
The Fourth International VLDB Workshop
on

Management of Uncertain Data

edited by
Ander de Keijzer and Maurice van Keulen

University of Twente

CTIT Workshop Proceedings Series

Sponsor

Centre for Telematics and Information Technology (CTIT)

Publication Details
Proceedings of the Fourth International VLDB Workshop on Management of Uncertain Data
Edited by Ander de Keijzer and Maurice van Keulen
Published by the Centre for Telematics and Information Technology (CTIT),
University of Twente
CTIT Workshop Proceedings Series WP10-04
ISSN 0929-0672

Organizing Committee
Co-chairs
Ander de Keijzer, University of Twente, The Netherlands
Maurice van Keulen, University of Twente, The Netherlands

Publicity chair
Ghita Berrada, University of Twente, The Netherlands

Program Committee
Patrick Bosc, IRISA/ENSSAT, France
Matthew Damigos, NTUA, Greece
Guy de Tré, University of Ghent, Belgium
Curtis Dyreson, Utah State University, USA
Michael Fink, Vienna University of Technology, Austria
Maarten Fokkinga, University of Twente, The Netherlands
Manolis Gergatsoulis, Ionian University, Greece
Nikos Kiourtis, NTUA, Greece
Christoph Koch, Cornell University, USA
Birgitta Konig-Ries, University of Jena, Germany
Maurizio Lenzerini, University of Rome La Sapienza, Italy
Dan Olteanu, Oxford University, UK
Olivier Pivert, IRISA/ENSSAT, France
Giuseppe Psaila, University of Bergamo , Italy
Christopher Ré, University of Wisconsin-Madison, USA
Anish Das Sarma, Yahoo!Research, USA
V.S. Subrahmanian, University of Maryland, USA
Dan Suciu, University of Washington, USA
Martin Theobald, Max Planck Institute, Germany
Vasilis Vassalos, AUEB-RC, Greece
Jef Wijsen, Université de Mons, Belgium
Vladimir Zadorozhny, University of Pittsburgh, USA

Workshop Program

Monday, September 13th, 2010
Grand Copthorne Waterfront Hotel, Singapore

09.00 Opening
Ander de Keijzer and Maurice van Keulen

09.05 Invited Talk
 From MUD to MIRE: Managing Inherent Risk in the Enterprise

Peter J. Haas

10.00 Session 1: Provenance and answer explanation
 WHY SO? or WHY NO? Functional Causality for Explaining Query Answers
 Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu

10.30 Coffee break

11.00 Session 2: Non-relational UDBMSs
 Extending Magic Sets Technique to Deductive Databases with Uncertainty

Qiong Huang and Nematollaah Shiri
 Storing and Querying Probabilistic XML Using a Probabilistic Relational DBMS

Emiel S. Hollander and Maurice van Keulen
 Time-aware Reasoning in Uncertain Knowledge Bases

Yafang Wang, Mohamed Yahya, and Martin Theobald

12.30 Lunch Break

14.00 Session 3: Query processing in UDBMSs
 Query Containment for Databases with Uncertainty and Lineage

Foto N. Afrati and Angelos Vasilakopoulos
 Dissociation and Propagation for Ecient Query Evaluation over Probabilistic Databases

Wolfgang Gatterbauer, Abhay K. Jha, and Dan Suciu
 Generalized Uncertain Databases: First Steps

Parag Agrawal and Jennifer Widom

15.30 Coffee Break

16.00 Session 4: Applications of UDBMSs
 Tuple Merging in Probabilistic Databases

Fabian Panse and Norbert Ritter
 Uncertain Databases in Collaborative Data Management

Reinhard Pichler, Vadim Savenkov, Sebastian Skritek and Hong-Linh Truong
 Handling Uncertainty and Correlation in Decision Support

Katrin Eisenreich and Philipp Rösch

17.30 Closing

Preface

This is the fourth edition of the international VLDB workshop on Management of Uncertain
Data. Previous editions of this workshop took place in New Zealand, Austria and France.
Research on uncertain data has grown over the past few years. Besides workshops on the topic of
uncertain data, also sessions at large conferences, such as VLDB, on the same topic are
organized.
This edition, we have ten research talks, in four sessions, addressing different topics in uncertain
data. In addition, we start the workshop with an invited talk by Peter Haas from IBM Research,
entitled From MUD to MIRE: Managing Inherent Risk in the Enterprise.
We would like to thank the reviewers for their time and effort. We would also
like to thank the Centre Telematics and Information Technology for sponsoring
the proceedings of the workshop.

Ander de Keijzer
Maurice van Keulen

Table of Contents

From MUD to MIRE: Managing Inherent Risk in the Enterprise 1
Peter J. Haas

WHY SO? or WHY NO? Functional Causality for Explaining Query Answers 3
Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu

Extending Magic Sets Technique to Deductive Databases with Uncertainty 19
Qiong Huang and Nematollaah Shiri

Storing and Querying Probabilistic XML Using a Probabilistic Relational DBMS 35
Emiel S. Hollander and Maurice van Keulen

Time-aware Reasoning in Uncertain Knowledge Bases 51
Yafang Wang, Mohamed Yahya, and Martin Theobald

Query Containment for Databases with Uncertainty and Lineage 67
Foto N. Afrati and Angelos Vasilakopoulos

Dissociation and Propagation for Ecient Query Evaluation over Probabilistic Databases 83
Wolfgang Gatterbauer, Abhay K. Jha, and Dan Suciu

Generalized Uncertain Databases: First Steps 99
Parag Agrawal and Jennifer Widom

Tuple Merging in Probabilistic Databases 113
Fabian Panse and Norbert Ritter

Uncertain Databases in Collaborative Data Management 129
Reinhard Pichler, Vadim Savenkov, Sebastian Skritek and Hong-Linh Truong

Handling Uncertainty and Correlation in Decision Support 145
Katrin Eisenreich and Philipp Rösch

From MUD to MIRE: Managing Inherent Risk

in the Enterprise

Peter J. Haas
peterh@almaden.ibm.com

IBM ALmaden Research Center

San Jose, California, USA

Two questions always seem to arise when talking with industrial col-
leagues about probabilistic databases (prDBs): ”Where do the probabili-
ties come from?” and ”Who is going to use this stuff in the real world?”
In this talk I will discuss my recent experiences in trying to deal with
these questions. One compelling answer to the first question is that, with
the recent spike in popularity of ”business analytics,” an increasingly im-
portant source of uncertainty arises from the use of complex stochastic
models to predict future or hypothetical data values. As a result, I have
been viewing my own work on the Monte Carlo Database System (MCDB)
as being less about prDBs per se, and more about stochastic predictive
analytics over big data. Much work remains to be done in this space. For
the second question, I would argue that an increasingly important driver
of probDB is risk management. Most people have very poor intuition
about the nature of probability and risk, and succumb to the ”flaw of
averages” in its many insidious forms. There has been some exciting re-
cent work on developing interactive tools that managers, executives, and
other decision-makers can use to better understand the risks and rewards
associated with investment and policy decisions. These tools are part of
an emerging ”probability management” infrastructure for coherent risk
assessment within and across enterprises. These ideas are beginning to
take hold in companies such as Royal Dutch Shell, Merck Pharmaceuti-
cal, Oracle, Wells Fargo Bank, and IBM. Exploring the role of risk in our
work opens up new areas of research and also gives our community the
opportunity to have enormous real-world impact by playing a key role in
the probability-management ecosystem of the future. Some recent work
by myself and others illustrates some of the possibilities.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

1

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

2

WHY SO? or WHY NO?
Functional Causality for Explaining Query Answers

Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu

University of Washington

{ameli,gatter,kfm,suciu}@cs.washington.edu

Abstract. In this paper, we propose causality as a unified framework to explain
query answers and non-answers, thus generalizing and extending several previously

proposed definitions of provenance and missing query result explanations.
Starting from the established definition of actual causes by Halpern and Pearl [12],

we propose functional causes as a refined definition of causality with several de-

sirable properties. These properties allow us to apply our notion of causality in a

database context and apply it uniformly to define the causes of query results and

their individual contributions in several ways: (i) we can model both provenance as

well as non-answers, (ii) we can define explanations as either data in the input rela-

tions or relational operations in a query plan, and (iii) we can give graded degrees

of responsibility to individual causes, thus allowing us to rank causes. In particular,

our approach allows us to explain contributions to relational aggregate functions and

to rank causes according to their respective responsibilities, aiding users in identi-

fying errors in uncertain or untrusted data. Throughout the paper, we illustrate the

applicability of our framework with several examples.
This is the first work that treats “positive” and “negative” provenance under the

same framework, and establishes the theoretical foundations of causality theory in a

database context.

1 Introduction

When analyzing uncertain data sets, users are often interested in explanations for their
observations. Explaining the causes of surprising query results allows users to better un-
derstand their data, and identify possible errors in data or queries. In a database context,
explanations concern results returned by explicit or implicit queries. For example, “Why
does my personalized newscast have more than 20 items today?” Or, “Why does my fa-
vorite undergrad student not appear on the Dean’s list this year?” Database research that
addresses these or similar questions is mainly work on lineage of query results, such as
why [8] or where provenance [3], and very recently, explanations for non-answers [15,4].
While these approaches differ over what the response to questions should be, all of them
seem to be linked through a common underlying theme: understanding causal relation-
ships in databases.

Humans usually have an intuition about what constitutes a cause of a given effect. In this
paper, we define the foundational notion of functional causality that can model this intu-
ition in an exact mathematical framework, and show how it can be applied to encode and
solve various causality related problems. In particular, it allows us to uniformly model the
questions of WHY SO? and WHY NO? with regards to query answers. It also allows us to
represent different previous approaches, thus illustrating causality to be a critical element
unifying prior work in this field.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

3

N(ewsFeeds)
nid story tag
1 ... share lead in Singapore championship ... Golf

2 ... economic downturn affected sensitive ... Business
3 ... with sequences shot in Singapore ... Movies

4 ... when President Obama meets former ally ... Obama
5 ... Singapore slow down hiring ... Business

6 ... Oscars 2010: Academy’s ‘best’ choice ... Movies
7 ... HP launches cloud lab in Singapore ... Technology

8 ... struggles to corral votes for health bill ... Health
9 ... VLDB conference this year in Singapore ... DB conf

10 ... at the the Indianapolis Motor Speedway ... Indy 500
11 ... Indianapolis host to SIGMOD 2010 ... DB conf
12 ... VLDB in Singapore promises to be ... DB conf

13 ... more people in Indianapolis this year ... Indy 500
14 ... Gatorade drops Tiger woods ... Golf

R(outing)
tag
Obama
DB conf
Golf
Technology
Health

Query answer:
P(ersonalized alerts)
cities
Paris
Singapore
Athens
Vancouver

Fig. 1: Example of a personalized alert-feed (P) as a result of a query filtering all news (N)
based on a carefully constructed routing table (R).

Example 1. A major travel agency monitors a large number of news feeds in order to
identify trends, opportunities, or alerts about various cities. Central to this activity is a
carefully personalized routing table and query, which filters what information to forward
to each specialized travel agent by carefully chosen keywords. Fig. 1 shows the routing
table for one user R, as well as a sample news feed. The query issuing alerts to this user is:

select C.name

from NewsFeeds N, Routing R, City C

where C.name substring N.story and N.tag = R.tag

group by C.name

having count(*) > 20

The result is a list of cities that are drawn to the attention of this particular agent, shown
in Fig. 1. As popular destinations, Paris and Athens are predictable answers, and so is
Vancouver because of the recent Olympics. But this agent believes Singapore is an error,
and wants to know what entries in the Routing table caused it to appear on her watch list.
She wants to ask “Why am I being alerted about Singapore?”. The system should answer
that the keywords DB conf, technology, and golf are causes with various degrees of
responsibility.

As illustrated in Example 1, we want to allow users to ask simple questions based on the
results they receive, and hence, allow them to learn what may be the cause of any surprising
or undesirable answer. Such questions can refer to either presence (WHY SO?) or absence
(WHY NO?) of results. Furthermore, the user should be provided with a ranking of causes
based on their individual contribution or responsibility. Unexpected results are often an
indication of errors, and tracking their causes is a crucial step in repairing faulty data, or
mistakes in queries. Our ultimate goal is to define a language that allows users to specify
causal queries for given results. In this paper, we (i) lay the theoretical groundwork and de-
fine a formal model that allows us to capture such causality-related questions in a uniform
framework, and (ii) illustrate the applicability of our scheme through various examples.

Summary and outline. We start by reviewing existing work on causality in AI in Sec-
tion 2, and propose functional causes as a refined notion that mitigates problems of exist-
ing definitions (Sect. 2.1). In Sect. 3 we highlight several desirable properties of functional
causes, which are important for their applicability in a database context. Section 4 gives
several examples of applying our framework to give WHY SO? and WHY NO? explana-
tions to database queries. We show that our unifying approach generalizes provenance

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

4

A=1

B=1
Y =A∨B

(a)

A=1

B=1 Y1 =ĀB

Y =A∨Y1

(b)

A=1

B=1 Y =Y1∨B

Y1 =A∨B̄

(c)

A=1

B=1 Y =Y1∨Y2

Y1 =A∨B̄

Y2 =B

(d)
Fig. 2: (a) Alice (A) and Bob (B) each throw a rock at a bottle, which breaks if it gets hit by
either rock (Y =A ∨ B). (b) Alice’s throw preempts Bob’s (A=1 ⇒ Y1 = 0). (c,d) Expansion
causes problems for the HP definition: Introducing node Y2, which merely repeats the value of
B, does not change the function Y (X), but makes A an actual cause.

as well as non-answers (Sect. 4.1), handles contributions to aggregate functions by rank-
ing causes according to their responsibilities for the result (Sect. 4.2), and can also model
causes other than tuples (Sect. 4.3).

2 Causality Definitions
Due to space limitations, we briefly overview the two most established definitions of cau-
sality from the AI and philosophy literature, and refer the reader to our technical report [20]
for more details, discussion of issues and implications, examples, and proofs of all results.

Counterfactual Causes. With a long tradition in philosophy [16], the argument of cou-
nterfactual causality is that the relationship between cause and effect can be understood
as a counterfactual statement, i.e. an event is considered a cause of an effect if the ef-
fect would not have happened in the absence of the event. We focus on the boolean case,
and in our notion, the variable assignment (event) X = x0 is a cause of expression φ, iff
X = x0 ∧ φ and [X ← ¬x0] ⇒ ¬φ. However, counterfactual causality cannot explain
causality for slightly more complicated scenarios such as for disjunctive causes, i.e. when
there are two potential causes of an event.

Actual Causes. The HP definition of causality [12] is based on counterfactuals, but can
correctly model disjunction and many other complications. It is the most established def-
inition in the field of structural causality, and relies on the use of a causal network (much
like a Bayesian network), representing dependencies between variables (e.g. Fig. 2a). In a
database context, the variables can be tuples, but they can represent in general any element
that may be causally relevant. Every node in the causal network is governed by a structural
equation that determines the node’s assignment based on its input. A causal model is com-
monly denoted as M = (N ,F), where N the set of variables, and F the set of structural
equations. The idea is that X is a cause of Y if Y counterfactually depends on X under
“some” permissive contingency, where “some” is elaborately defined.1 The heart of the
definition is condition AC2 in [12, Def. 3.1], which is effectively a generalization of cou-
nterfactual causes. The requirement is that there exists some assignment of the variables
for which X is counterfactual, and that this assignment does not make any fundamental
changes to the causal path of X (the descendants of X in the causal network). The use of
the causal network makes the HP definition very flexible, allowing it to capture different
scenarios of causal relationships. For example, it correctly handles disjunctive causes and
preemption, i.e. when there are two potential causes of an event and one chronologically
preempts the other (e.g. Fig. 2b).

The HP definition does however have some limitations which make its application to a
database context problematic. In the well studied Shock C example (see [22]), actual cau-

1 Contingencies relate to possible world semantics: “Is there a possible world that makes X counterfactual?”

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

5

sality produces unintuitive results; a variable is determined to be a cause of a tautology,
which in a data context is semantically spurious. A less known but equally important is-
sue of the definition is its lack of robustness to minor network variations. The addition
of “dummy” nodes, which do not affect the function or assignments of other nodes, can
change the causality of variables (Fig. 2c,2d). This is problematic in a database setting,
where we care about query semantics rather than syntax. We revisit this issue in Sect. 3.1,
and also refer the reader to our technical report [20] for an extensive discussion.

2.1 Functional Causes

A fundamental challenge in applying causality to queries is that causality is defined over
an entire network: it is not enough to know the dependency of the effect on the input vari-
ables, we also need to reason about intermediate dependent nodes. This requirement is
difficult to carry over to a database setting, where we care about the semantics of a query
rather than a particular query plan. Our approach is to represent a causal network with two
appropriate functions that semantically capture the causal dependencies of a network. The
two key notions we need for that are potential functions and dissociation expressions.

Figure 3 represents a causal network in our framework. In contrast to the HP approach,
only input variables from X can be causes and part of permissive contingencies. As in the
HP approach, every dependent node Y is described by a structural equation FY , which
assigns a truth value to Y based on the values of its parents. The Boolean formula ΦY

of Y defines its truth assignment based on the input variables X , and is constructed
by recursing through the structural equations of Y ’s ancestors. For example, in Fig. 2b,
ΦY (X) = A ∨ (Ā ∧ B), where X = {A,B}. We denote as Φ(X) = ΦYj

(X), where
Yj is the effect node, and we say that the causal network has formula Φ. The potential
function PΦ is then simply the unique multilinear polynomial representing Φ. It is equal to
the probability that Φ is true given the probabilities of its input variables.

Definition 1 (Potential Function). The potential function PΦ(x) of a Boolean formula
Φ(X) with probabilities x = {x1, . . . , xk} of the input variables is defined as follows:

PΦ(x) =
∑

ε→{0,1}k

(
k∏

i=1

xεi
i

)
Φ(ε), xεi

i =
{
xi if εi =1
1 − xi if εi =0

The potential function is a sum with one term for each truth assignment ε of variables X .
Each term is a product of factors of the form xi or 1−xi and only occurs in the sum if the
formula is true at the given assignment (Φ(ε) = 1). For example, if Φ = X1 ∧ (X2 ∨ X3)
then PΦ = x1x2(1−x3)+x1(1−x2)x3+x1x2x3, which simplifies to x1(x2+x3−x2x3).
We use delta notation to denote changes ΔP in the potential function due to changes
in the inputs: Given an actual assignment x0 and a subset of variables S, we define
ΔPΦ(S) := PΦ(x0) − PΦ(x0 ⊕ S), where x0 ⊕ S (denoting XOR) indicates the as-
signment obtained by starting from x0 and inverting all variables in S.

To semantically capture differences in causality between networks with logically equiv-
alent boolean formulas (e.g. Fig. 2a,2b), we use Dissociation Expressions (DEs):

Definition 2 (Dissociation Expression). A dissociation expression with respect to a vari-
able X0 is a Boolean expression defined by the grammar:

Ψ ::=X ∈ X

Ψ ::=σ(Ψ1, Ψ2, . . . , Ψk), X0 ∈ V (Ψi) ∪ V (Ψj) ⇒ V (Ψi) ∩ V (Ψj) ⊆ {X0}
where V (Ψi) is the set of input variables of formula Ψi.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

6

X1 =x0
1

Xn =x0
n

�X �Y (�x0)

�S

Xi =x0
i Yj(�x0)

cause effect

Fig. 3: FC framework: the causal network is parti-
tioned into the input variables X with cause under
consideration Xi, and dependent variables Y with ef-
fect variable Yj . Support S ⊆ X \ {Xi} corresponds
to permissive contingency from the HP framework.

A=1

B=1 Y1 =ĀB

Y =A∨ĀB

(a)

A1 =1

A2 =1

B=1 Y1 =Ā2B

Y =A1∨Ā2B

(b)
Fig. 4: A causal network CN (a)
and its dissociation network DN
(b) with respect to B.

Dissociation expressions allow us to semantically capture within a Boolean formula, the
causal dependencies of a variable X0 in a causal network. This is possible by recording
the effect of X0 along different network paths and disallowing any variable from being
combined with X0 in more than one subexpression. We illustrate with a detailed example.

Example 2. In the network of Fig. 4a, variable A contributes to the causal path of B
at two locations. This “independent” influence can be represented by the dissociation
expression Ψ = A1 ∨ (Ā2 ∧ B), which essentially separates A into two variables A1

and A2 (see Fig. 4b). Ψ ′ = A ∨ (Ā ∧ B) is not a valid DE with respect to B be-
cause, for its subexpressions Ψ ′

1 = A and Ψ ′
2 = Ā ∧ B, it is B ∈ V (Ψ ′

1) ∪ V (Ψ ′
2) but

V (Ψ ′
1) ∩ V (Ψ ′

2) = {A}�⊆{B}. We demonstrate how Ψ captures semantically the network
structure: The HP definition checks actual causality of B in the network of Fig. 4a by
determining the value of Y for a setting {A = 0, B = 1}, while forcing Y1 to its original
value. The dissociation expression Ψ(A1, A2, B) = A1∨(Ā2∧B), with potential function
PΨ (a1, a2, b) = a1+b−a1b−a2b+a1a2b, allows us to perform the same check by simply
computing PΨ (0, 1, 1). In this case PΨ (0, 1, 1) = 0 �= PΨ (1, 1, 1), which was the original
variable assignment, meaning that the change altered values on the causal path.

The grammar-based definition of dissociation expressions allows us to identify expressions
that are valid DEs with respect to a variable. We will now define mappings, called foldings,
from DEs to Boolean formulas, which are used to formally define correspondence between
formulas. For instance, Ā∨B is a valid dissociation expression with respect to B but does
not correspond to formula A ∨ (Ā ∧ B). A folding basically maps a set of input variables
X ′ to another set X , transforming formula Ψ to Ψ ′. If Ψ ′ is grammatically equivalent to
Φ, then Ψ is a dissociation expression of Φ. For example, f({A1, A2, B}) = {A,A, B}
defines a folding from Ψ =A1∨(Ā2∧B) to the formula Φ=A∨(Ā∧B). In simple terms, a
DE Ψ with a folding to Φ is a representation of Φ with a larger number of input variables.

Definition 3 (Expression Folding). Given f : X′ → X mapping variables X′ to X ,
the folding (F , f) of a dissociation expression Ψ(X ′) defines a formula Φ = F (Ψ), s.t:

Ψ ::=X ′ ⇒ F(X) = f(X ′)
Ψ ::=σ(Ψ1, Ψ2, . . . , Ψk) ⇒ F(Ψ) = σ (F(Ψ1),F(Ψ2), . . . ,F(Ψk))

The dissociation of input variables into several new input variables captures the distinct
effect of variables on the causal path, thus providing the necessary network semantics. Us-
ing |Ψ | to denote the cardinality of the input set of Ψ , then |Ψ | ≥ |Φ|, and if |Ψ | = |Φ| then
Ψ = Φ.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

7

Theorem 1 (DE Minimality). If D the set of all DEs w.r.t. X0 ∈ X with a folding to
Φ(X), then ∃ unique Ψi ∈D of minimum size: |Ψi|= min

Ψ∈D
|Ψ | and ∀j �= i, |Ψj |= |Ψi| ⇒

Ψj =Ψi.

The DE of minimum size replicates those variables, and only those variables, that affect
the causal path at more than one location. It is simply called the dissociation expression of
Φ, with input nodes Xt (Fig. 4b). A folding maps Xt back to the original input variables:
X = f(Xt). The reverse mapping is denoted Xt = [X]t = {Xi | f(Xi) ∈ X}. We
often refer to the dissociation network of Φ, meaning the causal network representing the
DE of Φ (e.g. Fig. 4b).

Definition 4 (Functional Cause). The event Xi =x0
i is a cause of φ in a causal model iff:

FC1. Both Xi =x0
i and φ hold under assignment x0

FC2. Let PΦ and PΨ be the potential functions of Φ and its DE w.r.t. Xi, respectively.
There exists a support S ⊆ X\{Xi}, such that:
(a) ΔPΦ(S ∪ Xi) �= 0
(b) ΔPΨ (S′

t) = 0, for all subsets S′
t ⊆ [S]t

Condition FC2(b) is analogous to AC2(b) of the HP definition, which requires checking
that the effect does not change for all possible combinations of setting the dependent nodes
to their original values. Similarly, FC ensures that no part of the changed nodes (the sup-
port S) is counterfactual in the dissociation network.

Intuition. The definition of functional causes captures three main points: (i) a counter-
factual cause is always a cause, (ii) if a variable is not counterfactual under any possible
assignment of the other variables, then it cannot be a cause, and (iii) if X = x0 is a cou-
nterfactual cause under some assignment that inverts a subset S of the other variables, then
no part of S should be by itself counterfactual.

We use the rock thrower example from [12], depicted in Fig. 2a and 2b, to demonstrate
how functional causes (like actual causes) can handle preemption.

Example 3. The two different models of the problem, with and without preemption (Fig. 2b
and 2a respectively) are characterized by logically equivalent Boolean expressions: A ∨
ĀB = A ∨ B. However, B is not a cause (actual or functional) in Fig. 2b, because Bob’s
throw is preempted by Alice’s. The minimal dissociation expression for Φ = A ∨ (Ā ∧ B)
with respect to B is Ψ = A1 ∨ (Ā2 ∧ B), and is depicted in Fig. 4b. Then:

PΦ = a + b − ab and PΨ = a1 + b − a1b − a2b + a1a2b

For S = {A}, ΔPΦ(B,S) �= 0. If (F, f) the folding of Ψ into Φ, then [S]t = {A1, A2},
and ΔPΨ (A1) �= 0, so B is not a functional cause.

Hence, the definition of functional causes effectively captures the difference between the
two networks for the two thrower example (Fig. 2a,2b) while only focusing on the input
nodes, as opposed to the HP definition that requires the inspection of the values of all the
dependent nodes under all assignments. In the case of the simple network, PΦ = PΨ and
for S = {A}, B can be shown to be a cause. However, in the more complicated net-
work, the potential function of the dissociation expression gives priority to A’s throw and
determines that B is not a cause of the bottle breaking.

If the causal network is a tree, then the causal formula is itself a dissociation expression
with potential PΦ. Then, (FC2) simplifies to: (a) ΔPΦ(S, Xi) �= 0 and (b) ∀S′ ⊆ S :
ΔPΦ(S′) = 0. Causal networks which are trees form an important category of causality

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

8

problems as they model many practical cases of database queries, and they are character-
ized by desirable properties, as we show in Sect. 3.3.

Responsibility. Responsibility is a measure for degree of causality, first introduced by
Chockler and Halpern [6]. We redefine it here for functional causes.

Definition 5 (Responsibility). Responsibility ρ of a causal variable Xi is defined as
1

|S|+1 where S the minimum support for which Xi is a functional cause of an effect under
consideration. ρ := 0 if Xi is not a cause.
Responsibility ranges between 0 and 1. Non-zero responsibility (ρ > 0) means that the
variable is a functional cause, ρ = 1 means it is also a counterfactual cause.

3 Formal Properties

Functional causality encodes the semantics of causal structures with the help of potential
functions which are dependent only on the input variables. Functional causes are a refined
notion of actual causes. Even though the definition of AC does not exclude dependent
variables, functional causality does not consider them as possible causes, as their value is
fully determined from the input variables. The relationship of functional causality of input
variables to actual and counterfactual causality is demonstrated in the following theorem.

Theorem 2. Every X = x0 that is a counterfactual cause is also a functional cause, and
every X = x0 that is a functional cause is also an actual cause.
Actual causes are more permissive than functional causes, as indicated by the limitations
mentioned in Sect. 2. The issue is analyzed extensively in [20]. In this section we demon-
strate that functional causality provides a more powerful and robust way to reason about
causes than actual causality. In addition, we give a transitivity result and use it to derive
complexity results for certain types of causal network structures.

3.1 Causal Network Expansion

Functional, as well as actual causes, rely on the causal network to model a given problem.
The two different models of the thrower example displayed in Fig. 2(a,b) demonstrate that
changes in the network structure can help model priorities of events, which in turn can
redefine causality of variables.

In Fig. 2b, B is removed as a cause by the addition of an intermediate node in the causal
network structure that models the preemption of the effect by node A (Alice’s rock is
the one that breaks the bottle). This change is also visible in the causal Boolean formula,
which is transformed from Φ = A ∨ B to Φ1 = A ∨ (Ā ∧ B). As we know from Boolean
algebra, the two formulas are equivalent as they have the same truth tables. However,
they are not causally equivalent, as they yield different causality results. Therefore, the
grammatical form of the Boolean expression is important in determining causality, and
the functional definition captures that through dissociation expressions. It is important to
understand how changes in the causal network affect causality, and whether we can state
meaningful properties for those changes.

We define causal network expansion in a standard way by the addition of nodes and/or
edges to the causal structure. A network CNe with formula Φe is a node expansion (respec-
tively edge expansion) of CN with formula Φ if it can be created by the addition of a node
(respectively edge) to CN, while Φe ≡ Φ. CNe is a single-step expansion if it is either a
node or an edge expansion of CN.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

9

Definition 6 (Expansion). A causal network CNe is an expansion of network CN iff ∃ set
{CN1, CN2, . . . , CNk} with CN1 = CN and CNk = CNe, such that CNi+1 is a single step
expansion of CNi, ∀i ∈ [1, k].

Networks represented by the formulas Φ1 = A∨ (Ā∧B) and Φ2 = (A∧ B̄)∨B are both
expansions of Φ = A ∨ B, but note that Φ1 and Φ2 are not expansions of one another. As
shown by the thrower example, network expansion can remove causes. As the following
theorem states, it can only remove, not add causes.

Theorem 3. If CNe with formula Φe is an expansion of CN with formula Φ and Xi = x0
i

is a cause in φe then Xi = x0
i is also a cause in φ.

Specifically in the case where no negation of literals is allowed, changes to the structure
do not affect the causality result:

Theorem 4. If CNe with formula Φe is an expansion of CN with formula Φ that does not
contain negated variables then φ and φe have the same causes.

The properties of formula expansion are important, as they prevent unpredictability due
to causal structure changes. Note that the Halpern and Pearl definition does not handle
formula expansion as gracefully. Figure 2 demonstrates with an example that the HP def-
inition allows introducing new causes with expansion. A = 1 is not a cause in the simple
network of Fig. 2c but becomes causal after adding node Y2 in Fig. 2d. Therefore, network
expansion is unpredictable for actual causes, as there are examples where it can both re-
move (Fig. 2b) or introduce new causes (Fig. 2d). This is a strong point for our definition,
as causality is tied to the network structure, and erratic behavior due to minor structure
changes, as is the case in this example, is troubling.

3.2 Functional causes and transitivity

Functional causality only considers input nodes in the causal network as permissible causes
for events. Under this premise, the notion of transitivity of causality is not well-defined,
since dependent variables are never considered permissible causes of events in their de-
scendants. In order to ask the question of transitivity, we allow a dependent variable Y1

to become a possible cause in a modified causal model M ′ with Y1 as additional input
variable. We achieve this with the help of an external intervention [Y1 ← y0

1], setting the
variable to its actual value y0

1 . The new model is then M ′ = (N ,F ′) with modified struc-
tural equations F ′ = F \ {FY1}∪ {F ′

Y1
}, where F ′

Y1
= y0

1 , and hence new input variables

X ′ = (X, Y1) with original assignment x′0 = (x0, y0
1).

We can now ask the question of transitivity as follows: Assume that an assignment X =
x0 is a cause of Y1 = y0

1 in a causal model M . Further assume that Y1 = y0
1 is a cause of

Y2 = y0
2 in the modified network [Y1 ← y0

1]. Is then X = x0 a cause of Y2 = y0
2 in the

original network M? In agreement with recent prevalent (yet not undisputed) opinion in
causality literature [14,22], functional causality is not transitive, in general.

Intransitivity of causality is not uncontroversial [17] and humans generally feel a strong
intuition that causality should be transitive. It turns out that functional causality is actually
transitive in an important type of network structure that relates to this intuition: Transitivity
holds if there is no causal connection between the original cause (X) and the effect (Y2)
except through the intermediate node (Y1). This property allows us to deduce a lower
complexity for determining causality in restricted settings in Sect. 3.3.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

10

Definition 7 (Markovian). A node N is Markovian in a causal network CN iff there is no
path from any ancestor of N to any descendent of N that does not pass through N .

Proposition 5 (Markovian transitivity). Given a causal model M in which X =x0 is a
cause of Y1 =y0

1 with responsibility ρ1, and Y1 is Markovian. Further assume that Y1 =y0
1

is a cause of Y2 =y0
2 with responsibility ρ2 in the modified causal model [Y1 ← y0

1]. Then
X =x0 is a cause of Y2 =y0

2 in M with responsibility ρ = (ρ−1
1 + ρ−1

2 − 1)−1

3.3 Complexity

Analogous to Eiter and Lukasiewicz’s result that determining actual causes for Boolean
variables is NP-hard [9], determining functional causality is also NP-hard, in general.

Theorem 6 (Hardness). Given a Boolean formula Φ on causal network CN and assign-
ment x0 of the input variables, determining whether Xi = x0

i is a cause of φ = Φ(x0) is
NP-hard.

Even though determining functional causality is hard, there are important cases that can
be solved in polynomial time.

If the causal network is a tree, then the dissociation network is the same as the causal
network and there is a single potential function. Determining causality on a tree can be
simplified, as a result of the Markovian transitivity property (Proposition 5) and the fact
that all nodes in a tree are Markovian.

Lemma 7 (Causality in Trees). If Xi = x0
i is a cause of the output node Y in a tree

causal network, and p = {X, Y1, Y2, . . . , Y } the unique path from X to Y , then every
node in p is a functional cause of all of its descendants in p. Consequently, X is a cause
of all Yi ∈ p.

Following from Lemma 7, causality in cases of tree-shaped causal structures with bounded
arity (number of parents per node) is decidable in polynomial time.

Theorem 8 (Trees with arity ≤ k). Given a tree-shaped causal network with formula Φ
and bounded arity and actual assignment x0 of the input variables, determining whether
Xi = x0

i is a cause of φ = Φ(x0) is in P.

An even better result is given by Theorem 9, that covers the case of causal structures
where the function at every node is a primitive boolean operator (AND, OR, NOT), without
any restrictions on the arity.

Theorem 9 (Trees with Primitive Operators). Given a tree causal network with formula
Φ where the function of every node is a primitive boolean operator, i.e. AND, OR, NOT,
and assignment x0 of the input variables, determining whether Xi = x0

i is a cause of
φ = Φ(x0) is in P.

As demonstrated by Olteanu and Huang in [25], the lineage expressions of safe queries
do not have repeated tuples. Lineage expressions for conjunctive queries with no repeated
tuples correspond to causal networks that are trees. Following directly from Theorem 9,
we get complexity results for safe queries.

Corollary 10 (Causes of Safe Queries). Determining the functional causes of safe queries
can be done in polynomial time.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

11

N(ews feeds)
nid story source
1 ... doing utmost to prevent more floods ... AsiaOne
2 ... economic downturn affected ... NYTimes
3 ... with sequences shot in Singapore ... AsiaOne
4 ... BP’s chief executive apologizes ... NYTimes
5 ... apology for oil disaster ... AsiaOne
6 ... VLDB held in Singapore ... NYTimes
7 ... discussed in a recent talk the ... NYTimes
8 ... European stimulus measures ... NYTimes
9 ... Singapore welcomes VLDB ... AsiaOne

F(iltered feed)
story
... doing utmost to prevent more floods ...
... economic downturn affected ...
... sequences shot in Singapore ...
... BP’s chief executive apologizes ...
... VLDB held in Singapore ...
... discussed in a recent talk the ...
... European stimulus measures ...

Fig. 5: News feed with aggregated data from different sources (left), and filtered feed (right).

In these tractable cases, due to the transitivity property, responsibility can also be computed
in polynomial time, using the formula of Proposition 5.

Another important category of tractable networks are those that correspond to DNF
and CNF formulas with no negated literals. This category covers important cases of join
queries in a database context.

Theorem 11 (Positive DNF/CNF). Given a positive DNF (or CNF) formula Φ and as-
signment x0 of the input variables, determining whether Xi = x0

i is a cause of φ = Φ(x0)
is in PTIME.

4 Explaining Query Results

In this section, we show how causality can be applied to address examples from the
database literature, like provenance and “Why Not?” queries, as well as examples show-
casing causality of aggregates. We also demonstrate how our causality framework can
model different types of elements that can be considered contributory to a query result,
like query operations instead of tuples.

4.1 WHY SO? and WHY NO?

We revisit our motivating example (Example 1), but introduce a slight variation that ag-
gregates data from different news sources to demonstrate how functional causality can be
used to answer WHY SO? and WHY NO? questions.

Example 4 (News aggregator). A user has access to the News feed relation N, depicted in
Fig. 5. N contains news articles from two different sources, the NY Times and the Singapore
Press holdings portal, Asia One. The user, who resides in Singapore, likes to read more
local news from Asia One, but she prefers the NY Times with regards to global interest
news. Hence, she does not want to read on topics from Asia One that are also covered by
the NY Times. Her filtered feed is constructed by the query:

select N.story

from N

where N.source=‘NYTimes’ or

not exists (select *

from N as N1

where topic(N1.story)=topic(N.story)

and N1.source=‘NYTimes’)

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

12

where topic() is a topic extractor modeled as a user-defined function. The user’s filtered
feed will contain stories from NY Times, and only those stories from Asia One that NY
Times does not cover. Simply, if SNY is an article in NY Times covering a topic, and
SA an article in Asia One about the same topic, whether the user will see this topic in
her feed or not follows a causal model similar to that of Fig. 4a, with boolean formula
Φ = SNY ∨ (S̄NY ∧ SA). The topic appears in F if it appears in either NY Times or Asia
One, but the first gets priority.

When asking what is the cause of getting an article on the Orchard Rd floods, the user
gets tuple 1 from relation N, as it is counterfactual. When asking what is the cause of
seeing an article on VLDB, she gets the NY Times article (tuple 6), even though Asia One
also had a story about it (tuple 9). The analysis is equivalent to the rock thrower example.

The framework can be used in a similar fashion to respond to “Why No?” questions. As-
sume tuple t10 =(10,’... immigration officials arrest 300...’,NYTimes),
which was present in yesterday’s news feed, but was since then removed. Tuple t10 is a
functional cause to the WHY NO? question: “Why do I not see news on immigration”, as
it is counterfactual. Its removal from the feed caused the absence of immigration topics in
the user’s filtered view.

4.2 Aggregates

We next show how functional causality can be applied to determine causes and responsi-
bility for aggregates. We focus here only on positive integers and give complexity results
for WHY SO? and WHY NO? for WHY IS SUM ≥ c? and WHY IS SUM �≥ c?. In the fol-
lowing we denote with Ω ∈ {SUM, MAX, AVG, MIN, COUNT} an aggregate function evaluated
over a multiset of values (Ω(V)), X is a vector of boolean values representing presence
of absence of tuples, and op is an operator from the set {≥, >,≤, <,=, �=}.

Definition 8 (Why so? and Why no?). Let ω0 = Ω(x0) be the value of an aggregate
function for current assignment x0. The question of WHY SO? (respectively, WHY NO?)
for a condition ω0 op c that is true (respectively, false) under the current assignment
corresponds to the question of which set of tuples {ti} from the tuple universe with orig-
inal assignment x0

i = 1 (respectively, 0) is a cause of the event φ =
(
ω0 op c = true

)
(respectively, false) with responsibility ρi.

Example 5 (Sum example). Consider a tuple universe T = [(10), (20), (30), (50), (100)]
and a view R(A) with the subset of tuples R = {(20), (30), (100)}. Now consider the
query select SUM(R.A) from R executed over the view R which returns 150. In our
notation, this is represented with a vector V = [10, 20, 30, 50, 100], current assignment
x0 = [0, 1, 1, 0, 1], and SUM(x0) = 150 (see Fig. 6a).

WHY SUM ≥ c?: t3 is a cause of SUM(x0) ≥ 30 with responsibility 1
2 . FC2(a): SUM(x1) �≥

30 for x1 = [0, 1, 0, 0, 0]. FC2(b): SUM(x1∗) ≥ 30 for every assignment x1∗ with x1∗
3 = 1

and any subset of {x1
5 = 0} inverted to its original assignment. In contrast, t2 is not a

cause: While FC2(a) holds for x1 = [0, 0, 0, 1, 0] with SUM(x1) �≥ 30 (and then t2 would
be counterfactual), FC2(b) is not fulfilled for x1∗ = [0, 1, 0, 0, 0].

WHY SUM �≥ c?: t4 is a cause of
(
SUM(x0) ≥ 180

)
= false, as both x4 and the condi-

tion are false under current assignment, but would hold for x1 = [0, 1, 1, 1, 1].

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

13

R

A

t2 20 x2 =1

t3 30 x3 =1

t5 100 x5 =1

SUM 150

T − R

A

t1 10 x1 =0

t4 50 x4 =0

(a)

WHY SUM(x0)≥ WHY SUM(x0) �≥
ti x0

i 20 30 40 60 130 160 180 210 220

t1 0 − − − − − 1 − 1
2 −

t2 1 1
3 − 1

2 − − − − − −
t3 1 1

3
1
2

1
2 − 1 − − − −

t4 0 − − − − − 1 1 1
2 −

t5 1 1
3

1
2

1
2 1 1 − − − −

(b)

Fig. 6: Sum example. (a): Relation R with tuples from tuple domain T . (b): Responsibility ρi

of ti for WHY SO? (SUM(x0)≥c) and WHY NO? (SUM(x0) �≥c).

Figure 6b shows responsibility for different values of constant c in Example 5 and illus-
trates that responsibility for SUM is not monotone. In order to compute responsibility for
a tuple ti, one must find the smallest set of tuples that, when inverted (i.e. either inserted
or deleted) make tuple ti counterfactual for the condition. Determining the causes of an
aggregate is in general NP-complete. We refer the reader to our technical report [20] for
further theoretical analysis of aggregate causality and more examples.

4.3 Causes beyond tuples

Provenance and non-answers commonly focus on tuples as discrete units that have contri-
bution to a query result. Our causality framework is not restricted to tuples, but can model
any element that could be considered contributory to a result. To showcase this flexibility,
we pick an example from Chapman and Jagadish [4] that models operations in workflows
as possible answers to “Why not?” questions.

Example 6 (Book Shopper [4], Ex. 1). A shopper knows that all “window display books”
at Ye Olde Booke Shoppe are around $20, and wishes to make a cheap purchase. She issues
the query: Show me all window books. Suppose the result from this query is (Euripides,
“Medea”). Why is (Hrotsvit, “Basilius”) not in the result set? Is it not a book in the book
store? Does it cost more than $20? Is there a bug in the query-database interface such that
the query was not correctly translated?

Chapman and Jagadish consider a discrete component of a workflow, called manipula-
tion, as an explanation of a “Why not?” query. The workflow describing the query of the
example is shown in Fig. 7b. Roughly, a manipulation is considered picky for a non-result
if it prunes the tuple. For example, manipulation 1 of Fig. 7b is picky for “Odyssey”, as it
costs more than $20. Equivalently, a manipulation is frontier picky for a set of non-results,
if it is the last in the workflow to reject tuples from the set. In this framework, the cause of
a non-answer will be a frontier picky manipulation.

In Example 6, tuple t =(Hrotsvit, “Basilius”) passes the price test, but is cut by manip-
ulation 2 as it doesn’t satisfy the seasonal criteria. The causal network representing this
example is presented in Fig. 7c. Input nodes model the events: M1: manipulation 1 is not
potentially picky with respect to t, and M2: manipulation 2 is not potentially picky with
respect to t. At the end, the tuple appears only if neither manipulation is picky: M1 ∧M2.
Intermediate node Y1 encodes the precedence of the manipulations in the workflow. A tu-
ple will be stopped at point Y1 of the workflow if M2 is picky but M1 was not: M1∧M̄2. It

will pass this point if the opposite holds, so Y1 = M1 ∧ M̄2 = M̄1∨M2, and Y = M1∧Y1.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

14

Author Title Price Publisher
Epic of Gilgamesh $150 Hesperus

Euripides Medea $16 Free Press
Homer Iliad $18 Penguin
Homer Odyssey $49 Vintage
Hrotsvit Basilius $20 Harper
Longfellow Wreck of the Hesperus $89 Penguin
Shakespeare Coriolanus $70 Penguin
Sophocles Antigone $48 Free Press
Virgil Aeneid $92 Vintage

(a)

Ye Olde
Books

Select Books
<=$20

Apply Season
Criteria

Window
Books

Workflow input Workflow output
MANIPULATION 1 MANIPULATION 2

(b)

M2

M1

Y =M1∧Y1

Y1 =M̄1∨M2

(c)

M1,1

M1,2

Y =M1,1∧Y1

M2 Y1 =M̄1,2∨M2

(d)
Fig. 7: (a) Books in “Ye Olde Booke Shoppe” [4]. (b) Variation of the query workflow from [4].
The causal network of Example 6 (c), and its DN with respect to M2 (d).

Applying the FC framework for M1 = 1 (M1 is not picky), and M2 = 0 (M2 is picky),
correctly yields that M2 is the only cause: S = ∅, ΔIΦ(M2) �= 0. If both manipulations
were potentially picky (M1 = 0 and M2 = 0), the FC definition again correctly picks M1

as the only cause with support S = {M2} (even though M2 is potentially picky, the tuple
never gets to it), which agrees with the WHY NOT? framework that selects as explanation
the last manipulation that rejected the tuple.

