τ is a triple (TM , ~A, ~B). Intuitively, each mapping table TM associates
values for ~B to given values for ~A. Formally, this is defined by means of valuations: For a
variable v in an attribute mapping, let ~Av be the set of attributes under which v appears.
A valuation µ is a function mapping all constants in TM onto themselves, each variable
v in TM into

⋂
Ai∈ ~Av

dom(Ai), and satisfies µ(v) /∈ D for all expressions v − D in TM .
Given a mapping table TM and values ~a for ~A, the set of values associated to ~a by TM
is ~BTM

(~a) = {~b | there exists a valuation µ s.t. t[ ~A] = ~a and t[ ~B] = ~b for some t ∈ µ(TM )}.
Finally a tuple t for attributes ~C with ~A∪ ~B ⊆ ~C satisfies τ = (TM , ~A, ~B) if t[ ~B] ∈ ~BTM

(t[ ~A]),
and a relation RI satisfies τ if each t ∈ RI satisfies τ . Even more expressive mappings
can be constructed by composing mapping table constraints to mapping table formulas
(MTF) as MTF = τ |(MTF ∧MTF )|(MTF ∨MTF )|¬MTF , where τ is a single mapping
table constraint, and the definition of whether a tuple satisfies a MTF is a straight forward
extension of the corresponding notion for mapping table constraints.

According to the above definitions, values for attributes ~A not appearing in the mapping
table have no translation to ~B. Assuming that a mapping table contains only partial
information, another interpretation considered in [49] is that such values map to any values
for ~B. However, this behavior can be explicitly defined under the above semantics using the
v −D construct. We therefore omit its discussion here.

Next, following [47], we discuss how to use mapping tables to define P2P mappings. The
general idea is to use mapping tables to rewrite a query on one peer to a query on another
peer, to forward this query, and to repeat these steps. Unlike similar procedures seen in the
previous sections, in this case answers of the resulting queries are not merged into a single
answer, but returned separately. One reason for this is that in a mapping table constraint it
need not be that | ~A| = | ~B|, hence the arities of the rewritten queries may not match.

Towards this goal it is first necessary to define when such a rewriting is correct, defined
as sound rewritings in [47]. Informally, the idea is that a rewritten query should return only
such tuples t′ that are translations of correct answers t to the original query (but t may not be
derived directly due to missing data). The formal definition for a sound rewriting from Ri to
Rj is based on a mapping table TM covering all attributes in Ri ∪Rj . Such a mapping table
constraint can be composed from several mapping tables (basically as conjunctive mapping
table formula matching uncovered attributes to all values — see [47] for details). Let Q1 be a
CQ. For the ease of notation, assume for the moment that equalities in Q1 are not expressed
by reusing variables but explicitly, and let ψ(~x, ~y) be the conjunction of these equalities, i.e.
Q1 : ans(~x1) ← ∃~y1φ(~x1, ~y1) ∧ ψ(~x1, ~y1). As now every variable occurs only once in φ, we
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can identify variables with the attribute for the position where they occur, and therefore ~x1
defines a set of attribute names. A query Q2 : ans(~x2)← ∃~y2φ

′(~x2, ~y2)∧ψ(~x2, ~y2) is a a sound
rewriting of Q1 over Rj w.r.t. TM if for every instance I for Rj and every t′ ∈ Q2(I) there
exists a valuation µ s.t. t[~x2] = t′ holds for some t ∈ µ(TM ). A rewriting is further complete
if it is sound and for every sound rewriting Q′2 and instance I it holds that Q′2(I) ⊆ Q2(I).

The problem of testing if a CQ is a sound rewriting of another CQ was shown to be
Π2P -complete in [47]. There, also an algorithm for computing a complete rewriting of a
CQ w.r.t. a mapping table TM was presented, that we cannot discuss here due to space
restrictions. Within a PDMSs, termination of the query forwarding is achieved in two ways.
On the one hand, a maximal number of forwards and rewritings for each query can be
specified. On the other hand for each query its path through the system is recorded. This
record is used for cycle detection. Once a cycle is detected, forwarding on this path stops.