5 Related Work

Our work is mainly related and unifies ideas from three main areas: research on causality,
provenance, and missing query result explanations.

Causality. Causality is an active research area mainly in logic and philosophy with their
own dedicated workshops (see e.g. [1]). The most prevalent definitions of causality are
based on the idea of counterfactual causes, i.e. causes are explained in terms of counter-
factual conditionals of the form If X had not occurred, Y would not have occurred. This
idea of counterfactual causality can be traced back to Hume [22]. The best known counter-
factual analysis of causation in modern times is due to Lewis [16]. In a databases setting,
Miklau and Suciu [23] define critical tuples as those which can become counterfactual
under some value assignment of variables. Halpern and Pearl [12] (HP in short) define
a variation they call actual causality. Roughly speaking, the idea is that X is a cause
of Y if Y counterfactually depends on X under “some” permissive contingency, where
“some” is elaborately defined. Later, Chockler and Halpern [6] define the degree of re-
sponsibility as a gradual way to assign causality. Eiter and Lukasiewicz [9] show that the
problem of detecting whether X = x0 is an actual cause of an event is ΣP

2 -complete for
general acyclic models and NP-complete for binary acyclic models. They also give an al-
leged proof showing that actual causality is always reducible to primitive events. However,
Halpern [11] later gives an example for non-primitive actual causes, showing this proof to
ignore some cases under the original definition. Chockler et al. [7] later apply causality
and responsibility to binary Boolean networks, giving a modified definition of cause.

A general overview of various applications of causality in a database context is given in
[19]. The complexity of computing causality and responsibility is studied in [21] for the
case of conjunctive queries, leading to a strong dichotomy result.

Provenance. Approaches for defining data provenance can be mainly divided into three
categories: how, why, and where provenance ([3,5,8,10]). In particular for the “why so”
case, we observe a close connection between provenance and causality, where it is often
the case that tuples in the provenance for the result of a positive query result are causes.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

15

While none of the work on provenance mentions or makes direct connections to causa-
lity, those connections can be found. The work by Buneman et al. [3] makes a distinc-
tion between why and where provenance that can be connected to causality as follows:
why provenance returns all tuples that can be considered causes for a particular result,
and where provenance returns attributes along a particular causal path. Green et al. [10]
present a generalization for all types of provenance as semirings; finding functional causes
in a Boolean tree, if taken in a provenance context, yields degree-one polynomials for
provenance semirings. View data lineage, as presented by Cui et al. [8] also addresses
aggregates but lacks a notion of graded contribution.

In contrast, our approach can rank tuples according to their responsibility, hence our
approach allows to determine a gradual contribution with counterfactual tuples ranked first.
Also, in contrast to our paper, most of the work on provenance has little or no connection
to the philosophical groundwork on causality. We take this work and significantly adapt it
so that it can be applied to databases.

Missing query results. Very recent work has focused on the question “why no”, i.e. why
is a certain tuple not in the result set? The work by Huang et al. [15] presents provenance
for potential answers and never answers. In the case that no insertions or modifications
can yield the desired result - usually for privacy or security reasons - the system declares
that particular tuple a never answer. Both Huang’s work and Artemis [13] handle potential
answers by providing tuple insertions or modifications that would yield the missing tuples.
Alternatively, Chapman and Jagadish [4] focus on which manipulation in the query plan
eliminated a specific tuple, while Tran and Chan [26] show how the query can be modified
in order to include missing results in the answer. Lim et al. [18] adopt a third, explanation-
based, approach. This approach aims to answer questions such as why, why not, how to,
and what if for context-aware applications, but does not address a database setting.

Our work, unifies the above approaches in the sense that we model both, tuples or ma-
nipulations, as possible causes for missing query answers. Also, our approach unifies the
problem of explaining missing query answers (why is a tuple not in the query result) with
work on provenance (why is a tuple in the query result).

Other. Minsky and Papert initiated the study of the computational properties of Boolean
functions using their representation by polynomials and call this the arithmetic instead of
the logical form [24, p.27]. This method was later successfully used in complexity theory
and became known as arithmetization [2].

6 Conclusions and Future Work

In this paper, we defined functional causes, a rigorous and extensible definition of causality
encoding the semantics of causal structures with the help of powerful potential functions.
Through theoretical analysis of its properties, we demonstrated that our definition provides
a more powerful and robust way to reason about causes than other established notions of
causality. Albeit NP-hard in the general case, common categories of causal networks that
correspond to interesting database examples (e.g. safe queries) prove to be tractable. We
presented several database examples that portrayed the applicability of our framework in
the context of provenance, explanation of non-answers, as well as aggregates. We demon-
strated how to determine causes of query results for SUM and COUNT aggregates, and how
these can be ranked according to the causality metric of responsibility.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

16

Providing support for causal queries allows users to better understand the reasons behind
their observations, and is an important tool for identifying potential errors in uncertain or
untrusted data. Overall, with this work we establish the theoretical foundations of causality
theory in the database context, which we view as a unified framework that deals with query
result explanations.

Acknowledgements. This work was partially supported by NSF grants IIS-0911036, IIS-
0915054, and IIS-0713576. We would like to thank Christoph Koch for valuable insights,
and Chris Ré for helpful discussions in early stages of this project.

References
1. International multidisciplinary workshop on causality. IRIT, Toulouse, June 2009.

2. L. Babai and L. Fortnow. Arithmetization: A new method in structural complexity theory. Computational
Complexity, 1:41–66, 1991.

3. P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data provenance. In ICDT,
2001.

4. A. Chapman and H. V. Jagadish. Why not? In SIGMOD, 2009.

5. J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and where. Foundations and
Trends in Databases, 1(4):379–474, 2009.

6. H. Chockler and J. Y. Halpern. Responsibility and blame: A structural-model approach. J. Artif. Intell. Res.
(JAIR), 22:93–115, 2004.

7. H. Chockler, J. Y. Halpern, and O. Kupferman. What causes a system to satisfy a specification? ACM Trans.
Comput. Log., 9(3), 2008.

8. Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a warehousing environment. ACM
Trans. Database Syst., 25(2):179–227, 2000.

9. T. Eiter and T. Lukasiewicz. Complexity results for structure-based causality. Artif. Intell., 142(1):53–89,
2002. (Conference version in IJCAI, 2002).

10. T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, 2007.

11. J. Y. Halpern. Defaults and normality in causal structures. In KR, 2008.

12. J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach. Part I: Causes. Brit. J.
Phil. Sci., 56:843–887, 2005. (Conference version in UAI, 2001).

13. M. Herschel, M. A. Hernández, and W. C. Tan. Artemis: A system for analyzing missing answers. PVLDB,
2(2):1550–1553, 2009.

14. C. Hitchcock. The intransitivity of causation revealed in equations and graphs. The Journal of Philosophy,
98(6):273–299, 2001.

15. J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers to queries over extracted
data. PVLDB, 1(1):736–747, 2008.

16. D. Lewis. Causation. The Journal of Philosophy, 70(17):556–567, 1973.

17. D. Lewis. Causation as influence. The Journal of Philosophy, 97(4):182–197, 2000.

18. B. Y. Lim, A. K. Dey, and D. Avrahami. Why and why not explanations improve the intelligibility of
context-aware intelligent systems. In CHI, 2009.

19. A. Meliou, W. Gatterbauer, J. Halpern, C. Koch, K. F. Moore, and D. Suciu. Causality in databases. IEEE
Data Engineering Bulletin special issue on Provenance, Sept. 2010.
(to appear, see http://db.cs.washington.edu/causality/).

20. A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. Why so? or why no? functional causality for
explaining query answers. CoRR, abs/0912.5340, 2009. (see http://db.cs.washington.edu/causality/).

21. A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The causality and responsibility of query answers
and non-answers. In PVLDB, 2011. (to appear, see http://db.cs.washington.edu/causality/).

22. P. Menzies. Counterfactual theories of causation. Stanford Encylopedia of Philosophy, 2008.

23. G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. In SIGMOD, 2004.

24. M. L. Minsky and S. Papert. Perceptrons - expanded edition: An introduction to computational geometry.
MIT Press, 1987.

25. D. Olteanu and J. Huang. Secondary-storage confidence computation for conjunctive queries with inequal-
ities. In SIGMOD, 2009.

26. Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. In SIGMOD, 2010.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

17

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

18

Extending Magic Sets Technique to
Deductive Databases with Uncertainty

Qiong Huang and Nematollaah Shiri

Department of Computer Science and Software Engineering
Concordia University, Montreal, Canada

Abstract. The magic sets (MS) rewriting technique was proposed to
optimize the efficiency of bottom-up evaluation of datalog programs. This
technique has been extended to logic programs with uncertainty, but its
application is restricted to frameworks with set based semantics such as
fuzzy logic. We show that for a more general case of multi-set semantics,
a “straightforward” extension of MS technique could lead to incorrect
computation. In this work, we propose an extension of the generalized
magic sets technique to deductive databases with uncertainty which use
multi-sets as the semantics structure, and establish its correctness. We
have developed a testing platform and conducted numerous experiments
to evaluate the performance of the proposed technique. The experimental
results indicate that different programs enjoy different efficiency gain,
depending on the potential facts ratio, which intuitively measures the
capacity to improve efficiency. We observed that when this ratio ranges
from 1% to 20%, the proposed optimization results in 1 to 550 times
speed-up compared to evaluation of the original program. Our results also
indicate that semi-naive combined with predicate partitioning technique
yields the best performance.

1 Introduction

Uncertainty management has been a challenging issue in database and artificial
intelligence research for a long time [1]. Standard logic programming and deduc-
tive databases, for their declarative and modularity advantages and their pow-
erful top-down and bottom-up query processing techniques, have attracted the
attention of many researchers for incorporating uncertainty. This has resulted in
numerous frameworks for modeling and reasoning with uncertainty obtained by
extending the standard case. On the basis in which uncertainty is associated with
facts and rules, these frameworks are classified [6] into Annotated Based (AB)
and Implication Based (IB). In the IB approach, the implication in each rule
in the program is associated with a certainty value. The parametric framework
(PF) proposed in [6] unifies and/or generalizes the class of IB frameworks.

As in the standard database, there are two sources of inefficiency in a bottom-
up evaluation of logic programs with uncertainty: (1) repeated applications of
rules which do not yield any fact with improved certainty; and (2) generation
of atoms which are not related or contribute to the goal query. In the context

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

19

of PF, semi-naive (SN) [6] and SN with predicate partitioning methods (SNP)
[8] have been developed to address the first problem. For the second problem,
the magic sets (MS) techniques have been proposed for standard Datalog which
takes into account the query structure and its bound arguments, if any, and
rewrite the given program into a form which is more focused when computing
the answers to the query [2]. It has been shown in the standard case that the
rewritten programs when evaluated by SN method takes no more time than
when the original program is evaluated in top-down [5].

Top-down query processing method for logic programs with uncertainty has
been proposed in [13], which generates a large system of equations. While this
is an interesting approach, a bottom-up method is more preferred for several
reasons. For instance, termination could be a problem in top-down evaluation,
which needs additional bookkeeping such as tabling or memoing done in XSB [12]
to avoid useless calls in evaluating left-recursive rules. Also top-down requires
unification, while bottom-up algorithms use term-matching for joins which is a
one-way unification and hence easier. Existing optimization techniques such as
indexing may be applied for joins of massive relations with ease.

Magic sets technique combines the advantages of top-down and bottom-up
approaches. The basic idea of magic sets is that a bottom-up evaluation should be
restricted to those facts that are “potentially relevant” to a given query. This is
done by introduction of magic predicates and rules which ensure a rule is not fired
unless magic predicates hold the necessary terms. There are extensions of magic
sets technique to IB frameworks with uncertainty, but the works are restricted
to either fuzzy logic or are set based, such as [10] in which the termination is
guaranteed and hence the uncertainties of answers are not affected by evaluation
re-ordering [11]. For multi-set based semantics, extending magic sets is more
challenging.

Example 1. A p-program and its Magic Sets Rewritten Program

Original Program P :

p(X, Y) 0.5
← a(X, Y); 〈ind, ∗, ∗〉.

p(X, Y) 0.5
← p(Y, Z), p(Y, X); 〈ind, ∗, ∗〉.

D = {a(1, 2) : 0.5, a(1, 1) : 0.5, a(2, 1) : 0.5}.
?p(1, Y).

Generalized Magic Sets Rewritten Program Pm:

pbf (X, Y) 0.5
← m pbf (X), a(X, Y); 〈ind, ∗, ∗〉.

m pfb(X) 1
← m pbf (X); 〈max, max, max〉.

m pbf (Y) 1
← m pbf (X), pfb(Y, X); 〈max, max, max〉.

pbf (X, Y) 0.5
← m pbf (X), pfb(Y, X), pbf (Y, Z); 〈ind, ∗, ∗〉.

pfb(X, Y) 0.5
← m pfb(Y), a(X, Y); 〈ind, ∗, ∗〉.

m pbf (Y) 1
← m pfb(Y); 〈max, max, max〉.

m pbf (Y) 1
← m pfb(Y), pbf (Y, Z); 〈max, max, max〉.

pfb(X, Y) 0.5
← m pfb(Y), pbf (Y, Z), pbf (Y, X); 〈ind, ∗, ∗〉.

Dm = D ∪ {m pbf (1) : 1}.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

20

Table 1. The Results of Evaluating the P-programs at Every Iteration i in Example 1

i Original Program P GMS Rewritten Program pm

1 p(2, 1) : 0.25, p(1, 2) : 0.25, p(1, 1) : 0.25 pbf (1, 1) : 0.25, m pfb(1) : 1, pbf (1, 2) : 0.25

2 p(2, 1) : 0.29614258, p(1, 2) : 0.2734375 pfb(2, 1) : 0.29614258, pfb(1, 1) : 0.29614258
p(1, 1) : 0.29614258

3 p(2, 1) : 0.307269, p(1, 2) : 0.28288764 pbf (1, 1) : 0.304499, m pbf (2) : 1
p(1, 1) : 0.31192228

4 p(2, 1) : 0.31177515, p(1, 2) : 0.28540534 pbf (1, 1) : 0.31032723, pbf (2, 1) : 0.25

p(1, 1) : 0.31796566 pfb(2, 1) : 0.30109218, pfb(1, 1) : 0.31199324

m pfb(2) : 1

5 p(2, 1) : 0.31319097, p(1, 2) : 0.2864514 pbf (1, 1) : 0.3141409, pbf (1, 2) : 0.2782274

p(1, 1) : 0.32022393 pfb(2, 1) : 0.30162153, pfb(1, 1) : 0.31380594
pfb(1, 2) : 0.2734375

· · · · · ·

Example 1 shows a p-program P in the PF (review of PF is provided in
Section 2) and its magic sets rewritten program Pm. The term 〈ind, ∗, ∗〉 stands
for disjunction function ind(α, β) = α+β−α×β, propagation function ∗(α, β) =
α × β, and conjunction function ∗. These functions are applied to compute the
certainty values for the atoms at every iteration during the program evaluation.
Table 1 shows the intermediate results of every atom whose associated certainty
is improved at every iteration. As we see, there are certainty bias between P and
Pm starting from the 3rd iteration which will affect more results of evaluating
atoms as the evaluation continues. For instance, the first certainty improvement
of p(1, 1) in P is based on the derivations:

p(1, 1)←a(1, 1);
p(1, 1)←p(1, 1), p(1, 1);
p(1, 1)←p(1, 2), p(1, 1);

However, the first improvement of pbf (1, 1) at 3rd iteration is based on:

pbf (1, 1)←m pbf (1), a(1, 1);
pbf (1, 1)←m pbf (1), pfb(1, 1), pbf (1, 1);
pbf (1, 1)←m pbf (1), pfb(1, 1), pbf (1, 2);

where pfb(1, 1) has been improved at iteration 2 in which the certainties asso-
ciated with pfb(1, 1) and pbf (1, 1) are different, noting that they represent the
same atom p(1, 1). The difference will affect more and more atoms during the
evaluation process of Pm. This explains why evaluations of P and Pm may yield
different results in general.

In this paper, we extend the generalized magic sets technique [4] to PF which
is multi-set based. This results in challenges to adjust evaluation order of rules in
the magic sets rewritten program when the evaluation process may not terminate
in theory. The rest of this paper is organized as follows. Next we review the PF
as a background, together with a review of fixpoint evaluations of programs

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

21

in PF. Section 3 introduces the generalized magic sets technique for programs
with uncertainty and establishes its correctness. In section 4, we present the
experiments to the proposed technique.

2 The Parametric Framework: A Review

Numerous frameworks have been proposed to manage uncertainty in deductive
databases (DDBs). They differ in several ways, including (i) the mathematical
foundation of uncertainty they represent, (ii) the way in which uncertainty is
associated with facts and rules in a program, and (iii) the way in which they
manipulate uncertainty. On the basis of (ii), these frameworks are classified
into annotated-based (AB) and implication-based (IB) [6]. While we focus on
parametric framework which, we strongly believe, could also benefit from the
AB approach, as it has been shown that the two approaches are as expressive
when extended with certainty constraints [7]. The parametric framework is a
generic IB framework which simulates the computation of every IB framework
through the use of specific parameters.

2.1 Syntax and Notations

Definition 1. (P-program): A parametric program P, P-program for short, is
a 5-tuple 〈T, R, D, P, C〉, whose components are defined as follows.

– T is a certainty domain, which we assume to be a complete lattice with the
meet and join operators denoted by ⊗ and ⊕, respectively. It is convention
to use ⊥ and
 to denote the least and greatest element in the lattice, re-
spectively.

– R is a finite set of rules of the form

A
α
← B1, · · · , Bn; 〈fd, fp, fc〉

where A, B1, · · · , Bn are atoms, with each α ∈ T − {⊥}.
– D is a mapping which associates with every rule in P a disjunction function

fd ∈ Fd, where Fd is the set of all disjunction functions.
– P is a mapping that associates each rule in P with a propagation function

fp ∈ Fp, where Fp is the set of all propagation functions.
– C is a mapping that associates each rule in P with a conjunction function

fc ∈ Fc, where Fc is the set of all conjunction functions.

For consistency, we require that rules with the same head predicate are associated
with the same disjunction function. We refer to the collection Fd∪Fp∪Fc as the
combination functions. To differ from the set notation, we use {| · · · |} to denote
a multi-set M . In our context, each element X in M is of the form A : α, where
A is an atom and α ∈ T . We use

.

∅ to denote the empty multi-set. A set is a
special case of multi-set with 0 or 1 as the multiplicity of its elements.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

22

2.2 Combination Functions

Combination functions allowed in PF should satisfy certain properties as postu-
late provided after the following properties.

1. Monotonicity: f(α1, α2)
 f(β1, β2), if αi
 βi, for i ∈ {1, 2} and αi, βi ∈ T .
2. Continuity: f is continuous w.r.t its arguments.
3. Bounded-Above: f(α1, α2)
 αi, for i ∈ {1, 2}.
4. Bounded-Below: f(α1, α2) � αi, for i ∈ {1, 2}.
5. Commutativity: f(α, β) = f(β, α), for ∀α, β ∈ T .
6. Associativity: f(α, f(β, γ)) = f(f(α, β), γ), ∀α, β, γ ∈ T .
7. f({|α|}) = α, ∀α ∈ T .
8. f(

.

∅) = ⊥.
9. f(

.

∅) =
.

Postulate: Each type of the combination functions in PF should satisfy certain
properties, postulated as follows.

– Every conjunction function fc ∈ Fc satisfies properties 1, 2, 3, 5, 6, 7, 9.
– Every disjunction function fd ∈ Fd satisfies properties 1, 2, 4, 5, 6, 7, 8.
– Every propagation function fp ∈ Fp satisfies properties 1, 2, 3, 5.

Definition 2. There are three categories of disjunction functions fd ∈ Fd:

1. Type 1: fd = ⊕, i.e., fd coincides with the join in the certainty lattice.
2. Type 2: ⊕(α, β) ≺ fd(α, β) ≺
, ∀α, β ∈ T − {⊥,
}.
3. Type 3: ⊕(α, β) ≺ fd(α, β)

, ∀α, β ∈ T − {⊥,
}.

Note that unlike type 2 functions, a disjunction function of type 3 may return
the top value
 when none of its arguments is
. As examples of practical
disjunction functions, we have max(α, β) which is of type 1 used for instance in
fuzzy logic, while the probability independence function ind(α, β) = α+β−αβ is
of type 2. An example of type 3 disjunction function is min(1, α+β) defined over
the unit interval [0, 1]. Presence of disjunction functions of types 2 and 3 in logic
programs with uncertainty pose challenges for query processing and optimization
techniques, including the magic sets technique studied in this paper.

2.3 Fixpoint Theory

Fixpoint theory in standard deductive database is concerned with computing
the least model of the logic program in a bottom-up fashion, starting with the
facts and applying the rules repeatedly until no new fact is derived. This has
been extended in [6] to compute the fixpoint semantics of p-programs in PF.

Definition 3. [6] Let P be any p-program, and P ∗ be the Herbrand instantiation
of P. Also let ΥP be the set of all valuations of P. The immediate consequence
operator Tp is a mapping from ΥP to ΥP , such that for every valuation ν ∈ ΥP

and every ground atom A ∈ Bp, Tp(ν)(A) = fd(X), where Bp is the Herbrand
base of P, fd is the disjunction function associated with π(A), the predicate
symbol of A, and X is a multi-set of certainties associated with A:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

23

X = {|fp(α, fc({|ν(B1), · · · , ν(Bn)|}))| (A α
← B1, · · · , Bn; 〈fd, fp, fc〉) ∈ P ∗|}

The least fixpoint semantics of P, lfp(P), is defined based on Tp as follows:

Tp
k =

⎧⎨
⎩

ν⊥ if k = 0
Tp(Tp

k−1) if k is a successor ordinal

⊕{Tp
l|l < k} if k is a limit ordinal

Note that ν⊥(A) = ⊥, for all A ∈ Bp. It has been shown that Tp is monotone
and continuous. Initially, Tp assigns every EDB fact A the certainty α because
fp(α, fc(

.

∅)) = α. For any ground atom A ∈ Bp, if A does not unify with the
head of any rule in P, then Tp(ν)(A) = ⊥.

2.4 Bottom-up Fixpoint Evaluation Algorithms

The basic bottom-up least fixpoint evaluation of p-programs is the naive evalu-
ation (N) extended from the standard naive method by considering the presence
of certainties as follows. Given a p-program P, every atom is initially assigned
the least certainty value ⊥. At each iteration i, we apply every possible rule. For
every ground atom A derived from a rule in P, we use the conjunction function
fc and the propagation function fp to combine certainties of the ground atoms
in the body into a certainty. A multi-set of certainties of A is then generated; the
disjunction function fd associated combines the multi-set of certainties derived.
The evaluation terminates when the certainty of no atom is improved. Fig. 1
shows the multi-set based naive algorithm for p-programs.

1: procedure Naive(P)
2: input : a p-program P ;
3: output: the least fixpoint of P ;
4: begin

5: forall A ∈ Bp

6: ν0(A) := ⊥;
7: end forall

8: new1 := {A|(A : α) ∈ D}; i := 1;
9: repeat

10: i:=i+1;

11: forall (A
αr←− B1, . . . , Bn; 〈fd, fp, fc〉) ∈ P ∗;

12: Mi(A) := {|fp(αr, fc({|νi−1(B1), . . . , νi−1(Bn)|}))|};
13: end forall;

14: νi(A) := fd(Mi(A));
15: newi := {A|A ∈ Bp, νi(A) � νi−1(A)};
16: until newi �= ∅
17: return νi

18: end procedure

Fig. 1. A multi-set based naive algorithm for p-programs [6]

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

24

The naive evaluation in PF suffers from the same redundant derivations as
the naive method does in Datalog: (1) a tuple certainty pair (A : α) derived
at iteration i continues to be derived at every future iteration, and (2) a goal
structure is looked at only when the fixpoint is reached. Part of the redundant
computation is avoided by using semi-naive (SN) algorithm [6] which at every
iteration, considers only those rules in which the certainties of at least a subgoal
in the body was improved in the previous iteration. Semi-naive evaluation with
predicate partitioning (SNP) [8] is a refinement and extension of SN in which
at each iteration, the tuples found for each relation derived are divided into two
parts: new tuples and old tuples. For the next iteration, a rule is evaluated if at
least one of its subgoals appears in the new part. To solve the second problem,
we use the idea of magic sets proposed as follows.

3 Generalized Magic Sets (GMS) with Uncertainty

In this section, we introduce GMS rewriting technique for p-programs. Our ex-
tended GMS rewriting technique includes two steps: straightforward GMS and
caching magic tuples. We first take a ”straightforward” approach which might
generate error in a certain circumstance. We use the term straightforward to
show that the proposed procedure inherits major steps of GMS in Datalog [4, 3],
while we extend each step to deal with combination functions. The challenge is
the correctness of the rewriting under the multi-set semantics. In general, when
type 2 functions are applied in a non-linear p-program, the evaluation might
yield incorrect results. In this case, we claim that the second stage that pre-
computes magic tuples is necessary. Otherwise, the GMS rewriting process can
be done in the straightforward GMS, as in the standard case.

3.1 Straightforward GMS

The generalized magic sets rewriting (GMS) works on the idea of sideways in-
formation passing (SIP) strategy [4]. Intuitively, SIP induces an order among
the rules and the subgoals in each rule when evaluating a logic program. Magic
sets act like filters that hold certain values for bound variables. The difference
between straightforward GMS in PF and in Datalog is that in PF we also take
into account the presence of uncertainty and combination functions. The major
steps of straightforward GMS are as follows:

– Generation of adorned rules
– Generation of rules with magic predicates
– Rewriting of the adorned rules

An adornment for an n-ary predicate p is a string of length n on the alphabet
{b, f}, where b stands for bound argument and f for free. A predicate p adorned
with a binding pattern a, denoted as pa, indicates the bound and free arguments
of p. For example, pbf indicates that p is a binary predicate, the first argument
of which is bound and the second is free.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

25

Given a p-program P and a query Q, the GMS rewriting process starts from
Q, and generates a set of adorned rules which have the same IDB predicate
as Q. More bound IDB predicates are then discovered, so we use one of these
bound predicates to generate more adorned rules until all discovered bound IDB
predicates are considered. For each adorned rule, we generate a set of magic
rules, by adding the proper magic predicates. Finally, we create a tuple for the
magic predicate related to Q, called the seed. this straightforward GMS technique
generate a rewriting of P , denoted as Pm, which includes all magic rules, the
rewritten adorned rules and the seed.

Example 2. Straightforward GMS of the p-program in Example 1

Adorned Rules of P :

pbf (X, Y) 0.5
← a(X, Y); 〈ind, ∗, ∗〉.

pbf (X, Y) 0.5
← pfb(Y, X), pbf(Y, Z); 〈ind, ∗, ∗〉.

pfb(X, Y) 0.5
← a(X, Y); 〈ind, ∗, ∗〉.

pfb(X, Y) 0.5
← pbf (Y, Z), pbf(Y, X); 〈ind, ∗, ∗〉.

Straightforward GMS rewritten program Pm:

pbf (X, Y) 0.5
← m pbf (X), a(X, Y); 〈ind, ∗, ∗〉.

m pfb(X) 1
← m pbf (X); 〈max, max, max〉.

m pbf (Y) 1
← m pbf (X), pfb(Y, X); 〈max, max, max〉.

pbf (X, Y) 0.5
← m pbf (X), pfb(Y, X), pbf (Y, Z); 〈ind, ∗, ∗〉.

pfb(X, Y) 0.5
← m pfb(Y), a(X, Y); 〈ind, ∗, ∗〉.

m pbf (Y) 1
← m pfb(Y); 〈max, max, max〉.

m pbf (Y) 1
← m pfb(Y), pbf (Y, Z); 〈max, max, max〉.

pfb(X, Y) 0.5
← m pfb(Y), pbf (Y, Z), pbf (Y, X); 〈ind, ∗, ∗〉.

Dm = D ∪ {m pbf (1) : 1}.

The process of generation of adorned rules creates a collection C for all
adorned predicates. Initially, the binding pattern of Q is in C. The adorned
predicates in C are processed one at a time and marked so that they are not
processed again. Let pa be an unmarked adorned predicate in C. For each rule r
that has the predicate p in the head, we generate an adorned version of r, called
adorned rule, denoted as rad. If rad includes more adorned predicates, they are
added to C if it is not already there. The process terminates when there is no
unmarked adorned predicate left in C. Note that termination is guaranteed since
the number of adorned predicates for any program is finite.

Once the adorned rule rad is generated, we can generate generalized magic
rules. A generalized magic rule is a rule whose head is a magic predicate. For
each IDB subgoal pi

adi in an adorned rule rad, where i indicates the position of
pi

adi in the body or r, we generate a magic rule rm
ad with certainty
, and define

the predicate m pi
adi as the magic predicate of pi. As the combination functions

associated with rad, we use 〈max, max, max〉. This ensures that
 will be the
certainty of all ground tuples in the rewritten program, which in turn ensures
the rules extended with magic predicates do not yield the incorrect certainties

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

26

when evaluated since f(α,
) = α, for every certainty α ∈ T . The head of rm
ad

for the IDB subgoal pi
adi is the corresponding magic predicate of the head of

rad. We then add m pi
adi to the body of rm

ad. For each subgoal at position
j ∈ [1, i] in the body of rad, we add pj

adj to the body of rm
ad. Note that for an

adorned rule, several magic rules defining m pi
adi might be generated because

an adorned predicate may have several occurrences in the same adorned rule.
Finally, the remaining operations of a straightforward GMS include producing
the adorned rules and seeding the facts for magic predicates. We add the magic
predicate of ha to the body of each adorned rule whose head is h and then get
a collection of rewritten rules for the original rules, referred to as Rm. Then,
we create a seed that contains the bound arguments in Q with predicate name
π(Q) and certainty
. This completes the rewriting process and the rewritten
program includes the magic rules, the rules collection Rm, the tuples from the
original program, and the seed. Example 2 shows the adorned rules of p-program
in Example 1 and its transformed program using the straightforward GMS.

3.2 Challenges of GMS in PF

An important difference between evaluating programs in PF and in Datalog is
that while the fixpoint evaluation of Datalog program terminates in polynomial
time (in the number of constants in the extensional database (EDB)), an evalua-
tion of a p-program may terminate only at the limit ω. This may happen when a
type 2 combination function is associated with a recursive IDB predicate. With
a Tp operator that is continuous, we may allow a fixpoint evaluation proceed
until certainties derived are “close enough” to its value in the fixpoint but short
to be equal. Given a p-program P and a query Q. The evaluation order of its
magic sets rewritten program Pm will be changed when the expected magic
atoms are not prepared [11]. Atoms evaluated at the same iteration in P might
be evaluated at different iterations. This might lead to certainty bias between
P and Pm. In general, for Pm let Tp(Tp(X) ∪ Y) be the evaluation results for
a specific atom A, where Tp is the immediate consequence operator, X is the
multi-sets of derivations related to magic atoms, and Y includes those potential
derivations which magic atoms are to be prepared. Then Tp(X ∪ Y) represents
all derivations of P at a next iteration. When a type 2 disjunction function is
involved, Tp(Tp(X)∪ Y) and Tp(X ∪ Y) may be different, and this is the major
problem of extending magic sets technique to logic programs with uncertainty.
Example 1 is the simplest program, we found, that shows the exact situation we
may confront in the context of multi-set semantics.

However, it is unnecessary in rewriting the given program with more care if
any of the following conditions does not meet:

– The program is evaluated under the multi-set semantics
– Type 2 disjunction function is associated to at least one rule
– The program must be non-linear.
– The given data set is cyclic

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

27

Without any of the above conditions, our magic sets extension of PF is similar to
the work in [10]. In this case, when the binding information is passing through the
body of the program during the evaluation process, the associated certainties will
be also passed. Although computation bias might also occur if the evaluation
order of the rewritten program is changed, the bias will be eliminated in a
finite number of steps when all ground atoms are found. On the contrary, if all
the conditions above are met, for GMS rewriting process we will add an extra
rewriting step, as discussed in the following section, after which the written
program will produce the same intermediate results at every iteration as the
original program.

3.3 Caching Magic Tuples

We introduce an extra step “Caching Magic Tuples” after straightforward GMS
such that the extended rewritten program may generate the same results w.r.t.
the given query at every iteration. Given a straightforward rewritten program
pm, we standardize it by peeling off the certainty and the combination functions.
Second, we evaluate the standardized program ps to find all magic atoms, and
add to pm. The certainties of the cached magic atoms are
. We then construct
a cached GMS rewritten program (pm)

′

in which all magic rules are eliminated.
Example 3 shows the intermediate results of a magic tuples caching for the
program in Example 1. Table 2 shows the intermediate results of the original
program P and the cached GMS program (pm)

′

in Example 3 in which with the
given data set magic set rewriting does not contribute to efficiency improvement.

Example 3. Caching Magic Tuples for the p-program in Example 1

Standardized GMS program ps:

pbf (X, Y)←m pbf (X), a(X, Y);.
m pfb(X)←m pbf (X);.
m pbf (Y)←m pbf (X), pfb(Y, X);.
pbf (X, Y)←m pbf (X), pfb(Y, X), pbf(Y, Z);.
pfb(X, Y)←m pfb(Y), a(X, Y);.
m pbf (Y)←m pfb(Y);.
m pbf (Y)←m pfb(Y), pbf (Y, Z);.
pfb(X, Y)←m pfb(Y), pbf (Y, Z), pbf (Y, X);.
D = {a(1, 2), a(1, 1), a(2, 1), m pbf (1)}.

Cached GMS Program (pm)
′

:

pbf (X, Y) 0.5
← m pbf (X), a(X, Y); 〈ind, ∗, ∗〉.

pbf (X, Y) 0.5
← m pbf (X), pfb(Y, X), pbf(Y, Z); 〈ind, ∗, ∗〉.

pfb(X, Y) 0.5
← m pfb(Y), a(X, Y); 〈ind, ∗, ∗〉.

pfb(X, Y) 0.5
← m pfb(Y), pbf (Y, Z), pbf (Y, X); 〈ind, ∗, ∗〉.

Dm = {a(1, 2) : 0.5, a(1, 1) : 0.5, a(2, 1) : 0.5,
m pbf (1) : 1, m pbf (2) : 1, m pfb(1) : 1, m pfb(2) : 1}.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

28

Table 2. Evaluation Results in Every Iteration i of p-programs in Example 3

i Original Program P Cached GMS Program (pm)
′

1 p(2, 1) : 0.25 pbf (2, 1) : 0.25, pfb(2, 1) : 0.25

p(1, 2) : 0.25 pbf (1, 2) : 0.25, pfb(1, 2) : 0.25

p(1, 1) : 0.25 pbf (1, 1) : 0.25, pfb(1, 1) : 0.25

2 p(2, 1) : 0.29614258 pbf (2, 1) : 0.29614258, pfb(2, 1) : 0.29614258

p(1, 2) : 0.2734375 pbf (1, 2) : 0.2734375, pfb(1, 2) : 0.2734375
p(1, 1) : 0.29614258 pbf (1, 1) : 0.29614258, pfb(1, 1) : 0.29614258

3 p(2, 1) : 0.307269 pbf (2, 1) : 0.307269, pfb(2, 1) : 0.307269

p(1, 2) : 0.28288764 pbf (1, 2) : 0.28288764, pfb(1, 2) : 0.28288764

p(1, 1) : 0.31192228 pbf (1, 1) : 0.31192228, pfb(1, 1) : 0.31192228

· · · · · ·

Finally, we have Theorem 1 which shows that the cached GMS rewritten program
generates the same intermediate results at every iteration, and thus yield the
same fixpoint as the original program w.r.t. the given query.

Theorem 1. GMS Correctness: Let P be a p-program, D be a collection of
facts, and a query Q. Let Pm be the cached GMS rewritten program with facts
collection Dm = D ∪M , where M is the set of all pre-computed magic tuples.
Then, a fixpoint computations of P and Pm produce the same answers w.r.t Q.

Proof. Basis: On one hand, for any h(
−

A) ∈ D1 in P, assume s rules are fired.
They are of the form:

h(
−

X0)
α
← q1(

−

Y1), · · · , qt(
−

Yt), p1(
−

X1), · · · , pn(
−

Xn); 〈fd, fp, fc〉

where qi is an EDB predicate, and pj is an IDB predicate. Note that only those
rules without IDB predicates in the body are fired in the first iteration because
no IDB facts existed in the initialized database. Therefore, we have

ν1(h(
−

A)) = Tp(ν0)(h(
−

A)) = fd({|fp(α, fc({|ν0(q1(
−

E1)), ..., ν0(qt(
−

Et))|}))|}).

On the other hand, for any adorned version had(
−

A) in Pm, the same number
s of rules are fired since all the magic facts are cached. They are of the form:

had(
−

X0)
α
← magich

ad, q1(
−

Y1), · · · , qt(
−

Yt), magicp1
ad1 , pad1

1 (
−

X1), · · · ,

magicpn

adn, padn
n (

−

Xn); 〈fd, fp, fc〉

Since ν0(magich
ad) =
,

ν1(had(
−

A)) = Tp(ν0)(had(
−

A))

= fd({|fp(α, fc({|ν0(magich
ad), ν0(q1(

−

E1)), ..., ν0(qt(
−

Et))|}))|})

= fd({|fp(α, fc({|ν0(q1(
−

E1)), ..., ν0(qt(
−

Et))|}))|})

= Tp(ν0)(h(
−

A)) = ν1(h(
−

A))

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

29

Induction: For any atom h(
−

A) ∈ Dk in P, and had(
−

A) ∈ Dm
k in Pm, if

νk(h(
−

A)) = Tp(νk−1)(h(
−

A)) = Tp(νk−1)(had(
−

A)) = νk(had(
−

A)), then we have

that νk+1(h(
−

A)) = Tp(νk)(h(
−

A))=

= fd({|fp(α, fc({|νk(q1(
−

E1)), ..., νk(qt(
−

Et)), νk(p1(
−

A1)), ..., νk(pn(
−

An))|}))|}),

= fd({|fp(α, fc({|νk(magich
ad), νk(q1(

−

E1)), ..., νk(qt(
−

Et)), νk(magicp1
ad1),

νk(pad1
1 (

−

A1)), ..., νk(magicp1
adn), νk(padn

n (
−

An))|}))|})

= Tp(νk+1)(had(
−

A)) = νk+1(had(
−

A))

Based on the discussion above, we may conclude that for every atom h(
−

A) in P

and its adorned form had(
−

A) in Pm, the certainty of h(
−

A) at every iteration is

exactly same as had(
−

A). Thus, their certainties in the limit are also the same.

4 Experiments and Results

Our experiments are tested on a typical desktop computer with a Pentium 4
CPU of 2.4GHz, 2GB RAM, 250GB hard disk. In standard Datalog, the same-
generation cousin (SGC) program has been widely used as a test program and a
number of data sets have been introduced to measure efficiency of query process-
ing and optimization techniques. These data sets were extended with uncertainty
in [9]. We used the data sets relevant to the non-linear variant of SGC, shown in
Example 4, with test data size ranging from 5,000 to 100,000 tuples which could
be handled within 2GB memory size.

Example 4. Non-linear variant of the SGC program
sgc(X, Y) α

← flat(X, Y); 〈fd, fp, fc〉.
sgc(X, Y) α

← up(X, Z1), sgc(Z1, Z2), f lat(Z2, Z3), sgc(Z3, Z4),
down(Z4, Y); 〈fd, fp, fc〉.

4.1 Measurements

• The evaluation time: Given a program P , we use τ(P) to denote the time
to compute the least fixpoint of P .
tuples in the magic predicates for the MS rewritten program.
• The rewriting time: Given a program P and a query Q, we use
(P) to
denote the time to rewrite P and the time for caching the tuples in the magic
predicates.
• Facts generated: Given a program P , we use δ(P) to denote the set of IDB
tuples generated in the fixpoint evaluation of P .
• Potential Facts Ratio: Given a program P and a query Q, we define this
ratio as χ(P, Q) = |{A : A ∈ δ(P) and A subsumes Q}|/|δ(P)|. This ratio
indicates the portion of the derived facts that match with or subsumed by Q.
• Speedup: We define the speedup as the ratio λ = τ(P)/(
(P) + τ(Pm)),
assuming that both P and Pm use the same evaluation algorithm.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

30

4.2 Performance

In our experiments, we consider the certainty domain [0, 1]. The test cases were
created using different certainty values, for examples 0.25, 0.5, 0.75, 0.9, and 1.
However, we noted that when α = 0.5, the fixpoint evaluation of the program in
general requires more iterations to complete and hence show less improvement to
make, to our disadvantage. This explains why we picked α = 0.5 as the certainty
associated with the rules and facts in the program and picked α = 1 to simulate
the standard case. As noted, magic sets technique may not result in increased
efficiency when χ is large, i.e., approaches 100%. It happens when all the EDB
facts are potentially relevant to a given query. We investigate the speedup when
the potential facts ratio χ varies between 1% and 20%.

Table 3. Speedup λ of magic sets for different evaluation algorithms

χ = 1% χ = 5% χ = 10%

α = 1 α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5

SN/(SN + GMS) 5..700 2.9 .. 550 0.25..50 0.2..45.2 0.14..17.9 0.12..16

SNP/(SNP + GMS) 3.5..400 2 .. 280 0.5 ..38 0.4..33.9 0.27..11.1 0.3 .. 8

Fig. 2. The λ/χ graph for data set Unm

Table 3 shows how different magic sets technique affect different evaluation
algorithms. Columns 2, 4, and 6 record the speedup range obtained for the stan-
dard case, where α = 1, 〈fd, fc, fp〉 = 〈max, min, min〉, for query Q = sgc(a, X).

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

31

Columns 3, 5, and 7 indicate this range for programs with uncertainty, where
α = 0.5 and 〈fd, fc, fp〉=〈ind, ∗, ∗〉 for the same query. As expected, we observed
that different evaluation schemes yield different efficiency gains. Semi-naive eval-
uation benefits more from GMS rewriting than SNP does. When Potential Facts
Ratio χ is large, the evaluation might not benefit from MS rewriting. For ex-
ample, the speedup obtained by SN+GMS compared to that of SN for α = 0.5
ranges from 0.12 to 16. Out of 8 data sets considered in our experiments, there
is one type which does not benefit from the proposed MS rewriting technique
when χ >= 10%. This is because the potential facts ratio χ is a significant pa-
rameter affecting the speedup. The smaller the value of χ is, the larger speedup
we observed. No matter the type of data set we have, we observed significant
increased efficiency from GMS when χ is small. The degree of impact of GMS
is determined by the complexity of the input data set and its structure. For
instance, Fig. 2 shows the speedup (the vertical axis) for data set Unm, based
on different χ values.

Fig. 3. Evaluation Time(τ) of SN+GMS vs. SNP+GMS

Although Table 3 shows that SN yields more speedups to itself than SNP,
“SNP + GMS” still yields better performance than “SN + GMS” does, especially
when the test data is more complex. Fig. 3 shows the evaluation time of “SNP
+ GMS” and “SN + GMS”. The test cases are selected from different types of
data set and they represent the common situation for their types of data set.

5 Conclusion and Future Work

In this paper, we proposed an extension of the generalized magic sets technique
for logic programs with uncertainty in the context of the parametric framework,
and established its correctness. The results of our experiments show that GMS

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

32

yields different speedups for different evaluation schemes. This is determined by
the notion of potential facts ratio χ. The smaller χ is, the more speedup we
may obtain. In Datalog, generalized supplementary magic sets (GSMS) succeeds
in avoiding repeatedly joins in programs and magic rules. We are investigating
extension of GSMS for programs in PF.

Acknowledgments. This work was supported in part by Natural Sciences and
Engineering Research Council (NSERC) of Canada and by Concordia University.
We thank Jinzan Lai for his help in developing the prototype in this work.

References

[1] S. Abiteboul et al.: The Lowell database research self-assessment. Commun. ACM,
Volume 48, Issue 5, pp.111-118 (2005)

[2] F. Bancihon, D. Maier, Y. Sagiv, and J. Ullman: Magic sets and other strange ways
to implement logic programs. In Proc. 5th ACM SIGACT-SIGMOD symposium on
Principles of database systems (PODS’86), pp. 1–15 (1986)

[3] J. Ullman: Principles of Database and Knowledge-Base Systems, Volume II, Com-
puter Science Press (1989)

[4] C. Beeri, R. Ramakrishnan: On the power of magic. J. of Logic Programming,
Volume 10, pp. 255–299 (1991)

[5] J. Ullman: Bottom-up beats top-down for Datalog. In Proc. 18th Symposium on
Principles of Database Systems (PODS), Philadelphia, Pennsylvania, United States,
pp. 140–149 (1989)

[6] L. Lakshmanan and N. Shiri: A Parametric Approach to Deductive Databases with
Uncertainty. In Int’l Workshop on Logic in Databases (LID’96), D. Pedreschi and C.
Zaniolo (Ed’s), pp. 61–81, Springer, LNCS 1154, San Miniato, Italy, July 1–2 (1996)

[7] N. Shiri: Expressive Power of Logic Frameworks with Certainty Constraints.
FLAIRS Conf., pp. 759–765 (2005)

[8] N. Shiri and Z. Zheng: Challenges in Fixpoint Computation with Multi-sets. Foun-
dations of Info. and Know. Sys. (FoIKS), LNCS 2942, Vienna, Feb. 17–20 (2004)

[9] N. Shiri and Z. Zheng: Optimizing Fixpoint Evaluation of Logic Programs with
Uncertainty. Proc. 13 CSI Int’l Comp. Conf. (CSICC), Kish, Iran, March 9–11 (2008)

[10] K. Jezek, M. Zima: Magic Sets Method with Fuzzy Logic. In Proc. 2nd Int’l
Conf. on Advances in Information Systems (ADVIS), LNCS 2457, pp. 83–92, Turkey,
January 01 (2002).

[11] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule Ordering in Bottom-
Up Fixpoint Evaluation of Logic Programs. IEEE Trans. on Knowl. and Data Eng.,
6(4):501–517 (1994)

[12] K. Sagonas, T. Swift, and D.S. Warren: XSB as an Efficient Deductive Database
Engine. In Proc. ACM Conf. on Management of Data (SIGMOD), Minneapolis, Min-
nesota, pp. 442–453, May 24–27 (1994)

[13] U. Straccia: Uncertainty Management in Logic Programming: Simple and Effective
Top-Down Query Answering. KES Conf., pp. 753–760 (2005)

[14] Vladimir A. Zorich: Mathematical Analysis I, Springer, pp. 84–85 (2004)

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

33

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

34

Storing and Querying Probabilistic XML

Using a Probabilistic Relational DBMS

E.S. Hollander and M. van Keulen

Faculty of EEMCS, University of Twente, Enschede, The Netherlands
{e.s.hollander;m.vankeulen}@ewi.utwente.nl

Abstract. This work explores the feasibility of storing and querying
probabilistic XML in a probabilistic relational database. Our approach
is to adapt known techniques for mapping XML to relational data such
that the possible worlds are preserved. We show that this approach can
work for any XML-to-relational technique by adapting a representative
schema-based (inlining) as well as a representative schemaless technique
(XPath Accelerator). We investigate the maturity of probabilistic rela-
tional databases for this task with experiments with one of the state-of-
the-art systems, called Trio.

1 Introduction

Data in a database is typically treated as being correct and indisputable. In many
applications, this obviously is not really true. For example, data may be out of
date, or some value may just be the most likely one and could very well be wrong.
This is even more true for the results of automatic tasks like information extrac-
tion, natural-language processing, data integration, sensor data management, or
data mining. To better support such applications, there is growing interest in
the management of uncertain data, i.e., data for which we explicitly store the
fact that it is uncertain together with information about its uncertainty.

In many of these applications, data is semi-structured, because a hierarchical
representation is natural or when a source is already in this form [1]. Most
research in the database community, however, is directed towards probabilistic
relational databases. Several research prototype systems have been released into
the open source community such as MayBMS [2, 3], Trio [4, 5], Mystiq [6], and
Orion [7]. Although receiving less attention, uncertain semi-structured data, and
in particular probabilistic XML, has also been used as a data model for uncertain
data [8–10]. As far as we know, the work of Kimelfeld et al. is the only truly in
depth work on querying probabilistic XML [11].

The contribution of this paper is twofold: (1) We present an approach for
adapting existing XML-to-relational mapping techniques that preserves the pos-
sible worlds. We show how to concretely accomplish this by adapting a represen-
tative schema-based (inlining) [12] as well as a representative schemaless tech-
nique (XPath Accelerator) [13]. These lie, for example, at the heart of Oracle’s
object-relational storage schema [14] and MonetDB/XQuery [15], respectively.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

35

Kind Description

ind Independent choice for each of its children.

mux Mutual exclusive choice for one of its children.

det Deterministic choice of all of its children. Often used in combination
with ind or mux to choose multiple children in an all-or-nothing manner.

exp Explicit choice of certain specific subsets of children.

cie A choice based on a conjunction of independent events.

Table 1. Kinds of distributional nodes [1]

(2) Furthermore, we investigate the maturity of probabilistic relational databases
for this application by experimenting with a few queries on mapped data of some
XML documents on one of the state-of-the-art probabilistic database systems,
namely Trio. Note that although we illustrate the adaptation of mapping tech-
niques also with Trio, it is fairly straightforward to transfer the approach to the
data models of other probabilistic databases.

2 Probabilistic Databases

2.1 Possible world theory

A probabilistic database PDB is a set of possible worlds PDB = {w1, . . . ,wn}
each with its probability Pr(wi) such that

∑
i=1..n Pr(wi) = 1. Each world is an

ordinary database, so in case of probabilistic XML, a world is an ordinary XML
tree and in case of probabilistic relations, a world is a set of ordinary relations.

The semantics of a query on a probabilistic database are defined as the set
of answers of the query posed to each of the possible worlds individually. Con-
sequently, the probability of a particular answer is the sum of the probabilities
of all possible worlds for which the query produced that answer.

Since the number of possible worlds grows exponentially, implementations of
probabilistic databases store all possible worlds in one compact representation.
Algorithms for querying a probabilistic database directly work on the compact
representation while strictly adhering to the semantics of querying as defined in
terms of possible worlds.

2.2 Probabilistic XML

Probabilistic XML is an extension to XML for representing uncertainty in the
data in a compact way. This is achieved by introducing distributional nodes
to denote probabilistic distributions over subtrees (see Tab.1). There are several
families of probabilistic XML with varying expressiveness depending on the kinds
of distributional nodes allowed [1]. In this paper, we use the probabilistic XML
model of [10, 16] which is equivalent with the PrXML

{mux,det} family. In this
model, mux nodes are called probability nodes (denoted with 〈prob〉 in XML and

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

36

•

•�����������

•

•�
��
�

•

•�����������

◦

0.7

�����������

•���������

•������

•

•
��

��

•

•
������

•�
��
�

•

•
������

•

◦

0.3

														

•

•������

◦

0.5

���
��

�

•

◦

0.5
���

���

•

•
������

•

movie

title

12 Monkeys

year

1995

actors

actor actor
actor

name role

Bruce Willis Cole

name role

Joseph Melito Cole

name

Bruce Willis Joseph Melito

role

Cole

(a) Tree representation

•

•�����������

•

•�
��
�

•

•

•

•������

•

•
��

��

•

movie

title

12 Monkeys

year

1995

actors
actor

name role

Bruce Willis Cole

(b) Possible world 1 (Pr(w1) = 0.15)

•

•�����������

•

•�
��
�

•

•

•

•������

•

•
��

��

•

movie

title

12 Monkeys

year

1995

actors
actor

name role

Joseph Melito Cole

(c) Possible world 2 (Pr(w2) = 0.15)

•

•�����������

•

•�
��
�

•

•														

•���������

•������

•

•
��

��

•

•
������

•�
��
�

•

•
������

•

movie

title

12 Monkeys

year

1995

actors
actor actor

name role

Bruce Willis Cole

name role

Joseph Melito Cole

(d) Possible world 3 (Pr(w3) = 0.7)

〈movie〉 〈title〉12 Monkeys〈/title〉 〈year〉1995〈/year〉 〈actors〉 〈prob〉 〈poss prob=”0.7”〉 〈actor〉
〈name〉Bruce Willis〈/name〉 〈role〉Cole〈/role〉 〈/actor〉 〈actor〉 〈name〉Joseph Melito〈/name〉
〈role〉Cole〈/role〉 〈/actor〉 〈/poss〉 〈poss prob=”0.3”〉 〈actor〉 〈name〉 〈prob〉
〈poss prob=”0.5”〉Bruce Willis〈/poss〉 〈poss prob=”0.5”〉Joseph Melito〈/poss〉 〈/prob〉 〈/name〉
〈role〉Cole〈/role〉 〈/actor〉 〈/poss〉 〈/prob〉 〈/actors〉 〈/movie〉

(e) XML representation

Fig. 1. Example of Probabilistic XML.

� in the tree representation) and det nodes are called possibility nodes (denoted
with 〈poss〉 in XML and ◦ in the tree representation).

Example 1. Figure 1 shows an example of a probabilistic XML instance. It is
uncertain if there are two actors playing the role “Cole”, or that there is just
one actor playing the role, but in this case it is uncertain which of the two
names is the name of the actor. Figures 1(a), 1(b)–1(d), and 1(e) respectively
illustrate the tree representation, the three possible worlds it encodes, and the
XML representation. Note that this is a nested model, hence a possibility node
may contain an entire subtree which may in turn contain distributional nodes.

2.3 Probabilistic Relations

In recent years, there has been much research into probabilistic relational data-
bases culminating into several prototypes such as MayBMS [2] and Trio [4]. We
have used Trio in this paper for our experiments.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

37

movie

id title year

t1,1 1 Twelve Monkeys 1995 0.7
t1,2 1 12 Monkeys 1995 0.3

Fig. 2. Example Trio table

Trio allows for multiple alternatives for a
tuple. A tuple containing more than one alter-
native is called an x-tuple. Alternatives may or
may not have associated probabilities (called
confidence scores). If the probabilities do not
add up to 1, the x-tuple is called a maybe x-
tuple, because it is also possible that it does not exist at all. Figure 2 shows an
example of an uncertain table in Trio with one x-tuple with two alternatives t1,1

and t1,2. Trio is also based on possible worlds theory, hence the example encodes
two possible relations.

In principle, x-tuples are independent, i.e., arbitrary combinations of alter-
natives from different x-tuples can exist and they do so with a probability that is
the product of the probabilities of the original alternatives. To be able to express
dependencies, Trio supports lineage. An alternative’s existence in this way may
depend on the existence of other alternatives. Lineage is expressed with a boolean
formula such as λ(t1,1) = t2,1 ∧ t3,2. The set of possible worlds is restricted to
those where the lineage formulas are true, in our example, to those where t1,2,
t2,1, and t3,2 co-exist. Lineage is typically introduced by queries, because the
alternatives in the result depend on the alternatives in the base tables.

3 Storing and Querying XML in Relational Databases

movie: (title, year, actors)
actors: (actor*)
actor: (name, role)
title: (PCDATA)
year: (PCDATA)
name: (PCDATA)
role: (PCDATA)

Fig. 3. Example DTD

In recent years, many approaches to storing and
querying XML have been proposed. The ones map-
ping XML onto relational tables can be divided into
two categories: schema-based and schemaless. The
former constructs a relational schema based on the
DTD or XML schema of the XML documents. The
latter treats the XML documents as trees and stores
each node of the tree as a tuple in one generic rela-
tion. We took two techniques representative for each
category: Inlining and XPath Accelerator, respectively. We summarize both be-
low. For details, we refer to [12] and [13, 15, 17], respectively.

3.1 Schema-based: Inlining

The inlining technique by Shanmugasundaram et al. [12] was one of the first
algorithms available that could store an XML-document in a relational database.
It relies on DTDs to generate a relational schema. The technique first constructs
a DTD graph in which each node represents an element type; the arrows are
annotated with the multiplicities. In general, each element type generates one
table; the graph is used, however, to inline the information of certain elements
into the table of its parent in an attempt to reduce the number of tables.

Example 2. For example, suppose we have the DTD of Fig.3. The hybrid inlining
technique recognizes that ‘title’, ‘year’, ‘name’, and ‘role’ can only occur once

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

38

in their respective parent elements. Therefore, they are inlined to produce the
following relations:
– movie(id:int, title:string, year:int, actorsid:int)1

– actor(id:int, parent:int, name:string, role:string)
These two relations suffice to store all data that is contained in XML documents
conforming to this DTD.

3.2 Schemaless: XPath Accelerator

pre size level kind prop

1 11 1 elem movie
2 2 2 elem title
3 1 3 text Twelve Monkeys
4 2 2 elem year
5 1 3 text 1995
6 6 2 elem actors
7 5 3 elem actor
8 2 4 elem name
9 1 5 text Bruce Willis

10 2 4 elem role
11 1 5 text Cole

Fig. 4. XPath Accelerator example

The XPath Accelerator [15] technique
does not depend on the existence of a
schema. Instead, it views the XML doc-
ument as a tree and uses one table that
stores both the information contained in
the nodes as well as the structure of the
tree. In this paper, we use a simplified ver-
sion of the XPath Accelerator version de-
scribed in [17]. The structure of the tree
is encoded using three attributes:
– pre: the rank assigned to the node in

a preorder traversal of the tree.2

– size: the size of the subtree below the
node.

– level: the depth of the node in the tree, i.e, the length of the path from the
node to the root.
We use two additional attributes, kind and prop. The former contains the

node kind. The latter contains for elements its tag and for text nodes its string
content. Without loss of generality, we restrict ourselves to only element and
text nodes. Storing, for example, the possible world of Fig.1(b) in this manner
produces the table of Fig.4.

4 Mapping Probabilistic XML to Probabilistic Relations

Naively applying the techniques of Sec.3 for storing and querying XML using a
relational database defies our purpose. If we would do that, we would end up with
a certain database where all probability and possibility nodes are stored directly.
Instead, we would like to leverage the functionality of the probabilistic RDBMS
for storing and querying uncertain data. We therefore adapt the techniques in
such a way that we can leverage this functionality.

1 There are variants of the inlining techique that would also produce an ‘actors’ rela-
tion. Since it is superfluous here, we inline it for simplicity of the running example.

2 “In a preorder traversal, a tree node v is visited and assigned its preorder rank pre(v)
before its children are recursively traversed from left to right.” [13]

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

39

4.1 General approach

Both probabilistic XML and probabilistic relations are based on possible worlds
theory. Therefore, the semantics of a query are defined in the same way: as the
set of the answers to the query for each possible world. To be able to lever-
age the functionality of probabilistic relational database, we need to make sure
that the stored relational data encodes the same possible worlds as the original
probabilistic XML.

The key to preserving the possible worlds lies in the observation that uncer-
tain data is all about choices. In probabilistic XML we choose among subtrees,
in probabilistic relations we choose among alternative tuples. In the sequel, we
first view both models more formally in terms of choices and then show how
to adapt the XML-to-relational techniques so that they preserve the possible
worlds.

4.2 Viewing Probabilistic XML in terms of choices

Probability nodes (as all distributional nodes) can be seen as independent ran-
dom variables. Their domains consist of (references to) their possibility node
children. Let n1 and n2 be the higher and lower probability nodes in Fig. 1(a),
respectively, and xni its associated random variable. The assignment xn2 ← 1
denotes the choice for the first (left) subtree of n2, i.e., the name “Bruce Willis”,
and xn2 ← 2 denotes the choice for the second (right) subtree, i.e., the name
“Joseph Melito”. The probability of an assignment Pr(xn2← j) is the probabil-
ity associated with possibility node j below n2.

A complete choice θ is a set containing one assignment for each random
variable. Each complete choice determines one particular possible world wθ with
probability

∏
(x←j)∈θ Pr(x ← j). Note that because probability nodes may be

nested, it may happen that two different complete choices determine the same
possible world (e.g., {xn1← 1, xn2← 1} and {xn1← 1, xn2← 2} denote the same
possible world, namely Fig.1(d)).

Viewing it from an XML node’s perspective, the node only exists if it has
been chosen, i.e., it only exists in those worlds determined by a complete choice
that includes for each of its parent probability nodes n, the assignment xn← j
where j is a reference to the possibility node child of n that is a parent of the
XML node.

4.3 Viewing probabilistic relations in terms of choices

In probabilistic relations, each x-tuple can be seen as a random variable x . Its
domain consists of (references to) its alternatives. If it is possible that the tuple
does not exist at all, there is a special value ‘⊥’ in the domain. The remaining
probability mass is given to x ←⊥. Here too a complete choice determines a
possible world, hence the probabilistic relation of Fig.2 encodes two possible
worlds, i.e., two possible movie relations.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

40

The lineage of Trio restricts the set of possible worlds to valid ones, i.e.,
to only those that respect the co-existence relationships between alternatives as
defined by the lineage. In terms of random variables, only those complete choices
are valid for which its assignments respect the lineage, i.e., if an assignment is
associated with an alternative that needs to co-exist with other alternatives,
then their associated assignments are also contained in the complete choice.

Other probabilistic databases have different data models and means to re-
strict the set of possible worlds. MayBMS, for example, associates a set of random
variable assignments (called world set descriptor) with each tuple. Therefore, it is
fairly straightforward to transfer our approach to other probabilistic databases.

5 Schema-based mapping: Adapted Inlining

Our adapted inlining technique has three phases.
(1) We first construct an event table, i.e., an uncertain table with all random

variables (attribute rvar) and their possible assignments (attribute ass).
(2) We then map the data in the XML nodes to certain relational tables in

the same way as the inlining technique prescibes except that we do not
inline child element types that may contain uncertainty (see Sec.5.3). We
furthermore mark the tuples with the ids of the event associated with its
direct parent possibility node (it is not necessary to also mark them with
the ids of the other ancestor possibility nodes as we will see later). XML
nodes that do not have a parent possibility node (certain XML nodes) are
marked with NULLs.

(3) Finally, we execute queries that produce the same tables, but with the proper
lineage attached expressing the dependence on the various random variable
assignments. For ‘movie’ we execute the following query:
CREATE TABLE umovie AS

SELECT movie.id, movie.title, movie.year, movie.actorsid
FROM movie, event
WHERE (movie.rvar = event.rvar AND movie.ass = event.ass)
OR movie.rvar IS NULL;

5.1 Nesting

If the probabilistic XML document contains nested elements, step 3 above is
performed from top to bottom. This happens in our example for ‘actor’ which
is a decendant of ‘movie’. Since one movie can have multiple actors, the inlin-
ing technique creates another table ‘actor’ which contains an attribute with a
reference to the parent. There may exist uncertainty surrounding the actors as
well. In a probabilistic XML tree, a node can only exist when its parent node
also exists. These dependencies need to be stored correctly.

This is where lineage fully comes into play. Trio ensures that the existence of a
tuple depends on the existence of the tuples in its lineage (and the lineage thereof,
and so on). Therefore, we create the uncertain tables for child element types

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

41

event

rvar ass

t1,1 1 1 0.7
t1,2 1 2 0.3
t2,1 2 1 0.5
t2,2 2 2 0.5

movie

rvar ass id title year actorsid

t3 NULL NULL 1 12 Monkeys 1995 1

umovie

id title year actorsid

t4 1 12 Monkeys 1995 1 λ(t4) = t3

actor

rvar ass id parent role

t5 1 1 1 1 Cole
t6 1 1 2 1 Cole
t7 1 2 3 1 Cole

uactor

id parent role

t8 1 1 Cole λ(t8) = t1,1 ∧ t5 ∧ t4
t9 2 1 Cole λ(t9) = t1,1 ∧ t6 ∧ t4
t10 3 1 Cole λ(t10) = t1,2 ∧ t7 ∧ t4

name

rvar ass id parent text

t11 NULL NULL 1 1 Bruce Willis
t12 NULL NULL 2 2 Joseph Melito
t13 2 1 3 3 Bruce Willis
t14 2 2 4 3 Joseph Melito

uname

id parent text

t15 1 1 Bruce Willis λ(t15) = t11 ∧ t8
t16 2 2 Joseph Melito λ(t16) = t12 ∧ t9
t17 3 3 Bruce Willis λ(t17) = t2,1 ∧ t13 ∧ t10
t18 4 3 Joseph Melito λ(t18) = t2,2 ∧ t14 ∧ t10

Fig. 5. Inlining-based mapping of example XML.

based on the resulting uncertain tables of their parent element types created
previously. This ensures that the lineage expresses all dependencies in the tree.

We can create the table ‘uactor’ by issuing the following query (‘uname’
analogously).

CREATE TABLE uactor AS
SELECT actor.id, actor.parent, actor.role
FROM actor, event, umovie
WHERE ((actor.rvar = event.rvar AND actor.ass = event.ass)
OR actor.event IS NULL)
AND actor.parent = umovie.id;

5.2 Example

Figure 5 shows the result for the example tree of Fig.1(a). Note that we invented
new identifiers for the tuples. Also note that ‘uactor’ and ‘uname’ contain only
x-tuples with one alternative instead of more as you might expect. The lineage,
however, expresses that these x-tuples depend on t1,1, t1,2, t2,1, and t2,2. Since
the first two are mutually exclusive and last two as well, the lineage dependencies
make some of the other x-tuples to be mutually exclusive as well.

Suppose we have a possible world in which t1,1 exists. This corresponds to
Fig. 1(d). In this possible world, t10 cannot exist, because it depends on t1,2,
which is mutually exclusive with t1,1. Further down the tree, t17 cannot exist

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

42

either, because it depends on t10. In this way, lineage preserves the dependencies
that exist in the original tree.

We used a cartesian product of both tables, hence the event table must
not be empty. This could happen if the probabilistic XML tree is certain. This
problem can be avoided by using an outer join instead of the cartesian product.
Unfortunately, this functionality was not available in Trio at the time of writing.

Since we refer to the parent table that already contains lineage, these will be
taken into account when querying. In this way, we fully leverage Trio’s function-
ality for calculating probabilities in the context of complex dependencies among
x-tuples. Finally, observe that the resulting probabilistic relations encode the
same possible worlds as the original probabilistic XML document.

5.3 Avoiding data duplication

Data duplication may occur if we would inline a value that is uncertain, because
if an x-tuple contains an inlined uncertain attribute, it may result in several
alternatives. In each of these alternatives, the other certain attributes are du-
plicated. In our example, this happens with ‘name’ and ‘role’: both ‘name’ and
‘role’ could be inlined according to the original inlining technique, but ‘name’ is
uncertain, therefore if we would inline ‘name’ as well, the certain data (in our
example the value “Cole”) is duplicated in the alternatives for the name.

If more than one inlined attribute is uncertain, data duplication would grow
exponentially. For example, if ‘role’ would be uncertain as well with two alter-
natives, then we end up with 4 alternatives for the one actor x-tuple.

The solution to this problem is to not inline element types which may be
uncertain. As a consequence, the element type gets a relation of its own, with
an accompanying reference to the parent tuple. Note that, in this way, values
occur as many times as in the orginal document.

6 Schemaless mapping: Adapted XPath Accelerator

For XPath Accelerator, we calculate the pre, size and level values for every
node in the probabilistic XML document, i.e., including the distributional nodes.
We store the data for the XML nodes in the ‘doc’ table and the data for the
possibility nodes in the event table where all possibility nodes of one probability
node form one x-tuple. We also add a ‘catch all’ event t0 (otherwise we would
not select any certain nodes at the root of the document).

We combine the two tables in the same way as for the inlining technique
except for the fact that we do not have ids for relating tuples in doc with the x-
tuples in event. Instead, each node in the probabilistic XML document depends
on all its ancestor possibility nodes. The ancestor-relationship can be expressed
using the pre and size attributes. Hence we execute the following query:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

43

event

pre size level

t0 0 29 0 1
t1,1 8 11 4 0.7
t1,2 19 9 4 0.3
t2,1 23 2 8 0.5
t2,2 25 2 8 0.5

doc

pre size level kind prop

t3 1 28 1 elem movie
t4 2 2 2 elem title
t5 3 1 3 text 12 Monkeys
t6 4 2 2 elem year
t7 5 1 3 text 1995
t8 9 5 5 elem actor
t9 10 2 6 elem name

...
...

...
...

...
t10 20 9 5 elem actor
t11 21 2 6 elem name
t12 24 1 9 text Bruce Willis
t13 26 1 9 text Joseph Melito
t14 27 2 6 elem role
t15 28 1 7 text Cole

udoc

pre size level kind prop

t16 1 28 1 elem movie λ(t16) = t0 ∧ t3
t17 2 2 2 elem title λ(t17) = t0 ∧ t4
t18 3 1 3 text 12 Monkeys λ(t18) = t0 ∧ t5
t19 4 2 2 elem year λ(t19) = t0 ∧ t6
t20 5 1 3 text 1995 λ(t20) = t0 ∧ t7
t21 9 5 5 elem actor λ(t21) = t0 ∧ t1,1 ∧ t8
t22 10 2 6 elem name λ(t22) = t0 ∧ t1,1 ∧ t9

...
...

...
...

...
t23 20 9 5 elem actor λ(t23) = t0 ∧ t1,2 ∧ t10
t24 21 2 6 elem name λ(t24) = t0 ∧ t1,2 ∧ t11
t25 24 1 9 text Bruce Willis λ(t25) = t0 ∧ t1,2 ∧ t2,1 ∧ t12
t26 26 1 9 text Joseph Melito λ(t26) = t0 ∧ t1,2 ∧ t2,2 ∧ t13
t27 27 2 6 elem role λ(t27) = t0 ∧ t1,2 ∧ t14
t28 28 1 7 text Cole λ(t28) = t0 ∧ t1,2 ∧ t15

Fig. 6. XPath Accelerator-based mapping of example XML.

CREATE TABLE udoc AS
SELECT DISTINCT doc.pre, doc.size, doc.level, doc.kind, doc.prop
FROM doc, event
WHERE doc.pre>event.pre AND doc.pre<(event.pre+event.size);

Unfortunately, this query produces the ‘udoc’ table of Fig.7 instead of the
desired result of Fig.6. If an XML node depends on more than one ancestor
possibility node, then the DISTINCT produces or -lineage as opposed to and -
lineage. For example, the lineage of tuple t8 does not contain the term t0 ∧ t1,1

but t0 ∨ t1,1. At the time of writing, Trio does not have a keyword or some
other construct that allows us to specify that tuples are dependent on all tuples
that correspond with a certain predicate. Trio does support and -lineage, we only
cannot construct it under the circumstances we have at hand here. To be able
to reliably conduct our experiments, we have manually updated the underlying

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

44

udoc

pre size level kind prop

t24 21 2 6 elem name λ(t24) = (t0 ∨ t1,2) ∧ t11
t25 24 1 9 text Bruce Willis λ(t25) = (t0 ∨ t1,2 ∨ t2,1) ∧ t12
t26 26 1 9 text Joseph Melito λ(t26) = (t0 ∨ t1,2 ∨ t2,2) ∧ t13

Fig. 7. Excerpt of wrong or-lineage based udoc-result.

File Size #XML nodes #
 nodes #◦ nodes Avg #◦ per

1 10.4 kB 784 1 1 1
2 43.7 kB 2510 119 240 2.016807
3 54.9 kB 3193 129 265 2.054264
4 119.7 kB 7340 193 425 2.202073
5 186.7 kB 11490 255 570 2.235294
6 800.0 kB 52320 801 1872 2.337079

Fig. 8. Data set properties

PostgreSQL tables that encode the lineage for these tables such that the resulting
table is associated with the exact lineage we need.

Many XML-to-relational mapping techniques are based on prefix-labelling
schemes, such as ORDPATHs and DeweyIDs. These serve both as node ID as
well as efficient ways of determining axis relationships. Since these are likely
to produce similar query characteristics as the pre/size conditions of the XPath
Accelerator, we have not investigated these approaches seperately. Note that here
too, values occur as many times as in the XML document, so space complexity
is the same.

6.1 Query mapping

Our objective is to evaluate queries on the probabilistic XML data using the
probabilistic relational backend. Having mapped the probabilistic XML data
onto probabilistic relations according to the inlining or the XPath Accelerator
technique in this way, mapping the queries is trivial: we can simply apply the
same approach as in the original inlining and XPath Accelerator unaltered. Be-
cause the data represents exactly the same possible worlds, and each of the
possible worlds conforms to the original techniques, the query answer conforms
to the possible world semantics. See Sec. 7.2 for an example.

7 Experiments

7.1 Experimental setup

We experiment with real-life uncertain data obtained from a probabilistic data
integration application [18]. The application integrates movie data from TV
guide (www.tvguide.com) with the Internet Movie Database (www.imdb.com). For this

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

45

Inlining:
SELECT y.year

FROM umovie m, utitle t, uyear y

WHERE m.id = t.parentid

AND t.title = ’District B13’

AND m.id = y.parentid;

XPath Accelerator:
CREATE TABLE temp1 AS

SELECT DISTINCT v1.*

FROM udoc c, udoc v1

WHERE v1.pre > c.pre AND v1.pre < (c.pre + c.size)

AND v1.kind = ’elem’ AND v1.prop = ’movie’;

CREATE TABLE temp2 AS

SELECT DISTINCT v1.*

FROM temp1 c, udoc v1

WHERE v1.pre > c.pre AND v1.pre < (c.pre + c.size)

AND v1.kind = ’elem’ AND v1.prop = ’title’;

CREATE TABLE temp3 AS

SELECT DISTINCT v1.*

FROM temp2 c, udoc v1

WHERE v1.pre > c.pre AND v1.pre < (c.pre + c.size)

AND v1.kind = ’text’ AND v1.prop = ’District B13’;

CREATE TABLE temp4 AS

SELECT DISTINCT v1.*

FROM temp3 c, udoc v1

WHERE v1.pre < c.pre

AND (v1.pre + v1.size) >= (c.pre + c.size)

AND v1.kind = ’elem’ AND v1.prop = ’movie’;

CREATE TABLE temp5 AS

SELECT DISTINCT v1.*

FROM temp4 c, udoc v1

WHERE v1.pre > c.pre AND v1.pre < (c.pre + c.size)

AND v1.kind = ’elem’ AND v1.prop = ’year’;

SELECT DISTINCT v1.*

FROM temp5 c, udoc v1

WHERE v1.pre > c.pre AND v1.pre < (c.pre + c.size)

AND v1.kind = ’text’;

Fig. 9. Translations of the exact match query.

paper, it is not important to understand much about probabilistic data integra-
tion (the reader is referred to [16]), only that it semi-automatically fuses two
XML documents producing a probabilistic XML document. By varying some
thresholds in the probabilistic integration, we obtain probabilistic XML docu-
ments with varying amounts of uncertainty, hence of varying sizes (see Tab.8).

We experiment with 3 queries representative for 3 categories of querying:
1. [Exact match] //movie[title=’District B13’]/year/text()

“The year in which the movie ‘District B13’ has been released”
2. [Tree navigation] //movie[actors/actor/name=’Brooke Smith’]/title/text()

“The titles of all movies in which Brooke Smith is an actor”
3. [Join] //movie[year=//movie[actors/actor/name=’David Belle’]/year]/title/text()

“The titles of all movies of the same year as a movie with actor David Belle”
Note that movie titles, actor names and years are often ambiguous in the inte-
gration scenario, hence the chosen queries deliberately target highly uncertain
sections of the resulting documents.

The experiments are performed on a PC with an AMD Athlon 64 X2 Dual
Core 4000+ processor, 1 GB of internal memory and Windows XP Service Pack
3 installed. We have used PostgreSQL 8.2 as backend for Trio.

There are in total 72 runs in our experiments, namely one run for each com-
bination of 6 data sets, 3 queries, 2 techniques, and with or without confidence
calculation. For each run, we measured average query execution time for 5 exe-
cutions on a hot database.

7.2 Query translation

Obviously, the abovementioned XPath queries need to be translated to SQL
according to the technique involved: Inlining or XPath Accelerator. See Fig. 9 for

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

46

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000

ex
ec

ut
io

n
tim

e
(s

)

nr of nodes

Inl NoConf
XA Conf

XA NoConf

(a) Query 1

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000
nr of nodes

Inl NoConf
XA Conf

XA NoConf

(b) Query 2

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000
nr of nodes

Inl NoConf
XA Conf

XA NoConf

(c) Query 3

Fig. 10. Experimental results.

the translations of the exact match query. The translation for XPath Accelerator
deviates from what is prescribed for this technique. XPath Accelerator requires
self-joins for evaluating XPath steps. Unfortunately, Trio could not cope with
the number of self-joins. Therefore, we split the query into one per step. We store
the intermediate result in a table to be queried in the next step. This splitting
also does not permit nested predicates, so we rewrote the query to the equivalent
//movie/title[.=’District B13’]/ancestor::movie/year/text() before translating it.

7.3 Results

We were unable to obtain measurements for all 72 runs of the experiment due
to practical problems with Trio:
– We have no measurements for Inlining queries that calculate confidences

because Trio crashed.
– We have no measurements for Inlining queries on the largest two documents,

because the data could not be imported into Trio.
We consulted one of the developers of Trio, but he also could not resolve these
problems for us. We have verified that queries for both techniques return the
same results under the same circumstances, so we are confident that we are
measuring execution times for queries that do not return bogus results.

Results for the succesful runs can be found in Fig. 10. ‘Inl’ stands for Inlin-
ing; ‘XA’ for XPath Accelerator; ‘Conf’ and ‘NoConf’ for with and without the
calculation of confidence scores, respectively. The wobble in the ‘Inl NoConf’
line of Query 2 is caused by rounding an imprecise measurement (0.03 vs. 0.02).

The first thing that stands out is that it seems that the XPath Accelerator-
based approach is much less efficient than the Inlining-based approach. We be-
lieve, however, that we cannot draw this conclusion from these results. The
XPath Accelerator queries use several intermediate tables which causes much
overhead. Furthermore, it also does not permit the query optimizer to globally

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

47

optimize the query. Since this query splitting is not inherent to the XPath Accel-
erator technique, but a measure taken because of practical problems with Trio,
it would be unfair to draw this conclusion.

A second observation is that the query execution time does not significantly
increase with increasing size except for the largest document for XPath Acceler-
ator. The shape of the curve seems to indicate that evaluation of these queries
scales exponentially. Unfortunately, we do not know how much time the Inlining
queries would have taken on the largest document. Only for join queries, we see
a rise at a size of around 7000 nodes.

A third observation is that is the query execution times do not significantly
differ for the three queries. Finally, calculation of confidences is typically an
expensive operation. In this application context, however, we see that for XPath
Accelerator the overhead for calculating the confidences is relatively negligible.

8 Conclusions

In this paper, we explored the feasibility of storing and querying probabilistic
XML using an uncertain relational database. Our approach is to adapt existing
techniques for mapping XML data to relational data. We showed how to do
this for two representative techniques, namely a schema-based (inlining) and
a schemaless one (XPath Accelerator). The key is to make sure that the result
represents the same possible worlds as the original probabilistic XML document.
In this way, no adaptation in the translation of XML queries is needed. The space
complexity is the same as for the underlying mapping techniques.

The maturity of probabilistic relational databases also influences the feasi-
bility. We investigated this by experimenting with a few queries on mapped data
on one of the state-of-the-art probabilistic database systems, called Trio. Un-
fortunately, we encountered some problems with loading the mapped data and
with calculating confidence scores for query results. Based on the experiments
that did run smoothly or for which we could find a workaround, we observed, for
example, exponential scaling for queries on data resulting from mapping XML
with the adapted XPath Accelerator technique. On the other hand, confidence
calculation proved relatively inexpensive here. Queries on mapped data from the
adapted inlining technique appear to be more efficient, but loading mapped data
from larger documents and confidence computation failed with this technique.

In this research, we only touched the surface by focussing on feasibility of the
approach. For future work we, first of all, intend to expand our experiments to
other probabilistic database systems to see if our conclusions hold in general. We
also like to compare this approach to extending existing XML databases with
support for probabilistic XML. It would be scientifically worthwhile to formally
prove that the data and query mapping to the relational domain are indeed cor-
rect with respect to XPath semantics and possible world theory. It is also likely
that such a formal investigation uncovers opportunities for query optimization.
Finally, we intend to turn this work into a benchmark for probabilistic databases.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

48

References

1. Abiteboul, S., Kimelfeld, B., Sagiv, Y., Senellart, P.: On the expressiveness of
probabilistic XML models. The VLDB Journal 18(5) (2009) 1041–1064

2. Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: a probabilistic database
management system. In: Proc. of SIGMOD, Providence, Rhode Island, USA, June
29 - July 2. (2009) 1071–1074

3. Antova, L., Koch, C., Olteanu, D.: MayBMS: Managing incomplete information
with probabilistic world-set decompositions. In: Proc. of ICDE, Istanbul, Turkey.
(2007) 1479–1480

4. Mutsuzaki, M., Theobald, M., de Keijzer, A., Widom, J., Agrawal, P., Benjelloun,
O., Sarma, A.D., Murthy, R., Sugihara, T.: Trio-One: Layering uncertainty and
lineage on a conventional DBMS (demo). In: On-Line Proc. of CIDR, Asilomar,
CA, USA, January 7–10, www.crdrdb.org (2007) 269–274

5. Benjelloun, O., Sarma, A.D., Hayworth, C., Widom, J.: An introduction to ULDBs
and the Trio system. IEEE Data Engineering Bulletin 29(1) (2006) 5–16

6. Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Re, C., Suciu, D.: MYSTIQ: a
system for finding more answers by using probabilities. In: Proc. of SIGMOD,
Baltimore, Maryland, USA. (2005) 891–893

7. Cheng, R., Singh, S., Prabhakar, S.: U-DBMS: A database system for managing
constantly-evolving data. In: Proc. of VLDB, Trondheim, Norway. (2005) 1271–
1274

8. Hung, E., Getoor, L., Subrahmanian, V.: PXML: A probabilistic semistructured
data model and algebra. In: Proc. of ICDE, Bangalore, India. (2003) 467

9. Abiteboul, S., Senellart, P.: Querying and updating probabilistic information in
XML. In: Proc. of EDBT, Munich, Germany. (2006) 1059–1068 LNCS 3896.

10. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data
integration. In: Proc. of ICDE, Tokyo, Japan. (2005) 459–470

11. Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query evaluation over probabilistic
XML. The VLDB Journal 18(5) (2009) 1117–1140

12. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton,
J.F.: Relational databases for querying XML documents: Limitations and oppor-
tunities. In: Proc. of VLDB, Edinburgh, Scotland, UK. (1999) 302–314

13. Grust, T.: Accelerating XPath location steps. In: Proc. of SIGMOD, Madison,
Wisconsin. (2002) 109–120

14. Murthy, R., Banerjee, S.: XML Schemas in Oracle XML DB. In: Proc. of VLDB,
Berlin, Germany. (2003) 1009–1018

15. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In:
Proc. of SIGMOD, Chicago, IL. (2006) 479–490

16. van Keulen, M., de Keijzer, A.: Qualitative effects of knowledge rules and user
feedback in probabilistic data integration. The VLDB Journal 18(5) (2009) 1191–
1217

17. Grust, T., Rittinger, J., Teubner, J.: Pathfinder: Xquery off the relational shelf.
IEEE Data Engineering Bulletin 31(4) (2008) 7–14

18. van Keulen, M., de Keijzer, A.: Qualitative effects of knowledge rules in probabilis-
tic data integration. Technical Report TR-CTIT-08-42, CTIT, Univ. of Twente,
Enschede, The Netherlands (2008) ISSN 1381-3625.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

49

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

50

Time-aware Reasoning
in Uncertain Knowledge Bases

Yafang Wang, Mohamed Yahya, and Martin Theobald
{ywang,myahya,mtb}@mpi-inf.mpg.de

Max-Planck Institute for Informatics
Saarbruecken, Germany

Abstract. Time information is ubiquitous on the Web, and considering
temporal constraints among facts extracted from the Web is key for
high-precision query answering over time-variant factual data. In this
paper, we present a simple and efficient representation model for time-
dependent uncertainty in combination with first-order inference rules
and recursive queries over RDF-like knowledge bases. In the spirit of
data lineage, the intensional (i.e., rule-based) structure of query answers
is reflected by Boolean formulas that capture the logical dependencies of
each derived answer fact back to its extensional roots (i.e., base facts).
Our approach incorporates simple weight aggregations for begin, end and
during evidences for base facts, but also generalizes the common possible-
worlds semantics known from probabilistic databases to histogram-like
confidence distributions for derived facts. In particular, we show that
adding time to the latter probabilistic setting adds only a light overhead
in comparison to a time-unaware probabilistic setting.

1 Introduction
Recent progress in information extraction has led to major breakthroughs in
automatically building large ontological knowledge bases from high-quality Web
sources, such as online news sites, or encyclopedias like Wikipedia. Projects
such as DBpedia [1], KnowItAll [6] and its underlying extraction frameworks
TextRunner [23] and Kylin/KOG [22], ReadTheWeb [4], as well as our own
YAGO project [17], have successfully shown how to build structured knowledge
representations from unstructured or weakly structured Web collections with
high precision and recall. A major shortcoming that these knowledge bases still
face is the lack of time information in the both the representation model and
the types of queries they support. Thus, these information extraction techniques
generally work well if we consider the quality of each of the extracted facts
individually, but time constraints start playing a major role when the knowledge
base is queried, i.e., when we would like to reason about multiple facts with
respect to their temporal context. For example, a query looking for all teammates
of David Beckham during his time at Real Madrid would only be meaningful
if we have explicit information about when each of the team members of Real
Madrid played for the club.

While extraction tools like TARSQI [20] generally perform well in detecting
time adverbials in text, they also introduce a certain amount of errors. Even if

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

51

we would restrict ourselves to structured and mostly trustworthy sources such as
Wikipedia infoboxes, achieving 100% precision in temporal fact extraction will
likely remain an illusive goal. Key factors are the incorrect detection and resolu-
tion of temporal annotations caused by the high diversity of temporal expressions
used in free text, as well as plain inconsistencies among different sources. As an
illustration, one news article might report “The hype and speculation have esca-
lated ever since the January announcement that Beckham would join the Galaxy
from Spanish giants Real Madrid on a deal that will earn him a reported $250
million over five years.”, while another article mentions “Former England cap-
tain David Beckham left London Thursday to begin his new stint playing for the
Los Angeles Galaxy”1. From these headlines, we could extract the fact (David
Beckham joins Los Angeles Galaxy) with different time annotations. First, the
granularity of these time annotations is different (“January” is a month, while
“Thursday” is day), and second, the latter is only a relative time annotation
that needs to be resolved and matched with the publication date of the news
article. Furthermore, time information often is incomplete. In the first example,
there is no information about the year when Beckham announced to join Los
Angeles Galaxy, while in the second one, not even a month or week for when
Beckham left Galaxy is stated. Thus, failures in recognizing and resolving tem-
poral expressions are an important factor in introducing uncertainty and even
inconsistency to temporal knowledge bases.

Moreover, for reasoning and query answering, new temporal facts need to
be derived from existing temporal facts. Knowing, for example, the facts that
a player joined and left a club, we could derive a time interval for when this
player actually played for the club. Furthermore, teammates of the player and
their corresponding time intervals could be derived as well, which calls for a
principled approach to reasoning in temporal knowledge bases with uncertainty.
For this purpose, we started building Timely-YAGO (T-YAGO for short) [21],
which enriches our previously built knowledge base YAGO [17] by validity inter-
vals for facts. Similar to work done on temporal databases [12], validity intervals
provide simple, yet effective, support for query semantics built on interval inter-
sections and unions in T-YAGO. Simple interval operations are however only of
limited use for query processing (or reasoning) with uncertainty, i.e., with prob-
abilistic models or otherwise statistically quantified degrees of uncertainty. In
this paper, we adopt the common possible-worlds semantics known from proba-
bilistic databases and extend it towards histogram-like confidence distributions
that capture the validity of facts across time. Query processing is done via a
Datalog-like, rule-based inference engine, which employs the lineage of derived
facts for confidence computations to remain consistent with the possible-worlds
model.

1.1 Example Setting

Consider the example knowledge base in Figure 1, which illustrates a number
of facts about football players, coaches, and their teams. Initially, we are facing
the situation where facts with temporal annotations have been extracted from
different documents, which might yield different observations for when Beckham
1 Citations taken from actual news articles

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

52

and Ronaldo have joined and left Real Madrid, respectively, each with a differ-
ent frequency. Then the question arises how these different temporal annotations
should be reconciled into a concise representation model. Suppose we are uncer-
tain about the exact time point when Beckham joined and left Real Madrid.
Then, what should be the time interval for when Beckham actually played for
Real Madrid? Further, we observe that both Beckham and Ronaldo played for
Real Madrid. Yet, what is their chance of being teammates, and when did they
overlap? And what cup did Ronaldo win when he played for Real Madrid; or
who is the coach of the England National Team, and when? Although there are
various systems that manage uncertain data, none of them could readily solve
the problems stated here. We aim to answer these questions in the following.

Fig. 1. Example for extracting facts with time annotations and a resulting temporal
knowledge base.

1.2 Contributions and Outline

We propose an approach for representing and reconciling facts with temporal
annotations for time-aware reasoning over uncertain and potentially inconsistent
temporal knowledge bases. We briefly summarize the main contributions of this
paper as follows:

– Closed and Complete Representation Model for Temporal Knowl-
edge Bases. We develop a histogram-based data model for representing
uncertainty about the validity of facts across time. In particular, we distin-
guish between event and state relations and show how to combine both into
a unified framework for query processing (Section 2).

– Temporal Fact Extraction with Histogram Aggregation. We show
how to reconcile multiple (potentially inconsistent) observations of facts with
temporal annotations into a concise histogram at extraction time (Section 3).

– Possible-Worlds based Reasoning over Temporal Knowledge Bases.
We employ data lineage in the form of Boolean formulas that capture the
logical dependencies between base and derived facts, in a recursive, Datalog-
like reasoning environment (Section 4).

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

53

– System and Experiments. We evaluate our system on a real-world tem-
poral knowledge (Timely YAGO) with more than 270,000 (aggregated) tem-
poral facts, using handcrafted rules for query processing and reasoning in
the football domain (Section 5).