Returning our attention to mapping table formulas in general, there are two interesting
problems that can be studied for sets of MTFs: The consistency and the inference problem.
Given a mapping table formula τ and an attribute set ~A, the consistency problem asks if
there exists a relation for R( ~A) that satisfies φ. The inference problem asks, given a set
Σ of MTFs and a single MTF τ , if every relation satisfying Σ also satisfies τ . While the
consistency problem is of obvious interest, the main interest in the inference problem stems
from the wish to create mapping tables automatically. Given a set of mapping tables, the
goal is to automatically derive new explicit mapping tables from them, as this may allow for
more and more exact query rewritings. Unfortunately, both problems (being interreducible
to each other) were shown to be NP-complete for the general case in [49].

Mapping tables have been combined with other data translation mechanisms (e.g., merge
and conversion rules in [56]) or schema mappings (in form of ECA rules in [44]). They are
also the main P2P mapping language in the Hyperion project [48, 4, 63] (see next section).

6.2 Data-Schema Interplay
Approaches for so-called data-schema-interplay extend the coordination formulas introduced
in Section 4. In such formalisms, the domain domi also contains the names of the relations and
attributes of the peer schema Ri. Consequently, the formulas φ occurring in the coordination
formulas can refer to both data and metadata. Pioneering work in this area was presented
in [53]. An important example from the peer data management domain is HepToX [10].

7 PDMS prototype systems

So far, we discussed semantic approaches for PDMSs. We will now give a short overview on
existing prototype systems, pointing out specifics or notable ideas. Due to space restrictions,
we cannot give a general or detailed discussion on the implementation of PDMSs. For a
deeper discussion of implementation related aspects, see [41].

A first suggestion for the general structure of a peer in a PDMS was already presented in
the vision paper [6] that also first suggested the LRM. Not surprisingly, a peer consists of
three main layers: The local data is managed by the storage layer. A P2P layer on the one
hand is responsible for establishing and managing mappings and connections to other peers.
On the other hand it also handles query rewritings, update exchange, domain translations,
or any other kind of information exchange supported by the system. Basically all algorithms
of interest for PDM are part of the P2P layer. Finally each peer is controlled through the
interaction layer, containing e.g. the user interface. Most of the systems presented in the
literature follow this schema.
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Hyper. The Hyper framework [17] considered the implementation of local reasoning as
introduced in [16] on a Data Grid architecture, with the main focus on how query answering
under local semantics can be deployed on Grid infrastructure. We are not going to discuss the
implementation on Grids here, but use this opportunity to shortly sketch the general idea for
query answering under local reasoning with tgds τ : ∀~x(∃~zφ(~x, ~z)→ ∃~yψ(~x, ~y)) as inter-peer
mappings (cf. Section 5.1.2). Recall that we can identify a CQ Qτ : ans(~x)← ∃~zφ(~x, ~z) with
the lhs of each τ , and consider a PDEI-system S = (P,R,M) with CE =ME = ∅ but let
CI contain arbitrary local constraints, and an instance I for S. The basic idea of the query
answering algorithm is as follows: For each τ from Pi to Pj , add a new relation symbol
Rτ of arity |~x| to Rj and a new local constraint ∀~xRτ (~x)→ ∃~yψ(~x, ~y) to CI . Now given a
(arbitrary) query Q over some Ri, first compute a perfect reformulation Q′ of Q w.r.t. I
and CI . (A perfect reformulation of a query w.r.t. an instance and a set of constraints is a
rewriting of the query that, evaluated over the instance, returns exactly the certain answers
w.r.t. the set of constraints.) Q′ may contain original relation symbols from Ri (these parts
of Q′ can be evaluated over I immediately) as well as some of the new Rτ . To evaluate Q′
on those, their content must be retrieved first. This is done by posing Qτ on the peer the lhs
of τ is defined on, where this procedure is repeated unless a cycle was detected. Finally Q′
can be evaluated by iteratively evaluating the (reformulations of the) queries Qτ and adding
the results to Rτ until a fixpoint is reached. This general idea can be implemented e.g. using
the chase (cf. [27]), or as datalog program (cf. [16]), and works for local reasoning in general.