2 Data and Representation Model
Knowledge Base. We define a knowledge base KB = 〈F , C〉 as a pair consisting

of base facts F and first-order inference rules C. In Semantic Web applications,
facts are often encoded in the Resource Description Framework (RDF) format,
while the Web Ontology Language (OWL)—or more commonly one of its decid-
able subsets OWL-DL or OWL-lite—is used to express further constraints over
the knowledge base. Just like RDF, our set of base facts F constitutes a directed,
labeled multi-graph, in which nodes are entities, and labeled edges represent re-
lationships between the entities. For example, an RDF graph can have an edge
between the entity Beckham and the entity Real Madrid. This edge would be
labeled with the relation name playsForTeam. More formally, an RDF graph is
defined as a set of entities Ent and a set of relations Rel, where every R ∈ Rel is
such that R ⊆ Ent×Ent, and a set of triplets (or facts) F ⊆ (Rel×Ent×Ent).
Unlike RDF, we also associate a time histogram Hf with each fact f ∈ F . The
time histogram Hf captures the (discrete) probability distribution of f being
valid at a particular time point t ∈ Hf .

Inference Rules. We focus on a decidable subset of first-order logic for
our inference rules C. More specifically, we focus on Datalog-like Horn clauses,
which can be employed for inferring new facts (i.e., reasoning) at query time.
For example, a rule like

playsForTeam(x, y)← joinsTeam(x, y) ∧ leavesTeam(x, y) (1)

can be used to infer that an entity x has played for a particular team y. In
the following, we will denote variables by lowercase identifiers and constants by
uppercase names (with all variables implicitly being universally quantified).

Time Points, Intervals, and Histograms. A time point t denotes a small-
est time unit of fixed granularity. We have a discrete series of ordered time points
0, . . . , N (with a special designator N which marks the end of the time range we
consider). These time points could represent any desired—but fixed—granularity
(e.g., years, days, or seconds, or even transaction-based counters).

A validity interval is represented as a left-closed, right-open or right-closed,
interval, which is bounded by two time points (e.g., [1990, 2010)), thus denoting
a discrete and finite set of time points. This way, we are able to support both
range-queries (i.e., “Is this fact valid in the range of [1999, 2006)?”) and snapshot
queries (i.e., “Is this fact valid at time point 2006?”). A snapshot query can then
simply be seen as a special-case range query by using an interval consisting of
just a single time point (e.g., [2006, 2006]). Every interval has a corresponding
confidence value associated with it, which denotes the probability of the fact
being valid for the given interval. Multiple, non-overlapping intervals can be
concatenated to form a time histogram. Intervals in a time histogram do not
necessarily have to be contiguous. A gap between two consecutive intervals is
equivalent to an interval with a confidence value of 0.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

54

Event and State Relations. In the following, we distinguish between event
and state relations. In an event relation, a fact is valid at exactly one time point.
By default, facts in an event relation are thus associated with a validity interval
consisting of only one time point. For capturing uncertainty, however, validity
intervals (and entire histograms) may cover more than one time point, as in the
following example:

winsCup(Beckham, ChampionsLeague)[1999, 2001) :0.8

For simplicity, we assume a uniform distribution for the probability of a fact
within the interval in this case. For example, for the interval [1999, 2001), which
covers 2 time points with a confidence of 0.8, each time point in the interval would
have a probability of 0.4. The confidences of all intervals (and implicitly also the
confidences of the corresponding time points) must form a proper probability
distribution, i.e., the sum of all intervals’ confidences may be at most 1.

For a state relation, a fact is valid at every time point of an interval. Hence,
all time points in the interval are (implicitly) associated with the probability of
the interval, as in the following example:

playsForTeam(Beckham, United)[1992, 2003) :0.3; [2003, 2007) :0.4

Here, for the interval [1992, 2003), which covers 12 time points with a confidence
of 0.3, the fact is valid at each time point with probability of 0.3; and for the
interval [2003, 2007), the fact is valid at each time point with probability of 0.4.
For facts in a state relation, the confidences of all intervals must form a proper
probability distribution.

For both event and state relations, the sum p of confidences for the intervals
in a histogram may be less than 1. In general, a fact is invalid for all time points
outside the range of time points captured by the histogram with probability
1 − p. Moreover, different operations for slicing and coalescing intervals apply,
depending on whether a fact belongs to either an event or a state relation.

Slicing and Coalescing. In analogy to temporal databases [12], different
operations for reorganizing time intervals (and thus histograms) apply. For an
event relation, we can slice an interval into any set of disjoint and contiguous
subintervals by applying our uniformity assumption of confidences. Further, we
can coalesce any two contiguous intervals into a single interval, only if the in-
dividual time points in both intervals have the same probability. In this case,
the confidence of the coalesced interval is the sum of the confidences of the two
input intervals. For a state relation, however, slicing intervals into subintervals
is generally not allowed. Further, we can coalesce any two contiguous subinter-
vals into a single interval, only if they have the same confidence. In this case,
the confidence of the coalesced interval in a state relation is the same as the
confidence of the two input intervals.

Closed and Complete Representation Model. We remark that this
model is a generalization of the possible-worlds data model used in various prob-
abilistic database approaches (see, e.g., [2,5,11]), which now lets us express un-
certainty about a fact’s validity across time. In particular, this model allows for
arbitrary Boolean combinations of both state and event facts for query process-
ing, such that the distribution of confidences of any derived fact is guaranteed

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

55

to form a proper probability distribution again (closedness). Moreover, any dis-
crete and finite distribution of confidences can be captured by this model, also
for both base facts and derived facts (completeness). A detailed definition of
these operations for query processing is provided in Section 4.

3 Temporal Fact Extraction and Histogram Aggregation
In our temporal model for extraction, each fact is associated with its possible
earliest and latest time information. For example, from the sentence “Beckham
signed up for Real Madrid in 2003.”, we infer that Beckham joined Real in the
year 2003. Using days as our primary granularity for reasoning, we determine
the possible earliest (begin) time point of starting his contract to be 2003-1-1
and the latest (end) time point as 2003-12-31 (using date-formatted time points
for better readability). The begin and end time points then constitute an initial
time interval [2003-1-1, 2003-12-31] for this occurrence (evidence) of the fact
joins(Beckham, Real) in the document. But then the question arises, how we
should reconcile multiple of these (potentially inconsistent) occurrences, which
we are likely to observe in different documents during the extraction phase, and
how to represent these in a concise histogram for query processing.

Fact Time Expression Begin Time End Time Frequency Event Type
joins “July, 2003” 2003-7-1 2003-7-31 2 begin

(Beckham, Real) “Summer, 2003” 2003-6-1 2003-9-30 3
leaves “June, 2007” 2007-6-1 2007-6-30 1 end

(Beckham, Real) “Early June, 2007” 2007-6-1 2007-6-10 2
hasContract “Season 2003 2003-7-1 2007-6-30 2 during

(Beckham, Real) to 2007”
Table 1. Examples of time expressions and their corresponding intervals.

The extraction stage produces facts which may be valid at both a single time
point (e.g., a day or a year) and entire intervals (e.g., multiple days or years).
Staying in our football example, we aim to aggregate multiple occurrences of such
events into a single state fact playsForTeam(Beckham, Real)[2003-1-1, 2007-12-
31]. This state fact for playsForTeam can be inferred, for example, from two
event facts joins(Beckham, Real)[2003-1-1, 2003-12-31] and leaves(Beckham,
Real)[2007-1-1, 2007-12-31). Besides events that indicate the begin and end of
an interval, we can also directly extract events that happened during the period
when Beckham played for Real, such as hasContract(Beckham, Real)[2003-7-1,
2007-6-30]. Table 1 depicts a few examples of time expressions along with their
corresponding intervals and possible observation frequencies as they occur at
extraction time.

From these facts, we aim to derive the histogram for playsForTeam(Beckham,
Real). Notice, that even in case a player might have played for a team multiple
times (which occurs frequently), our approach allows for aggregating multiple
overlapping occurrences of begin, end and during events into a single histogram.

Merging Observations. Before presenting the forward and backward ag-
gregation of event frequencies into a histogram, we first introduce the basic
algorithm for reorganizing the bins of an output histogram, given two or more
input histograms, as depicted in Algorithm 1. That is, at each time point where

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

56

the confidence of an input histogram changes (i.e., at every interval boundary of
an input interval), the confidence in the output histogram may change as well,
and a new bin in the output histogram is created. Initially, the input histograms
correspond to the basic intervals we extracted for the begin, end and during
events (see Table 1).

This (binary) reorganization operation of bins is associative and commuta-
tive, hence multiple input histograms can be reorganized into a single output
histogram in arbitrary order. Runtime and the number of bins in the output
histogram are linear in the number of bins in the input histograms. Notice that
the smallest-possible width of a histogram bin is a single time point.

Algorithm 1 Reorganizing histograms.
Require: Two input histograms H1, H2

Let T be the disjoint union of begin and end time points from intervals in H1 and H2,
respectively (in ascending order)

Let H3 be an empty output histogram
Set tb := -1
For all te ∈ T do
If tb > −1
Insert a new interval [tb, te) into H3

Set tb := te

Return: H3

Forward and Backward Aggregation of Frequencies. As we have fin-
ished the histogram reorganization from the basic begin, end and during events,
we continue to aggregate and normalize the frequencies for our fact in the target
relation playsForTeam. Intuitively, the confidence of the playsForTeam should
increase while we aggregate frequencies of intervals that indicate a begin event;
it should increase at the begin of a during interval but decrease at the end of a
during interval; and it should decrease for intervals relating to end events. The
amount of occurrences for begin and end events may however be imbalanced,
such that we also need to normalize the frequencies of each of these two types
individually, before combining them into a single histogram. To obtain an in-
creasing confidence from begin events, we cumulate frequencies of each bin from
the first bin to the last bin (forward aggregation). In contrast, to obtain a de-
creasing confidence from end events, we cumulate frequencies of each bin from
the last bin to the first one (backward aggregation).

As shown in Figure 2, we first define the reorganized histograms H1 and H2

by aggregating the frequencies of all begin and end events of Table 1 according
to their type. Forward aggregation then iterates over all bins of H1 by cumulat-
ing the bins’ weights as H1[i] =

∑
0≤j≤i H1[j], starting with the first bin H1[0].

On the contrary, the backward aggregation iterates over all bins of H2 by cu-
mulating the bins’ weights as H2[i] =

∑
e≥j≥i H2[j], starting from the last bin

H2[e]. In the next step, both H1 and H2 are normalized to the weight of H3,
i.e., the aggregated histogram of all during events, before all three histograms
are again aggregated and normalized to form the final confidence distribution
of the playsForTeam fact (step 3 in Figure 2). In case no during event could
be extracted from the sources, an artificial during interval with the earliest and
latest time points of begin and end events with weight 1 can be created as H3,

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

57

Fig. 2. Reorganizing and merging histograms based on the input facts from Table 1.

in order to normalize H1 and H2. These various levels of aggregation are sum-
marized in Algorithm 2. Figure 2 provides an illustration of these three iterative
reorganization and aggregation steps based on the facts in Table 1.

We remark that this aggregation of observation frequencies is just one pos-
sible way of deriving an initial histogram at extraction time. In the following,
we call facts like playsForTeam(Beckham, Real), which are obtained from such a
forward/backward aggregation step, the base facts. Confidences in a probabilis-
tic sense are traced back to only those base facts at reasoning time. Further, we
assume these base facts to be independent.

Algorithm 2 Merging histograms.
Require: Forward-cumulated begin histogramH1, backward-cumulated end histogram

H2, and aggregated during histogram H3

Let H4 be an empty output histogram
Reorganize H1, H2, H3, and H4 using Algorithm 1
Normalize H1 and H2 such that

∑
i H1[i] =

∑
i H3[i] and

∑
i H2[i] =

∑
i H3[i]

For all i ∈ H4 do
Set H4[i] := H1[i] + H2[i] + H3[i]

Normalize H4 such that
∑

i H4[i] = 1
Return: H4

4 Rule-based Reasoning, Lineage, and Possible Worlds
Our approach for reasoning in semantic knowledge bases is based on Datalog-like
inference rules (Horn clauses), which can be employed to either enforce integrity
constraints (Horn clauses with only negated literals) or provide means for actual
inference and query answering (Horn clauses with exactly one positive literal).
Recall that Horn clauses with exactly one positive literal can equivalently be
rewritten as implications, where the positive literal becomes the head of the rule
and the body is a conjunction of the remaining literals. Our key observation is
that the logical dependencies of query answers (i.e., the possible worlds the entire
knowledge base can take) are determined only by the way rules were processed in
order to ground the query atoms (potentially recursively) down to the base facts.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

58

In this paper, we focus on the case of Horn clauses with exactly one positive head
literal, because it results in Boolean formulas with positive (i.e., conjunctive or
disjunctive) lineage only.

Temporal Predicates. For reasoning about time intervals, we employ ad-
ditional temporal predicates such as overlaps, before, after, etc. (see, e.g., Allen
et al. [7] for an overview of temporal relations among intervals). These temporal
predicates allow us to constrain the temporal relationships of time-annotated
facts in the rules. Within the formulation of a rule, we also extend the given
(binary) predicates by a third time variable t which is used as reference when
reasoning with the temporal predicates (see Rules (2) and (3)). While this exten-
sion clearly remains in first-order logic, it—strictly speaking—no longer conforms
with the core RDF data model.

Queries. Queries in Datalog can be expressed as Boolean combinations of
literals (again, we do not allow negation). Hence, teammates(Beckham, x) would
retrieve all teammates of Beckham, while teammates(x, y) would denote all pairs
of teammates that could be inferred from the knowledge base. Literals in queries
are grounded against the knowledge base. Semantically, a disjunction of two
literals relates to a disjoint union of two sets of facts (obtained from grounding
each literal), while a conjunction relates to a set intersection. Set operations in
these reasoning settings are always duplicate eliminating.

Conjunctive vs. Disjunctive Lineage. When processing a query, predi-
cates in the body of an inference rule are combined conjunctively, while multiple
rules with the same head predicate create a disjunctive derivation of the query
answer. In analogy to probabilistic databases, processing the body of a rule thus
conforms to a join operation with conjunctive lineage, whereas grounding the
same derived fact from multiple rules conforms to a duplicate-elimination step
with disjunctive lineage [2,16]. We thus adopt a similar notion of data lineage as
in [2] to compute the individual confidences of bins in the time histogram of a
derived fact. In a Datalog-like setting, however, rules are potentially recursive,
such that the derivation of answers typically is less uniform than for a regular
SQL query or materialized view. Lineage however remains acyclic also in our
setting, because all rules are grounded against base facts to find valid answers.

ID Fact Histogram Relation Type
F1 playsForTeam(Beckham, Real) [2003,2008):0.8 state
F2 playsForTeam(Ronaldo, Real) [2002,2008):0.7 state
F3 winsCupForTeam(Ronaldo,Real) [2003,2004):0.6 event

Table 2. Base facts with time histograms (intervals).

teammates(x, y)← playsForTeam(x, z, t1) ∧ playsForTeam(y, z, t2)
∧ notEquals(x, y) ∧ overlaps(t1, t2) (2)

teammates(x, y)← playsForTeam(x, z, t1) ∧ winsCupForTeam(y, z, t2)
∧ notEquals(x, y) ∧ overlaps(t1, t2) (3)

As an example, consider we want to retrieve the probability of Beckham and
Ronaldo being teammates for Rules (2) and (3) and the base facts depicted in
Table 2. We will next discuss how confidence computation works in this setting.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

59

Confidence Computation. While grounding queries via rules yields ex-
actly one Boolean lineage formula for a derived fact, the input confidences of
base facts may vary across time. Hence our algorithm needs to ensure that the
correct confidences are chosen as input when calculating the confidence of a
result histogram. This is achieved via reorganizing the bins of the output his-
togram using Algorithm 1 and slicing and coalescing the input intervals of base
facts belonging to an event relation accordingly. Notice that intervals from base
facts belonging to a state relation do not have to be sliced, since a fact is de-
fined to be valid at each time point of an interval with the same probability (see
Section 2).

Thus, grounding the query teammates(Beckham,x) over the above Rules (2)
and (3) and base facts depicted in Table 2 results in the (single) grounded query
answer teammates(Beckham, Ronaldo) with lineage (F1 ∧ F2)∨ (F1 ∧ F3). How-
ever, by simply multiplying the probability of each literal in the lineage of team-
mates(Beckham, Ronaldo), we would get 0.8 × 0.7 × 0.8 × 0.6 = 0.2688. This
is not correct, since the probability of playsForTeam(Beckham, Real) is con-
sidered twice. Assuming independence among base facts, we can calculate the
correct probability of teammates(Beckham, Ronaldo) for the interval [2003, 2004)
as 0.8× 0.7× 0.6 + 0.8× 0.7× (1− 0.6) + 0.8× (1− 0.7)× 0.6 = 0.704 (as can be
verified by a truth table). For simplicity, we show the confidence computation
only for a single interval. In general, one such computation can be triggered for
each bin of a time histogram, again using Algorithm 1 for reorganizing the his-
togram, but with a possible-worlds-based confidence computation instead of the
simple aggregation of Algorithm 2.

Our approach for confidence computations with time histograms can thus be
summarized into the following two steps:

1) reorganizing bins of the output histogram using Algorithm 1, and
2) computing the confidence for a fact’s validity at each bin of its histogram.

While step 1) is linear in the number of input bins, each confidence computation
per output bin is #P-complete for general Boolean formulas [15]. We thus employ
the Luby-Karp family of sampling algorithms for approximating the confidence
computation. Different versions for Luby-Karp sampling [13] are available, de-
pending on whether the formula is in CNF, DNF, or of generic Boolean shape,
each with different approximation guarantees. Thus, as a simple optimization,
our implementation is able to check for the structure of the formulas at query
time, and it can select the most appropriate variant of Luby-Karp, or even an
exact confidence computation if this is still feasible.

In our current implementation, lineage is transient, i.e., we keep lineage in-
formation only in memory at query processing time. For future work, we aim to
investigate also making lineage persistent, thus being able to “learn” new facts
from existing facts in the knowledge base and storing these derived facts along
with their derivation in the knowledge base for further processing and faster
subsequent inference.

5 System Setup and Experiments
Our system is implemented as an extension of URDF [18], which is a framework
for efficient reasoning over uncertain RDF knowledge bases developed at the Max

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

60

Planck Institute for Informatics. URDF employs SLD resolution for grounding
first-order formulas (Horn clauses) against an underlying knowledge base. Unlike
most Datalog engines, URDF follows a top-down grounding approach, i.e., for
an incoming query, it aims to resolve answers by processing rules recursively
from the head predicate down to the body predicates, which are conjunctions of
predicates found either in the knowledge base or which can in turn be processed
via the head predicate of a rule. URDF is implemented in Java 1.6 with about
4,000 lines of code. All experiments were run on an Intel Xeon 2.40GHz server
(in single-threaded mode) with 48GB RAM. We use Oracle 10g as backend for
storing the T-YAGO knowledge base, which was installed on a second AMD
Opteron 2.6 GHz server with 32GB RAM.

As competitors we employ the original URDF framework (without the tem-
poral extension) and the IRIS [3] reasoner, a default reasoning engine used in
many Semantic Web applications. In terms of reasoning, IRIS [3] is an open-
source Datalog engine supporting built-in predicates. It is designed to be highly
configurable, allowing for different Datalog evaluation strategies and the defini-
tion of custom data types and predicates.

5.1 Timely YAGO Knowledge Base

Our experiments are based on the semantic graph of T-YAGO [21]. For T-YAGO,
we extracted more than 270K temporal facts from Wikipedia and freetext, with
16 distinct relationship types. Currently it covers the football domain, includ-
ing relationships such as playsForSeniorClub, participatedIn and winsCup, but
also raw facts for the begin, end, and during events of these relations, such as
joinsSeniorClub or leavesSeniorClub. These raw facts can be integrated with the
existing facts of the corresponding relations (e.g., playsForSeniorClub), in order
to reconcile time histograms using the aggregation rules depicted in Table 4.

The facts and time histograms are stored in two separate tables. The facts
table contains three columns for RDF triplets (i.e., first argument, second ar-
gument, and relation name) and a column for the fact id. The time table is
composed of two columns (i.e., start time point and end time point) correspond-
ing to the begin and end time point of an interval, a foreign key connecting to
the fact’s id, and a column for the fact’s confidence at the interval.

5.2 Rules and Queries

Table 4 depicts 4 aggregation rules for reasoning about the time interval of
a player’s or coach’s career period, as well as 9 partly recursive, hand-crafted
inference rules for reasoning about people’s activities and relationships in the
football domain. As URDF (without time) and IRIS do not support time-aware
reasoning, we remove all temporal predicates in the inference rules, such as
overlaps or after, when comparing their runtimes and results. Table 4 illustrates
8 queries including single-fact queries, chains, stars and cliques of interconnected
facts used as our baseline for experiments.

5.3 Experimental Results

Our experiments focus on investigating the overhead of time-aware query pro-
cessing, compared to a time-oblivious setting. We compare the running times and

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

61

result precision of URDF (with time) to IRIS and URDF (without time). The
running time of URDF (with time) includes grounding time (using SLD resolu-
tion) and histogram creation (i.e., possible-worlds-based histogram calculation
time).

Baseline Runs Without Time. Since IRIS and URDF (without time)
do not support time-aware reasoning, we compare grounding time and result
precision of IRIS to URDF (without time) in the first experiment. The grounding
time in URDF (without time) denotes the time to ground the query atoms,
using the inference rules and queries depicted in Table 4. The measured time in
IRIS is the time required to ground the query using magic sets rewriting, which
includes both the rule rewriting step followed by a bottom-up query evaluation
over the rewritten rules. We can see that URDF already outperforms IRIS for
the grounding time (both without using time-specific predicates).

Overhead of Confidence Computations with Histograms. In the sec-
ond experiment, we compare the grounding time and result precision of URDF
(without time) to URDF (with time). Besides the grounding time consumed
by URDF (without time), URDF (with time) also includes the possible-worlds-
based histogram computation time. A comparable confidence computation for
facts with just a single confidence value but without a time histogram is also
shown on the left-hand side for URDF (without time).

Interestingly, Table 3 shows that URDF (with time) even partly achieves
better runtimes than URDF (without time) for complex queries, because URDF
(with time) does not ground any answers that do not satisfy the temporal pred-
icates. This is also the main reason for the lower precision of URDF (without
time) compared to URDF (with time). The grounding time of URDF (with time)
is better than URDF (without time) for Queries 4, 5, 7 and 8, even when taking
also the time for building the final histogram into account. However, the time
for building the histogram for Query 6 is much worse than the others, yielding
14 results with 6,552 literals in 504 disjunctions in their lineage. Also, only for
Query 6 we needed to employ Luby-Karp-based sampling (using ε = 0.05 and
δ = 0.05), while all the other confidences could be computed exactly.

Without time information With time histograms T-URDF/URDF
IRIS URDF PWs-conf # T-URDF PWs-conf #
ms ms ms results ms ms results precision

Q1 6893 35 2 8 45 <1 8 8/8
Q2 821 11 <1 5 12 <1 5 8/8
Q3 7127 1905 1191 766 2113 1 184 184/766
Q4 6686 699 188 239 308 5 58 58/239
Q5 7628 3099 314 190 1423 51 114 114/190
Q6 4317 693 20345 14 1054 87600 14 8/8
Q7 6909 6712 574 183 3277 5 17 17/183
Q8 7125 6396 190 133 4441 1 25 25/133∑
47506 19550 <22805 1538 12673 <87665 425 avg=0.545

Table 3. Experimental results.

6 Related Work
Temporal reasoning has a fairly long history through works in logics and AI, most
notably in the seminal work by Allen et al. [7]. To the best of our knowledge, our

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

62

approach is the first to integrate reasoning, temporal probabilistic RDF data,
and lineage. Recently, there has been an effort to expand information extraction
along the temporal dimension, coined T-YAGO [21]. T-YAGO extends the rule-
based approach used for extracting YAGO [17] to temporal facts from infoboxes
and category information in Wikipedia, resulting in fairly large collections of
facts with temporal annotations presented using the RDF data model. In [14],
a pre-trained probabilistic model is used to extract temporal information from
natural language sentences and annotate facts with time intervals. However, this
approach does not support reasoning about relations or query answering. Work
on temporal databases dates back to the early 1980’s [12]. Different semantics
for associating time with facts have been defined. In the context of this paper,
we use the valid-time semantics, where the time recorded for facts in a database
captures the reality of the world being modeled by the database. Extensions for
traditional data models have been explored to accommodate temporal data in
an efficient manner, both in terms of space and query processing. There has also
been an extensive effort to develop query languages for querying temporal data.
Most of these efforts were attempts to modify SQL to reduce the complexity
of temporal queries. There is a wealth of research on probabilistic databases
and the management of uncertain data. [11] is a state-of-the-art probabilistic
database management system achieving scalability. [2,16] present a framework
for dealing with uncertain data and data lineage. This approach allows for the
decoupling of data and confidence computations when processing queries over
uncertain data [16], allowing for a wider range of query plans to be used while
still maintaining the correctness of confidence computations. For dealing with
probabilistic reasoning in the context of information retrieval, [8] presents a
probabilistic version of Datalog, which is one of the first works to introduce a
notion of intensional query semantics. [9,10,19] present a probabilistic extension
to RDF and how SPARQL queries over such an extension can be supported.
However, no notion of temporal reasoning has been considered in these contexts.

7 Conclusions
We believe that adding time to a knowledge base is a crucial component for
high-precision query answering. Time-aware information extraction increases the
demand for coping with imprecise or otherwise uncertain data and is an excellent
showcase for uncertain data management. Moreover, in our approach, we show
that adding time histograms involves only a light overhead over a comparable
probabilistic setting that does not consider time. Time-aware reasoning may even
spare unnecessary computations for false-positive answers at an early stage and
thus reduce the overall runtime for query answering. Currently, the way we ag-
gregate occurrence frequencies into our initial time histograms for the base facts
still is fairly abrasive from a probabilistic point of view. Our long-term goal thus
is to find appropriate generative models which allow for incorporating the actual
occurrences of facts in the documents into the probabilistic interpretation. The
temporal extension however is already fully integrated into our URDF reasoning
framework, which provides a unified and versatile reasoning platform, including,
for example, also spatial reasoning extensions.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

63

APPENDIX: Rules and Queries
Aggregation Rules
A1 : joinsY outhClub(a, b) ∧ duringY outhClub(a, b) ∧ leavesY outhClub(a, b)

→ playsForY outhClub(a, b)

A2 : joinsSeniorClub(a, b) ∧ duringSeniorClub(a, b) ∧ leavesSeniorClub(a, b)
→ playsForSeniorClub(a, b)

A3 : joinsNationalTeam(a, b) ∧ duringNationalTeam(a, b) ∧ leavesNationalTeam(a, b)
→ playsForNationalTeam(a, b)

A4 : beginManagesTeam(a, b) ∧ duringManagesTeam(a, b) ∧ endManagesTeam(a, b)
→ managesTeam(a, b)

Inference Rules
Players playing for teams are summarized into playsForTeam.

C1 : playsForY outhClub(a, b) → playsForTeam(a, b)
playsForSeniorClub(a, b) → playsForTeam(a, b)
playsForNationalTeam(a, b) → playsForTeam(a, b)

If two players play for the same team at the same time, they are teammates.
C2 : playsForTeam(a, b, t1) ∧ playsForTeam(c, b, t2) ∧ overlaps(t1, t2) ∧ notEquals(a, c)

→ teammates(a, c)

If one player plays for the same team after another player, then the former is a successor of the latter.
C3 : playsForTeam(a, b, t1) ∧ playsForTeam(c, b, t2) ∧ after(t1, t2) ∧ notEquals(a, c)

→ successor(a, c)

If one player plays for the same team before another player, then the former is an ancestor of the latter.
C4 : playsForTeam(a, b, t1) ∧ playsForTeam(c, b, t2) ∧ before(t1, t2) ∧ notEquals(a, c)

→ ancestor(a, c)

Players who have played for more than 1460 days (more than 4 years) for a team.
C5 : playsForTeam(a, b, t1) ∧ durationMoreThan(t1, 1460)

→ playedMoreThan4Y earsForTeam(a, b)

If a coach manages the team when a player is playing for the team, the coach trained this player.
C6 : managesTeam(a, b, t1) ∧ playsForTeam(c, b, t2) ∧ overlaps(t1, t2)

→ isCoachOf(a, c)

If a coach manages a team, and this is a national team, then he is a coach of a national team.
C7 : managesTeam(a, b, t1) ∧ playsForNationalTeam(c, b, t2) ∧ overlaps(t1, t2)

→ isCoachOfNationalTeam(a, b)

Queries
Single-fact queries:
For which teams (and when) did David Beckham play?

Q1 : playsForTeam(DavidBeckham, x)

Which teams (and when) has Alex Ferguson managed?
Q2 : managesTeam(AlexFerguson, x)

Who are the ancestors of David Beckham?
Q3 : ancestor(x, DavidBeckham)

Chain queries:
Who are the coaches of David Beckham, and which teams did they previously play for?

Q4 : isCoachOf(x, DavidBeckham) ∧ playsForTeam(x, y)

Who are teammates of David Beckham, who participated in the same activity as Zinedine Zidane?
Q5 : teammates(DavidBeckham, y) ∧ participatedIn(y, z) ∧ participatedIn(ZinedineZidane, z)

Star queries:
Who are the coaches of the England National Football Team, what cups did they win,
and which activities did they join?

Q6 : isCoachOfNationalTeam(x, EnglandNationalFootballTeam) ∧ winsCup(x, y)
∧participatedIn(x, z)

Who played for Manchester United for more than 4 years and was a teammate of David Beckham?
Q7 : playedMoreThan4Y earsForTeam(x, ManchesterUnited) ∧ teammates(x, DavidBeckham)

Clique query:
Who are the successors of David Beckham who won the same cup as Beckham?

Q8 : successor(x, DavidBeckham) ∧ winsCup(x, z) ∧ winsCup(DavidBeckham, z)

Table 4: Aggregation rules, inference rules, and queries used for the experiments.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

64

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a web of open data. In: ISWC (2007)

2. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Theobald, M., Widom, J.: Databases
with uncertainty and lineage. VLDB J. 17(2) (2008)

3. Bishop, B., Fischer, F.: IRIS- Integrated rule inference system (2008)
4. Carlson, A., Betteridge, J., Wang, R.C., Jr., E.R.H., Mitchell, T.M.: Coupled semi-
supervised learning for information extraction. In: WSDM (2010)

5. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
J. 16(4) (2007)

6. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.M., Shaked, T., Soder-
land, S., Weld, D.S., Yates, A.: Web-scale information extraction in KnowItAll. In:
WWW (2004)

7. Fisher, M., Gabbay, D.M., (Eds.), L.V.: Handbook of temporal reasoning in arti-
ficial intelligence. Elsevier (2005)

8. Fuhr, N.: Probabilistic datalog - a logic for powerful retrieval methods. In: SIGIR
(1995)

9. Fukushige, Y.: Representing probabilistic relations in RDF. In: ISWC-URSW
(2005)

10. Huang, H., Liu, C.: Query evaluation on probabilistic RDF databases. In: WISE
(2009)

11. Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: a probabilistic database
management system. In: SIGMOD Conference (2009)

12. Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Trans. on Knowl.
and Data Eng. 11(1) (1999)

13. Karp, R.M., Luby, M.: Monte-carlo algorithms for enumeration and reliability prob-
lems. In: FOCS. pp. 56–64 (1983)

14. Ling, X., Weld, D.S.: Temporal information extraction. In: AAAI’10. AAAI Press
(2010)

15. Re, C., Dalvi, N.N., Suciu, D.: Efficient top-k query evaluation on probabilistic
data. In: ICDE (2007)

16. Sarma, A.D., Theobald, M., Widom, J.: Exploiting lineage for confidence compu-
tation in uncertain and probabilistic databases. In: ICDE (2008)

17. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago
18. Theobald, M., Sozio, M., Suchanek, F., Nakashole, N.: URDF: Efficient reasoning

in uncertain RDF knowledge bases with soft and hard rules. Tech. Rep. MPI-I-
2010-5-002, Max Planck Institute Informatics (MPI-INF) (2010)

19. Udrea, O., Subrahmanian, V.S., Majkic, Z.: Probabilistic RDF. In: IRI (2006)
20. Verhagen, M., Mani, I., Sauri, R., Knippen, R., Jang, S.B., Littman, J., Rumshisky,

A., Phillips, J., Pustejovsky, J.: Automating temporal annotation with TARSQI.
In: ACL (2005)

21. Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely YAGO: harvesting,
querying, and visualizing temporal knowledge from wikipedia. In: EDBT (2010)

22. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In:
WWW (2008)

23. Yates, A., Banko, M., Broadhead, M., Cafarella, M.J., Etzioni, O., Soderland, S.:
TextRunner: Open information extraction on the web. In: HLT-NAACL (2007)

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

65

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

66

Query Containment for Databases with

Uncertainty and Lineage

Foto N. Afrati and Angelos Vasilakopoulos

National Technical University of Athens

afrati@softlab.ece.ntua.gr,avasila@central.ntua.gr

Abstract. We define and investigate the computational complexity of

the query containment problem for data that support both uncertainty

and lineage. Query containment depends on the definition of database

containment which, for traditional databases, is defined as a simple set
containment for each relation. As this is not the case in the presence of

uncertainty and lineage, we revisit the notion of database containment

and define various kinds of it that may be natural in different practical

situations. We investigate conjunctive query containment for the various

kinds of query containment that we introduce.

Key words: Uncertainty, Lineage, Query Containment

1 Introduction

Uncertain data appears in many modern applications including information ex-
traction from the web, bio-informatics, scientific databases, entity resolution
and sensors. Those and many other applications also require keeping track of
the derivation of data, called provenance or lineage. There has been a lot of
recent research that considers systems managing data with uncertainty [1, 8,
16, 19, 21], systems managing data with lineage tracking [10, 11, 14, 15, 18] and
systems that combine data with uncertainty and lineage [9]. Semantics and algo-
rithms for computing queries have been defined in those systems. To the best of
our knowledge the problem of query containment has not been considered for a
database system that handles uncertain data and also supports lineage tracking.
We are going to investigate different kinds of query containment for the ULDB
(Uncertainty Lineage DataBase) data model [9] that will be based on different
semantics of database containment for this model.

The problem of query containment arises in many important database ap-
plications like query optimization [5], data integration, query answering using
views [3, 4, 22], data exchange and data warehousing. One of the reasons that the
ULDB model was introduced was because it would be important in data inte-
gration and data exchange settings. In addition query optimization is recognized
as one of the important open problems of the Trio system. It is already known
from ordinary databases that both these problems rely on query containment.

A database query Q defines a mapping from databases to databases. A query
Q1 is said to be contained in a query Q2 if for every database D, database

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

67

Q1(D) is contained in database Q2(D). For ordinary databases, a database D1

is contained in a database D2 if the tuples of every relation in D1 are contained
in the corresponding relation of D2 as a set. A relation of an uncertain database
however semantically is not a set; it represents a set of possible instances - PIs
(that have no uncertainty). The answer of a query over an uncertain database is
a new uncertain database. Thus, when moving to ULDBs or even to uncertain
databases without lineage, the set containment between answers of queries no
longer applies.

On the ULDB model a database consists of uncertain tuples. An uncertain
tuple called x-tuple consists of a bag of tuples called alternatives. At most one
of those alternatives can exist in a possible instance. In particular, apart from
their data, alternatives also consist of: i) a unique identifier and ii) a lineage
function that connects them to other alternatives through the set of their unique
identifiers. As a result, ULDB database containment should not only consider
data containment and it should also be based on the possible instances of a
ULDB. Query containment between queries Q1 and Q2 will be based on ULDB
database containment between the ULDB relations that are the answers of the
two queries.

In this paper we start our investigation with considering various kinds of
ULDB database containment. For each type of ULDB database containment we
define corresponding kinds of ULDB query containment, give conjunctive query
containment test and study its complexity. We also investigate in which cases
each kind of containment is more suitable. In Figure 1 we list the various kinds
of containment and show the relation between them. We will refer in Figure 1
in more detail in section 7, where we will also discuss that conjunctive query
(CQ) equivalence for ULDB databases can result as both ways containment for
the three last semantics in the figure. Even though the database semantics for
those kinds of containment are different it will turn out that some of them are
equivalent for conjunctive query containment. In [7] another notion of contain-
ment has been defined for uncertain databases without lineage. It was defined
in order to be suitable for data integration purposes. We prove which conditions
should hold for query containment under this kind as well.

The need for defining database containment in the presence of uncertainty
and/or lineage has been noticed in [7], [9]. For databases with lineage, contain-
ment has been defined in various works: In [9] for the model of LDBs (Lineage
DataBases) and in [17] for various kinds of semirings. In [17] database contain-
ment for databases with lineage is also used to study the complexity of computing
conjunctive queries. In [20] query equivalence and containment is investigated
for probabilistic data.

One obvious kind of ULDB containment is based on the LDB containment
defined on Trio which requires the containment of lineage in the transitive clo-
sure of lineage of the containing relation (Semantics #3 in Figure 1). We show
why this kind of ULDB containment may be inappropriate for some cases. Hence
we relax this definition and yield a new kind of LDB containment (Data Con-
tainment) that requires the set containment of data of every possible instance

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

68

of a ULDB (Semantics #1 in Figure 1). Further we define two kinds of database
containment that take into account only base lineage (lineage extended and refer-
ring only to alternatives with empty lineage, called base alternatives). The first
kind requires containing base lineage (Semantics #2) and the second (Semantics
#4 - also discussed and used in [6] in the context of Data Exchange) requires
same base lineage of the data that is contained between two databases. The fifth
database containment semantics will require the containment of all data and
lineage, not only base (Semantics #5).

Query containment for ordinary databases is known to be NP-complete for
conjunctive queries [12]. A ULDB represents a set of possible instances that
are LDBs and whose number can be exponential to its size. In addition lineage
imposes complex logical formulas to alternatives that can be true on each possible
instance. Furthermore a possible instance is an LDB and contains a bag of tuples
(if they have different lineage). Query containment under bag semantics for CQs
is known to be Π

p
2
-hard [2, 13]. So we would expect ULDB query containment

to be harder than ordinary set or bag query containment. In contrast we show
that ULDB query containment is NP-complete, for all the different kinds of
containment which we study.

Semantics Features
Implies CQ Containment

DB cont. Test

1 Data
Set Contained

−
Containment

Data Mapping

2 CBase-Lineage
Contained

1
Containment

Base Lineage Mapping

3 TR-Lineage

Contained

1 Onto Mapping
Transitive

Closure of

Lineage

4 SBase-Lineage
Same

1,2 Onto Mapping
Base Lineage

5 Same-Lineage Same Lineage 1,2,3,4 Onto Mapping

Fig. 1. Comparison of Different Semantics

2 Running Example and the ULDB Data Model

In this section we present a motivating example illustrating the need of defining
new kinds of database containment, suitable for query containment. Through
this example we will also quickly explain the Trio ULDB model.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

69

Basic notions of the ULBD model illustrated through a ULDB in-
stance: An uncertain database with lineage (ULDB) represents a set of possible
instances which are databases with lineage (for more detailed definitions see [9]).

Consider an uncertain database with lineage (ULDB) U containing informa-
tion about names of persons who drive cars, stored in relation Drives(name,car)
and about names of witnesses that saw a car near a crime-scene, stored in re-
lation Saw(witness,car)1. Data in Drives contain uncertainty (e.g., due to
unclear writing). Suppose we have uncertainty whether John drives a Honda

or a Mazda car. In the ULDB model this kind of uncertainty is represented
through x-tuples. In general an x-tuple is a bag of ordinary tuples which we call
alternatives and we separate them with symbol ‘||’. The semantics of alternatives
in x-tuples are that at most one of them can be true in a possible instance (PI).
If we can have a possible instance that selects none of the alternatives of an
x-tuple, then we annotate this x-tuple with ‘?’ symbol. Figure 2 depicts the two
relations Drives and Saw in our running example. We have an x-tuple with two
alternatives (John,Honda) and (John,Mazda), whereas we are sure that Kate

drives a Honda and a Toyota car. Data in relation Saw have also uncertainty.
But they have also lineage: Suppose that Cathy said that she is certain that she
saw John driving the car. As a result if John drives a Honda then Cathy saw a
Honda. We encode this relation through lineage: e.g., the lineage of alternative
(Cathy,Honda) will contain alternative (John,Honda).

In order to succinctly represent lineage connections between alternatives we
attach to each x-tuple a unique identifier. For example, in Figure 2, x-tuple
(John,Honda)||(John,Mazda) in Drives has identifier 11. If the identifier of
an x-tuple is i, then we refer to its j-th alternative with an alternative identifier
which will be a pair (i, j). We represent the lineage connection between alterna-
tives (Cathy,Honda) and (John,Honda) with a lineage function λ that connects
alternative identifiers to sets of alternative identifiers, e.g.,: λ(21, 1) = {(11, 1)}.
Base data of a ULDB instance consists of all data that have empty lineage. If
two alternatives point, maybe after many lineage steps, to the same set of base
data we say that they have the same base lineage.

Possible Instances (PI) of a ULDB: We note that lineage does not just
track where data comes from, but also poses logical restrictions to the possible
LDB instances that a ULDB represents. An alternative of an x-tuple in the
answer of a conjunctive query can be true in a possible instance if and only if all
the alternatives in its lineage also appear in this possible instance. x-tuples with
non-empty lineage do not alter the number of possible instances; this number is
determined solely from base data. In our example U has two possible instances:
one for each possible alternative selection of x-tuple 11.

Computing Queries over ULDBs: Until now lineage was used to logically
connect alternatives in the answer of a query to alternatives that produced this

1 The general setting of our example is similar to the running example found in [9].

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

70

ID Drives(name,car)

11 John,Honda || John,Mazda

12 Kate,Honda

13 Kate,Toyota

ID Saw(witness,car)

21 Cathy,Honda || Cathy,Mazda

22 Amy,Mazda

λ(21, 1) = {(11, 1)}
λ(21, 2) = {(11, 2)}

Fig. 2. Running Example: ULDB U

ID RQ1

31 John || John

32 John ‘?’

33 Kate ‘?’

λ(31, 1) = {(11, 1), (21, 1)}
λ(31, 2) = {(11, 2), (21, 2)}
λ(32, 1) = {(11, 2), (22, 1)}
λ(33, 1) = {(12, 1), (21, 1)}

Fig. 3. ULDB Relation RQ1
for:

Q1(x) : −Drives(x, y), Saw(z, y)

ID RQ2

41 John || John

42 Kate

43 Kate

λ(41, 1) = {(11, 1)}
λ(41, 2) = {(11, 2)}
λ(42, 1) = {(12, 1)}
λ(43, 1) = {(13, 1)}

Fig. 4. ULDB Relation RQ2
for:

Q2(x) : −Drives(x, y)

answer. In our example we extend lineage’s use in expressing logical connections
between data that is known to be related (for example, in Figure 2 the lineage
of alternative (21, 1) is (11, 1)). Suppose we perform a natural join of Drives
and Saw over common attribute car and a projection of attribute name on
the result. Conjunctive query Q1(x) : −Drives(x, y), Saw(z, y) performs this
operation. Intuitively Q1 will return the names of suspects, i.e., persons who
drive a car that was seen near the crime-scene. The result of computing Q1 over
ULDB U is a new ULDB Q1(U) that includes ULDB relations Saw and Drives

of U and a new ULDB relation RQ1
which is shown in Figure 3. The semantics

of Q1(U) are that its possible instances should be the same with the possible
instances we would have if we first considered the possible instances of U and
computed Q1 over each one of them.

ID Drives(name,car)

11,2 John,Mazda

12,1 Kate,Honda

13,1 Kate,Toyota

ID Saw(witness,car)

21,2 Cathy,Mazda

22,1 Amy,Mazda

λ(21, 2) = {(11, 2)}

Fig. 5. D1: One Possible Instance of ULDB U

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

71

One of the two possible instances of ULDB U is shown in Figure 5. The cor-
responding possible instance D11 of Q1(U) consists of this LDB possible instance
of U along with LDB relation DQ11 shown in Figure 6, which is the correspond-
ing possible instance of relation RQ1

. Note that a possible instance of a ULDB
is an LDB, so it does not have uncertainty (no alternatives separated with ||),
but only ordinary tuples with unique tuple identifiers and lineage. Since we have
no alternatives, LDB tuples are always present and their unique identifiers can
be single numbers and not pairs. For uniformity in the LDB possible instances
of our ULDBs we use alternative identifier pairs to identify a tuple.

ID RQ1

31,2 John

32,1 John

λ(31, 1) = {(11, 2), (21, 2)}
λ(32, 1) = {(11, 2), (22, 1)}

Fig. 6. DQ11: One Possible In-

stance of ULDB relation RQ1
for:

Q1(x) : −Drives(x, y), Saw(z, y)

ID RQ2

41,2 John

42,1 Kate

43,1 Kate

λ(41, 2) = {(11, 2)}
λ(42, 1) = {(12, 1)}
λ(43, 1) = {(13, 1)}

Fig. 7. DQ21: Corresponding Pos-

sible Instance of ULDB relation

RQ2
for: Q2(x) : −Drives(x, y)

Non TR-lineage query containment: As we mentioned we define first vari-
ants for ULDB database containment and then we base our variants for query
containment on these definitions. It turns out that, for conjunctive queries our
variants fall in only two classes, where the semantics in each class are shown to
be CQ-containment equivalent, in that if two CQs are contained in each other
according to one semantics in the class, then they are also contained according
to the other semantics in the same class. Hence, the question arises whether the
two classes have a meaningful distinction wrto CQ query containment. In this
subsection, we take the TR-Lineage semantics, the Data and CBase containment
semantics and show that the last two may be more desirable in certain situations.