coDB. In Section 5.1.2, we pointed out that [22] proposed a formalization of inter peer
mappings that resolves to local reasoning in terms of (restricted) coordination formulas. This
approach was implemented in the coDB PDMS [23, 21, 24]. Inter peer mappings are modelled
as coordination formulas i1 :φ1(~x, ~y1)∧ · · · ∧ ik :φk(~x, ~yk)→ i :h(~x) (where ~x =

⋃k
i=1 ~xi), and

domain relations are not considered. The very basic idea of the query answering algorithm is
similar to that presented for Hyper above. Therefore we do not discuss it here. A detailed
description of its distributed implementation can be found in [23, 24]. Notably, the authors
consider the problem of changes in the mappings while the algorithm is running. They show
that their algorithm is sound and complete w.r.t. those mappings that remain stable during
the runtime of the algorithm. Evaluation results of the coDB system are presented in [23].

PeerDB. PeerDB [59, 62, 61] takes a completely different approach than those seen so far.
Instead of defining semantic mappings between the peers, for each relation and attribute
name a set of metadata (basically a list of keywords) is maintained. If a query is posed against
a peer, the system identifies relations at other peers that might be worth also querying by
finding matches between the keywords attached to the relations and attributes used in the
query and those stored at the other peers. If a match is found, the corresponding relation is
added to a list of candidate relations. This search is done by sending software agents to all
neighbors of a peer, where they search for matches and are again forwarded. Forwarding is
stopped after a certain number of times. The list of possible matches is sent back to the
initiating peer, where it is ranked and presented to the user, who selects those relations to
use. The query is then rewritten accordingly and sent to the corresponding peers that return
the answer. Besides this completely different kind of mappings, the system further adapts
the topology of the network such that peers that contribute a lot of answers and matches
become a direct neighbor. (Being a neighbor just means to send agents directly to this peer.)
PeerDB further supports caching of answers to reduce the required bandwidth.
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Orchestra. We already presented the Orchestra system in Section 5.3.1. As mentioned
there, the ideas of update translation and exchange as well as conflict reconciliation based
on trust mappings and provenance have been all implemented in the Orchestra prototype
system [30, 43]. One focus of the implementation is how to perform the update exchange
incrementally, i.e. how to identify which tuples to add or to delete, without recomputing all
instances from scratch (for a detailed discussion of the corresponding algorithms see [28, 43]).
Towards these goals, Orchestra always tries to reuse existing relational database management
systems (RDBMSs) as much as possible and to find efficient implementations of all these
aspects on top of traditional RDBMSs. One example for this is the encoding of provenance
information in an RDBMS. Another important aspect is the implementation of the global
update store. [72] provides a comparison between a centralized and a distributed solution for
the storage of the published update logs.

Youtopia. Another system we already discussed earlier is Youtopia [52] (Section 5.3.2). The
distinguishing property of its implementation is probably its capability to support several
concurrent chases. Although providing algorithms to identify conditions under which it is
safe for a chase to proceed, Youtopia does not block chases until their execution is guaranteed
to be save, but applies an optimistic strategy that allows further chase steps to be scheduled
even if they are not safe. This may lead to conflicts that are detected and resolved by aborting
the corresponding chase. As this in turn may lead to cascading aborts, [52] considers three
different scheduling algorithms and provides an experimental comparison of them. It was
show that the number of aborts can be reduced to what seems to be an acceptable number.

Hyperion. The Hyperion project [60] was a large project on PDMSs. Part of it was the
development of the Hyperion PDMS [48, 4, 63]. The main focus of this system was the use
of mapping tables (see Section 6.1) for P2P mappings. The prototype provides algorithms
for checking consistency of mapping table formulas, deriving new mapping expressions from
existing ones, and computing rewritings of queries according to mapping tables. Further,
in addition to mapping tables, Hyperion also uses ECA-rules (see Section 5.3.3) to support
update exchange between peers, which is used to keep different peer instances consistent.
Obviously those updates are also translated according to the information provided by the
mappings tables. Consisting of three main components, the Hyperion PDMS basically follows
the general structure of PDMSs presented at the beginning of this section.