Consider a second query Q2(x) : −Drives(x, y). The possible instance DQ21

of relation RQ2
(shown in Figure 4) that refers to the same possible instance

with DQ11 is the LDB DQ21 shown in Figure 7. The answer of Q2 will return
the names of persons who drive a car (not only of suspects). On the other hand
a suspect’s name which will be in the answer of Q1 should drive a car in order
to appear in the answer of Q1. According to the semantics of computing queries
over a ULDB a suspect’s name appears as driving a car in relation Drives and
hence in the answer of Q2 in every possible instance where this name appears
as a suspect in the answer of Q1.

Now we also consider another kind of containment that is based on base
lineage. In our example the instances of relations RQ1 and RQ2 (shown in Figures

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

72

6,7), referring to the possible instance which selects (11, 2) from the base data,
both contain a tuple with data John. This is true because there exists tuples
John in both instances that also have base lineage pointing to (11, 2), even
though the base lineage of the contained RQ1 also includes (22, 1).

Hence it is natural to define ULDB containment by requiring data contain-
ment in the possible instances, a notion which we adopt in Semantics #1, or by
requiring set containment of the base lineage from the containing to the con-
tained database, a notion which we adopt in Semantics #2. Observe that if we
adopt the definition of Trio’s LDB TR-containment (presented in Section 5) we
will have that Q1 ⊆TR Q2 does not hold. The reason is that Trio LDB contain-
ment requires the containment of all lineage (not only base) of the contained
relation through the transitive closure of lineage of the containing relation.

3 Preliminaries

Definition 1 (LDB tuple). A tuple tLDB of an LDB D = (R̄, S, λ) consists of
three things: i) its data t which belongs to the set of relations R̄ , ii) its identifier
symbol denoted as ID(t) and belonging to the set S of symbols and iii) its lineage
λ(ID(t)) (belonging to λ) which associates it with the set of the identifiers of
tuples from which it is derived. Thus tLDB is a triple

(
ID(t), t, λ(ID(t))

)
.

Note that the lineage λ is a function from the set S of symbols/identifiers to the
powerset of S. When a tuple’s identifier is clear from the context, we may abuse
the above notation and refer to an LDB tuple only with its identifier ID (i.e.,
denote its lineage as λ(ID)). Alternatively, we may say that we want to have an
LDB tuple with data t and lineage λ(t) present in our database, when confusion
does not arise.

A ULDB is an LDB with uncertainty. So again it will contain a lineage
function λ and identifier symbols belonging to a set S. The difference is that
instead of ordinary tuples it will consist of x-tuples and its identifiers will also
refer to alternatives.

A conjunctive query (CQ) over a schema R̄ is an expression of the form
Q(x̄):-φ(x̄, ȳ), where Q(x̄) is called the head and φ(x̄, ȳ) is called the body of the
query. The body φ(x̄, ȳ) is a conjunction of atomic formulas that are also called
subgoals of the query. Let Q, Q′ be conjunctive queries, and let h be a mapping
from variables and constants of Q′ to variables and constants of Q such that h is
the identity for constants. We say that h is a containment mapping from Q′ to
Q if h(head(Q′)) = head(Q) and every atom in the body of Q′ is mapped to an
atom of the body of Q with the same predicate. A containment mapping from
Q′ to Q is subgoal-onto if we additionally have that the set of images of all the
subgoals of Q′ contains every subgoal of the body of Q.

Algorithm 1 (Computing CQs over LDBs) [6, 9]
Suppose that Q is a conjunctive query and D is an LDB. Then the following
holds: The answer of query Q posed on D is the LDB Q(D) that we get when

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

73

we take all the LDB relations of D and add to them an LDB relation RQ which
will have: 1) tuples with data that we get from the head of Q when we substitute
constants for variables in the body of Q and require that all subgoals become a
tuple of D, and 2) lineage the union of the identifiers of all tuples that are the
images of the subgoals of the body of Q in step 1. We attach to each such tuple
in RQ a new unique identifier.

A ULDB represents a set of possible instances that are LDBs. Thus, our defi-
nition of when two ULDB databases are contained in each other depends on a
variant (⊆L) of LDB database containment. (We will define various variants of
LDB containment in the subsequent sections.)

Definition 2 (ULDB Database Containment ⊆L). Let ⊆L denote a variant
of LDB containment. Let U and U ′ be two ULDB’s. We say that U is L-contained
in U ′ (denoted with ⊆L) if: i) for every possible instance Di of U there exists
a possible instance D′

j of U ′ such that: Di ⊆L D′

j and ii) for every possible
instance D′

j of U ′ there exists a possible instance Di of U such that: Di ⊆L D′

j.

Definition 3 (ULDB Query Containment). Let ⊆L denote a variant of
LDB containment. A conjunctive query Q1 is ULDB contained in a conjunctive
query Q2 if for every ULDB U we have that: Q1(U) ⊆L Q2(U).

4 Semantics #1 (Data containment - ⊆Data) and

Semantics #2 (Contained Base Lineage - ⊆CBase)

As we saw on Definition 1 an LDB tuple tLDB has a “data part” (a tuple t),
a unique identifier and a lineage function that connects it to other LDB tuples
through their identifiers. So it is natural to define LDB containment considering
not only data, but lineage as well.

It is natural for ULDB query containment between two queries Q and Q′ to
require that for every ULDB U , we will have that if a tuple with data t exists
in relation RQ of a possible instance of Q(U) then a tuple with same data t will
also exist in relation RQ′ in the corresponding possible instance of Q′(U). Our
first Semantics of Data containment will be based on this notion.

Suppose there is a relation in U such that none of its tuple identifiers appears
in the lineage of some tuple of U . Let S′ be the set of identifiers in all tuples in
this relation. We denote by S− those symbols of S that are in S but are not in
S′ 2. If there is no such relation then S− = S.

According to Definition 3 ULDB query containment relies on semantics for
LDB database containment. So our second CBase Semantics for LDB contain-
ment will be based on the notion of contained base lineage. This kind of LDB
containment is also natural to define as we discussed in our running example
in section 2. The formal definitions for those first two kinds of LDB database
containment are:

2 This a technicality to enable meaningful query containment definition.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

74

Definition 4 (Data LDB Containment ⊆Data). Let D = (R̄, S, λ) and D′ =
(R̄′, S′, λ′) be two LDBs, where R̄ and R̄′ have the same schemas. We say that
D is Data LDB-contained in D′ (denoted as D ⊆Data D′), if:
1. S− ⊆ S′

−
.

2. For every relation Ri ∈ D and its corresponding R′

i ∈ D′ the following holds:
if t ∈ Ri then there exists a tuple with data t in R′

i.

The above definition concerns only data. The other four semantics of database
containment will concern lineage restrictions as well, hence they will also include
a lineage condition CONDi, i = 2 . . . 5. Thus, we will define each of these four
semantics by the same definition as above with the only modification that we
add CONDi in the end of clause (2) of Definition 4. Note that for Semantics
#1 (Definition 4) COND1 is empty.

With λB we denote base lineage. For Contained Base Lineage Containment,
this condition, COND2, will be the following (and accordingly the definition):

Definition 5 (Contained Base Lineage (CBase-lineage) LDB Contain-
ment ⊆CBase). The additional condition is:

COND2 : λ′

B(t) ⊆ λB(t).

I.e., for CBase-lineage LDB database containment, we require also that the base
lineage of tuple t in R′

i is contained in the base lineage of tuple t in Ri.
It turns out that for ULDB conjunctive query computing purposes the query

containment test for the above two notions is the same. This is reasonable if we
remember that the possible instances of a uncertain database depend on the base
lineage. Since all of our five definitions are based on Definition 3 which reasons
on possible instances, it is expected that even in semantics #1 the lineage will
affect database containment. This result also holds for LDBs, since an LDB can
be thought as a ULDB with only one alternative on each x-tuple (and itself as its
single possible instance). We have that Data and CBase-lineage ULDB database
and query containment definitions follow from general Definitions 2 and 3 if we
replace ⊆L with ⊆Data and ⊆CBase.

Theorem 1. Suppose that Q1 and Q2 are two conjunctive queries. Then the
following are equivalent:
i) Q1 ⊆Data Q2.

ii) Q1 ⊆CBase Q2.

iii) there exists a containment mapping h: Q2 → Q1 (not necessarily onto).

In [12] it was shown that checking for the existence of a containment mapping
between two conjunctive queries is NP-complete. Hence we have:

Corollary 1. Suppose that Q1 and Q2 are two conjunctive queries. Then the fol-
lowing holds: Checking whether Q1 ⊆Data Q2 or Q1 ⊆CBase Q2 is NP-complete.

Example 1. It is now easy to check that in our running Example of section 2 we
have that Q1 is CBase-lineage and Data Query contained in Q2 as we intuitively
expected.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

75

5 Semantics #3: Trio/Transitive Closure of Lineage

Containment (TR-lineage - ⊆TR).

Consider Q1 and Q2 from the running example of section 2. Then Q1(U) is the
union of ULDB relations shown in Figures 2 and 3 and Q2(U) is the union of
ULDB relations shown in Figures 2 and 4. Database Q1(U) is CBase contained
in Q2(U). However Q2(U) contains less information because, e.g., alternative
(41, 1) with data John is derived only from relation Saw while its corresponding
(31, 1) is derived from both relations Saw and Drives. Let us suppose that we
can additionally have that an answer is more reliable if it is based on a testimony
from a witness. Then alternative (41, 1) will not be reliable (and the system might
delete it) in contrast with (31, 1). If less reliable answers are deleted then even
the set containment of data between corresponding possible instances will not
anymore hold. We need to “retain” all lineage of the contained database through
the transitive closure of lineage of the containing database. This kind of LDB
database containment was defined in [9]. With λ∗(t) we denote the transitive
closure of lineage λ(t).

Definition 6 (Trio-Transitive Closure-Lineage (TR-lineage) LDB Con-
tainment ⊆TR). [9]

3 The additional condition is:

COND3 : λ(t) ⊆ λ′∗(t).

Intuitively all LDB tuples of D also appear in D′ with same data and same tuple
identifier. In addition all the lineage information between LDB tuples of D is
also retained through the transitive closure of D′’s lineage.

In Figure 8 we see an example of TR-lineage LDB containment (for clarity,
lineage is represented through arrows). It is easy to check that D ⊆TR D′. We
note that ⊆TR is not a partial order on LDBs. For example consider Figure 9,
where we have both D ⊆TR D′ and D′ ⊆TR D, but the lineage functions of D
and D′ are not equal (for example we have 11 ∈ λ′(31) while 11 �∈ λ(31)). On the
other hand we can have same base lineage but non TR-lineage LDB database
containment, as we see in Figure 10. A notion of containment based on exactly
the same base lineage will be considered in the following section.

Theorem 2. Given two conjunctive queries Q1 and Q2 we have that Q1 ⊆TR

Q2 iff there exists a subgoal-onto containment mapping h: Q2 → Q1.

In [13] it was shown that checking for a subgoal-onto containment mapping
between two conjunctive queries is NP-complete. Hence from the above theorem
we have:

Corollary 2. Suppose that Q1 and Q2 are two conjunctive queries. Then the
following holds: Checking whether Q1 ⊆TR Q2 is NP-complete.

3 In Trio same tuple identifier was required but we relax this too restricted definition.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

76

t
1

t
2

R
1

R’
1

R’2

t
1

t
3

t
2

R 2

11 21

11

12

21

D’:

D:

Fig. 8. Example

of TR-lineage

LDB contain-

ment D ⊆TR D′.

t
1

R’
1

R’2

t
1 t

2

t
3

t
3

R’3

t
2

R 2
R

1
R 3

11

11 21

D’:

D:

31

31

21

Fig. 9. Example of

D ⊆TR D′ and

D′ ⊆TR D.

t
1

R’
1

R’2

t
1 t

2

t
3

t
3

R’3

t
2

R 2 R 3R
1

11

11 21

D’:

D:

31

31

21

Fig. 10. Example of non

TR-lineage LDB contain-

ment (D �⊆TR D′) but

same base lineage.

6 Semantics #4 (Same Base Lineage - ⊆SBase) and

Semantics #5 (Same Lineage Containment - ⊆Same).

Consider the example of Figure 10 of the previous section. Tuples 21 and 31 have
the same base lineage (tuple with id 11) in both D and D′, and all data of D
appears in corresponding relations in D′ with same identifiers. But D �⊆TR D′.
The reason is that the fact that 31 comes from 21 (λ(31) = 21) is not retained in
D′, even if we compute the transitive closure of λ′(31). Suppose that we consider
reliable only the information resulting from tuple 11 and no other “source”, i.e.,
no other base tuple. Then the information about the connection between tuples
31 and 21 (which is non base) will not be important and we intuitively should
have database containment between D and D′ because tuples with data t3 are
considered reliable in both databases. On the other hand the fact that both t3
tuples have 11 as base lineage should not be ignored.

In situations like this it is natural to require for the data of D to be included
in the dataD′ with exactly the same base lineage. Such a condition is also impor-
tant in ULDB data exchange purposes, for containment of certain answers [6].
The SBase-lineage semantics captures this situation by making sure that our
tuples in the containing relation do not come from any unreliable “source”. We
have the following definition for SBase-lineage LDB database containment:

Definition 7 (Same Base-Lineage (SBase-lineage) LDB Containment
⊆SBase). The additional condition is:

COND4 : λ′

B(t) = λB(t).

The more strict kind of containment is requiring data containment with ex-
actly the same lineage (not only base). It is important in cases where we want
to retain all the lineage and not only the base one, like in TR-lineage contain-
ment, and also where we additionally do not want to have lineage connections
to a tuple from a base tuple that exists only in the containing relation, like in
SBase-lineage. We have the following definition:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

77

Definition 8 (Same-Lineage LDB Containment ⊆Same). The additional
condition is:

COND5 : λ′(t) = λ(t).

It turns out that SBase-lineage conjunctive query containment holds between
two CQs Q1 and Q2 if and only if there exists an onto containment mapping
from Q2 to Q1, like in TR-lineage CQ containment. The same holds also for
Same-lineage CQ containment. It is formally stated in the following theorem:

Theorem 3. Given two conjunctive queries Q1 and Q2 we have: 1. The follow-
ing are equivalent: i) Q1 ⊆SBase Q2, ii) Q1 ⊆Same Q2 and iii) there exists an
onto containment mapping h: Q2 → Q1.
2. Checking whether Q1 ⊆SBase Q2 or Q1 ⊆Same Q2 is NP-Complete.

SBase-lineage containment for LDBs is equivalent with the Why-semiring con-
tainment that is defined in [17] for databases with lineage, where it was shown
that Why-semiring CQ containment between two CQs Q1 and Q2 holds iff there
exists an onto containment from Q2 to Q1.

7 Comparison between Different Semantics

R’
1

t
1

t
312

21

R’2

t
2

11

t
1

t
2

R
1 R 2

t
312

2111

D:

D’:

Fig. 11.

D ⊆CBase D′

D �⊆SBase D′

t
1

t
2

R
1

R’
1

R’2

t
1

t
3

t
2

R 2

11 21

11

12

21

D’:

D:

Fig. 12.

D ⊆Data D′

D ⊆TR D′

D �⊆CBase D′

D �⊆SBase D′

D �⊆Same D′

t
1

R’
1

R’2

t
1 t

2

t
3

t
3

R’3

t
2

R 2
R

1
R 3

11

11 21

D’:

D:

31

31

21

Fig. 13.

D ⊆Data D′

D ⊆CBase D′

D ⊆SBase D′

D �⊆TR D′

D �⊆Same D′

In Figure 1 of the Introduction we have a comparison of the five notions
of containment that we defined. Column Implies DB cont. shows implications
between different kinds of database containment. For example if a ULDB or
LDB database is contained in another under Semantics #4, then it will be con-
tained under Semantics #1 and #2 as well. These implications between different
database containment semantics are easy to check from their definitions. For

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

78

negative implication results we give counter-examples: In Figure 12 we have an
example of Data containment and TR-lineage containment between databases
(LDBs) D and D′, but with non CBase database containment (due to the fact
that λB(21) = 12 of D′ is not retained in D - note that for CBase the lineage
containment goes from the containing to the contained database). For the same
reason we do not have same base lineage nor same lineage between D (where
λB(11) = {12}) and D′ (where λB(11) = {11, 12}) . In Figure 11 we have an
example of CBase-lineage database LDB containment. Note that D ⊆CBase D′

in Figure 11 because the base lineage of 21 in D′ is 11 which is a subset of the
base lineage of 21 in D. But in the same figure we do not have SBase-lineage
database containment between D and D′ due to the fact that the connection:
12 ∈ λB(21) of D is not retained in D′. Lastly in Figure 13 we see an example
of Data, CBase-lineage and SBase-lineage LDB database containment but with
non TR-lineage nor Same-lineage containment, due to the fact that non-base
lineage connection λ(31) = {21} of D is not retained in D′. Note that these
positive and negative results of database containment implications hold for both
LDBs and ULDBs.

7.1 CQ Query Equivalence

It is easy to show that two conjunctive queries are equivalent in that they com-
pute the same answer in all ULDB databases iff they are isomorphic. Since
however there is not a unique representation for ULDBs, we need to clarify that
by the “same” answer we mean two databases with the same possible instances
(up to identifier renaming). Hence it is an interesting observation that the three
last semantics in Figure 1 (for query containment) can be used to define CQ
query equivalence as both ways containment.

8 Semantics #6: Uncertain Equality containment - ⊆E.

In [7] a new kind of containment for uncertain databases with no lineage was
discussed that was suitable for uncertain data integration purposes. An uncertain
database (with no lineage) is defined as a set of ordinary databases called Possible
Worlds (PWs) (in convention we use the notion Possible Worlds whenever we
have no lineage and we retain the notion of Possible Instances in the case with
lineage). The definition of equality containment is the following:

Definition 9 (Equality Containment ⊆E). [7]
Consider two uncertain databases U1 and U2. Let T(U1) denote the set of all
tuples appearing in any possible world of U1 and respectively we define T (U2). We
say that U1 is equality-contained in U2 (U1 ⊆E U2), if and only if: T (U1) ⊆ T (U2)
and PW (U1) = {W ∩ T (U1) | W ∈ PW (U2)}.

Informally the above containment means that if we throw away from the possible
worlds of U2 all tuples that do not appear in any possible world of U1, then
the resulting possible worlds are the worlds of U1. The notions of database

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

79

containment we defined in the previous sections were data-driven: all kinds of
them implied set containment of data (Semantics # 1). In contrast the notion
of equality containment focuses on retaining correlation and mutual exclusion
between data: if two tuples in the contained database occur only in different
worlds then no containing world can include both of them. In addition if two
tuples occur only together in a possible world of the contained database then
any containing world that has one of them must have the other as well.

Now consider an uncertain database U that is a set of n ordinary databases
that are its possible worlds. Posing a query Q over it will give a new uncertain
relation with n possible worlds, each containing the answer of Q over the pos-
sible worlds of U . We have that even an onto containment between two CQs,
which yielded the stronger same-lineage CQ containment does not suffice for
equality containment. This is not surprising since the notion of equality con-
tainment does not focus on data containment like the ones we presented. For
example consider an uncertain database U containing the uncertain relation
R = {{(a, a)}, {(b, b)}, {(a, b), (b, a)}}, where a and b are two different constants.
Consider CQ Q1(x):−R(x, x) and Q2(x):−R(x, y). Then Q1(U) = { {a}, {b}, ∅ }
and Q2(U) = { {a}, {b}, {a, b} }. If we restrict the third possible world of Q2(U)
to the tuples {a, b} that occur in Q1(U) then the resulting world which has both
those tuples is not a possible world of Q1(U). Hence Q1(U) is not equality con-
tained in Q2(U). On the other hand it is easy to check that there exists an onto
containment mapping from Q2 to Q1. We now state the following Theorem:

Theorem 4. Given two conjunctive queries Q1 and Q2 we have that Q1 ⊆E Q2

iff there exists a containment mapping h: Q2 → Q1 and a containment mapping
h′: Q1 → Q2. In addition checking whether Q1 ⊆E Q2 is NP-complete.

9 Conclusion

We have introduced several variants of ULDB database containment and cor-
responding variants of query containment. We have shown that the variants of
ULDB database containment are all different. We studied the exact interrelation-
ship among them as concerns implication (column Implies DB cont. in Figure
1). Specifically we showed for which pairs of variants the fact that database D1

is contained in database D2 in this variant implies also that database D1 is
contained in database D2 in the other variant. For the pairs of variants that we
have not shown implication we showed with examples that implication does not
exist.

However, when we investigated conjunctive query containment we showed
that the various variants can be partitioned in two classes that are CQ query
containment equivalent. We finally observed that CQ query equivalence can be
defined as both ways query containment for one of these classes.

On another perspective database containment was defined in [7] for uncertain
databases without lineage. We also investigated CQ query containment under
this definition. Various open problems remain, starting with finding the com-
plexity of ULDB database containment for the various kinds of containment we

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

80

have defined here. Another question is how query optimization techniques can
benefit from this investigation of query containment.

References

1. S. Abiteboul, P. C. Kanellakis, and G. Grahne. On the representation and querying

of sets of possible worlds. Theor. Comput. Sci., 78(1):158–187, 1991.
2. F. N. Afrati, M. Damigos, and M. Gergatsoulis. Query containment under bag and

bag-set semantics. Inf. Process. Lett., 110(10):360–369, 2010.
3. F. N. Afrati and N. Kiourtis. Computing certain answers in the presence of de-

pendencies. Inf. Syst., 35(2):149–169, 2010.
4. F. N. Afrati, C. Li, and P. Mitra. Rewriting queries using views in the presence of

arithmetic comparisons. Theor. Comput. Sci., 368(1-2):88–123, 2006.
5. F. N. Afrati, C. Li, and J. D. Ullman. Using views to generate efficient evaluation

plans for queries. J. Comput. Syst. Sci., 73(5):703–724, 2007.
6. F. N. Afrati and A. Vasilakopoulos. Managing lineage and uncertainty under a

data exchange setting. In Scalable Uncertainty Management 2010 (SUM 2010).
7. P. Agrawal, A. D. Sarma, J. Ullman, and J. Widom. Foundations of uncertain-data

integration. In VLDB 2010.
8. D. Barbará, H. Garcia-Molina, and D. Porter. The management of probabilistic

data. IEEE Trans. Knowl. Data Eng., 4(5):487–502, 1992.
9. O. Benjelloun, A. D. Sarma, A. Y. Halevy, M. Theobald, and J. Widom. Databases

with uncertainty and lineage. VLDB J., 17(2):243–264, 2008.
10. P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of

data provenance. In ICDT, pages 316–330, 2001.
11. P. Buneman and W. C. Tan. Provenance in databases. In SIGMOD Conference,

pages 1171–1173, 2007.

12. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In STOC, pages 77–90, 1977.
13. S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive queries. In PODS,

pages 59–70, 1993.

14. Y. Cui and J. Widom. Practical lineage tracing in data warehouses. In ICDE,
pages 367–378, 2000.

15. Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.

VLDB J., 12(1):41–58, 2003.
16. N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.

In VLDB, pages 864–875, 2004.
17. T. J. Green. Containment of conjunctive queries on annotated relations. In ICDT,

pages 296–309, 2009.

18. T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,
pages 31–40, 2007.

19. T. Imielinski and W. Lipski Jr. Incomplete information in relational databases. J.
ACM, 31(4):761–791, 1984.

20. L. V. S. Lakshmanan, N. Leone, R. B. Ross, and V. S. Subrahmanian. Probview: A

flexible probabilistic database system. ACM Trans. Database Syst., 22(3):419–469,
1997.

21. A. D. Sarma, J. D. Ullman, and J. Widom. Schema design for uncertain databases.

In AMW, 2009.

22. J. D. Ullman. Information integration using logical views. In ICDT, pages 19–40,

1997.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

81

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

82

Dissociation and Propagation for Efficient Query
Evaluation over Probabilistic Databases

Wolfgang Gatterbauer, Abhay K. Jha, Dan Suciu

University of Washington, Seattle WA
{gatter,abhaykj,suciu}@cs.washington.edu

Abstract. Queries over probabilistic databases are either safe, in which
case they can be evaluated entirely in a relational database engine, or
unsafe, in which case they need to be evaluated with a general-purpose
inference engine at a high cost. We propose a new approach by which
every query is evaluated inside the database engine, by using a new
method called dissociation. A dissociated query is obtained by adding
extraneous variables to some atoms until the query becomes safe. We
show that the probability of the original query and that of the dissoci-
ated query correspond to two well-known scoring functions on graphs,
namely graph reliability (which is #P-hard), and the propagation score
(which is related to PageRank and is in PTIME): When restricted to
graphs, standard query probability is graph reliability, while the dissoci-
ated probability is the propagation score. We define a propagation score
for self-join-free conjunctive queries and prove that it is always an up-
per bound for query reliability, and that both scores coincide for all safe
queries. Given the widespread and successful use of graph propagation
methods in practice, we argue for the dissociation method as a highly ef-
ficient way to rank probabilistic query results, especially for those queries
which are highly intractable for exact probabilistic inference.

1 Introduction

Evaluating queries over probabilistic databases (PDBs) is hard in general. De-
spite important recent advances [15,20], today’s approaches to query evaluation
are not practical. Existing techniques either split the queries into safe and un-
safe and compute efficiently only the former [8,19], or work very well on certain
combinations of queries and data instances but can not offer performance guar-
antees in general [15,18], or use general purpose approximation techniques and
are thus generally slow [14,23]. In this paper, we propose a new approach to
evaluate queries over tuple-independent probabilistic databases by which every
query can be evaluated efficiently. We achieve this by replacing the standard
semantics based on reliability, with a related but much more efficient semantics
based on propagation.

The semantics of a query over a PDB is based on reliability [12], which has
roots in network reliability [6]. It is defined as the probability that a source node
remains connected to a target node in a directed graph if edges fail independently

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

83

p5

p4
p3

p2
p1

a
b

c

s t

(a)

q :−R(s, x), S(x, y), T (y, t)
R C A

p1 s a

S A B

p2 a b
p3 a c

T B C

p4 b t
p5 c t

(b)

a′ c

s t

b
p5

p4
p2

p1

p1

p3

a′′

(c)

q′ :−R(s, x, y), S(x, y), T (y, t)
R C A B

p1 s a b
p1 s a c

S A B

p2 a b
p3 a c

T B C

p4 b t
p5 c t

(d)

Fig. 1. The propagation score ρ(t) in graph (a) corresponds to the reliability score
r(t) in graph (c) with node a dissociated into a′ and a′′. (b,d): Corresponding
chain queries q and q′ with respective database instances.

with known probabilities. Computing network reliability is #P-hard. However,
many successful practical applications use a semantics different from reliability,
based on a propagation scheme. We illustrate with an example.

Example 1 (Propagation in k-partite digraphs). Consider the 4-partite
graph in Fig. 1a in which each edge i is present with independent probability pi.
The reliability score r(x) of a node x is the probability that the source node s
is connected to the node x in a randomly chosen subgraph with edges directed
left-to-right. The score of interest is the reliability of a target node t:

r(t) = p1(1−(1−p2p4)(1−p3p5))

While reliability can be computed efficiently for series-parallel graphs as in Fig. 1a,
it is #P-hard in general, even on 4-partite graphs [6]. The probability of a query
over a PDB corresponds precisely to network reliability. For example, in the
case of a 4-partite graph, reliability is given by the probability of the chain query
q :−R(s, x), S(x, y), T (y, t) over the PDB shown in Fig. 1b (we use interchange-
ably the terms query reliability and query probability in this paper).

In contrast, the propagation score of a node x is a value that depends on the
scores of its parent nodes and the probabilities of the incoming edges: ρ(x) =
1−∏

e

(
1−ρ(ye) ·pe

)
, where e is the edge (ye, x). By definition, ρ(s) = 1. In our

example, the propagation score of the target node t is:

ρ(t) = 1− (1− p1p2p4)(1− p1p3p5)

Unlike reliability, the propagation score can always be computed efficiently,
even on very large graphs. The reason is that reliability has an intensional seman-
tics, while propagation is extensional1 [10,21]. Variants of propagation have thus

1
Extensional approaches compute the probability of any formula as a function of the probabilities
of its subformulas according to syntactic rules, regardless of how those were derived. Intensional
approaches reason in terms of possible worlds and keep track of dependencies.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

84

been successfully used in a range of applications where an exact probability com-
putation is not necessary. Examples include similarity ranking of proteins [28],
integrating and ranking uncertain scientific data [9], trust propagation in social
networks [13], search in associative networks [7], models of human comprehen-
sion [22], keyword search in databases [2], and computing web page reputation
with the renowned PageRank2 algorithm [5].

With this paper, we introduce a propagation score for queries over PDBs,
describe the connection to the reliability score, and give a method to compute
the propagation score for every conjunctive query without self-joins efficiently
with a standard relational database engine. We propose the propagation score
as an alternative semantics to the reliability score. While the propagation score
differs from the reliability score, we prove several properties showing that it
is a reasonable substitute: (i) the propagation score is always greater than or
equal to the reliability score, (ii) the two are guaranteed to coincide for all safe
queries, and (iii) the propagation score is very close to the reliability score in
our experimental validation.

To the best of our knowledge, no definition of a propagation score on hy-
pergraphs exists, and it is not obvious how to define such a score for queries
which are not represented by graphs but by hypergraphs. Also, when restricted
to k-partite graphs, the propagation score depends on the directionality of the
graph. In Fig. 1a the propagation score from s to t is different from that from
t to s. In fact, the latter coincides with the reliability score. It is unclear what
this directionality corresponds to for arbitrary queries.

Main contributions. Our first main contribution is defining the propaga-
tion score for any self-join-free conjunctive query in terms of a dissociation. A
dissociation is a rewriting of both the data and the query. On the data, a disso-
ciation is obtained by making multiple, independent copies of some of the tuples
in the database. Technically, this is achieved by extending the relational schema
with additional attributes. On a query, a dissociation extends atoms with addi-
tional variables. We prove that a dissociation can only increase the probability of
a query, and define the propagation score of a query as the minimum reliability
of all dissociated queries that are safe. This is justified by the fact that, in a
k-partite graph, the propagation score is precisely the probability of one disso-
ciated safe query. Thus, in our definition, choosing a direction for the network
flow in order to define the propagation score corresponds to choosing a partic-
ular dissociation that makes the query safe. Safe queries [8] can be evaluated
efficiently on any probabilistic database, and we show that every query (safe or
not) admits at least one safe dissociation. Therefore, the propagation score can
be computed efficiently.

Our second main contribution is establishing a one-to-one correspondence
between safe dissociations and traditional query plans. This result leads to an
efficient algorithm for computing the propagation score of a query: iterate over all
query plans, retain only those that are minimal in the dissociation order, evaluate

2
Note that the propagation score is not the same as PageRank. However, both share the common
principle that the score of a node is defined only in terms of the scores of its neighbors, and not
in terms of the entire topology of the graph.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

85

those on the original data, and return the minimum probability. Importantly,
there is no need to dissociate the actual data, which is an expensive step. We
give a system R-style algorithm that enumerates all plans that correspond to
minimal safe dissociated queries. A so far unknown corollary of our work is that
every query plan gives an upper bound on query reliability.

Example 2 (Dissociation). We have seen that the propagation score differs
from the reliability score on the DAG in Fig. 1a. By inspecting the expressions
of the two scores, one can see that they differ in how they treat p1: reliability
treats it as a single event, while propagation treats it as two independent events.
In fact, the propagation score is precisely the reliability score of the DAG in
Fig. 1c, which has two copies of p1. We call this DAG the dissociation of the
DAG in Fig. 1a. At the level of the database instance, dissociation can be obtained
by adding a new attribute B to the first relation R (Fig. 1d). The dissociated
query is qB :−R(s, x, y), S(x, y), T (y, t), and one can check that its probability is
indeed the same as the propagation score for the data in Fig. 1a. The important
observation here is that, while the evaluation problem for q is #P-hard because
it is an unsafe query [8], the query qB is safe and can therefore be computed
efficiently.

A query q usually has more than one dissociation: q has a second dissocia-
tion qA :−R(s, x), S(x, y), T (x, y, t) obtained by adding the attribute A to T (not
shown in the figure). Its probability corresponds to the propagation score from t
to s, i.e. from right to left. And there is a third dissociation, qBA :−R(s, x, y),
S(x, y), T (x, y, t). We prove that each dissociation step can only increase the
probability, hence r(q) ≤ r(qB) ≤ r(qBA) and r(q) ≤ r(qA) ≤ r(qBA). We define
the propagation score of q as the smallest probability of all dissociations. The
database system has to compute r(qB) and r(qA) and return the smallest score:
on the graph in Fig. 1a this is r(qA), since r(q) = r(qA).

Outline.We review basic definitions (Sect. 2), then formally introduce query
dissociation and the propagation score (Sect. 3). We prove its strong connection
to query plans (Sect. 4), describe our experimental evaluation (Sect. 5), review
related work (Sect. 6), before we conclude (Sect. 7). Details, all proofs, more
experiments and several optimizations are covered in the technical report [11].

2 Preliminaries

We consider PDBs where each tuple t has a probability p(t) ∈ [0, 1]. We denote
with D the database instance, i.e. the collection of tuples and their probabilities.
A possible world is generated by independently including each tuple t in the world
with probability p(t). Thus, the database D is tuple-independent. Consider a
Boolean conjunctive query q

q :− g1, . . . , gm

where g1, . . . , gm are relational atoms, sometimes called subgoals, over a vocabu-
lary R1, . . . , Rk. The focus of probabilistic query evaluation is to compute P [q],

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

86

which is the probability that the query is true in a randomly chosen world, and
which we refer to as the query reliability r(q) [12].

It is known that the data complexity of a conjunctive query q is either PTIME
or #P-hard [8]. The class of PTIME queries, sometimes called safe queries,
is best understood in the case of Boolean queries without self-joins, keys and
deterministic relations. We will focus on this important case in this paper. With
this restriction, the safe queries are precisely the hierarchical queries:

Definition 1 (Hierarchical queries [8]). For every variable x in q, denote
sg(x) the set of subgoals that contain x. Then q is called hierarchical if for any
two variables x, y, one of the following three conditions hold: sg(x) ⊆ sg(y),
sg(x) ∩ sg(y) = ∅, or sg(x) ⊇ sg(y).

For example, the query q :−R(x, y), S(y, z), T (y, z, u) is hierarchical, while
q :−R(x, y), S(y, z), T (z, u) is not. It is known that every hierarchical query can
be computed in PTIME, and every non-hierarchical query is #P-hard.

We next introduce a query plan for a conjunctive query:

Definition 2 (Query plan P). Let R1, . . . , Rm be a relational vocabulary. A
query plan, or simply plan, is given by the grammar

P ::=Ri(x̄) | πx̄P | ��[
P1, . . . , Pk

]

where Ri(x̄) is a relational atom containing the variables x̄ and constants, πx̄ is
the project operator with duplicate elimination, and ��

[
. . .

]
is the natural join,

which we allow to be k-ary, for k ≥ 2. We require that joins and projections
alternate in a plan. We do not distinguish between join orders, i.e. ��

[
P1, P2

]
is

the same as ��

[
P2, P1

]
.

Denote qP the query consisting of all atoms mentioned in (sub-)plan P . We
define the head variables HVar(P) inductively as

HVar(Ri(x̄)) = x̄

HVar(πx̄(P)) = x̄

HVar(��
[
P1, . . . , Pk

]
) =

⋃k
i=1 HVar(Pi)

A plan is called Boolean if HVar(P) = ∅. We assume the usual sanity conditions
on plans to be satisfied: in a project operator πx̄(P) we assume x̄ ⊆ HVar(P),
and each variable y is projected away in at most one project operator, i.e. there
exists at most one operator πx̄(P) s.t. y ∈ HVar(P)− x̄.

A plan P is evaluated on a probabilistic database D using an extensional
semantics [10], [21, p. 3]: Each subplan P returns an intermediate relation of
arity |HVar(P)|+ 1. The extra attribute stores the probability of each tuple. To
compute the probability, each operator assumes the input tuples to be indepen-
dent, i.e. the probabilistic join operator ��p

[
. . .

]
multiplies the tuple probabilities

Πipi, and the probabilistic project operator with duplicate elimination πp com-
putes the probability as 1−Πi(1 − pi). For a Boolean plan P , this results in a

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

87

single probability value, which we denote score(P). In general, this is not the cor-
rect query reliability r(qP), which, recall, is defined in terms of possible worlds:
score(P) 	= r(qp).

Definition 3 (Safe plan). A plan P is called safe if for any join operator
��

p
[
P1, . . . , Pk

]
the following holds: HVar(Pi) = HVar(Pj), for all 1 ≤ i, j ≤ k.

The following are well known facts about safe queries and safe plans.

Proposition 1 (Safety). (1) Let P be a plan for the conjunctive query without
self-joins qP . Then P is safe iff for any probabilistic database, score(P) = r(qp).
(2) Let q be a conjunctive query. Then the following are equivalent: q is safe; q
is hierarchical; q admits a safe plan. Moreover, the safe plan is unique (up to
reordering of the operands in join operators).

Example 3 (Safe plan). An example safe query and its unique safe plan:

q :−R(x, y), S(y, z), T (y, z, u)

P = πp
∅ ��

p
[
πp
yR(x, y), πp

y ��
p
[
S(y, z), πp

y,zT (y, z, u)
]]

3 Dissociation and Propagation

In this section, we define the technique of query dissociation and the semantics of
propagation score. We first define the approach formally, then describe in Sect. 4
an efficient method to evaluate propagation and illustrate with examples. All
proofs and more details are provided in the appendix.

In the following, we write Var(q) for set of variables in the body of a query
q, Var(gi) for the variables in a subgoal gi, and A for the active domain of a
database D. We use the bar sign (e.g. x̄) to denote both sets or tuples.

Definition 4 (Query dissociation). A dissociation of a conjunctive query
q :− g1, . . . , gm is a collection of sets of variables Δ = {ȳ1, . . . , ȳm} with ȳi ⊆
Var(q)− Var(gi).

Definition 5 (Table dissociation). Given a query q :− g1, . . . , gm with gi =
Ri(x̄i), the active domain A, and a query dissociation Δ = {ȳ1, . . . , ȳm}. The
dissociation of table Ri on ȳi = (yi1, . . . , yik) is the relation given by query

Rȳi

i (x̄i, ȳi) :−Ri(x̄i), A(yi1), . . . , A(yik)

Conceptually, a dissociation of a table is the multi-cross product with the ac-
tive domain so that each tuple in the original table is copied to multiple tuples
in the dissociated table. Recall that each tuple in the original table represents
an independent probabilistic event. The dissociated table now contains multiple
copies of each tuple, all with the same probability, yet considered to represent
independent events. Thus, the dissociated table has a different probabilistic se-
mantics than the original table.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

88

x y

R ◦ •
S ◦
T ◦ ◦
U ◦

x y

R ◦ •
S ◦ •
T ◦ ◦
U ◦

x y

R ◦ •
S ◦ •
T ◦ ◦
U • ◦

x y

R ◦
S ◦ •
T ◦ ◦
U • ◦

x y

R ◦
S ◦
T ◦ ◦
U • ◦

x y

R ◦
S ◦
T ◦ ◦
U ◦

x y

R ◦
S ◦ •
T ◦ ◦
U ◦

7

5

2

0

4

1

6

3

x y

R ◦ •
S ◦
T ◦ ◦
U • ◦

(a)

67

4 5 3

U(y)T (x, y)S(x)R(x)

��
p

πp
∅

U(y)

S(x)

T (x, y)R(x)

πp
∅

πp
x

��
p

��
p

T (x, y)

R(x)

S(x) U(y)

πp
∅

��
p

��
p

πp
x

S(x)R(x)

T (x, y) U(y)

πp
∅

πp
x

��
p

��
p

U(y)

T (x, y)S(x)R(x)

πp
y

��
p

��
p

πp
∅

R(x), S(x), T(x,y), Ũ(̃x,y)R̃(x,ỹ), S̃(x,ỹ), T(x,y), U(y) R̃(x,ỹ), S(x), T(x,y), Ũ(̃x,y)

R(x), S̃(x,ỹ), T(x,y), Ũ(̃x,y)R̃(x,ỹ), S̃(x,ỹ), T(x,y), Ũ(̃x,y)

(b)

Fig. 2. (a): Partial dissociation order of q :−R(x), S(x), T (x, y), U(y). Safe dis-
sociations are shaded (3, 4, 5, 6, 7), minimal safe dissociations are shaded in red
and double-lined (3, 4). (b): All 5 possible query plans, their partial order and
correspondence to safe dissociations in the partial dissociation order of q.

Definition 6 (Query dissociation semantics).Let q :−R1(x̄1), . . . , Rm(x̄m)
be a query and Δ = {ȳ1, . . . , ȳm} a dissociation for q. The dissociated query is:

qΔ :−Rȳ1

1 (x̄1, ȳ1), . . . , R
ȳm
m (x̄m, ȳm)

Thus, query dissociation works as follows: Add some variables to some atoms
in the query. This results in the dissociated query over a new schema3. Transform
the probabilistic database by replicating some of their tuples and by adding new
attributes to match the new schema. This is the dissociated database. Finally,
compute the probability of the dissociated query on the dissociated database4.

Our first major technical result in this paper shows that query dissociation
can only increase the probability. We state it in a slightly more general form, by
noting that the set of dissociations forms a partial order.

Definition 7 (Partial dissociation order). We define the partial order on
the dissociations of a query as:

Δ
 Δ′ ⇔ ∀i : ȳi ⊇ ȳ′i

Theorem 2 (Partial dissociation order). For every two dissociations Δ and
Δ′ of a query q, the following holds over every database instance:

Δ
 Δ′ ⇔ r(qΔ) ≥ r(qΔ
′
)

3
Note that several alternative dissociations are possible, in general.

4
Note that this is the semantics of a dissociated query, and not the way we actually evaluate
queries. In Sect. 4 we give a method that evaluates the dissociated query without actually modi-
fying the tables in the database.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

89

Corollary 3 (Upper query bounds). For every database and every dissoci-
ation Δ of a query q: r(qΔ) ≥ r(q).

Corollary 3 immediately follows from Theorem 2 as every query is a dissoci-
ation of itself. The total number of dissociations corresponds to the cardinality
of the power set of variables that can be added to tables. Hence, for every query
with n non-head variables and m clauses, there are 2K possible dissociations
with K = mn − k and k =

∑m
i=1 |Var(gi)| forming a partial order in the shape

of a power set (see Fig. 2a).
We next define the propagation score of a query as the minimum probability

of all those dissociations in the partial dissociation order that are safe.

Definition 8 (Safe dissociation). A dissociation Δs of a query q is called
safe if the dissociated query qΔs is safe.

Definition 9 (Propagation score). The propagation score ρ(q) for a query
q is the minimum of the scores of all safe dissociations: ρ(q) = minΔs

r(qΔs).

We propose to adopt the propagation score as an alternative semantics to
reliability. While computing the reliability r(q) is #P-hard in general, computing
the propagation score ρ(q) is always in PTIME in the size of the database.
Further, ρ(q) ≥ r(q) and, if q is safe, then ρ(q) = r(q) (both claims follow
immediately from Corollary 3).

We now justify our definitions of dissociation and query propagation: When
a graph is k-partite, then its reliability can be expressed by a conjunctive chain
query q. Further, the propagation score over this graph corresponds to exactly
one of several possible dissociations of this query q. Query dissociation is thus
a strict generalization of graph propagation on k-partite graphs. And we define
query propagation as corresponding to the dissociation with minimum reliability.

Proposition 4 (Connection propagation score). Let G = (V,E) be a k+1-
partite digraph with a source node s and a target node t, where each edge has a
probability. The nodes are partitioned into V = {s} ∪ V2 ∪ . . . ∪ Vk ∪ {t}, and
the edges are E =

⋃
i Ri, where Ri denotes the set of edges from Vi to Vi+1 with

i ∈ {1, . . . , k}. Then:
(a) The network reliability of the graph is r(q), where:

q :−R1(s, x1), R2(x1, x2), . . . , Rk(xk−1, t)

(b) Using x̄[i,j] as short form for xi, . . . , xj, the propagation score (as defined in
Example 1) is r(qΔ), where:

qΔ :−R1(s, x̄[1,k−1]), R2(x[2,k−1]), . . . , Rk(xk−1, t)

4 Dissociations and Plans

Thus, in order to compute the propagation score of a query q, we need to compute
several dissociated safe queries qΔ. For that, we will not apply naively Def. 6,

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

90

because the table dissociation part (Def. 5) computes several cartesian products,
and is very inefficient. Instead, we describe here an approach for computing r(qΔ)
without dissociating either the query or the tables. The second major technical
result of our paper allows us to perform dissociation very efficiently.

Theorem 5 (Safe dissociation). Let q be a conjunctive query without self-
joins. There exists an isomorphism between safe dissociations Δs of q and query
plans P for q. Moreover, the reliability of the dissociated query is equal to the
score of the plan, r(qΔs) = score(P).

We describe this isomorphism briefly. Consider a safe dissociation qΔ, and
denote its unique safe plan PΔ. This plan uses dissociated relations, hence each
relation Rȳi

i has some extraneous variables ȳi. Drop all the variables ȳi from
the relations, and from all operators that use them: this transforms PΔ into
a regular (unsafe) plan P for q. Conversely, consider a plan P for q (P is not
necessarily safe; in fact if q is unsafe then there is no safe plan at all). We
define its corresponding safe dissociation Δ as follows. For each join operation
��

p
[
P1, . . . , Pk

]
, let the join variables be JVar =

⋃
j HVar[Pj]: for every relation

Ri occurring in Pj , add the variables JVar−HVar[Pj] to ȳi. For example, consider
the lower join in Fig. 2b box (5): ��p

[
R(x), T (x, y), U(y)

]
. Here JVar = {x, y} and

the dissociation of this subplan is R̃(x, ỹ), T (x, y), Ũ(x̃, y), where the tilde (˜)
indicates dissociated relations and variables. The complete safe query is shown
at the top of the box (5). Note that while there is a one-to-one mapping between
safe dissociations and query plans, unsafe dissociations do not correspond to
plans (see Fig. 2a).

We have seen (right after Def. 2) that the extensional semantics of an unsafe
plan P differs from the true reliability, score(P) 	= r(q). Since we have shown
that score(P) = r(qΔ) for some dissociationΔ, we derive the following important
corollary:

Corollary 6 (Query plans as bounds). Let P be any plan for a query q.
Then score(P) ≥ r(q). In other words, any query plan for evaluating a query
inside a database gives an upper bound to the actual query reliability r(q).

To summarize, we have now a much more efficient way to compute minΔ(r(qΔ)):
iterate over all plans P , and compute minP score(P). Thus, there no need to
dissociate the input tables which is very inefficient: each plan P is evaluated
directly on the original probabilistic database. However, this approach is inef-
ficient in that it computes some redundant plans: for example, in Fig. 2 plans
5, 6, 7 are redundant, since, in the dissociation order, they are all greater than
plan 3. It suffices to evaluate only the minimal query plans, i.e. those for which
the corresponding dissociation is minimal among all safe dissociations: in our
example, these are plans 3 and 4.

Example 4 (Safe dissociations). Take the query q :−R(x), S(x), T (x, y), U(y).
It is unsafe and K = 4 · 2− 5 = 3. Figure 2a shows its partial dissociation order

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

91

23, and Fig. 2b shows all 5 possible query plans. Two of those plans are minimal
in the partial order of plans:

q(3) :−R(x), S(x), T (x, y), Ũ(x̃, y)

q(4) :− R̃(x, ỹ), S̃(x, ỹ), T (x, y), U(y)

The corresponding query plans over the original tables (and safe derivations over
dissociated tables) are:

P (3) = πp
∅ ��

p
[
R(x), S(x), πp

x ��
p
[
T (x, y), U(y)

]]

P (4) = πp
∅ ��

p
[
U(y), πp

y ��
p
[
R(x), S(x), T (x, y)

]]

The propagation score is the minimum of the scores of all minimal plans: ρ(q) =
mini∈{3,4}

[
score

(
P (i)

)]
.

Note that “safetyzation by dissociation” is not monotone, and dissociation
can also make a safe query unsafe. For example, the queryR(x), S(x, y), T (x, y, z)
is safe, but its dissociation R̃(x, z̃), S(x, y), T (x, y, z) is not.

We now describe an algorithm for enumerating all plans that correspond
to minimal dissociations. Let q :− g1, . . . , gm. For each nonempty subset s̄ ⊆
{1, . . . ,m}, denote HVar[s̄] ⊆ Var(q) to be the following set of variables:

HVar[s̄] =
⋃

i∈s̄

Var(gi) ∩
⋃

j �∈s̄

Var(gj)

For any subplan P of some plan for q, denote s̄P = {i | gi ∈ P}. One can easily
check that, for any subplan P , HVar[s̄P] ⊆ HVar(P). In other words, HVar[s̄]
represents the minimal set of head variables of any subplan over the atoms in
s̄. In a minimal plan, we must have equality at each node that corresponds to a
projection.

Proposition 7 (Minimal plans). A plan corresponds to a minimal dissocia-
tion of a query iff:

(a) for every projection subplan P : HVar(P) = HVar[s̄P]

(b) for every join subplan P =��
p
[
P1, . . . , Pk

]
: if x is a variable s.t. ∃i.x ∈

HVar(Pi) − HVar[s̄P] then ∀j ∈ {1, . . . , k}, x ∈ HVar(Pj) . In other words:⋃
i HVar(Pi)−

⋂
i HVar(Pi) = HVar[s̄p].

The second condition says this. Suppose we have a variable x that appears in
some, but not all of the operands Pi of a join. Then we could have projected it
earlier, resulting in a smaller dissociation. The only case when we cannot do it
is when x is needed later, i.e. x ∈ HVar[s̄P].

Example 5 (Minimal plans). We illustrate for the non-minimal plan P (5)

from Fig. 2 and its subplan P =��
p
[
R(x), T (x, y), U(y)

]
. P includes subgoals

R, T , and U . Here, HVar(P) = {x, y}, whereas HVar[{R, T, U}] = {x}. The
difference is {y}, which should appear in any subplan of P according to Propo-
sition 7(b). However, it does not appear in R(x). Moving R(x) to the later join
with S(x) makes the condition fulfilled and results in the minimal plan P (3).

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

92

Algorithm 1: (Minimal Plans) generates all plans that correspond to a minimal
safe dissociation
Input: Query q :− g1, . . . , gm
Output: All minimal plans P(s̄) for s̄ = {1, . . . ,m}
foreach i ∈ {1, . . . ,m} do
if HVar[{i}] = Var(gi) then P[{i}] = {gi}
else P[{i}] = {πp

HVar[{i}](gi)}
foreach s̄ ⊆ {1, . . . ,m} for increasing size of |s̄| do
Set P[s̄] = ∅
foreach k ≥ 2 and every partition of s̄ = s̄1 ∪ . . . ∪ s̄k do
if

⋃
i HVar(Pi)−⋂

i HVar(Pi) = HVar[s̄] then
forall P1 ∈ P[s̄1], . . . , Pk ∈ P[s̄k] do
P[s̄] = P[s̄] ∪ {πp

HVar[s̄] ��
p
[
P1, . . . , Pk

]}

This proposition gives us immediately Algorithm 1 for enumerating all min-
imal plans, bottom up. It computes, for each non-empty subset s̄ ⊆ {1, . . . ,m},
the set P[s̄] of all minimal plans over the atoms gi, with i ∈ s̄, and can use any
Systems R style optimizer.

We end this section by commenting on the number of minimal safe dissocia-
tions. Not surprisingly, this number is exponential in the size of the query. To see
this, consider the following query: q :−R1(x1), . . . , Rn(xn), U(x1, . . . , xn). There
are exactly n! minimal safe dissociations: Take any consistent preorder � on the
variables. It must be a total preorder, i.e. for any i, j, either xi � xj or xj � xi,
because xi, xj occur together in U . Since it is minimal, � must be an order,
i.e. we can’t have both xi � xj and xj � xi for i 	= j. Therefore, � is a total
order, and there are n! such. Note that while the number of safe dissociations is
exponential in the size of the query (we do not address query complexity in this
paper), the number of query plans is independent of the size of the database,
and hence our approach has PTIME data complexity for all queries [26].

In summary, our evaluation approach allows to rank answers to every query
(safe or unsafe) in polynomial time in the size of the database, and is conservative
w.r.t. the ranking according to the possible world semantics for both safe queries.

5 Experiments on Synthetic Data

We next illustrate both the the (i) efficiency and (ii) quality of the dissociation
method for increasingly intractable queries and datasets. For timing, we compare
against MayBMS [1], an existing state-of-the-art PDB system, to calculate exact
probabilities. For quality, we take the results of MayBMS as ground truth for
query reliability and report the relative difference between the propagation and
reliability scores.

Experimental setup. � Queries: We consider two canonical unsafe ‘chain
queries’ q1 :−R(x), S(x, y), T (y) and q2 :−R(x), S1(x, y), S2(y, z), T (z). As will

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

93

(a)
ρ

(b)

Fig. 3. Results for timing (a) and quality (b) experiments. See text for details.

become clear from the experiments, it is increasingly hard to get the true query
reliability scores for more complex queries and datasets, and already with these
two simple queries, we quickly enter the area of intractable queries and datasets.
� Datasets: Given a fraction f ∈ [0, 1], we generate the dataset as follows:
Both relations R and T contain 500 tuples each. For every tuple x in R, the
functional dependency x → y on S holds with probability 1 − f . For those x
that satisfy the FD, we randomly choose a y from T and create one tuple (x, y)
in S; for those x that violate the FD, we randomly choose 2 or 3 y from T
to create 2 or 3 tuples in S. Hence, the parameter f is the fraction of tuples
that are dissociated, and also serves as measure of the intractability of the query
for MayBMS. Relations S1 and S2 are generated analogously according to FDs
x → y and y → z. We limit the fanout for each x to be maximum 2 or 3,
as otherwise, the treewidth increases rapidly and, even for small fraction f , the
query quickly becomes intractable for MayBMS, thus limiting the range of f we
can get the ground truth for. The probability of each tuple is sampled uniformly
from an interval [0, u], with u chosen to create a query reliability of around
0.5. � Equipment : The experiments are run on a Windows Server 2008 machine
with Quad Core 2 GHz and 8 GB RAM. Our implementation is done in Java,
wherein the program sends an SQL query to a SQL Server 2008 database. The
competitor, MayBMS, is implemented in C as an extension of the PostgreSQL
8.3 backend. � Evaluation: For each parameter f in steps of 2%, we generate 20
datasets and evaluate both MayBMS and propagation on each. For timing, we
take the sum over all 20 datasets. For quality, we report both the median and
worst percentage error over the 20 datasets, where percentage error is ρ−r

r ·100%,
with ρ and r being propagation and reliability scores, respectively. To compute
the propagation score, we execute the query using a left-right plan. It is easy
to see that, using this plan, the tuples dissociated are exactly those that violate
the FDs discussed above. Hence f indeed controls the fraction of tuples that are
dissociated to those that could have been dissociated.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

94

Timing experiments. Figure 3a demonstrates that the two simple queries
are indeed not trivial, and evaluation with an exact solver like MayBMS quickly
becomes intractable. In contrast, propagation evaluates independent of f . The
results also reaffirm why we need an approach like this: exact probabilistic in-
ference is expensive, and to scale up we need to go from intensional approaches
to effective extensional approaches like the one proposed in this paper.

Quality experiments. Figure 3b shows the percentage error for varying
fractions of dissociations. We only report data points for which MayBMS finished
within 1 min, and we could get the ground truth. The error is very low for
q1 and one could argue this is because each dissociation was small; since each
x is connected to at most 3 y in S. But even then, this graph demonstrates
that the error doesn’t go up steeply for increasing fraction f . In fact, the slope
seems to decrease and it looks like the error converges. For q2, we could not
get enough data points to see the behavior as MayBMS did not finish in time.
But one can see, there is an order of difference between the error rate. This isn’t
surprising, because here dissociation happens twice and the error is compounded.
In summary, while we don’t have a concrete bound of how much propagation
deviates from reliability in the general case, our experiments suggest that if each
tuple is dissociated only a few times, then the error rate does not increase steeply
as the number of dissociations increases. The error rate may even converge.
But this analysis of the exact relationship between query reliability and query
propagation requires future theoretical and experimental work.

6 Related Work

Current approaches of probabilistic query evaluation either use exact methods
or sampling approaches. Exact approaches [1,15,18,25] work well on queries with
simple lineage expressions, but perform very poorly on database instances with
high tree-width or long lineage expressions. Sampling approaches [14,16,23], on
the other hand, may not be efficient even on simple queries. Some determinis-
tic approximation algorithms [20,24] have been proposed that can approximate
the query probability within any error bound, but they have no guarantee over
running time. These approaches decompose a formulae recursively into indepen-
dent/disjoint components via some heuristic until the approximation guarantee
is within the error bound. In contrast, our approach is the only fully extensional
approach to approximating query probabilities in probabilistic databases and
therefore scales independent of the database size.

Our approach of focusing on the extensional evaluation of probabilistic data-
bases seems vaguely related to work on possibilistic databases [3,4]. This body of
work suggests, as foundation for quantifying uncertainty, a completely different
theory, namely that of possibility theory instead of probability theory. However,
we are not aware of any experimental evaluation of a possibilistic database, nor
of a characterization of the exact data complexity of this model. Hence, it is
difficult to compare in terms of theoretical or practical performance.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

95

While our work is motivated by ranking query answers, it is conceptually very
different from a recent number of proposals of alternative ranking semantics (see
e.g. [17]). While those works are all based on the standard reliability semantics
and vary in alternative ranking methods, our goal with this paper is to propose
an efficient way to evaluate those scores that can be used for ranking.

Query dissociation is also related to recent work in graphical models that
tries to give upper bounds on the partition function of a Markov random field.
Wainwright et al. [27] develop a method to obtain optimal upper bounds by
replacing the original distribution using a collection of tractable distributions, i.e.
such for which the partition function can be calculated efficiently by a recursive
algorithm. In our work, efficient approximations of distributions at the schema
level are those that allow a safe query plan, and thus can be evaluated in a
relational database engine. One up to now unknown corollary of our theory is
that every query plan is an upper bound on query reliability. We further give an
algorithm to find the minimum of all instance-independent upper bounds.

7 Conclusion

In this paper, we developed a new scoring function called propagation for ranking
query results over probabilistic databases. Our semantics is based on a sound
and principled theory of query dissociation, and can be evaluated efficiently in an
off-the-shelf relational database engine for any type of self-join-free conjunctive
query. We proved that query propagation is an upper bound to query reliability,
that both scores coincide for safe queries, and that propagation naturally extends
the case of safe queries to unsafe queries. Finally, our experiments validated that
propagation is a viable alternative for evaluating intractable queries, i.e. cases
of queries and database instances that cannot be handled by the current state-
of-the-art in probabilistic query evaluation.

Acknowledgement. This work was supported in part by NSF grants IIS-
0513877, IIS-0713576, and IIS-0915054. We thank the anonymous reviewers for
helpful comments that improved the quality of presentation of this paper.

References

1. L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational pro-
cessing of uncertain data. In ICDE, 2008.

2. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using BANKS. In ICDE, 2002.

3. P. Bosc and O. Pivert. About projection-selection-join queries addressed to possi-
bilistic relational databases. IEEE T. Fuzzy Systems, 13(1):124–139, 2005.

4. P. Bosc, O. Pivert, and H. Prade. A model based on possibilistic certainty levels
for incomplete databases. In SUM, 2009.

5. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks, 30(1-7):107–117, 1998.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

96

6. C. J. Colbourn. The combinatorics of network reliability. Oxford University Press,
New York, 1987.

7. F. Crestani. Application of spreading activation techniques in information retrieval.
Artif. Intell. Rev., 11(6):453–482, 1997.

8. N. N. Dalvi and D. Suciu. Management of probabilistic data: foundations and
challenges. In PODS, 2007.

9. L. Detwiler, W. Gatterbauer, B. Louie, D. Suciu, and P. Tarczy-Hornoch. Inte-
grating and ranking uncertain scientific data. In ICDE, 2009.
(see http://db.cs.washington.edu/propagation).

10. N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Trans. Inf. Syst., 15(1):32–66,
1997.

11. W. Gatterbauer, A. K. Jha, and D. Suciu. Dissociation and propagation for efficient
query evaluation over probabilistic databases. Technical report, UW-CSE-10-04-
01, 2010. (see http://db.cs.washington.edu/propagation).

12. E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of query reliability. In
PODS, 1998.

13. R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In WWW, 2004.

14. R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas. MCDB:
a Monte Carlo approach to managing uncertain data. In SIGMOD, 2008.

15. A. Jha, D. Olteanu, and D. Suciu. Bridging the gap between intensional and
extensional query evaluation in probabilistic databases. In EDBT, 2010.

16. S. Joshi and C. M. Jermaine. Sampling-based estimators for subset-based queries.
VLDB J., 18(1):181–202, 2009.

17. J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in probabilistic
databases. PVLDB, 2(1):502–513, 2009.

18. D. Olteanu and J. Huang. Using OBDDs for efficient query evaluation on proba-
bilistic databases. In SUM, 2008.

19. D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager query plans for tuple-
independent probabilistic databases. In ICDE, 2009.

20. D. Olteanu, J. Huang, and C. Koch. Approximate confidence computation in
probabilistic databases. In ICDE, 2010.

21. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann Publishers, San Mateo, Calif., 1988.

22. M. R. Quillian. Semantic memory. In Semantic Information Processing, pages
227–270. MIT Press, 1968.

23. C. Ré, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic
data. In ICDE, 2007.

24. C. Ré and D. Suciu. Approximate lineage for probabilistic databases. PVLDB,
1(1):797–808, 2008.

25. P. Sen and A. Deshpande. Representing and querying correlated tuples in proba-
bilistic databases. In ICDE, 2007.

26. M. Y. Vardi. The complexity of relational query languages (extended abstract).
In STOC, 1982.

27. M. J. Wainwright, T. Jaakkola, and A. S. Willsky. A new class of upper bounds on
the log partition function. IEEE Transactions on Information Theory, 51(7):2313–
2335, 2005.

28. J. Weston, A. Elisseeff, D. Zhou, C. S. Leslie, and W. S. Noble. Protein ranking:
from local to global structure in the protein similarity network. Proc Natl Acad
Sci USA, 101(17):6559–63, Apr 2004.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

97

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

98

Generalized Uncertain Databases: First Steps�

Parag Agrawal, Jennifer Widom

Stanford University

Abstract. Existing uncertain databases have difficulty managing data
when exact confidence values or probabilities are not available. Confi-
dence values may be known imprecisely or coarsely, or even be missing
altogether. We propose a generalized uncertain database that can man-
age data with such incomplete knowledge of uncertainty. We develop a
semantics for generalized uncertain databases based on Dempster-Shafer
theory. We propose a representation scheme for generalized uncertain
databases that generalizes the Trio representation. Our approach builds
upon Trio’s query processing techniques to extend them to operate on
generalized uncertain databases.

1 Introduction

There has been a lot of recent research on the topic of uncertain databases. The
intent is to enable databases to manage data that has incomplete or imprecise
information. However, most uncertain databases require that exact confidence
values (or probabilities) are attached to the data being managed. Effectively,
only aleatory uncertainty [17] can be represented and managed. On the other
hand, knowledge about uncertainty may be incomplete in the case of epistemic
uncertainty [17]. In this paper, we take initial steps towards managing incom-
plete uncertainty, by proposing the notion of a generalized uncertain database: a
database that manages incomplete information about uncertainty. In addition to
aleatory uncertainty, generalized uncertain databases can also manage epistemic
uncertainty.

There are many different ways in which uncertainty can be incomplete. We
use uncertain data about movies and release years, obtained as a result of infor-
mation extraction, say, to illustrate some different kinds of uncertainty. In the
following, (1) is an example of “complete” uncertainty, while (2), (3) and (4)
illustrate three kinds of incomplete uncertainty.

1. Exact confidence values: The Godfather was released in 1972 with confi-
dence .8 and 1974 with confidence .2.

2. Missing confidence values: Shawshank Redemption was released in 1984 or
1994.

3. Imprecise confidence values: Pulp Fiction was released in 1994 with confi-
dence at least .5. (Effectively, confidence is between .5 and 1.)

� This work was supported by the National Science Foundation under grants IIS-
0414762 and IIS-0904497.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

99

4. Coarse confidence values: Die Hard was released in 1988 or 1989 with con-
fidence .8, or 1990 with confidence .2.

A naive way to managing incomplete uncertainty would be to assign exact
confidence values when values are not available, thereby coercing data into an
existing uncertain data model; for example Trio [19] assigns confidence values
uniformly to all alternatives in the case of missing confidences. Such an approach
may yield confidence values for query result tuples that are not implied by the
data. Also, queries asking for all tuples that “could have confidence .5”,
“have confidence at least .5”, or “have confidence at most .5” cannot
be answered.

Incomplete uncertainty has been researched extensively from a mathematical
perspective, and this research has resulted in the development of rich theories like
Dempster-Shafer theory [17]. But the current breed of uncertain data models and
systems are not designed to handle such incomplete uncertainty, since they are
based on Bayesian probability. Previous work has recognized the need to manage
specific kinds of incomplete uncertainty [3], but has not provided solutions.

Incomplete uncertainty also arises when we relax the strict independence as-
sumption that is made by most models and systems for uncertain data. Consider
the following two pieces of uncertain data with exact confidence values:

– The Godfather was released in 1972 with confidence .8 and 1974 with con-
fidence .2.

– The Godfather II was released in 1972 with confidence .3 and 1974 with
confidence .7.

Suppose we want to know whether The Godfather was released at least one
year before The Godfather II. Assuming independence, the confidence would
be .56. Without assuming independence, Fréchet-Hoeffding bounds indicate that
the confidence is at least max(.8+.7-1, 0) = .5 and at most min(.8,.7), but
we cannot be more precise than that. Hence, we might get imprecise confidence
values having started with exact confidences, when no assumption can be made
about independence.

A generalized uncertain database can manage a combination of aleatory and
epistemic uncertainty, and hence is a strict generalization of uncertain databases:
a generalized uncertain database degenerates to an uncertain database when
exact confidence values are provided.

The key ingredients of our approach to managing incomplete uncertainty in
databases are:

– Data and query semantics: We propose a semantics for generalized uncertain
databases based on Dempster-Shafer theory, and the associated semantics for
queries over such databases. We have chosen Dempster-Shafer theory because
it is a mature and elegant generalization of Bayesian probability theory that
incorporates epistemic uncertainty in addition to aleatory uncertainty. We
demonstrate how the new semantics degenerate to the semantics for current
uncertain databases. (Section 2)

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

100

– Representation: We propose a representation scheme for generalized uncer-
tain databases. Our new scheme extends the representation used by Trio,
but preserves the notion of lineage. We demonstrate how our motivating
examples can be represented using this scheme. In fact, the use of lineage
ensures that our scheme is complete for generalized uncertain databases, and
hence can represent all generalized uncertain database instances. (Section 3)

– Query processing: We adapt Trio’s query processing techniques to operate
over our representation for generalized uncertain databases. We reuse with-
out modification the eager data processing aspects of Trio query processing,
which also computes lineage. We generalize the lazy confidence computation
problem to a lazy uncertainty evaluation problem to agree with the specified
semantics. Like confidence computation, uncertainty evaluation is #P-hard
in general, but PTIME when the lineage is conjunctive. (Section 4)

We emphasize that our new proposal requires only minor modifications to
the semantics, representation, and query processing algorithms for uncertain
databases, while still enabling the management of various kinds of incomplete
uncertainty in a unified manner.

We discuss related work in Section 5 and list interesting directions for future
research in Section 6.

2 Semantics

In this section, we define data-model semantics for generalized uncertain
databases, and the associated query semantics.

2.1 Data Model

The standard semantics for uncertain databases uses the notion of possible
worlds: the possible states for the database, with a probability distribution de-
fined over the set of possible states. We relax the requirement of a probability
distribution, and instead only require a Dempster-Shafer mass distribution [17].

Definition 1 (Generalized Uncertain Database) A generalized uncertain
database U consists of a finite set of possible worlds PW and a mass function
m : 2PW → [0, 1] such that:

∑

S∈2P W

m(S) = 1

Notice that m assigns mass to every subset of possible worlds (although many
may have mass zero), as opposed to the traditional Bayesian way of assigning
a probability to each individual possible world. It is useful to interpret mass
m(S) assigned to a set of possible worlds S as probability mass constrained to
stay within S, but free to be assigned anywhere within S. For example, when
S = {W1, W2}, it is unspecified how m(S) is to be split between W1 and W2.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

101

Since we use the Demspter-Shafer interpretation for the mass function, we also
have the belief and plausibility functions, which can be interpreted as the lower
and upper bounds for probabilities:

bel(S) =
∑

A⊆S

m(A)

pl(S) =
∑

A∩S �=∅
m(A)

This interpretation allows us to answer queries that ask for tuples which “could
have probability more than .5” (mentioned in Section 1). We don’t further
describe details or intuition for belief or plausibility functions in this paper, and
instead refer the reader to [17]. We do, however, note the following relationships:

m(S) =
∑

A⊆S

−1|S−A|bel(A)

pl(S) = 1 − bel(S̄)

We now illustrate how generalized uncertain databases allow us to repre-
sent incomplete uncertainty. We consider single-tuple databases based on our
examples in Section 1 and construct mass functions for each.

1. Exact confidence values: This is the standard probabilistic case, and hence
all the mass is contained in sets with a single possible world. It is worth
noting that the mass function is the same as the belief and the plausibility
function, and hence mass can be interpreted as probability.

W1 W2

The Godfather, 1972 The Godfather, 1974

m(S) = .8, S = {W1}
= .2, S = {W2}
= 0, otherwise

2. Missing confidence values: Since no confidence values are known, all the mass
is assigned to the set of all possible worlds. For all individual possible worlds,
the belief and plausibility functions are 0 and 1 respectively.

W1 W2

Shawshank Redemption, 1984 Shawshank Redemption, 1994

m(S) = 1, S = {W1, W2}
= 0, otherwise

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

102

3. Imprecise confidence values: Imprecision about confidence can be represented
by assigning mass to the set with all possible worlds. For our example, we
get belief and plausibility values of .5 and 1 for W1, and 0 and .5 for W2.

W1 W2

Pulp Fiction, 1994 ∅

m(S) = .5, S = {W1}
= .5, S = {W1, W2}
= 0, otherwise

4. Coarse confidence values: In this case, confidence is specified over sets of
possible worlds, but not exactly to each individual possible world.

W1 W2 W3

Die Hard, 1988 Die Hard, 1989 Die Hard, 1990

m(S) = .8, S = {W1, W2}
= .2, S = {W3}
= 0, otherwise

Since all the above kinds of uncertainty can be captured in generalized uncertain
databases, we can provide a unified semantics for various kinds of incomplete
uncertainty and exact probabilities. The Trio system allows relations with exact
probabilities and missing confidences, but a query joining these relations coerces
the relation with missing probabilities by assigning them uniformly, and hence
the results are ad-hoc. In contrast, our new proposal is able to combine such
information in a principled manner.

We now formalize the observation1 that our new data-model semantics gen-
eralize semantics for probabilistic databases [19].

Observation 1 (Probabilistic Databases) Probabilistic databases are those
generalized uncertain databases where:

∑

|S|=1

m(S) = 1

Probabilistic mass functions are those mass functions that satisfy the property
above.

We also observe that our semantics generalizes uncertain databases without
probabilities as described in [19].

Observation 2 (Uncertain Databases without Probabilities) Uncertain
databases without probabilities are those generalized uncertain databases where
m(PW) = 1.
1 We omit all proofs in this presentation.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

103

2.2 Query Semantics

We now describe semantics of queries over generalized uncertain databases.

Definition 2 (Queries over Generalized Uncertain Databases) The re-
sult of a relational query Q over a generalized uncertain database U with possible
worlds PWU and mass function mU is a generalized uncertain database R. The
possible worlds PWR and mass function mR : 2PWR → [0, 1] for R are:

PWR = {Q(W)|W ∈ PWU}
mR(S) =

∑

A such that
S={Q(W)|W∈A}

mU (A)

Notice that these semantics correspond to those of probabilistic databases in
spirit: the set PWR is the same in both cases, and the mass function over PWR

is constructed in a manner similar to the construction of probability values in
probabilistic databases. In fact, the following observation formalizes that query
semantics for generalized uncertain databases degenerate to those of probabilistic
databases.

Observation 3 When the mass function m for a generalized uncertain database
is probabilistic:

∑
|S|=1 m(S) = 1, the mass function for the generalized uncertain

database resulting from the application of a relational query is also probabilistic,
and is the same as that provided by semantics for probabilistic databases.

For completeness, we also make the following observation:

Observation 4 When the mass function for a generalized uncertain database
corresponds to an uncertain database without confidences: m(PW) = 1, the mass
function for the generalized uncertain database resulting from the application of
a relational query also corresponds to an uncertain database without confidences.

3 Representation

In this section, we describe our new representation scheme for generalized uncer-
tain databases. This scheme is a modification of the representation scheme used
by Trio [19] in the sense that it preserves the notions of alternatives, x-tuples and
lineage. The significant change is that probabilities associated with alternatives
are replaced by a mass function defined for each x-tuple.

We start by describing our scheme without lineage, and then incorporate
lineage. A database instance is represented by a set of x-tuples, each with an
associated x-mass function. We use a running example to describe these notions,
and to show how a generalized uncertain database instance is interpreted from
a representation instance.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

104

– Alternatives and x-tuples: Databases are comprised of x-tuples. Each x-tuple
consists of one or more alternatives, where each alternative is a regular tuple
over the schema of the relation. For example, the following relation consists
of two x-tuples from our running example.

t1 Die Hard, 1988 Die Hard, 1989 Die Hard, 1990
t2 Pulp Fiction, 1994 ?

Possible worlds for the database are obtained by picking exactly one alterna-
tive from each x-tuple. Symbol “?” is a special alternative value; picking it
denotes that none of the other alternatives are picked [19]. The first x-tuple
has three possible states, while the second x-tuple has two possible states.
Hence, the possible world set PW has six possible worlds as shown below.

W1 W2 W3

Die Hard, 1988 Die Hard, 1989 Die Hard, 1990
Pulp Fiction, 1994 Pulp Fiction, 1994 Pulp Fiction, 1994

W4 W5 W6

Die Hard, 1988 Die Hard, 1989 Die Hard, 1990

– x-mass functions: An x-tuple with the set of alternatives A has an associated
x-mass function m : 2A → [0, 1] such that

∑
S⊆A m(S) = 1. For the x-tuples

above, the mass functions over single-tuple databases as shown in Section 2
are valid x-mass functions:

x1(S) = .8, S = {(Die Hard, 1988), (Die Hard, 1989)}
= .2, S = {(Die Hard, 1990)}
= 0, otherwise

x2(S) = .5, S = {(Pulp Fiction, 1994)}
= .5, S = {?}
= 0, otherwise

The intuitions described for mass functions in Section 2 carry over to x-mass
functions. We have an x-mass function for each x-tuple in the representa-
tion. From these functions, we interpret the mass function m over the pos-
sible worlds to get a generalized uncertain database from a representation
instance. Conceptually, we first interpret each x-mass function as a basic
mass function over the set of possible worlds, and then “combine” these ba-
sic mass functions to obtain the mass function for the generalized uncertain
database.

– Basic mass functions: In general, the basic mass function mi : 2PW → [0, 1]
for an x-mass function xi : 2A → [0, 1] is constructed as follows:

mi(S) = xi(B), S = {W ∈ PW : ∃a∈B⊆A, a ∈ W}
= 0, otherwise

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

105

Consider the x-mass functions x1, x2 for the tuples above. We create the
corresponding basic mass functions m1, m2 as follows:

m1(S) = .8, S = {W1, W2, W4, W5}
= .2, S = {W3, W6}
= 0, otherwise

m2(S) = .5, S = {W1, W2, W3}
= .5, S = {W1, W2, W3, W4, W5, W6}
= 0, otherwise

– Combination: The basic mass functions mi for all x-tuples are combined to
obtain the mass function m for the generalized uncertain database using
Dempster’s combination rule:

m =
⊕

i

mi

where the operator ⊕ is defined2 as follows [17]:

(m1 ⊕ m2)(S) =defn

∑

A∩B=S

m1(A) · m2(B), S �= ∅

=defn 0, S = ∅

m is uniquely is defined by the above expression, since Dempster’s rule is
known to be associative and commutative. For the example above, we obtain
the following mass function m:

m(S) = .4, S = {W1, W2}
= .1, S = {W3}
= .4, S = {W1, W2, W4, W5}
= .1, S = {W3, W6}
= 0, otherwise

It must be noted that Dempster’s rule makes an assumption that trans-
lates to the independence assumption in the probabilistic case. We show an
example that illustrates that the above interpretation degenerates to the in-
terpretation in probabilistic databases under the independence assumption.
Suppose, x1, x2 for the example above were both probabilistic:

2 We have simplified the combination rule by eliminating normalization to account
for conflict (usually denoted by K), because construction of the basic mass function
ensures that we never encounter non-zero conflict.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

106

x1(S) = .5, S = {(Die Hard, 1988)}
= .3, S = {(Die Hard, 1989)}
= .2, S = {(Die Hard, 1990) }
= 0, otherwise

x2(S) = .5, S = {(Pulp Fiction, 1994)}
= .5, S = {?}
= 0, otherwise

We would get the corresponding basic mass functions m1, m2 as:

m1(S) = .5, S = {W1, W4}
= .3, S = {W2, W5}
= .2, S = {W3, W6}
= 0, otherwise

m2(S) = .5, S = {W1, W2, W3}
= .5, S = {W4, W5, W6}
= 0, otherwise

Hence, we get the mass function m for the generalized uncertain database
as:

m(S) = .25, S = {W1}
= .15, S = {W2}
= .1, S = {W3}
= .25, S = {W4}
= .15, S = {W5}
= .1, S = {W6}
= 0, otherwise

Notice that this mass function m is probabilistic. In fact, it corresponds di-
rectly to the semantics of probabilistic databases. We formalize the intuition
suggested by this example below:

Observation 5 When the x-mass functions for all x-tuples in a generalized
uncertain database are probabilistic, the mass function for the generalized
uncertain database is also probabilistic, and corresponds to the probability
distribution defined in probabilistic databases.

Similarly, we also have:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

107

Observation 6 When the x-mass functions for all individual x-tuples in
a generalized uncertain database correspond to uncertain databases without
confidences, the mass function for the generalized uncertain database also
corresponds to an uncertain database without confidences.

Based on results from [11], we can immedietly see that the model presented so
far for generalized uncertain databases is not complete, or even closed under
select-project-join queries. Hence, we incorporate the notion of lineage [19]
from Trio into the model.

– Lineage: Informally, lineage is a function λ : T → Bool(T) where T =
∪W∈PW W . For each alternative in a database, lineage provides a Boolean
formula over alternatives. Consider an additional x-tuple t3 in the example
database above with:

t3 1989, 1994 ?

λ(t3, 1) = (t1, 2) ∧ (t2, 1)

We refer the reader to [19] for a comprehensive description of lineage. As
in [19], we use (ti, j) to reference the jth alternative of ti. X-tuples may
be base x-tuples when none of their alternatives have lineage defined (t1, t2
in the example) or derived when all alternatives have lineage defined (t3 in
the example). The possible worlds PW and mass function m over possible
worlds are interpreted based on the base x-tuples only, as described above.
An alternative a from a derived x-tuple is added to a possible world W if its
(transitive) lineage formula [19] λ∗(a) is “true” in the world W . Since (t1, 2)
and (t2, 1) are both present in W2, lineage of (t3, 1) is true in W2. Similarly,
lineage of (t3, 1) is true in W1, W2, and lineage of (t3, 2) is true in W2 and
W5. Hence, the possible worlds for the relation with x-tuples t1, t2, t3 are:

W1 W2 W3

Die Hard, 1988 Die Hard, 1989 Die Hard, 1990
Pulp Fiction, 1994 Pulp Fiction, 1994 Pulp Fiction, 1994

1989, 1994

W4 W5 W6

Die Hard, 1988 Die Hard, 1989 Die Hard, 1990

Our model requires that an x-mass function be provided for each base x-
tuple, while no x-mass functions may be explicitly provided for derived tuples
(just like confidences in Trio). Hence, the mass function over possible worlds
is not affected due the presence of lineage, and is constructed based on base
x-tuples only. The mass function for the generalized uncertain database with
x-tuples t1, t2, t3 is as shown earlier.

We can now state the following theorem:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

108

Theorem 1. The representation scheme presented above is complete: there ex-
ists a way to represent every generalized uncertain database instance using the
representation scheme.

A complete representation scheme is necessarily closed under any class of queries,
when semantics are defined according to Definition 2. We omit the proof of the
above theorem, but note that a representation instance can be constructed for
each model instance in a manner very similar to [11]. The constructive proof
creates a “dummy” base x-tuple which has an alternative tW corresponding to
each possible world W in the model instance to be represented. Corresponding
to each tuple t in the model instance, a derived x-tuple t|? is created; the lineage
of t is the disjunction over all alternatives tW in the dummy tuple such that
t ∈ W .

4 Query Processing

We consider select-project-join queries over generalized uncertain databases. We
adapt Trio’s query processing techniques to operate over our representation for
generalized uncertain databases. We reuse without modification the eager data
processing aspects of Trio query processing. Query results include lineage formu-
las identifying the data from which each result alternative is derived in the same
way as [19]. Hence, lineage plays the dual role of allowing tracing origins of result
data, while at the same time properly representing the semantics for generalized
uncertain databases as described in Section 3. The notion of lineage used by Trio
is sufficient to enable the extended semantics of generalized uncertain databases.
We do not describe this part of query processing, and instead refer the reader
to [19].

We generalize the lazy confidence computation problem in Trio to a lazy
uncertainty evaluation problem for generalized uncertain databases, to agree
with the new semantics.

4.1 Uncertainty Evaluation

Uncertainty evaluation occurs after result data and lineage have been computed
during the data processing phase. It involves computing mass, belief, or plausi-
bility values for a result tuple, henceforth collectively referred to as uncertainty
values. More generally, we allow computing uncertainty values for boolean for-
mulas over tuples. The formalization below states that uncertainty values for a
boolean formula are the corresponding values for the set of possible worlds where
the formula is satisfied.

Definition 3 Consider Boolean formula f consisting of variables correspond-
ing to tuples in a generalized uncertain database: f ∈ Bool(T) where T =
∪W∈PW W . We define the mass, belief, and plausibility values for the formula f

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

109

as follows:

m(f) = m({W ∈ PW : f is true in W})
bel(f) = bel({W ∈ PW : f is true in W})
pl(f) = pl({W ∈ PW : f is true in W})

Uncertainty evaluation is the problem of computing an uncertainty value for an
input boolean formula. This problem is very general because it lets us ask about
the uncertainty in: (1) individual tuples, using a degenerate boolean formula; (2)
possible worlds, posed as a conjunction of all tuples; (3) any collection of tuples,
and their relationships expressed as an arbitrary formula.

The first part of uncertainty evaluation involves transforming the input
boolean formula f to another formula fb ∈ Bool(Tb), Tb = {t ∈ ∪W∈PW W :
t is a base tuple} over base tuples. Lineage is used in making this transforma-
tion, essentially by replacing any derived tuple by its lineage formula, transitively.
We need no modifications to this part of the algorithm, and refer the reader to
[19] for details.

Now we discuss the uncertainty evaluation problem for boolean formulas over
base tuples. We observe that this problem generalizes confidence computation
over boolean formulas in Trio: when input mass functions are probabilistic, all
three of mass, belief, and plausibility functions degenerate to probabilities. Since
confidence computation is known to be #P-hard, this observation immediately
establishes that the uncertainty evaluation problem is also #P-hard.

Theorem 2. Uncertainty evaluation for boolean formulas over base tuples is
#P-hard.

Hence, uncertainty evaluation can be expensive in general. The naive algo-
rithm enumerates the “truth table” E for the boolean formula, and computes
the mass function over 2E by combining individual mass functions using Demp-
ster’s rule. Efficient algorithms have been proposed for computation of belief and
plausibility functions using a mass function based on fast Möbius transform [13].

It is well known that in probabilistic databases, when the boolean formula
over base tuples is conjunctive, the confidence can be evaluated efficiently. This
result carries over to the uncertainty evaluation problem:

Theorem 3. Uncertainty evaluation for conjunctive boolean formulas over base
tuples is PTIME.

We omit the proof for this theorem, but make the following comment. Belief,
plausibility, and mass can each be treated as probabilities (lower, upper, and
mass, respectively) when the boolean formula over base tuples is conjunctive, and
the confidence computation module of Trio can be used directly for uncertainty
evaluation.

Approximation techniques have been proposed for the confidence computa-
tion problem [10]. The observations above suggest that such techniques can be

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

110

adapted to solve the uncertainty evaluation problem. Thorough investigation of
the uncertainty evaluation problem is left as future work; specific directions are
listed in Section 6.

5 Related Work

Generalized uncertain databases are based on Dempster-Shafer theory [17],
whereas probabilistic databases are based on Bayesian probability theory. There
has been a lot of work on Demspter-Shafer theory: [20] provides a good selection
of research. Demspter-Shafer theory doesn’t satisfy [8] the assumptions of Cox’s
Theorem [9], and hence the argument that probability theory provides the only
“consistent” way of managing uncertainty doesn’t apply.

Extended relational models based on Dempster-Shafer theory have been pre-
viously proposed [6, 7, 14–16, 21]. However, these models are incomplete, and do
not enable efficient query processing. More recently, there has been a flurry of
research focused on modeling and managing aleatory uncertainty in databases [2,
5, 12, 18, 19]. Techniques for efficient query processing have been developed and
implemented as a result of this research. Our approach bridges the gap between
these two lines of research.

There has also been recent research on possibilistic databases [4] based on
possibility theory. Like our approach, this proposal also enables managing of
data where no exact probability values are available. Possibility theory can be
captured in Dempster-Shafer theory in terms of representation, but it uses a
cautious combination operator instead of Dempster’s rule.

6 Future Work

This paper provides first steps towards enabling databases to manage uncertain
data that may not have exact confidence values. In doing so, it exposes numer-
ous challenges for managing data with incomplete uncertainty. We identify the
following as some interesting directions for future work:

– Adding information can decrease epistemic uncertainty, giving more precise
answers. Towards this end, we are investigating the data integration prob-
lem for generalized uncertain databases. Some early results from this line of
investigation are presented in [1].

– We have not extensively explored the problem of efficient uncertainty evalua-
tion for generalized uncertain databases. We expect that efficient techniques
can be derived by leveraging past research on Dempster-Shafer theory, pos-
sibly by making restrictions on the structure of mass functions and lineage.

– Approximation techniques have been proposed for confidence evaluation in
uncertain databases. It will be interesting to investigate whether they can
be extended to generalized uncertain databases.

– Implementation of these techniques in the Trio system is a natural next step.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

111

Acknowledgements

We thank the anonymous reviewers for their helpful comments.

References

1. P. Agrawal, A. Das Sarma, J. Ullman, and J. Widom. Foundations of uncertain-
data integration. In Proc. of VLDB, 2010.

2. L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing Incomplete Information
with Probabilistic World-Set Decompositions. In Proc. of ICDE, 2007.

3. D. Barbara, H. Garcia-Molina, and D. Porter. A probabilistic relational data
model. In Proc. of EDBT, 1990.

4. P. Bosc and O. Pivert. About projection-selection-join queries addressed to possi-
bilistic relational databases. IEEE T. Fuzzy Systems, 2005.

5. J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu. MYSTIQ: a
system for finding more answers by using probabilities. In Proc. of ACM SIGMOD,
2005.

6. S. Choenni, H. E. Blok, and M. Fokkinga. Extending the relational model with
uncertainty and ignorance. Internal Report, University of Twente, 2004.

7. S. Choenni, H. E. Blok, and E. Leertouwer. Handling uncertainty and ignorance
in databases: A rule to combine dependent data. In DASFAA, 2006.

8. M. Colyvan. Is probability the only coherent approach to uncertainty? In Risk
Analysis, 2008.

9. R. T. Cox. Probability, frequency and reasonable expectation. In Readings in
uncertain reasoning, 1946.

10. N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic Databases. In
Proc. of VLDB, 2004.

11. A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working Models for
Uncertain Data. In Proc. of ICDE, 2006.

12. A. Deshpande, L. Getoor, and P. Sen. Graphical models for uncertain data. In
Managing and Mining Uncertain Data. Springer, 2009.

13. R. Kennes and P. Smets. Fast algorithms for dempster-shafer theory. In Uncer-
tainty in Knowledge Bases. Springer, 1991.

14. S. K. Lee. An extended relational database model for uncertain and imprecise
information. In Proc. of VLDB, 1992.

15. S. K. Lee. Imprecise and uncertain information in databases: An evidential ap-
proach. In Proc. of ICDE, 1992.

16. E.-P. Lim, J. Srivastava, and S. Shekhar. An evidential reasoning approach to
attribute value conflict resolution in database integration. IEEE Trans. on Knowl.
and Data Eng., 1996.

17. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.
18. S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch, J. Neville, and

R. Cheng. Database support for probabilistic attributes and tuples. In Proc.
of ICDE, 2008.

19. J. Widom. Trio: A system for data, uncertainty, and lineage. In Managing and
Mining Uncertain Data. Springer, 2008.

20. R. R. Yager and L. Liu. Classic Works of the Dempster-Shafer Theory of Belief
Functions. Springer, 2008.

21. L. A. Zadeh. A simple view of the dempster-shafer theory of evidence and its
implication for the rule of combination. In AI Magazine, 1986.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

112

Tuple Merging in Probabilistic Databases

Fabian Panse and Norbert Ritter

Universität Hamburg, Vogt-Kölln Straße 33, 22527 Hamburg, Germany
{panse,ritter}@informatik.uni-hamburg.de

http://vsis-www.informatik.uni-hamburg.de/

Abstract. Real-world data are often uncertain and incomplete. In prob-
abilistic relational data models uncertainty can be modeled on two levels.
First by representing the uncertain instance of a tuple by a set of possible
instances and second by assigning each tuple with its degree of member-
ship to the considered relation. To overcome incompleteness, data from
multiple sources need to be combined. In order to combine data from au-
tonomous probabilistic databases, an integration of probabilistic data has
to be performed. Until now, however, data integration approaches have
focused on the integration of certain source data (relational or XML).
There has been only less attention on the integration of uncertain (esp.
probabilistic) source data so far. In this paper, we consider probabilistic
tuple merging being an essential step in the integration of probabilistic
data. We present techniques for merging uncertain instance data as well
as for merging different degrees of tuple membership.