Humboldt Peers. Humboldt Peers is a full-fledged relational PDMS that offers different
strategies for completeness-driven query answering [64, 65]. As such, it follows a best-effort
approach. To preserve peer autonomy as much as possible, Humboldt Peers resorts completely
to local reasoning both in query answering and in building statistics of the data distribution
accessible through neighboring peers. For that purpose, query answers are exploited to
maintain multi-dimensional histograms on the potential cardinality of query answers received
from neighboring peers. Building on that statistics, each peer performs local optimization
in that it cuts off less promising peers from further query processing. To limit resource
consumption for the highly redundant problem of query answering in large PDMS, Humboldt
Peers sends a time budget along with each query. Using these pruning strategies, it was
shown in [64, 65] that response time for query answering can be cut down by one or more
orders of magnitude while still yielding a high completeness of the query result that can be
satisfying for many applications.
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8 Non-relational PDM

So far we concentrated solely on systems based on the relational data model. In this section,
we will discuss approaches based on other data models like XML or RDF. We will also loosen
the restriction only to consider unstructured P2P systems a little bit and will include some
hybrid systems as, unlike the relational case, they are very common in this area.

Piazza. It might be surprising to find the Piazza PDMS here, as we already discussed
it in Section 5.1.1 related to schema mappings. This was because the mapping language
PPL and the algorithm for query answering were introduced and formalized in terms of
relational schemas [37, 38]. However, the Piazza system was designed and implemented to
work on XML [35] and even to support both XML and RDF, including mappings between
both data models [36] by resorting to the XML representation of RDF. Nevertheless all
basic ideas described in Section 5.1.1 remain unchanged: Mappings are still either storage
descriptions or directed peer mappings (both can either be inclusion or equality mappings),
but expressed in an (adapted) fragment of XQuery instead of relational CQs. Using XQuery
allows the definition of more complex mappings that account to the nesting structure of
XML. The main focus of the prototype system lies on the algorithm for query answering
and its optimization. Implemented as a centralized algorithm, the reformulation step is
computed at that peer the query is posed on. A global system catalog allows to retrieve all
mappings currently present in the system. Recall that the idea of the algorithm is to compute
rewritings of the query via a rule-goal tree. The resulting queries over the source relations
are then sent to the corresponding peers to be executed. As the size of this tree grows quickly
w.r.t. the number of mappings, optimizing query rewriting is crucial. Several strategies have
been considered in [70], including pruning (i.e. identifying subtrees whose expansion will
not create any new answers), finding good strategies for which nodes to expand next, or
the computation of “shortcuts” by mapping compositions. Further, instead of returning the
complete answers at the end, whenever the rewriting produces a query over some source
relations, it is immediately executed and the result is presented to the user. Concerning the
implementation of PDMSs, these optimization methods are specific to Piazza.

AXML. Another XML-based approach that gained a lot of attraction is Active XML
(AXML) [42, 2]. First of all, AXML is an extension of XML that allows XML-documents
not to contain all information explicitly, but to embed web service calls. Executing those
calls then retrieves new data that is appended to the document. In general these may
be arbitrary web services just returning AXML documents, not giving rise to any PDMS.
However, as part of the AXML project so called AXML peers were created (cf. [2]). Each of
these peers contains a set of AXML documents, is capable of performing webservice calls,
and may publish its own services. These services, defined as (parameterized) queries over
the stored documents, give rise to the following AXML-PDMS3: Each peer stores a set of
AXML documents and may provide access to parts of these information through a web
service, defined as parameterized query over its documents and returning AXML documents.
Information offered by other peers can be accessed by including calls to their web services
into the own AXML documents. I.e., P2P mappings are defined in terms of queries on
other peers, a concept similar to tgds, that can be considered to describe the data to import
also in terms of queries. Within an AXML document, service calls are encoded as special

3 Note that our definition of a PDMS S = (P,R,M) only makes sense for schema based systems.
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XML elements whose children represent the call parameters. When activated, the root node
of the result-AXML document is appended to the document as sibling of the call element.
Several policies can be applied to define how long the result remains valid or what happens
with the result in case the service is called again. One difficulty with this materialization of
data is that since the result of a web service call can be an arbitrary AXML document, it
may contain further call elements, hence materializing all implicit information might not be
possible. As a result, when computing the answer to a query an important goal is to call only
those web services necessary to answer the query, but maybe even return service calls (instead
of their return values) in the answer (lazy evaluation). However, as web services in general
are just black boxes for the caller, reasoning about these questions (termination, was already
enough data materialized for query answering) is not possible. But as in AXML-PDMSs the
service definitions are known (at least from some global point of view), these problems have
been investigated in [1] for AXML-PDMSs where web services are defined using a monotone
conjunctive fragment of XQuery. Still undecidable in the general case, several decidable
fragments of these problems have been identified. We close the discussion by pointing to
two (out of many) extensions of AXML: [18] suggested a trust model for services, and [3]
proposed an algebra for evaluating AXML expressions. For a general overview on AXML
see [2].

SmurfPDMS. SmurfPDMS focuses on skyline-querying in a PDMS setting [40, 39]. Simil-
arly to Humboldt Peers, this prototype system employs so-called data summaries to route
queries through the network of peers. This means, that paths are pruned if they do not
promise a certain size of contribution to the query answer. The statistics in the data sum-
maries are maintained by exchanging updates between peers. To limit this update traffic in
the network, the updates are only propagated over a certain number of peer mappings. So
the statistics at each peers have a limited horizon.

HePToX. We already mentioned HePToX [9, 10] shortly in Section 6.2. Unlike most of
the other systems, that require the user to provide a complete specification of the mappings,
HePToX heavily supports the mapping creation. The data stored at each peer must be
structured according to a DTD. All the user has to do is to draw some arrows between
elements of the schemas that relate to each other, and to visually group different elements
that match to the same element in the other schema. The system then translates these
mappings into HePToX mapping language, which are datalog-style rules, adapted to be able
to deal with the nesting structure of XML documents. They are somewhat similar to nested
tgds [25], using Skolem functions to identify nodes (instead of using existential variables
like FO-tgds). Using these mappings, queries posed against the local schema of a peer and
formulated in a fragment of XQuery are translated to match the schemas of the neighbors.
Thereby a rewriting is considered to be correct if evaluating the rewritten query over the
data of the other peer returns the same result as applying the transformation to the data
and evaluating the original query there.

XPeer. XPeer [66] is the first hybrid P2P system that we consider. Peers, clustered around
super-peers, publish a schema of their locally stored data to their super peer in terms of so
called tree-guides that are automatically generated from the data. Basically these tree-guides
represent the structure of the XML data but omitting the actual data. The super-peer
network forms a tree and super-peers exchange information such that each super-peer knows
about the schema information stored at its children. Queries, issued against single peers,
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are handed over to the corresponding super-peer, from where they are routed through the
super-peer network by trying to find matches between the query and the peer schemas
stored at the super-peers. To improve this search for peer clusters that might be relevant for
answering a query, the systems aims at assigning peers with similar schemas to the same
super-peer, i.e. into the same cluster. Further, peers within the same cluster may replicate
data from each other to speedup query answering. Also, the super-peer network adapts the
number and distribution of super-peers automatically to the system load to avoid bottlenecks.

A survey of XML data management in P2P systems can be found in [51], focusing on the
use of indices, clustering, replication and query processing in such systems.

The idea of PDM has been also picked up by the Semantic Web community, resulting in
a variety of RDF based PDMSs. Interestingly, most of these systems differ greatly from the
systems we have seen so far, introducing several new ideas for defining mappings. In the
remainder of this section we will introduce some of those systems and discuss a selection
of those approaches. Although arguable not all of them are covered by our definition of a
PDMS we gave at the beginning, we think it is worth to mention them nevertheless. Probably
influenced by the idea of the web, many of these systems do not define explicit mappings
between pairs of peers: all peers in the network are considered as possible candidates for
query forwarding, and the task is to identify those peers that indeed contain relevant data.