Key words: data integration, tuple merging, probabilistic database

1 Introduction

The increasing need for applications that produce uncertain data (e.g. in the area
of astronomy [24]) has attracted high attention of uncertain data management
in the database research community in recent years. Thus, several probabilistic
data models have been proposed [9, 4, 16, 5, 26] and several probabilistic database
prototypes have been designed [2, 17, 8].

Nevertheless, current approaches for data integration mostly consider a prob-
abilistic handling of uncertainty emerging during the integration of certain source
data (e.g. [13, 25, 26]). Integration of uncertain (esp. probabilistic) source data
has only been rarely addressed so far [1]. However, to combine probabilistic data
from multiple sources, for example for unifying data produced by different space
telescopes, an integration of probabilistic source data is required.

In general, a data integration process consists of two steps: (a) duplicate
detection [15] for identifying multiple representations of same real-world entities
and (b) tuple merging [18, 23, 6] (also known as data fusion [7]) to consolidate
multiple representations to a single one.

In [21] we already adapted existing techniques for duplicate detection to
probabilistic data. From this duplicate detection process a set of tuple cluster

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

113

(one cluster for one real-world entity) results. In this paper, we present techniques
for merging the tuples of each cluster to a single probabilistic representation.

The contributions of this paper are: (i) we define requirements for an ideal
tuple merging, (ii) we present an ideal merging of instance data and (iii) we
present strategies for merging tuple memberships.

The paper is structured as follows. First we present the concept of proba-
bilistic tuples (Section 2). Then we formalize the problem of merging multiple
probabilistic tuples in Section 3. In Section 4, we introduce a strategy for tu-
ple merging in probabilistic databases. We present techniques for merging the
possible instances of two probabilistic tuples (Section 4.1) as well as techniques
for merging the tuples’ degrees of membership (Section 4.2). Related work is
presented in Section 5. Section 6 concludes the paper. Finally, in Section 7 open
problems and future challenges are discussed.

2 Probabilistic Tuples

In probabilistic relational models, uncertainty is modeled on two levels: (a) each
tuple t is assigned with a probability p(t)R ∈ (0, 1] denoting the likelihood, also
called membership degree, that t belongs to the corresponding relation R (mem-
bership level), and (b) alternatives for attribute values are given (instance level).

In earlier approaches, alternatives of different attribute values are considered
to be independent (e.g. [4]). In these models, each attribute value can be consid-
ered as a separate random variable with its own probability distribution. Newer
models like ULDB [5] or MayBMS [17] support dependencies by introducing new
concepts like ULDB’s x-tuple and MayBMS’s U-relation.

To get a general representation of the uncertain information captured by
a single tuple, we consider a representation model which is defined within the
possible world semantics. Theoretically, a probabilistic tuple can be considered
as a set of possible instances together with the probability of each instance to
be the true instance (uncertainty on instance level) and the tuple’s degree of
membership to the considered relation (uncertainty on membership level).

Definition 1 (Probabilistic Tuple): Let R be a probabilistic relation and A =
{A1, A2, . . . , An} its finite set of attributes where each attribute Ai ∈ A has a
finite domain Di. A probabilistic tuple t ∈ R is defined as t = ((I, P), p(t)R)
where I = {I1, . . . , Ik} ⊆ D1 × D2 × . . . × Dn is the set of possible instances
of t, P : I → (0, 1],

∑
I∈I P (I) = 1 is the probability distribution over these

instances, and p(t)R is degree of membership of t to R.

Each possible instance can be considered as a certain tuple. Along with its
probabilities the set of possible instances is in the following denoted as instance
data. Maybe-tuples are tuples for which the membership to the considered rela-
tion is uncertain and hence have a membership degree smaller than 1.

In the following, we present a probabilistic tuple by an own table, where each
row represents a possible instance together with its probability. An extra column
specifies the membership of the whole tuple. An example is depicted in Figure 1.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

114

A1 : D1 A2 : D2 . . . An : Dn P (I) p(t)R
I1 v11 v12 . . . v1n 0.6

0.8
I2 v21 v22 . . . v2n 0.4

Fig. 1. Representation of a probabilistic tuple t = (({I1 = (v11, v12, . . . , v1n), I2 =
(v21, v22, . . . , v2n)}, P : {I1 �→ 0.6, I2 �→ 0.4}), 0.8) ∈ R based on the possible world
semantics

2.1 Tuple Membership

In certain and complete data, to each entity an exact position within the real-
world is assigned (not necessarily the correct one) and hence its membership to
any specific extension can be exactly derived (as an example see the red dot
in Figure 2(i)). In contrast, in uncertain and/or incomplete data, an entity’s
position only can be restricted on a subarea of the real-world (as an example
see the red area in Figure 2(ii)). Consequently, for some extensions, the entity’s
membership cannot be exactly determined.

Definition 2 (Real-World): The real-world, denoted W, is the set of all exist-
ing real-world entities. The mapping ω : R →W maps each tuple of any relation
R on an entity of W.

Definition 3 (Relation’s Extension): The extension of a relation R, de-
noted Ext(R), is the part of the real-world which is actually modeled by R:
Ext(R) =

⋃
t∈R ω(t) ⊆W

The membership of a tuple to a specific relation generally depends on the
relation’s intended universe of discourse.

Definition 4 (Reference Extension): The reference extension of a relation
R, denoted ER, is the part of the real-world which has to be intendedly modeled
by R: ER ⊆W

Note, data can be incorrect and/or uncertain. Thus, the actual set of real-
world entities modeled by a relation’s tuples is not necessarily a subset of the
relation’s reference extension (Ext(R) 	⊆ ER).

E1 E3

E2

E1 E3

E2

Fig. 2. Real-world position of an entity modeled in a certain and complete data source
(left) and modeled in a uncertain and/or incomplete data source (right)

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

115

3 Problem Description

In the first data integration step duplicate representations of same real-world
entities have been detected. The result of the duplicate detection step is a clus-
tering of the tuples of all source relations (one cluster for each real-world entity).

Definition 5 (Clustering): Let R be a relation. A clustering C of R is a par-
tition {C1, C2, . . . , Ck} of R (meaning that the Ci are disjoint and their union
equals R), where each Ci is called a cluster, such that for each cluster all its tu-
ples refer to the same real-world entity: (∀Ci ∈ C) : (∀t1, t2 ∈ Ci) : ω(t1) = ω(t2).

The goal of tuple merging is to combine all tuples of one cluster into a single
one. As we will discuss in Section 4.2, tuple merging essentially depends on the
integration context. Let C = {t1, t2, . . . , tk} be the considered cluster, where
each probabilistic tuple ti belongs to a source relation Ri (the source relations
of different tuples can be equal). For simplification, we consider the schema of
all source relations to be identical. Let S = {A1 : D1, . . . , An : Dn}, D =
D1 × . . . ×Dn be the common instance schema and E′ the reference extension
of the integration result. Thus, merging the probabilistic tuples of C can be
formalized as (Please note: P(S) is the power set of the set S):

tC = μ(C,E′), μ : P(P(D × (0, 1])× (0, 1])× E → P(D × (0, 1])× (0, 1] (1)

For reasons of clarity and comprehensibility, in the following examples, the index
of a merged tuple is an ordered concatenation of the indexes of the tuples it is
merged from. For example, μ({t1, t2, t3}, E′) is denoted by t123. Moreover, given
the tuple tC = μ(C,E′), the tuples {t ∈ C} are denoted as the base-tuples of tC .

3.1 Requirements for an Ideal Merging

The tuple resulting from merging multiple base-tuples should properly combine
the information of all these tuples. For that reason, we define a set of require-
ments for an ideal tuple merging. We denote a merging function μ to be ideal,
if the following four conditions hold:

(1) The merging result is independent from the representation of the source data
and hence independent of the used probabilistic data model.

(2) The function μ is associative. Thus, the tuple resulting from merging the
base-tuples t1, t2 and t3 w.r.t. the considered reference extension E′ is in-
dependent of the merging order:

μ({μ({t1, t2}, E′), t3}, E′) = μ({μ({t1, t3}, E′), t2}, E′) = μ({t1, t2, t3}, E′)

This requirement is important if data integration is considered in a pairwise
fashion.

(3) The function is idempotent (μ({t ∈ R}, E′) = t), if it is considered within
the tuple’s original context (E′ = ER). This requirement ensures that the
result from deduplicating a duplicate free relation is the relation itself.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

116

(4) The information of all base-tuples is sufficiently captured in the merged
tuple. In this case, sufficiently means that no information is lost and no
information is incorrectly introduced by the merging function.

The last requirement is based on intuitive perceptions and hence its formulation
is rather vague. A goal of future work is to formalize this requirement (maybe by a
quantification of information loss [10]). In order to satisfy the first requirement,
we generally consider tuple merging within the possible world semantics. The
other requirements are discussed during the following sections.

4 Merging of Probabilistic Tuples

In relational data, each attribute value represents a property of the real-world
entity modeled by the tuple this attribute value belongs to. For simplification,
we consider the properties of a real-world entity to be independent from the
membership of this entity to a specific extension. Thus the instance data of a
tuple is considered to be independent from its membership to a specific relation
(this is actually not always the case, see discussion in Section 7). As a conse-
quence, we consider the merging of possible instance data and the merging of
tuple memberships each as a separate process and divide the probabilistic tuple
merging into two independent steps:

(1) Merging of instance data (see Section 4.1).

(2) Merging of tuple memberships depending on the given source context and
the considered target context (see Section 4.2).

For that purpose, we decompose the merging function μ into a function for
merging instance data (μID) and a function for merging tuple memberships (μTM).
The function μ(C,E′) = (μID(C), μTM(C,E

′)) is ideal, if μID and μTM are ideal.

tC = μ(C,E′) = μ(
⋃

ti∈C

{((Ii, Pi), p(ti)Ri
)}, E′) = ((IC , PC), p(tC)RC

)

= (μID(
⋃

ti∈C

{(Ii, Pi)}) , μTM(
⋃

ti∈C

{p(ti)Ri}, E′))

As a running example throughout this paper, we consider the two probabilis-
tic tuples t1 = ((I1, P1), p(t1)student) and t2 = ((I2, P2), p(t2)author) as presented
in Figure 3. Both tuples are maybe-tuples. Moreover, each tuple has three pos-
sible instances. Two of these instances are the same in both tuples.

name surname location P1(I) p(t1)

I1 John Do New York 0.3
0.8I2 John Doe Albany 0.25

I3 Johan Doe New York 0.45

name surname location P2(I) p(t2)

I2 John Doe Albany 0.4
0.5I3 Johan Doe New York 0.35

I4 Jon Ho York 0.25

t1 = ((I1, P1), p(t1)student = 0.8) t2 = ((I2, P2), p(t2)author = 0.5)

Fig. 3. Probabilistic tuples t1 ∈ student, t2 ∈ author

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

117

4.1 Merging of Instance Data

In certain data, instance merging is considered on an attribute by attribute basis.
Since in probabilistic data dependencies between attribute values can exist, we
consider merging techniques always for whole instances. In contrast to a merging
of certain tuples [7], conflict resolution by choosing one of the conflicting items
(deciding strategy) or by creating a new representative (mediating strategy) is
generally not required. Instead, each kind of uncertainty can be stored in the
resulting data by taking multiple possible instances into account.

An ideal instance merging results from the union of all possible instances of
all base-tuples. Since the merging is not associative, if a simple average of the
individual probabilities is calculated, we assign a weight qi to each tuple ti and
define that the weight of a merged tuple results from the sum of the weights of
its base-tuples (qij = qi + qj). If tuple merging is considered within the context
of data integration, the reliabilities of the corresponding sources can be used as
tuple weights. In conclusion, an ideal function for merging instance data can be
formalized as:

μID(
⋃

i∈[1,k]

{(Ii, Pi)}) = (
⋃

i∈[1,k]

Ii,
∑

i∈[1,k] qiPi∑
i∈[1,k] qi

) (2)

It is obvious, that μID is idempotent and associative. Moreover, the function
takes each instance into account which is possible for at least one base-tuple
and does not add an instance which is impossible for all base-tuples. Thus, in-
tuitively this function also satisfies the requirement of sufficiently capturing the
information of the given set of base-tuples.

Running Example: The instance data of the tuple t12 = μ({t1, t2}, E′) result-
ing from merging the two base-tuples t1 and t2 of Figure 3 by using the tuple
weights q1 = 0.6 and q2 = 0.4 is presented in Figure 4.

name surname location P12(I)

I1 John Do New York 0.18
I2 John Doe Albany 0.31
I3 Johan Doe New York 0.41
I4 Jon Ho York 0.1

(I12, P12) = μID({(I1, P1), (I2, P2)})

Fig. 4. Instance data (I12, P12) resulting from merging (I1, P1) and (I2, P2)

User-defined Aggregation Functions. To enable the usage of additional
domain knowledge, for each attribute a specific aggregation function can be
defined by the user (resp. a domain expert). This is an important property,
because in some scenarios a simple union of all possible instance values of an
attribute is not adequate (e.g. in merging sales data) or other information for
reducing the set of possible instances is available (e.g. the domain expert knows
that the address field of a specific tuple is the correct one).

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

118

As an example, we consider a relation inventory with the three attributes
name, producer and stock (see Figure 5). The two tuples t3 = ((I3, P3), p3)
and t4 = ((I4, P4), p4) represent the same product, but the stock information
of each tuple belongs to different orders. Therefore, in this scenario neither 15,
20 nor 6 items of this product but rather 21 or 26 items are available. As a
consequence, the true stock value of this product results from the sum of stocks
of both base-tuples instead of being the stock of one of them.

In general, the values of each possible combination of instances belonging to
different base-tuples have to be aggregated. If for all attributes an aggregation
function is defined, for each of these combinations a single possible instance of the
merged tuple results by aggregating the values for each attribute. Otherwise, for
each combination two instances result (one for each of the combined instances).

In our example, two aggregation functions are defined. As mentioned above,
the true stock value is specified by the sum-function (mediating strategy). More-
over, the user knows that the producer value of the second instance data (I4)
is correct. For that reason, always the producer of this tuple is chosen (deciding
strategy). For the attribute name, no function is specified. Thus, all possible
values are taken into account (see Figure 5). Note, instance merging is not ideal,
if at least one non-associative aggregation function (e.g. average) is used.

name producer stock P(I)

Twix Maas Inc. 15 0.8

Twux Nestle 20 0.2

(I3, P3)

name producer stock P(I)

Raider Mars Inc. 6 1.0

(I4, P4)

μID({(I3, P3), (I4, P4)})
⇒

name producer stock P(I)

Twix Mars Inc. 21 0.4

Raider Mars Inc. 21 0.4

Twux Mars Inc 26 0.1

Raider Mars Inc. 26 0.1

(I34, P34)

Fig. 5. Example for instance merging with user-defined aggregation functions

4.2 Merging of Tuple Memberships

The degree of membership of a merged tuple to the result relation depends on
two factors: (i) the overlap scenario of the source relations’ reference extensions
(source context) and (ii) the intended scope of the result relation (target context).

Source Context: The reference extensions ER1
and ER2

of two relations R1

and R2 can be in four different overlap situations (see Figure 6(i)-(iv)).

ER1

ER2

(i) Independence

ER1 = ER2

(ii) Equality

ER1 ER2

(iii) Disjointness

ER1

ER2

(iv) Inclusion

Fig. 6. The four different overlap situations of two reference extensions

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

119

Both reference extensions can be independent from each other (partially overlap-
ping), equal, disjoint or one extension can be a subset of the other one (quantified
overlap is supposed to be considered in future work). A set of pairwise overlap
situations is called an overlap scenario.

To detect the given overlap scenario of different reference extensions, addi-
tional meta information on the individual sources and general information on
real-world relationships is required. In our research, based on semantic concepts
as ontologies and thesauri, we aim to identify overlap scenarios only by using
the source relations’ names (see example shown in Figure 7).

participant

student regular

author

reviewer
participantauthor student

regularreviewer contains

contains

contains

contains

disjoint

complete

Fig. 7. Overlap Scenario of reference extensions (left), corresponding ontology (right)

Target Context: The membership of a merged tuple to the result relation
generally depends on the integration’s intended universe of discourse. In the
following, the reference extension of the integration’s result relation is denoted
as target reference extension.

Let R3 be the relation which results from integrating the relations R1 and
R2. In general, each part of the real world (ER3

⊆ W) can be considered as
target reference extension (e.g., ER3

⊃ ER1
∪ ER2

). However, the most cases
are very unusual and there is not enough information available for predicting
an adequate membership degree of the resulting tuples. Moreover, for the most
integration processes an intuitive target reference extension can be implied by
the used merge operators. For example, in [20] the four merge operators merge
join �, left outer merge join �, right outer merge join � and full outer merge
join � are introduced. An intuitive target reference extension ER3

for each of
these operators can be defined as:

R3 = R1
R2 R1 �R2 R1 � R2 R1 � R2

ER3 = ER1 ∩ ER2 ER1 ∪ ER2 ER1 ER2

Membership Merging in Consistent and Complete Data: Given the
definitions above, the membership merging function μTM can be formalized as:

μTM : P((0, 1])× P(W)→ (0, 1], p(tC)RC
= μTM(

⋃

ti∈C

{p(ti)Ri
}, E′) (3)

where P(W) is the set of all possible parts of the real-world and E′ is the consid-
ered target reference extension. As mentioned above, the quality of membership

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

120

merging can be enhanced if the overlap scenario of the source relations’ reference
extensions is given. Otherwise, situations of independence have to be assumed.

Target reference Membership merging function:

extension: p(t12)R3 = μTM({p(t1)R1 , p(t2)R2}, ER3)

ER3 = ER1 ∪ ER2

P (e ∈ ER3) = P (e ∈ ER1) + P (e ∈ ER2)− P (e ∈ ER1 ∧ e ∈ ER2)

⇒ p(t12)R3 = p(t1)R1 + p(t2)R2 − p(t1)R1 · p(t2)R2

ER3 = ER1 ∩ ER2

P (e ∈ ER3) = P (e ∈ ER1 ∧ e ∈ ER2)

⇒ p(t12)R3 = p(t1)R1 · p(t2)R2

ER3 = ER1

P (e ∈ ER3) = P (e ∈ ER1)

⇒ p(t12)R3 = p(t1)R1

ER3 = ER2

P (e ∈ ER3) = P (e ∈ ER2)

⇒ p(t12)R3 = p(t2)R2

Fig. 8. Membership merging in case of two independent reference extensions

As a demonstrating example, we consider all four merge operators (�,�,�
,�) w.r.t. the two independent reference extensions ER1

and ER2
(see Figure 8).

Both base-tuples t1 and t2 represent the same real-world entity e = ω(t1) =
ω(t2). If for example, the full outer join merge is used (ER3 = ER1 ∪ ER2), the
probability that e belongs to the target reference extension is equal to the prob-
ability that one of the two base-tuples t1 and t2 belongs to their corresponding
relation (P (e ∈ ER3

) = P (e ∈ ER1
) + P (e ∈ ER2

)− P (e ∈ ER1
∧ e ∈ ER2

)).
In probability theory, the situation of independence can be specialized to the

situations of equality, inclusion or disjointness by introducing some additional
dependencies:

(Equality) Dep. 1.: ω(t1) ∈ ER1
⇔ ω(t2) ∈ ER2

ER1 = ER2 ⇒ p(t1)R1 = p(t2)R2

(Disjointness)

ER1 ∩ ER2 = ∅
Dep. 1.: ω(t1) ∈ ER1 ⇒ ω(t2) 	∈ ER2

Dep. 2.: ω(t2) ∈ ER2
⇒ ω(t1) 	∈ ER1

⇒ p(t1)R1
+ p(t2)R2

≤ 1

(Inclusion) Dep. 1.: ω(t2) ∈ ER2
⇒ ω(t1) ∈ ER1

ER1 ⊃ ER2 ⇒ p(t1)R1
≥ p(t2)R2

If for the given membership degrees some of these dependencies are not valid,
elementary principles of probability theory can be violated. As for example:

(∃e ∈W) : (∃ER ⊆W) : P (e ∈ ER) + P (e 	∈ ER) 	= 1

In this case, we call the given membership degrees to be inconsistent to each
other. In a single probabilistic database we can assume that all membership
degrees are defined in a consistent way. In data integration, however, we operate
with degrees specified by different independent sources. Thus such an assumption
is not reasonable.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

121

As a consequence, deriving membership merging functions for the situations
of equality, inclusion or disjointness from the functions defined for the situation
of independence (see Figure 8) is not suitable.

Moreover, for queries defined on a single database, the closed world as-
sumption (CWA) [22] applies. Thus, each relation is assumed to be complete
and each real-world entity which is not represented by a relation’s tuple is
assumed to be definitely not belonging to the relation’s reference extension
(p(t)R = 0 ⇒ ω(t) 	∈ ER). Nevertheless, one main purpose of integrating data
is to join multiple incomplete sources to a complete result. Thus, for source re-
lations completeness cannot be assumed and the hypothesis that each missing
tuple definitely does not belong to the considered relation cannot be made. For
dealing with missing membership degrees, we make a generalization of the CWA
and assume that the membership of missing tuples is completely unknown.

In conclusion, the problem of membership merging is to determine an ade-
quate probability that the considered entity belongs to the result relation despite
of inconsistent and missing membership degrees given by the individual sources.

Overlap situation: Membership merging function:

p(t12)R1�R2 = μTM({p(t1)R1 , p(t2)R2}, ER1 ∪ ER2)

Independence

ER1

ER2 p(t12)R1�R2 = p(t1)R1 + p(t2)R2 − p(t1)R1 · p(t2)R2

Equality

ER1 = ER2

p(t12)R1�R2 = (q1 · p(t1)R1 + q2 · p(t2)R2)/(q1 + q2)

Disjointness

ER1 ER2

p(t12)R1�R2 = min(1, p(t1)R1 + p(t2)R2)

Inclusion

ER1

ER2 p(t12)R1�R2 =

{
p(t1)R1 , if p(t1)R1 ≥ 0

(q2 · p(t2)R2)/(q1 + q2) , else

Fig. 9. Four different overlap situations together with possible membership merging
functions defined for the case of inconsistent membership degrees

Inconsistent Membership Degrees: In Figure 9 we present four possible
functions defined for merging tuple memberships in a full outer merge join
adapted to inconsistent membership degrees. Even though we defined these func-
tions to be binary, a definition for more than two base-tuples is also possible. In
the situations of equality and inclusion, we use the two weights q1 and q2 already
defined in Section 4.1.

Note, the merging functions defined for each situation are individually asso-
ciative. From a global point of view (e.g. an overlap scenario of multiple source
extensions as shown in Figure 7(i)), however, the merging is not associative and
hence not ideal. Defining a globally associative merging of inconsistent member-
ship degrees seems very hard and is an interesting challenge of future research

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

122

(see Section 7). Nevertheless, in many integration scenarios the reference ex-
tensions of all source relations are equal (e.g. in unifying data resulting from
different observations of same real-world phenomena) , disjoint (e.g. in an in-
tegration of multiple local databases into a global one) , almost independent
(e.g. in integrating data resulting from observations of several independent real-
world phenomena) or pairwise include each other (e.g. in integrating data for
enhancing the quality of a specific database’s part). Since each of the merging
functions defined in Figure 9 is individually associative, for such scenarios an
ideal membership merging can be guaranteed.

ER3 = ER1 ∪ ER2 P (e ∈ ER3) ≥ P (e ∈ ER1) ⇒ p(tC)R3 ∈ [p(t1)R1 , 1]

ER3 = ER1 ∩ ER2 P (e ∈ ER3) ≤ P (e ∈ ER1) ⇒ p(tC)R3 ∈ [0, p(t1)R1]

ER3 = ER2 P (e ∈ ER3) = P (e ∈ ER2) ⇒ p(tC)R3 ∈ [0, 1]

ER3 = ER1 P (e ∈ ER3) = P (e ∈ ER1) ⇒ p(tC)R3 = p(t1)R1

Fig. 10. Membership merging w.r.t. two independent source relations R1 and R2 in
case of a missing membership degree of e to ER2 (P (e ∈ ER2) ∈ [0, 1])

Missing Membership Degrees: Independent from the duplicate detection
result, the membership degree of each tuple has to be recalculated, if the target
reference extension deviates from the reference extension of its source relation.
For that reason, in an integration process working on disparate reference exten-
sions, membership merging has to be applied on each duplicate cluster, whether
this cluster contains multiple tuples or not.

If a cluster does not contain a tuple for each of the different source relations’
reference extensions, the membership degree of the considered real-world entity
to this extension is missing. Thus, in some contexts, the membership of the
merged tuple to the target reference extension cannot be exactly determined as
described above and instead of an exact value only a range of possible member-
ship can be specified. Since, in this paper, we restrict ourselves to binary merging
functions, we exemplary consider the case of an integration of two relations R1

and R2 and a cluster C that only contains a single tuple C = {t1 ∈ R1}. De-
pending on the considered target reference extension (ER3), the resulting mem-
bership degree p(tC)R3

is more or less uncertain. As an example, we consider the
situation of independence which is shown in Figure 10. In three of four target
contexts only a range of possible membership results. In the last case, however,
the target reference extension is equal to ER1 . Thus, in this case, none of the
required membership degrees is missing and the resulting degree of membership
can be exactly determined. Note, if in the probabilistic target model, probability
ranges cannot be stored, using the expected probability seems most suitable.

Ideality: Membership merging without inconsistent and missing membership
degrees is based on probability theory and hence seems to be sufficient. In con-
trast, a sufficient capturing of the information represented by the individual
memberships cannot be intuitively defined if inconsistent or missing membership

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

123

degrees exist. Nevertheless, in case of inconsistent membership degrees, a pre-
serving of the information represented by all the base-tuples’ memberships is not
reasonable, because the information on memberships is definitely not accurate.

Running Example: With respect to our running example, the reference exten-
sions of both source relations are independent (see Figure 7). Thus, by using the
join merge, the degree of membership of the merged tuple to the result relation
representing all student authors results in:

p(t12)student authors = p(t1)student · p(t2)authors = 0.4

5 Related Work

Tuple merging in certain data is considered in different works [11, 7, 19, 6]. Since
in certain data only single values can be stored, conflicts can only be resolved
by choosing one of the conflicting values (e.g. by using max) or by creating a
new representative (e.g. by using avg). With respect to the most conflict reso-
lution functions tuple merging is not associative and hence not ideal. Moreover,
our approach is more general, which can be specialized to conflict resolution as
defined for certain data if for each attribute an aggregation function is specified.

Robertson et al [23] consider tuple merging within a transposition of certain
data. Merging of two tuples with contrary instance data is not provided (in such
cases both tuple are denoted to be non mergeable).

DeMichiel [12] and Tseng [25] use partial values (resp. probabilistic values)
to resolve conflicts between certain values by taking multiple possible instances
into account. Consequently, these approaches already produce uncertain data as
result data. This is similar to our ideal instance merging if each base-tuple is
considered to be certain and no aggregation functions are used. Nevertheless,
both approaches consider conflict resolution on an attribute by attribute basis.
Dependencies between possible attribute values are not considered.

Andritsos et al [3] define queries on multiple conflicting duplicates. Thus
instead of merging the tuples of each cluster into a single one, query results are
derived from sets of mutual exclusive base-tuples. Since to each cluster’s tuple
a probability can be assigned, this approach is mostly identical to our ideal
instance merging without the additional offering of attribute specific aggregation
functions.

None of the studies, however, allows uncertain (esp. probabilistic) data as
source data. Membership merging is consequently not handled in these works.

A merging of tuples representing uncertain information (on instance as well
as membership level) is proposed by Lim et al [18]. Nevertheless, instead of prob-
ability theory this approach is based on the Dempster-Shafer theory of evidence.
For membership merging in a union of two relations the authors do not take dif-
ferent target reference extensions or different overlap scenarios of source reference
extensions into account. Moreover, the authors explicitly specify a membership
derivation function only for the relational selection operator.

In the publication of Agrawal et al [1], deduplication is not considered.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

124

6 Conclusion

Many applications naturally produce uncertain data. For that reason, proba-
bilistic databases have become a topic of interest in the database community
in recent years. In order to combine the data from different probabilistic data
sources, an integration process has to be applied. To obtain concise integration
results, merging of duplicate tuples is an essential activity. We consider dupli-
cate detection in probabilistic data in [21]. In this paper, we have investigated
how a set of probabilistic tuples designated as duplicates can be merged to a
single one. We have considered probabilistic tuples representing uncertainty on
instance level and uncertainty on membership level. We have defined a set of re-
quirements for an ideal tuple merging. Moreover, we have divided probabilistic
tuple merging into a merging of instance data as well as a merging of membership
degrees. Without additional domain knowledge, instance merging is realized by
the union of the tuples’ possible instances. Otherwise user-defined aggregation
functions can be used. For defining an adequate membership merging, we take
the overlap scenario of the real-world scopes modeled by all source relations as
well as the intended scope of the integration result into account. Whereas the
instance merging is always ideal if solely associative aggregation functions are
used, an ideal membership merging only results if either the underlying mem-
bership degrees are consistent to each other or a scenario with only a single kind
of overlap situation (independence, equality, disjointness, or inclusion) exists.

In conclusion, this paper gives first ideas in the large area of merging duplicate
tuples in probabilistic databases. Nevertheless, open problems still exist. Thus,
we discuss some future challenges in the following section.

7 Open Problems and Future Challenges

As already mentioned in Section 4.2, the presented membership merging func-
tions are only associative, if a scenario with same situations of overlap is given.
Otherwise associativity only can be guaranteed if the underlying membership
degrees are consistent to each other.

Challenge 1 Definition of an associative merging of inconsistent membership
degrees beyond scenarios with same situations of overlap.

Usually relations to be integrated have heterogeneous schemas and their sets
of attributes only partially overlap. In this case, merging of instance data could
be considered as a kind of full outer union in relational data where missing values
are filled up with uniform distributions on corresponding attribute domains.

Challenge 2 Techniques for merging probabilistic tuples defined on heteroge-
neous schemas.

In contrast to the assumption made in Section 4, membership merging and
instance merging is not always independent from each other. The instance of
an entity and its membership to a specific extension depends on each other, if
(a) only entities of the considered extension have a specific property (e.g. only

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

125

students have a study path or a student number) or if (b) the membership to
the considered extension restricts the value of at least one entity’s property on
some special domain elements (e.g. each mathematics student has the study
path ’mathematics’ or each driver is older than 18 years). Given a relation R, an
attribute A defined in the domain D and the symbol ⊥ denoting the situation
of nonexistence, corresponding functional dependencies can be specified as:

existence dependency: e 	∈ Ext(R) → (∀t ∈ ω−1(e)) : t.[A] = ⊥ (4)

value dependency: e ∈ Ext(R) → (∀t ∈ ω−1(e)) : t.[A] ∈ X ⊆ D (5)

Challenge 3 Adaptation of the presented tuple merging to existence dependen-
cies and value dependencies between instance data and membership degrees.

We presented an ideal merging of instance data in Section 4.1. The require-
ments for ideality guarantee that the resulting instance data is as correct as
possible. Nevertheless, by using an ideal merging function the instance data on
a single real-world entity becomes more and more uncertain the more tuples are
merged together. This, however, is most often not the actual purpose of data
integration. Thus, in many applications using an ideal merging function is of-
ten not valuable and other merging strategies are required. Finding a merging
strategy best fitting for a special application is generally a trade off between
correctness and certainty. Most correct and also most uncertain data results, if
all possible instances of all base-tuples are taken into account. In contrast, the
result is most certain but most likely also incorrect, if only one of the possible
instances is chosen. In many applications an adequate merging function has to
be a compromise between these two extremes.

Challenge 4 Definition of some non-ideal functions making a suitable trade-off
between certainty and correctness possible.

We do not address a merging of data lineage in this paper. In many proba-
bilistic data models, e.g., ULDB, however, data lineage is an important concept
which can be used for validating the consistence of given probabilities.

Challenge 5 Techniques for merging the base-tuples’ lineage in a way that the
merged membership degree can be consistently derived from the merged lineage.

A non-consideration of dependencies between individual data sources can im-
pair the quality of the merged tuple. Usually, data sources are not independent
from each other. In contrast, often the data of one source is copied from another
source. Thus false instances can be spread through copying and are considered
in tuple merging with high certainty. Techniques for detecting dependencies be-
tween individual sources are proposed in [14].

Challenge 6 To figure out the role of source dependencies in merging proba-
bilistic tuples.

Finally, one of the most important challenges is to adapt the proposed tuple
merging strategies to more succinct representation models on which probabilistic
databases usually are based.

Challenge 7 Adaptation of the presented merging functions to probabilistic data-
models not storing each possible instance of a tuple separately.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

126

References

1. P. Agrawal et al. Foundations of Uncertain-Data Integration. In VLDB 2010.
Stanford.

2. P. Agrawal et al. Trio: A System for Data, Uncertainty, and Lineage. In VLDB,
pages 1151–1154, 2006.

3. P. Andritsos et al. Clean Answers over Dirty Databases: A Probabilistic Approach.
In ICDE, page 30, 2006.

4. D. Barbará et al. The Management of Probabilistic Data. IEEE Trans. Knowl.
Data Eng., 4(5):487–502, 1992.

5. O. Benjelloun et al. ULDBs: Databases with Uncertainty and Lineage. In VLDB,
pages 953–964, 2006.

6. O. Benjelloun et al. Swoosh: a generic approach to entity resolution. VLDB J.,
18(1):255–276, 2009.

7. J. Bleiholder et al. Data fusion. ACM Comput. Surv., 41(1), 2008.
8. J. Boulos et al. MYSTIQ: a system for finding more answers by using probabilities.

In SIGMOD Conference, pages 891–893, 2005.
9. R. Cavallo et al. The Theory of Probabilistic Databases. In VLDB, pages 71–81,

1987.
10. T. M. Cover et al. Elements of Information Theory. Wiley & Sons, 2006.
11. U. Dayal. Processing Queries Over Generalization Hierarchies in a Multidatabase

System. In VLDB, pages 342–353, 1983.
12. L. G. DeMichiel. Resolving Database Incompatibility: An Approach to Performing

Relational Operations over Mismatched Domains. IEEE Trans. Knowl. Data Eng.,
1(4):485–493, 1989.

13. X. Dong et al. Data Integration with Uncertainty. VLDB J., 18(2):469–500, 2009.
14. X. Dong et al. Integrating Conflicting Data: The Role of Source Dependence.

PVLDB, 2(1):550–561, 2009.
15. A. K. Elmagarmid et al. Duplicate Record Detection: A Survey. IEEE Trans.

Knowl. Data Eng., 19(1):1–16, 2007.
16. N. Fuhr et al. A Probabilistic Relational Algebra for the Integration of Information

Retrieval and Database Systems. ACM Trans. Inf. Syst., 15(1):32–66, 1997.
17. J. Huang et al. MayBMS: a probabilistic database management system. In SIG-

MOD Conference, pages 1071–1074, 2009.
18. E.-P. Lim et al. An Evidential Reasoning Approach to Attribute Value Conflict

Resolution in Database Integration. IEEE Trans. Knowl. Data Eng., 8(5):707–723,
1996.

19. A. Motro et al. Fusionplex: Resolution of Data Inconsistencies in the Integration
of Heterogeneous Information Sources. Information Fusion, 7(2):176–196, 2006.

20. F. Naumann et al. Completeness of Integrated Information Sources. Inf. Syst.,
29(7):583–615, 2004.

21. F. Panse et al. Duplicate Detection in Probabilistic Data. In NTII, pages 179–182,
2010.

22. R. Reiter. On Closed World Data Bases. In Logic and Data Bases, pages 55–76,
1977.

23. E. Robertson et al. Optimal Tuple Merge is NP-Complete. Technical report, 2004.
24. D. Suciu et al. Embracing Uncertainty in Large-Scale Computational Astrophysics.

In MUD, pages 63–77, 2009.
25. F. S.-C. Tseng et al. Answering Heterogeneous Database Queries with Degrees of

Uncertainty. Distributed and Parallel Databases, 1(3):281–302, 1993.
26. M. van Keulen et al. A Probabilistic XML Approach to Data Integration. In

ICDE, pages 459–470, 2005.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

127

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

128

Uncertain Databases in Collaborative Data
Management �

Reinhard Pichler1, Vadim Savenkov1, Sebastian Skritek1, Hong-Linh Truong2

1 {pichler, savenkov, skritek}@dbai.tuwien.ac.at
2 truong@infosys.tuwien.ac.at

Vienna University of Technology

Abstract. We discuss an approach to collaborative data management
based on uncertain databases. Note that, in a collaborative data manage-
ment system, users may have contradicting opinions about the correct
values of data items. In our approach, we propose to store all conflicting
data versions in parallel and to resolve conflicts based on user ratings. We
show that such a collaborative data management system can be nicely
represented in an uncertain database using U-relations.

1 Introduction

With the Web 2.0 paradigm invading more and more areas of life, from entertain-
ment to enterprise workflows and even e-government (take the Gov 2.0 initiative
of the US government as an example, see http://www.gov2summit.com), decen-
tralized community-oriented architectures become increasingly important. With
a vast amount of curated datasets available to-date, we are confronted with sce-
narios where the data are exported, updated, shared and used by people through
numerous online services. Consequently, several approaches to collaborative data
management have emerged over the past years to support such scenarios. In
case of unstructured data, solutions based on the Wiki idea [14] have been very
successful. For sharing scientific data, portals such as BIRN [5] and GEON [9]
have been created. Recently, the Orchestra system [12] considered “collaborative
update exchange“ for structured data, where multiple data peers connected by
data dependencies can publish and receive updates to their data. Conflicting
updates are reconciled based on the inter-peer trust relationships, established a
priori. Propagation of data updates forward and backward along such data de-
pendencies was studied in the Youtopia project [13]. Considering trust relations
similar to [12], [8] introduced an approach for conflict resolution whose result
is independent of the order in which updates arrive at the system, allowing for
globally consistent states.

While useful for scenarios with independent data peers, maintaining a single
consistent database version [12, 13] is not always satisfactory for scenarios where
some consistent global state of the data in the network is required [8]. Moreover,
a more fine-grained notion of trust would be desirable. That is, it should be
possible to distinguish between the trustworthiness of a data source or a user in

� This work was supported by the Vienna Science and Technology Fund (WWTF),
project ICT08-032. Vadim Savenkov is supported by the Erasmus Mundus External
Co-operation Window Programme of the European Union

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

129

users

update data query data rate data

collaborative activities

multi-version
data with
rankings

ratingsuser
reputation

evaluate
quality

resolve
conflicts

data, quality metrics and ratings

Fig. 1. A collaborative data management system

general and the acceptability of a concrete data item. Of course, in the long term,
there must be a correlation between the two trust notions. Another approach for
dealing with inconsistent data is a multi-versioned database concept, shared e.g.
by uncertain databases [16] and the recent BeliefDB system [7], which allows
different users to specify their own versions of each data tuple, called beliefs.
There, also a belief-aware query language that allows e.g. to query for all users
who share (or do not share) a particular belief is presented and analyzed from
the complexity point of view.

In this paper, we present a new, user-rating-based approach to collaborative
data management. Unlike Orchestra and Youtopia, we propose not to resolve
such inconsistencies before storing the data, but to store all the different ver-
sions of the data in parallel, thus following the multi-versioned database model.
We assume a scenario where all users work on the same data set, thereby up-
dating and querying the data, but also rating its quality. In such a scenario,
contradicting updates and inconsistencies (different beliefs of [7]) are unavoid-
able. However, unlike BeliefDB, we are not interested in tracking the beliefs of
a particular user, but rather in combining the majority of common beliefs in a
single consistent view on the data. The community feedback to various versions
of each tuple (and, ultimately, various versions of the whole database) derived
from beliefs of different users is being collected, in terms of ratings in the [0, 1]
scale. From this feedback the reputation of each user is derived, as a measure of
alignment of her beliefs with the majority viewpoint. Figure 1 sketches our model
of a collaborative data management system. It is similar to that of Wikipedia
and P2P systems [10], but we focus on structured data, which have different
query and update models.

Since various versions of data items have to be maintained in parallel, un-
certain databases are a natural candidate for realizing such systems. Indeed, we
show that U-relations (see [2]) with slight extensions are perfectly suited for
this purpose. In U-relations, different versions of a data item are kept apart by
assigning different values to some world set descriptor(s). A world table keeps
track of all allowed value combinations for these descriptors. This allows one
to store ratings for updates (in fact, for data versions created by updates) by
annotating the various value assignments to world set descriptors. In addition

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

130

we also have to introduce a user table that stores the current reputation of each
user and allows us to keep track of the initiator of each update.

Existing recommendation systems [1] show that user feedbacks are usually
used for helping the user to select data suitable to the user’s context. In this
paper we assume that user ratings are made on the data quality of data tuples.
The rationale behind this assumption is that data quality is critical in collab-
orative databases and currently there is a lack of techniques to evaluate data
quality based on the user feedback and to combine such evaluated, community-
based quality metrics into automatic, system-based quality metrics in traditional
databases. We believe that if such a combination can be implemented in an in-
tegrated data management system, the quality of query answering can be im-
proved. There exist a lot of data quality dimensions [4]. The approach suggested
here is general enough to work with every quality dimension.

We believe that collaborative data management can become a perfect show-
case for the emerging uncertain and probabilistic database technology, along
with other application domains as scientific and sensoric data management [17]
and information extraction [11] (see, e.g., [6] for a short survey, with a focus on
probabilistic data processing).
Organization of the paper and summary of results.
• System Model. In Section 2, we describe the basic principles of our user-rating-
based approach to collaborative data management. In particular, we describe
how updates are incorporated into the database and how user ratings issued on
an update can be aggregated to compute an overall rating of data items. We also
explain how these ratings can be used to compute ratings for the entire database
and to derive a reputation value for the user initiating an update.
• Representation by U-relations. We describe in Section 3 how uncertain databa-
ses can be used to implement a collaborative data management system. For this
purpose, updates (or, equivalently, versions of data items) are annotated with
reputation values. Care is taken that these reputation values can be computed
incrementally and do not have to be recomputed every time a new rating arrives.
• Extensions. In Section 4, we discuss two important extensions of the basic
model presented in Section 2, namely: We introduce the notion of “rigid up-
dates” which allow the user to restrict the number of possible versions of tuples
resulting from an update. Moreover, we describe how the deletion of tuples can
be incorporated into our rating-based model. For both extensions, the required
adaptations of the representation via U-relations are described. Directions for
further extensions, which are left for future work, are discussed in Section 5.

2 Basic Collaboration Model

In this section, we describe the basic principles of our collaborative data man-
agement model. In the next section we will then show that this model can be
very naturally implemented using uncertain databases. We note that there ex-
ists a huge body of rating and ranking systems in the literature. For the sake of
presentation, we use a rather simple rating model, and show that it can be en-
coded in uncertain databases. We note that obviously also other methods could
be used, without losing this nice property. The actual rating is not the main

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

131

contribution of this paper, but the observation that ratings in general fit nicely
into the model of uncertain databases (this holds for several design decisions).

The fundamental idea of the approach is never to delete or overwrite any
information once it has been added to the system, and to allow the insertion of
conflicting and contradicting data. That is, rather than to reconcile updates and
to maintain a single consistent version of the data, our database has multiple
versions, each given by some non-conflicting combination of updates. A conse-
quence of this approach is that the semantics of an update differs from the one
usually assumed: In our case, any update results in an insertion. Throughout
this paper, we assume every database relation to posses a key, and we define
a tuple as an entry in the database identified by a key. Disagreement on the
non-key values of a tuple leads to several versions of this tuple, which give rise
(also in combination with the other tuples) to different possible worlds. That is,
a version is a concrete value expression for some relation schema, while a tuple
is a collection of versions for the same key. Every kind of update on a tuple is
now mapped to the insertion of a new version.