Edutella. One of the most prominent RDF based PDMSs is Edutella [55, 57, 58], that was
originally designed for sharing educational resources by publishing RDF metadata describing
these resources and to provide a querying service on this metadata. The main goal of Edutella
is to provide an efficient mechanism for query routing, that forwards the query quickly to all
peers in the network that may contribute to its answer, but avoiding forwarding the query
to peers that do not. To reach this goal, a strong focus was laid on indices for query routing,
which is specific to Edutella. Although Edutella offers several other functionalities, we will
only shortly sketch the idea of using indices to guide query answering in a PDMS. Edutella is
a hybrid P2P system where each peer connects to exactly one super-peer. Those super-peers,
arranged in some predefined topology are then responsible for efficient routing. Queries
posed against a peer are handed to the super-peer, from where they are routed through
the super-peer network to peers that may contribute to the answer. Routing is based on
several indices maintained by the super-peers: First of all, each super-peer stores information
about the data provided by the peers connected to it that allows to determine if a peer can
understand the query. This includes information on the peer schema and for which parts of
this schema the peer actually contains data, but also the ranges of present values or other
value summaries. If a query arrives at a super-peer, these indices are used to identify suitable
peers for the query. In addition to the information about the peers connected to it, each
super-peer also stores indices about its neighboring super-peers. These are summaries of the
peer indices hold by the neighbors, describing the overall data offered by all peers connected
to a neighbor. Routing within the super-peer network is directed by these indices.

To ensure that this routing strategy does not lead to basically broadcasting the query
through the network, it is necessary that peers that may contribute to the answer are not
distributed randomly in the network. Edutella therefore tries to cluster peers based on
the data they offer. To do so, each super-peer can define certain constraints (like e.g. the
supported schemas) peers have to satisfy in order to be allowed to connect to this super peer.

SQPeer and Bibster. We have just seen how index information are used for guiding query
answering. Another possible use of data descriptions offered by a peer are advertisements,
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which gives rise to a different way of defining mappings between peers. The general idea
of advertisements is that peers announce description of their data. If another peer decides
to store such an advertisement, a mapping between these peers is established: Every time
a peer receives a query, it will not only try to answer it over its own data, but will also
check all of its stored advertisements whether they are relevant for this query. Two systems
following this approach in different ways are Bibster [33] and SQPeer [50].

Bibster was designed for the very limited scope of sharing bibliographic information
stored in Bibtex files at each peer. Advertising is done referring to some global ontology (for
the bibliographic domain, this was the ACM classification hierarchy). Each peer describes
its expertise, i.e. that parts of the ontology for which it actually provides data, as subsets of
this ontology. When a query is posed against a peer, it is first answered locally, and then the
stored expertises are used to identify peers that may be worth forwarding the query to. This
decision is based on a similarity measure computed between the query and advertisements.
Note that due to the need of a global ontology, Bibster is not a PDMS according to our
definition, but still an interesting approach as we think.

SQPeer takes a little bit different approach than Bibster. Storing again data under RDF
schemas, similar to the situation in Edutella (and considered in several RDF based systems),
a peer may not contain data for all parts of this schema. The advertisements of a peer consist
of descriptions of the so called active schema, i.e. of those parts of the schema a peer actually
stores data for. Queries are again sent through the network based on the published and
stored advertisements. But instead of immediately answering the query, each peer uses its
stored advertisements to identify which parts of the query could be answered by which peer
and annotates the query with the corresponding information. At the end, the annotated
query is sent back the peer where the query was originally issued. This peer then uses the
annotated information from the query to contact all relevant peers and collects their answers.

9 Conclusion

In this paper, we provided a survey of Peer Data Management Systems (PDMSs), concen-
trating on the management of structured data in unstructured peer-to-peer (P2P) systems.
The promise of these systems is the combination of a strong semantics (like for relational
data integration or exchange) with the high flexibility and autonomy offered by P2P systems.
As the design of a PDMS raises many questions, several suggestions have been made in
the literature to overcome the different design problems. Providing a summary of these
approaches, we laid a strong focus on the formalisms and semantics of the P2P mappings,
that more or less determine the semantics of the overall system.

P2P mappings can be designed for different purposes. They may be used for integrating
data at query time, for data exchange or update propagation. Mappings may be able to
deal with inconsistencies or support translations between different domains. In summary,
several characteristics of inter-peer mappings can be identified. They may be defined on
schema or instance level or even between instances and schemas. Further, while some offer a
well-defined semantics and allow for reasoning along them, others just define explicit rewriting
or translation rules for queries or data. Another distinction can be made on whether they
are explicitly defined or created on the fly at runtime, e.g. based on a query issued by a user
and some additional metadata.

Beside the description of the main theoretical concepts, we also discussed some of the
problems arising from the implementation of such systems, pointing out specifics of several
prototype systems published in the literature.
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Table 1 An overview on the most important systems and approaches presented in this survey.
(p) in the “special mentions” column indicates that a prototype implementation exists, (e) and (i) in
the “semantics” column denote exchange and integration systems, respectively, and ⊂ L is used to
denote a fragment of L. (∗ syntactically restricted FO formulas)

data
model

mapping
level

mapping
language

query
language semantics special mentions Ref.

trad. data
exchange/
integration

relational schema tgds UCQs global [46, 54]

Piazza relational/
XML schema PPL UCQs

⊂XQuery global (i) (p), restricted
topology [38]

PDEI-
Framework relational schema tgds UCQs local (e/i) eff. decidable [27]

LRM relational schema &
instance

CFs/dom.
relations CFs local (i) domain

translation [67]

Orchestra relational schema tgds UCQs global (e) (p), trust,
update exchange [28]

Hyperion relational schema &
instance

ECA &
mapping
tables

CQs - (e/i) (p) [4]

[7],[8] relational schema UDECs∗
RDECs∗ FO repair (i) inconsistency

handling [7, 8]

Hyper relational schema tgds UCQs local (i) (p) [17]

AXML XML schema WS calls various - (i) (p) [2]

Youtopia relational schema tgds keyword &
structured global (e) backward chase

concurrency,(p) [52]

coDB relational schema ⊂CFs UCQs local (i) ∃ ext. for local
inconsistency,(p) [22]

HepToX XML data/schema
interplay

datalog
style rules ⊂XQuery - (i) graphical mapping

generation,(p) [10]

Humboldt
Peers relational schema GLaV CQs w/o

projections local (i) (p), compl. driven,
data statistics

[65]

Smurf-
PDMS

relational,
XML schema GLaV CQs local (i) (p), data statistics [40]

PeerDB relational schema keywords CQs - (i) (p) [59]

A summary of the more important systems and approaches discussed in this survey is
presented in Table 1. It lists for each of them the main characterizing properties: The data
model used, whether the P2P mappings are on schema or instance level (or a mixture of that),
the formalism used to define the inter-peer mappings, how these mappings are interpreted
(i.e. the semantics applied to the mappings), and whether the system is an exchange or
integration system. The table further shows the query language that is either supported by
the approach or discussed in detail within the context of the specific proposal. Any special
characteristics of a system are stated in the “special mentions” column, where (p) indicates
that a prototype implementation exists. Note that the table only contains a selection of
systems and is not complete: even some systems mentioned in this survey do not show up.

Despite all these different approaches, none of them seems to have been established yet
as the model for PDM. This may indicate that not all problems have been resolved in a
satisfactory way yet. One of these problems might be data inconsistency. Although very
elegant ways have been suggested for how to deal with contradicting data, most of the time
they come for the price of a high computational complexity. In general, performance is
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another critical aspect, and how to further speed up query answering or the data exchange
also is an interesting research direction. Altogether, although the semantics of PDMSs is
already understood quite well and the interest in those systems was decreasing the last two
years, there is still research potential in PDM.
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