Semantics Given the schema R of some relation, we consider a partitioning
of the attributes appearing in R into sets of dependent attributes, which we
call blocks (our notion of blocks should not be confused with the one in [6],
where blocks refer to sets of tuples sharing the same key). We define the key
attributes to always form a single block. In general, blocks are used whenever
an object’s property can be decomposed into several fields (like an address),
but the values in these fields highly depend of each other. Therefore we allow
as possible values for each block only those explicitly defined by updates, while
different blocks, just as different tuples, are mutually independent, such that
their values can be arbitrarily mixed. That is, for some tuple τi with the non-
key attributes partitioned into blocks C1, . . . , C� and a set of possible values
cj = {c1

j , . . . , c
kj

j } for each Cj (j ∈ {1, . . . , �}), we define the set of possible
versions of τi as c1 × . . . × c�. Furthermore, let T = {τ1, . . . , τn} be a set of
tuples where for every τi (i ∈ {1, . . . , n}) there exist several possible versions
τ1
i , . . . , τki

i , i.e. τi itself is a set τi = {τ1
i , . . . , τki

i }. Then the set of possible worlds
defined by T is τ1× . . .× τn. Note that values assigned to different blocks can be
arbitrarily recombined, even if the resulting tuple was never inserted explicitly.
Hence attributes of different blocks have to be completely independent of each
other (This rather strong assumption is relaxed in Section 4.1). We are thus able
to consider updates affecting a single block only, as splitting every update that
changes more than one block into several “unary” updates has the same effect.
This allows us to identify every possible value for a block with one update that
inserted exactly this value. As every tuple is built up from a unique set of blocks,
every tuple version can be identified by a uniquely defined set of updates.
Updates First recall that in our data model, we never overwrite or delete any
information stored in the database. Instead, every update gives rise to one (or
several) new possible world(s), unless this world is already present. Formally,
we define updates as value-assignments on block level, where for a block B of
attributes B1, . . . , Bk, an update u: (B1, . . . , Bk) ← (v1, . . . , vk)[key] assigns to
attribute Bi the value vi for the tuple identified by key . One can distinguish

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

132

several types of updates: (1) Insertion of new tuples. (2) Deletion of tuples.
(3) Update of non-key blocks. (4) Update of key blocks. Thereby, we defer the
discussion of (2) to Section 4.2. An update affecting a key block corresponds
either to the insertion of a new tuple, or, if the updated key is already present,
to an update of the corresponding non-key blocks. The insertion of a tuple means
just to insert a new tuple with exactly one version. For the update of a non-key
block, assume an update on block Cj of tuple τi with versions τ1

i , . . . , τki
i . Let

V be the set of versions of τi restricted to the blocks C1, . . . , Cj−1, Cj+1, . . . , C�.
Then the result of the update is a new version for every v ∈ V , where Cj is
defined according to the update.

Example 1. Consider, similar to [7], a database for monitoring an animal popu-
lation, where people report their observations. As different people may have dif-
ferent opinions about what they saw, there will be probably disagreement about
the data to store. Let this database contain a table with schema obs(T ,A,B ,S),
divided into blocks K = {T}, B1 = {A, B}, and B2 = {S}. Thereby K is the key,
consisting of the time of the observation (for the sake of simplicity, we assume
that time would give a unique identifier), B1 describes the color (A) of the ani-
mal and its probable kind (B), while B2 stores its estimated size (S) (note that
while kind and size of an animal are not independent, the observations of these
properties are). Assume for some observation (say made by Alice) the database
to contain the tuple τi with the single version (t1, a1, b1, s1). Further assume that
Bob made the same observation, but disagrees on the type (and color) of the
animal seen. He issues an update u1: (A, B) ← (a2, b2)[t1]. This results in the
two possible worlds obs(t1 , {(a1 , b1)|(a2 , b2)}, s1). If now John disagrees with
the size of the seen animal, he performs an update u2: (S) ← (s2)[t1], resulting
in the four possible versions obs(t1 , {(a1, b1)|(a2, b2)}, {s1|s2}) of τ1. ��
Ratings & User Reputation Next we describe how the quality of a tuple
version is estimated. Users are allowed to rate either updates or tuple versions,
where rating a tuple version is the same as giving this rating to all the (uniquely
defined) updates that build up this version. The votes given on one update
by different users are aggregated, where the influence of a rating is weighted
according to the reputation of the user giving the vote. The reputation of a
user is derived from the ratings given to the updates performed by the user,
and as stated in the introduction, is interpreted as a score value normalized to
[0, 1]. Every update is automatically rated with the reputation of the user who
performed it. We fix the following notation. Let U = {u1, . . . , un} be a set of n
updates, and let Ri = {r1, . . . , rmi

} be a set of mi ratings for every ui ∈ U . With
user(ui) and user(rj), we denote the user who performed the update ui, or gave
the rating rj , respectively. Finally, let rep(ui) and rep(rj) be the reputation of
user(ui) and user(rj), respectively.

We define the aggregated rating for ui by

rating(ui) =
∑mi

α=1 (rα · rep(rα))∑mi

α=1 (rep(rα))
(1)

and the rating of a tuple version τ j
i = (b1, . . . , bk) (where b1, . . . , bk are grouped

to blocks c1, . . . , c�) as rating(τ j
i) =

∑�
α=1 (wα·rating(cα)). Thereby rating(cα) =

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

133

rating(ui), with ui being the update that sets the value for the block Cα in τi to
cα, and wα is some weighting factor (

∑�
β=1 wβ = 1) that expresses the influence

of each block. Denoting the number of attributes in a block Cα with |Cα|, a
reasonable value for wα could be (1/

∑�
β=1 |Cβ |) · |Cα|, which can be adopted

accordingly if not all attributes are considered equally important. Obviously
rating(ui) can be incrementally computed. For mi votes, instead of storing them
together with the user reputations, it suffices to store rat(ui) =

∑mi

α=1(rα ·
rep(rα)) and rep(ui) =

∑mi

α=1(rep(rα)), from which the new rating after a new
vote can be easily derived.

Concerning user reputation, we argue that it is advantageous not to consider
all contributions of a user from the beginning, but only her more recent work.
Thereby “recent” is defined in terms of a time window that defines which con-
tributions to take into account. Leaving its concrete definition as a parameter to
the system, beside its actual size it can be also defined either in terms of time
(e.g. all the contributions from the last year), or in terms of contributions (e.g.
the last 100 updates performed by this user). For the computation of a user’s
reputation (say userμ), consider U = {u1, . . . , un} as the set of updates done by
userμ that fall into the time window. We define her reputation as

reputation(userμ) =
∑n

α=1 (rating(uα) · rep(uα))∑n
α=1 rep(uα)

=
∑n

α=1 rat(uα)∑n
α=1 rep(uα)

(2)

The reputation of a user can change because of two reasons. Either a new rating
enters the time window, or some ratings (i.e. some updates) fall out of it. In both
cases the reputation can be easily computed incrementally by storing rat ′ =∑n

i=1 rat(ui) and rep′ =
∑n

i=1 rep(ui). If a new rating arrives, the following
steps are required for updating the user reputation: (1) Identify the user who
performed the update just rated. (2) Check if the update is currently in the time
window. (3) Update the user’s reputation and the values stored for the user. For
performance reasons, the current time window for each user is explicitly stored
as an index for the contained updates. From the description, it goes without
saying that also several alternatives for aggregating the user reputation could be
used, like the moving average to “fade out” older updates.

The initial reputation of a new user is 0 until she makes some contribution
that is rated by other users. The system, however, can be easily adapted to
support any other initial reputation. If a user is invited by some other user, she
could get the reputation of the inviting user. In such cases, for aggregation, the
initial reputation can be modeled as “rating” for some dummy update u0.

Example 2. Recall the scenario in Example 1, and consider the situation after
u1. We split the initial update done by Alice into three smaller ones. One that
inserted the key, one that set B1 = (A, B) to (a1, b1) and one update B2 =
(S) ← (s1)[t1]. We denote the updates with uK , u0 and u′

0, respectively. Also,
let τ1 = (t1, a1, b1, s1), and τ2 = (t1, a2, b2, s1). Assume rat(u0) = 8.4, rep(u0) =
12, rat(u′

0) = 2.4, rep(u′
0) = 8, rat(u1) = 25.2, rep(u1) = 28, hence, by (1),

rating(u0) = 8 .4
12 = 0 .7 , rating(u ′

0) = 0 .3 , and rating(u1) = 0 .9 . We omit the
influence of the key and assume a uniform influence of the non-key attributes

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

134

A, B, S, that is wK = 0, wB1 = 2
3 , and wB2 = 1

3 . Then we get rating(τ1) =
2
3 · 0 .7 + 1

3 · 0 .9 ≈ 0 .77 and rating(τ2) = 2
3 · 0 .3 + 1

3 · 0 .9 = 0 .5 .
Now suppose that John performs update u2. Let rat ′(John) = 7 .5 and

rep′(John) = 15 , hence reputation(John) = 0 .5 . His update is automatically
rated by 0.5, which results in rating(u2) = 0 .5 ·0 .5

0 .5 = 0 .5 . (It is easy to check
that his reputation remains unchanged.) Now let some user user3 with a high
reputation of 0.9 disagree with u2, which she expresses by giving a rating of 0.3
on u2. This results in rat(u2) = 0.52 and rep(u2) = 1.4, hence rating(u2) =
0 .25+0 .27

1 .4 ≈ 0 .372 . Because of this rating, the reputation of John changes to
reputation(John) = 7 .5+0 .25+0 .27

15+0 .5+0 .9 ≈ 0 .489 . Yet another user, with reputation
0.2 agrees with u2 and rates it 0.7. Then rat(u2) = 0.66 and rep(u2) = 2.1, hence
rating(u2) = 0 .66

1 .6 = 0 .4125 . For the reputation of John, this has the effect of
rat ′(u2) = 8.16 and rep′(u2) = 16.6, hence reputation(John) ≈ 0 .492 .

That is, the resulting rating for τ3 = (t1, a1, b1, w2), and τ4 = (t1, a2,
b2, w2) is rating(τ3) = 2

3 · 0 .7 + 1
3 · 0 .4125 ≈ 0 .60417 and rating(τ4) =

2
3 · 0 .3 + 1

3 · 0 .4125 = 0 .3375 . ��
Foreign Keys The semantics described in this section allows also for foreign
keys. Consider a relation R1 with a block A of key attributes, and another rela-
tion R2, that contains a block Cj with the same number and type of attributes
as in A. Then Cj can be defined as a foreign key to A. To ensure referential
integrity between Cj and A, it suffices to check for every update on Cj whether
for the newly added values cj there already exists a tuple τ of R1 where the key
A has the value cj . If this is the case then referential integrity is ensured in all
possible worlds. This is due to our assumption that different versions of τ are
due to different values of the non-key attributes; however, the value cj of the
key attributes of τ is the same in all possible worlds.

Query Answering We define query answering in terms of the best rated world.
That is, given a query from a user, in a first step, the best rated possible world
is selected. Then the query is answered on this world. This approach has the
advantage to provide the user a consistent view of the worlds, independent of
the issued query. We therefore have to define the rating of a possible world. As
each world is a set of tuples, we define the rating of a world as the average of
the ratings over all tuple versions appearing in this world. That is, for a possible
world Wi containing tuples Wi = {τ1, . . . , τn}, rating(Wi) = 1

n ·
∑n

α=1 rating(τα).
We note that, in our model, every possible world has exactly the same number
of tuples, as for every primary key, exactly one tuple version must be selected.

Obviously, the best rated world does not need to be unique. If this is the
case, we prefer more recent updates: Going from the newest update to the old-
est, if some of the best rated worlds contains the update (i.e. that have the
corresponding block set to the value defined by the update), remove all worlds
that do not contain this update, until only a single world is left. In the model
described above, the most recent, best rated world can be found easily. Just pick
for every block the best rated update. If there are several best rated updates for
one block, then pick the youngest one. Of course, our approach could be easily
adapted to other preference criteria: e.g., the most often rated update or the
update with highest rep.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

135

3 Representation in U-relations

In this section we show that the data model described above can be encoded
in U-relations. We use the database schema for U-relations as proposed in [2],
consisting of the vertical decomposition tables (VDTs) for every attribute and
the world table (W). For every tuple τi and every block Cj , we use a unique
world set descriptor (WSD) xi,j , and define in W one distinct assignment to xi,j

for every possible value for Cj in any version of τi. That is, let τi = {τ1
i , . . . , τk

i }
be a tuple with k versions, Cj = B1, . . . , Bsj a block, and V =

⋃k
α=1 πCj (τ

α
i),

where πCj
(τα

i) denotes the projection of τα
i onto the values for the attributes in

Cj . In the vertical decomposition table (VDT) of every attribute Bβ ∈ Cj , there
exists exactly one distinct assignment to xi,j for every v ∈ V . For the vertical
decompositions of the key attributes, there exists exactly one variable xi,A for
every tuple τi, with exactly one assignment for xi,A.

Example 3. τ1 from Example 1 could be represented in U-relations as follows:
tid WSD T WSD A WSD B WSD S
τ1 x1,K � 1 τ1 x1,1 � 1 a1 x1,1 � 1 b1 x1,2 � 1 s1

x1,1 � 2 a2 x1,1 � 2 b2 x1,2 � 2 s2

(Except for T , we discard the column holding the tuple id in the relations, as
we consider only a single tuple. The corresponding world table is depicted in
Example 4.) Note that every update is identified by an assignment to a WSD,
e.g. x1,1 � 2 corresponds to u1, or x1,2 � 2 to u2. As discussed in Example 2,
the initial update is split into the three updates uK , u0, and u′

0. For uK , a WSD
x1,K with the single assignment 1 is created, and added together with t1 into
the corresponding table. Similar for u0 and u′

0, where the WSDs x1,1 and x1,2

are used. For u1, a new assignment for x1,1 is created, and corresponding entries
are added to the VDTs for A and B. Similarly for u2 and x1,2. ��

As sketched in the example, every update operation identified above can be
easily mapped to this representation: For the update of a non-key block Cj of
some existing tuple τi, as already stated above, we only need to consider updates
of a single block of a single tuple. The update process consists of creating a new
assignment for the unique variable xi,j , and adding a new entry for τi, the
new assignment for xi,j , and the new value to the VDT for every Bβ ∈ Cj .
If the value is already present for this block, then the update is ignored. The
insertion of a new tuple is similar to the above operation. To insert a new tuple
(a1, . . . , ak, b1, . . . , bn), first insert the key (a1, . . . , ak) with a new WSD, and then
perform � updates on this tuple, by setting the values for the blocks c1, . . . , c�.

To keep track of the ratings and user reputations, the information described
above can be stored as follows. The information about ratings on updates can
be stored in the world table W , as every update corresponds to the combination
of a variable and an assignment, i.e. to one row in W . We extend W (WSD ,
WSDvalue) to W (WSD , WSDvalue, rat , rep, rating , timestamp [, user]). There-
by user stores a reference to the user who initiated the update. If the time
window is stored explicitly for every user, this reference can be omitted. The
information rat , rep, and rating need to be present for every quality dimension

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

136

tracked. The current time window for each user can be maintained using a re-
lation tw(user , tid , WSD , WSDvalue, (count |timestamp)). We can further log
which user gave a rating to which update. Finally, in an additional table we store
for every user her current reputation as well as rat ′ and rep′.

Example 4. The left table shows the world table to Example 3, while the right
one stores the user information. We omit the representation of the time windows.

WSD ass. rat rep rating user rat ′ rep′ reputation
x1,K 1 1 1 1 John 8.16 16.6 0.492
x1,1 1 8.4 12 0.7 user3 20.34 22.6 0.9
x1,1 2 2.4 8 0.3 user4 2.46 12.3 0.2
x1,2 1 25.2 28 0.9
x1,2 2 0.66 2.1 0.4125

��
Query Answering We defined the semantics for query answering as answering
the query on the most recently updated, top rated world. On the representation
level, every possible world is identified by a (total) assignment to the WSDs [2].
As described above, in the world table W , we store every possible assignment to
a WSD along with its rating (which corresponds to a rating on some update).
Choosing one assignment to every WSD defines one set of tuples. For each of
these tuples, we already defined their ratings, hence the rating of the world can
be easily computed.

4 Extensions

In this section, we consider two important extensions of the basic scenario,
namely, tuple updates with inter-block dependencies and tuple deletions. First
we discuss the required adaptations of our basic model described in Section 2.
We then also discuss the impact on the representation by U-relations.

4.1 Inter-block dependencies

In the basic scenario, updates of the attribute blocks were independent of each
other. Assume now that the user wants to update the values of several blocks
at the same time, e.g., by inserting new values for all three non-key attributes
in our running example. Moreover, one may want to exclude from any possible
world the combination of the new size with any of the prior values for kind and
color of the animal. We call such updates spanning several blocks rigid.

In principle, such updates could be handled by simply merging the two blocks
into one. However, this naive approach would lead to an explosion of the number
of tuples needed to represent the possible worlds stored in the previously inde-
pendent blocks. We therefore propose a more expressive representation scheme
here.

Example 5. Consider the following shorthand notation of the schema of our run-
ning example: obs = KB1B2 where K is the key block and B1 and B2 are the
blocks of attributes as defined in Example 1. Let obs contain the tuple τ1 with
the uncertain value τ1 = R(k, {b1|b′1}, {b2|b′2}), giving rise to 4 possible worlds
and the following decomposition into three partitions:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

137

obsK T WSD K obsB1 T WSD B1 obsB2 T WSD B2

τ1 xK k τ1 x1 � 1 b1 τ1 x2 → 1 b2

τ1 x1 � 2 b′1 τ1 x2 → 2 b′2

Suppose that some observer now wants to ensure that the size added only
appears in conjunction with the animal type she also added. That is, she needs
to insert a pair of block values b′′1 , b′′2 as a rigid update of the tuple τ1. If one now
chooses to merge respective blocks, it will be necessary to first explicitly specify
all possible worlds compactly represented in the partitions obsB1 and obsB2 :

obsK T WSD A obsB1 T WSD B1 obsB2 T WSD B2

τ1 xK � 1 k τ1 x1 � 1 b1 τ1 x1 → 1 b2

τ1 x1 � 2 b1 τ1 x1 → 2 b′2
τ1 x1 � 3 b′1 τ1 x1 → 3 b2

τ1 x1 � 4 b′1 τ1 x1 → 4 b′2
τ1 x1 � 5 b′′1 τ1 x1 → 5 b′′2

Clearly, the total number of tuples needed for such “decompression” of the
succinct representation with independent partitions is exponential in the number
of blocks that have to be merged. Therefore, the succinctness of representation
due to partitioning in U-relations is deteriorated by rigid updates. ��
Note that in [3] it is also observed that updates might make the decompression
of the succinct representation by U -relations necessary. However, in our case,
the blow-up of the U -relations is even more problematic since, in contrast to [3],
we want to be able to increase the number of possible worlds as a consequence
of an update (as we never overwrite any data). We therefore propose to use
compound (that is, non-normalized [3]) WSDs for blocks. To express arbitrary
dependencies between N blocks in a tuple, it is sufficient that the WSD of each
block contain N variables.

Example 6. The final state of Example 5 has the following representation:

obsK T WK K obsB1 T WB1 WB2 B1 obsB2 T WB1 WB2 B2

τ1 xk � 1 k τ1 x1 � 1 b1 τ1 x2 � 1 b2

τ1 x1 � 2 b′1 τ1 x2 � 2 b′2
τ1 x1 � 3 x2 � 3 b′′1 τ1 x1 � 3 x2 � 3 b′′2

Since only the value combinations connected to consistent variable assignments
are admitted, one can check that the U-relations above define exactly the de-
sired five possible worlds: E.g., the tuple (b1, b

′′
2) is not part of the (uncertain)

projection πB1,B2(obs), as the variable assignment x1 � 1, x1 � 3 is inconsistent,
whereas (b1, b

′
2), corresponding to the assignment x1 � 1, x2 � 2, is a possible

answer. ��
The following procedure can then be used to accommodate new inserts into

the database: Let C be an attribute block, and assume that each attribute be-
longs to a separate U-relational partition. Thus, each attribute in C has a com-
pound WSD of at most |C| variables. Consider a rigid update u for a tuple τ
introducing a new value assignment for attributes C ′ ⊆ C; it can be accommo-
dated in the following two steps:

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

138

1. Build a WS descriptor w̄u for u: For each attribute A ∈ C ′ with a corre-
sponding variable xA in the WS descriptor of τ.C, check if the value u.A
is already present in τ.A. If yes, re-use the found assignment for xA in w̄u;
otherwise, take a fresh domain value not occurring in the WS descriptor of
τ.A as an assignment for xA in w̄u.

2. Perform the insert: for each attribute A ∈ C ′, insert the tuple (id(τ), w̄u, u.A)
in the partition PA of the U-relation.

For example, a rigid update b1, b
∗
2 for the blocks B1, B2 of the relation obs in its

final state as shown in the Example 5 will be assigned a WSD x1 � 1, x2 � 4.
Note that new updates can be composed of the values already occurring in

other updates: the update τ1.B1 = b′′1 can be admitted (and assigned a WSD
x � 3), despite the rigid update B1B2 � (b′′1 , b′′2) being already present in the
table. A possible meaning of such new insert is “the value b′′1 can be combined
not only with b′′2 , but with any other value of the block B2”.

Ratings of rigid updates In the basic scenario, each update is identified by
an assignment to its WSD variable. The aggregated ratings associated with each
update are summarized in the world table. If rigid updates are allowed, the world
table needs to be extended to accommodate compound WSDs: the number of
variable/value column pairs equals the maximal number of blocks in any relation
described by the world table; representation of ratings of updates remains the
same as in the Example 3. Deriving ratings of tuples from the update ratings
must be redefined, however. We address this issue in Section 4.3.

4.2 Deleting tuples

So far we have only considered disagreements on the correct values for the tuples
stored in the database. We now extend the system to also allow to express that
some tuple should not be present at all. This is modelled by introducing a special
tuple version, namely ∅, to express that there exist possible worlds that do not
contain any version of this tuple at all. Under this semantics, deletion of a tuple
corresponds to adding ∅ to the set of possible versions for this tuple. Concerning
our definition of updates, we model a deletion as u: (A1, . . . , Ak) ← ()[key], where
A1, . . . , Ak are the key attributes. We do, however, not allow ∅ to be the only
version of a tuple, but require at least one other version to exist.

Representing ∅ in U-relations can be done easily. Given a relation R with
the key-block K, for every tuple τi ∈ R, so far the WSD consists of exactly
one variable xτi,K with a unique assignment (say xτi,K � 1) that encodes the
value of the key for τi. Inserting the version ∅ for τi can be done by adding
another assignment for xτi,K (say xτi,K � 0) to the world table, without inserting
an entry for this assignment to the VDTs of the key attributes. With non-
normalized U-relations, it can be further ensured that this (empty) “selection”
for the key values cannot be combined with any other non-null values of the
non-key attributes: It suffices to add for every tuple τi the assignment xτi,K � 1
to the WSDs of every non-key attribute block. That is, the VDT of each non-
key block is extended by a column WSDkey that contains xτi,K � 1 (resp. by
columns WSDkey , WSDkeyval with (xτi,K , 1). Hence selecting xτi,K � 0 will
return no value for any attribute of τi.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

139

Example 7. Consider the representation in Example 6. To support deletion, the
WSD of the key block is added to each partition.

obsK obsB1 obsB2

T WK K T WK WB1 WB2 B1 T WK WB1 WB2 B2

τ1 xK � 1 k τ1 xK � 1 x1 � 1 b1 τ1 xK � 1 x2 � 1 b2

τ1 xK � 1 x1 � 2 b′1 τ1 xK � 1 x2 � 2 b′2
τ1 xK � 1 x1 � 3 x2 � 3 b′′1 τ1 xK � 1 x � 3 x2 � 3 b′′2

Deletion of τ1 is allowed by leaving the above tables unchanged, but adding
the assignment xk � 0 to the world table. ��
Rating tuple deletions The deletion of a tuple can be rated like every other
update on the database. As ∅ is expressed by an entry in the world table, it is
also no problem to store the rating there, hence also just like the rating on every
other update. The definition of the rating of a tuple version τk

i requires a slight
modification: If τk

i �= ∅, then it is as defined in Section 2. Otherwise, if τk
i = ∅,

then rating(τK
i) = rating(uα), where uα is the update that inserted ∅.

4.3 Adapting the top database semantics

So far in this section we have concentrated solely on the representation of updates
and possible worlds defined by them. We now shift our focus to user ratings and,
consequently, to the reconciliation of conflicting updates, which is an essential
task from the user point of view. In the following, we assume each relation to
contain at least one non-key attribute block. Note that this is no real restriction,
as otherwise there could not be multiple versions for this relation anyway.

Conceptually, the conflict-resolution approach remains exactly the same as
in the basic scenario: We first look for WSD variable assignments maximizing
the overall world rating, and then we use the corresponding top rated world for
query answering. However, the extensions discussed earlier in this section have
several important implications:
Maximal feasible variable assignments Because of the introduction of rigid
updates, variable assignments for different variables are no longer independent
of each other, as it was the case in the basic scenario. Due to the fact that the
WSD of each rigid update is now a set of variable assignments, the dependencies
between these assignments have to be enforced. We must thus speak of maximal
feasible variable assignments defined by consistent sets of WSDs.

Example 8. Consider the setting from Example 7. There, xk → 1, x1 → 3, x2 � 3
is an example of a maximal feasible variable assignment. The assignment xk �

1, x1 � 1 is feasible but not maximal, whereas x1 � 3, x2 � 2 and xk → 0, x1 �

1, x2 � 1 are not feasible: No valid combination of updates issued to the database
gives such a variable assignment on the WSD. ��
Definition 1. A set U of WSDs (resp. the set u of updates identified with U)
is proper if it satisfies the following conditions:
— Consistency: No two WSDs in U contain different assignments for the same
variable (resp. no two updates in u have different values for the same block).

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

140

— Maximal coverage. Let domain dom(U) denote the set of all variables in U.
We request that the domain of U is maximized in the following sense: there is no
update in the database identified with the WSD U , such that U∪U is consistent
and dom(U) ⊂ dom(U ∪ {U}) (resp. every tuple is either deleted by u or the
values for all blocks of the tuple are specified by u).
— Irreducibility. Let nkdom(U) denote dom(U) restricted to non-key variables:
that is, variables not occurring in the WSD of any key block. We request that for
each WSD U ∈ U, nkdom(U \ {U}) ⊂ nkdom(U) (resp. no update in u spans
only the blocks which are also spanned by other updates).

It can be easily shown that any proper set of WSDs (resp. proper set of updates)
defines a maximal feasible variable assignment.

Example 9. Let a relation R have a schema KABC where each letter defines an
attribute block, the key one denoted by K. Suppose that a tuple identified by
a key value k is comprised by the following four rigid updates: {ur=0.3

1 : AB �

(a, b), ur=0.45
2 : C � c, ur=0.5

3 : AC � (a, c), ur=0.2
4 : B � b} (where superscripts

denote update ratings) which give rise to a single possible tuple value (k, a, b, c),
and one update u5, where the tuple was deleted.

According to the procedure of U-relational updates from Section 4.1, a value
of a non-key block determines the corresponding WS variable assignment: Hence,
there are three assignments to non-key variables xa � va, xb � vb, and xc � vc,
and two assignments to the key variable, namely xk � 1 and xk � 0. The variable
assignments of the updates are U1 = xk � 1 ∧ xa � va ∧ xb � vb, U2 = xk �

1 ∧ xc � vc, U3 = xk � 1 ∧ xa � va ∧ xc � vc, and U4 = xk � 1 ∧ xb � vb.
One can check that there are three proper update sets assigning a non-empty

value to the tuple k: namely, u1 = {u1, u2}, u2 = {u3, u4} and u3 = {u1, u3}.
We say that all of them define a maximal variable assignment A = {xk � 1,
xa � va, xb � vb, xc � vc}. By definition, A is feasible (as all three update
sets are consistent). Yet another maximal feasible variable assignment is xk � 0
implying that tuple k must not be part of the respective worlds. ��

Finding a best rated world then amounts to selecting a proper update set that
maximizes the world rating. It turns out, however, that the computation of the
rating of some world defined by a given set of updates also requires adaptation
if rigidity is allowed.
Composing update ratings In the basic scenario, the rating of a tuple value
was given by: rating(τ j

i) =
∑�

α=1 (wα ·rating(cα)) where every cα is a block value
corresponding to some update (recall that in absence of rigid updates each block
value is given by exactly one update) and weight wα depends on the attributes
comprising the respective block Cα. We call this the composition formula.

In presence of rigid updates, we no longer have ratings for each block straight
away, but rather the rating for each rigid update. We re-define the rating of a
block value cα as the maximal rating of an update in which cα is contained.

Example 10. As an example, consider the update set u3 = {u1, u3}. We take
r(A � a) = max(r(u1),r(u3)) = 0.5, r(B � b) = r(u1) = 0.3, and r(C � c) =
r(u3) = 0.5 (we shorten rating(·) as r(·) for the sake of readability). According

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

141

to the composition formula, rating(u3) = 1
3 (0.5 + 0.3 + 0.5) ≈ 0.43 (the weight

wα of each block is taken equal to 1
3 , so that the tuple ratings fall into [0, 1]).

As shown in Example 6, u3 is not the only proper update set defining the
variable assignment A. Its rating — and the rating of the corresponding tuple
value (k, a, b, c) — is thus not uniquely determined: other possible candidates are
rating(u1) = 1

3 (0.3+0.3+0.45) = 0.35 and rating(u2) = 1
3 (0.5+0.5+0.2) = 0.4,

obtained by the composition formula. Similarly to selection of block ratings, we
choose the maximum (i.e. rating(u3) ≈ 0.43) as the rating of the tuple value. ��

Let A be a maximal feasible variable assignment, corresponding to a world
WA. Its rating can be found in two steps:

1. For each tuple value τ determined by A, take rating(t) to be the maximum
rating computed according to the composition formula from any proper up-
date set defining A.

2. Take the maximum of the tuple ratings as the world rating (Other aggregates
like sum or average can be used instead).

The top world is then chosen as the most recently updated world from the
worlds with the highest rating, as described in Section 2.

5 Conclusion and Future Work

In this paper we presented collaborative data management as a relevant applica-
tion area for uncertain databases. We proposed an update storage model in which
user contributions are never overwritten or deleted, but persist in the database
in their original form, leading to different possible worlds. We described a frame-
work in which community feedback is used to reconcile contradicting updates
and to compute reputation values for each user according to the feedback on her
updates. One of the main points of the paper was to describe a relevant use case
for uncertain databases, in particular based on U-relations. Due to the lack of
space, we have left out some important questions that have to be addressed in a
real-world system: e.g. how to prevent creation of virtual users to rate dummy
updates for the sake of earning high reputation [15].

Directions for future work are thus manyfold. A particularly important ques-
tion is the choice of the semantics for query answering. Unlike the approach
chosen here, in probabilistic databases queries are conceptually evaluated over
all possible worlds, and then the “best” possible answer is returned. It would be
thus interesting to extend our framework to other semantics for query answer-
ing and to design efficient methods for query evaluation under these semantics.
Another open issue is a precise complexity analysis of query answering.

Besides determining the best choices for all these problems, there are also sev-
eral open questions concerning techniques of the underlying uncertain databases.
A potential shortcoming of the semantics described in Section 2 is the arbitrary
combination of all available, compatible updates. Roughly speaking, every up-
date is applied to all possible worlds in parallel. The user, however, might just
want to introduce exactly one new possible world, or to be able to specify the
set of possible worlds to which the update is applied. Hence we do no longer

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

142

make any assumptions about dependent and independent attributes, but the set
of possible worlds is just defined by the updates performed. To the best of our
knowledge, no algorithm for these kinds of inserts in U-relations are known. So
far, only updates that really overwrite the old data have been considered [3], but
the insertion of new possible worlds has not been addressed.

Another problem arises from the assumption that data is never lost. In prac-
tice, this will most probably not be possible or maybe not even desirable. While
defining some agreement which data to delete can be easily done, to the best
of our knowledge, also the problem of efficiently deleting possible worlds from
U-relations has not yet been completely solved.

Finally we plan an implementation and experimental evaluation of the pro-
posed framework.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on, 17(6):734 – 749, june 2005.

2. L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational pro-
cessing of uncertain data. In Proc. ICDE 2008, pages 983–992. IEEE, 2008.

3. L. Antova and C. Koch. On APIs for probabilistic databases. In Proc. of
QDB/MUD ’08, pages 41–56, 2008.

4. C. Batini, C. Cappiello, C. Francalanci, and A. Maurino. Methodologies for data
quality assessment and improvement. ACM Comput. Surv., 41(3), 2009.

5. BIRN. http://nbirn.net/cyberinfrastructure/portal.shtm.
6. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.

Commun. ACM, 52(7):86–94, 2009.
7. W. Gatterbauer, M. Balazinska, N. Khoussainova, and D. Suciu. Believe it or not:

adding belief annotations to databases. Proc. VLDB Endow., 2(1):1–12, 2009.
8. W. Gatterbauer and D. Suciu. Data conflict resolution using trust mappings. In

Proc. of SIGMOD 2010, pages 219–230. ACM, 2010.
9. GEON. http://www.geongrid.org/.

10. T. Gruber. Collective knowledge systems: Where the social web meets the semantic
web. J. Web Sem., 6(1):4–13, 2008.

11. R. Gupta and S. Sarawagi. Creating probabilistic databases from information
extraction models. In VLDB, pages 965–976, 2006.

12. Z. G. Ives, T. J. Green, G. Karvounarakis, N. E. Taylor, V. Tannen, P. P. Talukdar,
M. Jacob, and F. Pereira. The ORCHESTRA collaborative data sharing system.
SIGMOD Rec., 37(3):26–32, 2008.

13. L. Kot and C. Koch. Cooperative update exchange in the Youtopia system.
PVLDB, 2(1):193–204, 2009.

14. B. Leuf and W. Cunningham. The Wiki Way – Quick Collaboration on the Web.
Addison-Wesley, 2001.

15. B. N. Levine, C. Shields, and N. B. Margolin. A Survey of Solutions to the Sybil
Attack. Tech report 2006-052, University of Massachusetts Amherst, October 2006.

16. A. D. Sarma, M. Theobald, and J. Widom. Live: A lineage-supported versioned
dbms. In Proc. of SSDBM 2010, volume 6187 of Lecture Notes in Computer Sci-
ence, pages 416–433. Springer, 2010.

17. S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. Hambrusch, and R. Shah. Orion
2.0: native support for uncertain data. In SIGMOD ’08:, pages 1239–1242, New
York, NY, USA, 2008. ACM.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

143

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

144

Handling Uncertainty and Correlation in
Decision Support

Katrin Eisenreich and Philipp Rösch

SAP Research Center Dresden, Germany
katrin.eisenreich@sap.com, philipp.roesch@sap.com

Abstract. Many models and approaches have been developed to tackle
the management of diverse uncertain data in different application fields.
However, support for flexible handling of such data in the context of de-
cision support has not received dedicated attention so far. We argue that
this application field necessitates special support for the introduction and
modification of uncertainty to incorporate a user’s assumptions. There-
fore, this paper addresses the representation, analysis, and modification
of uncertainty with the primary goal to provide means for efficient analy-
sis and scenario creation for decision support. This includes the modeling
of correlated uncertain data on a suitable level of flexibility, such as to
enable a broad range of types of uncertain data and dependencies in
such data. At the same time, we preserve a reasonable level of “sim-
plicity” for users to interpret and apply the provided functionality. We
discuss features and propose a data model and an operator set for intro-
ducing, analyzing, and modifying uncertainty information. Furthermore,
we show how the presented solution can help experts to examine and
track uncertainty in their data throughout the analysis process and thus
consider different assumptions to make better founded decisions.

1 Introduction

Analysis of historic data and forecasting of future developments are both central
tasks in decision support. Based on previous business results and assumptions
about the future, a decision maker must decide on specific actions to take, aiming
to achieve an optimal outcome with respect to some target. However, analysis
and planning processes that result in crisp numbers can disguise the uncertainty
inherent both in underlying data and in assumptions about future developments.
To account for these uncertainties, they must be represented in the data and
considered in operations applied to the data. Existing uncertainty management
approaches, such as those reported in [1, 2] mostly address application scenarios
in the field of scientific and sensor data processing, spatial databases, information
extraction, or data cleansing. Decision support over large volumes of data in-
cluding uncertainty of measure values, however, has not received broad attention
so far, although it imposes similar challenges.

To address this topic we investigate the representation, analysis, and modi-
fication of uncertain data with the primary goal to provide means for powerful

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

145

and flexible creation and evaluation of what-if scenarios. As a starting point for
such scenarios, we consider assumptions users make about future developments
(which, by definition, are uncertain). Firstly, we target the question of how such
uncertain information is introduced to the system. While in some cases users
want to provide empirical values, probably not all users are able to specify the
nature of the distribution of a value. Therefore, they should be empowered as far
as possible to compute distributions from available data using suitable operators.
Secondly, users should be able to modify uncertain values based on assumptions,
e.g., about changing conditions or effects of business decisions they aim to eval-
uate. In a next step, they should then be able to compare scenarios derived
from different assumptions. A third important aspect that relates both with the
nature of uncertain data and the introduction of assumptions is dependency, or
correlation, in data. Previous research such as [1, 3, 4] mainly investigates means
to keep track of dependencies introduced by relational algebra operators such as
joins. All those approaches consider input data independent. In particular, given
two (separately provided) input values and a user’s “knowledge” about their cor-
relation, they do not provide any functionality for introducing this information
to the system. We argue that available input data, such as forecast values of
various economic figures, might indeed be highly correlated. Also, users might
wish to evaluate the influence of different correlation patterns between values
of interest. Such functionality necessitates means to provide information about
assumed correlation to the system.

We hold that the introduction and modification of uncertainty, scenario cre-
ation, and proper handling of correlation are particularly relevant when it comes
to interactive processes—processes, where users create and adjust assumptions
to eventually derive “new” data and decisions from such assumptions. The fol-
lowing are the primary aspects we address in the remainder of this paper to
tackle those issues:

– Expressivity of probabilistic data model: To meet the requirements
imposed by the decision support context, our data model supports the rep-
resentation of attribute-level uncertainty over discrete and continuous do-
mains (the former can be represented as special case of the latter). Further,
we address the modeling of correlation between uncertain attributes and the
representation of alternative scenarios implementing a user’s assumptions.

– Versatile functionality for analyzing and processing uncertain data:
We provide operators for the analysis over uncertain data as well as the intro-
duction and modification of uncertainty, particularly enabling the introduc-
tion of correlation information and the derivation of different scenarios. The
provided set of high-level operators is closed. A set of basic functions serves
to retrieve characteristics of uncertain values and is used in the computation
of those operators.

The remainder of the paper is structured as follows: In Section 2, we discuss
fundamental concepts for representing and processing uncertainty in data; we
introduce two example tasks to motivate and illustrate our concepts throughout

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

146

the paper. Section 3 describes the data model and operator set implementing
the proposed features. We illustrate exemplary compositions of our operators
and address specific details applying them to our example tasks in Section 4.
Section 5 relates the presented work to findings of previous research. In Section 6,
we conclude the paper and give some indications of future work.

2 Analyses and Uncertainty

Before we introduce our data model and the operators for handling uncertainty,
we give a brief overview over some fundamental concepts of representing and
processing uncertainty. We focus on features that are particularly interesting
for what-if scenario analyses over large-scale datasets. To keep it simple and
more concrete, consider a business case where an expert investigates potential
markets for a company’s products and prospective revenue generated within
different regions. As running examples, we consider the following two tasks:

– T1: Regional Revenue Forecast An expert wants to evaluate next year’s
probable revenue in a newly developed region Rnew. For lack of long-term
historic data for this region, he wants to predict the revenue development
based on the past development of a similar region Rref , assuming the revenue
in Rnew of the last quarter in 2009 as baseline value. Additionally, he wants
to take into account forecasts about the general economic development.

– T2: Product Portfolio Management The expert wants to investigate
the change in sales of a product PA after the launch of product PB , given
knowledge about the effect of a similar product PC on sales of PA. He eval-
uates different assumptions with respect to possible sales numbers of PB to
evaluate marketing strategies.

The first task addresses the aspects of introducing uncertainty and correla-
tion; in the second task, we additionally consider the modification of uncertainty
to create alternative scenarios.

2.1 The Analysis Process

The analysis processes associated with tasks as described above involve both op-
erations similar to those known from OLAP (slicing, dicing, roll-up, drill-down)
and operations for derivation, introduction, and modification of uncertain data.
Figure 1 illustrates on an abstract level how operations are applied in such a
process in a sequential and iterative fashion. After loading and analyzing under-
lying data, different operations for the evaluation of assumptions can be applied
before the user saves one or more resulting scenarios. In the graph, operators are
shown as rectangles with round corners. Rectangles depict data consumed and
produced by the steps (i.e., the applied operators) in the process. We consider
both certain (historic) and uncertain (approximated or forecast) data loaded
from a data warehouse (Step 1). In the figure, uncertain data is distinguished

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

147

Fig. 1. A schematic description of the what-if analysis process

from certain data by dashed lines. Users select and analyze data to view it on an
appropriate aggregation level (Step 2). To evaluate a possible development of the
current situation those views can then be processed through several steps to cre-
ate an (uncertain) what-if scenario (Step 3); e.g., users can select and calculate
statistic measures of past data and use the result as input for a forecast. Addi-
tionally, they might insert new values assumed to hold for some attribute. They
can iterate steps 2 and 3 to derive, explore, and subsequently compare several
scenarios based on previous intermediate results. For example, data resulting
from an analysis in step 2 can serve as input for several what-if analysis steps
3a, 3b, etc. The final result of the illustrated process is uncertain data of one
or several scenarios. Users can investigate those scenarios to make appropriate
business decisions and possibly store them for later reference (Step 4).

2.2 Uncertainty in Decision Support Scenarios

As a basis for our data model and the operators presented in Section 3, we give
some general remarks on representing and handling uncertainty.

Representing Uncertainty To appropriately handle uncertainty in decision
support systems, we have to observe the specific characteristics of the data and
tasks involved. First, the domain of a value’s distribution can be either con-
tinuous, like forecast results provided as an expected value and an associated
confidence interval modeled, e.g., as a Gaussian distribution, or discrete, like for
cases where users want to model only a number of discrete alternatives with
their respective probabilities. Here, an example is the evaluation of a company’s
potential revenue increase of +3%, +5%, and +10% with associated probability
values of 0.5, 0.4, and 0.1, respectively. Second, uncertainty can occur both with
respect to measure values describing a relevant key figure, and regarding the
dimensional characterization of data. In the context of planning and forecasting,
this relates especially to the temporal allocation of facts, which can hold during
some indeterminate time interval. Examples are uncertain product launch times
or a project duration which cannot be determined with certainty. We want to
enable users to incorporate the aspect of temporal indeterminacy in their anal-
yses, e.g., by aggregating over indeterminate “events”. However, this aspect is
rather complex and therefore will not be addressed in detail in this paper.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

148

Correlation In addition to uncertainty associated with individual values, real-
world data is often subject to correlation. This means that values can not be
handled as independent from each other as they covary and therefore exhibit
a dependent behavior which must be considered in computations. If such de-
pendencies are not reflected in the data, analyses can yield incorrect results in
terms of misleading probabilities, possibly leading to an underestimation of risks
or chances. As a simple example, in task T1 the data considered will probably
be subject to some correlation in the sense that the (predicted) revenue develop-
ment in region Rref is positively correlated with the economic growth forecast.
Since data can exhibit dependency structures other than linear correlation, we
need means for flexible representation of different correlation structures between
arbitrarily distributed values.

Handling Uncertainty During the analysis process, users do not only want to
be informed about the present uncertainty but also need to evaluate the effect
of new assumptions or modified uncertain information.

Introduction of uncertainty At some point, users need to introduce uncertainty
derived from experience or as approximations from initially certain data. For
example, to derive prospective future trends, they want to incorporate historic
knowledge approximated from a set of facts (e.g., sales from different cities)
capturing a value’s distribution over those facts rather than the exact values.
The intuition is that for future developments we will likely observe values which
follow a similar distribution as those recorded in the past. Additionally, if there
exists information about correlation in data which can not be derived from fact
data but is based on users’ assumptions, it should be—and with our approach it
is—possible to introduce information about diverse correlation structures to the
present values. For example, if users assume a linear correlation of 0.8 between
the economic growth and the regional revenue development, they can introduce
this information to the existing data. Similarly, they can apply different depen-
dency structures and subsequently compare their influence on the result.

Modification of uncertainty When users want to analyze the influence of differ-
ent assumptions about an aspect of the future, they need to apply changes to
uncertain data, e.g., an expected revenue value. We treat such modifications as
creation of new (delta) versions of the original data. This enables users to derive
alternative scenarios and thus to relate and track the derivation of initial and
modified values throughout the process.

The next section describes how we address the motivated features, providing
details on the data model and operators used for uncertainty representation,
analysis and modification.

3 Data Model and Operators

The central goal in the design of our model for uncertainty is versatility both
with respect to the form of uncertainty representable and the operations we

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

149

can execute using our model. Users can independently choose different forms
for (i) the concrete representation for describing uncertain values and (ii) the
access to such data. Currently, we support a symbolic and a histogram-based
representation. A basic interface to a distribution offers access to its statistic
characteristics, such as its moments and function values of the density, distribu-
tion, and inverse distribution functions. The statistics are accessed independently
from the concrete underlying representation form, while their computation is, of
course, representation-specific.

3.1 Data Model for Representing Uncertain Values and Correlation

We now describe our model for the representation of uncertainty. As already
stated, a number of basic continuous distributions can be modeled symbolically.
This form is optimal in terms of storage and also allows for highly efficient ex-
ecution of a range of operations for some distributions. Most real-world data,
however, cannot be fit exactly by a basic distribution function. Moreover, appli-
cation of symbolic computations is restricted to only a few distribution functions
and some of the involved operations are very expensive. The focus of this section
therefore is the application of the more generic, histogram-based representation
of distributions. This representation will be assumed implicitly in the remainder
of the paper when we talk about a distribution unless explicitly stated otherwise.

Histogram-based representation of arbitrary distributions Similar to [1], we use
compact histograms representing continuous distribution functions to circum-
vent the abovementioned restrictions of symbolic representations. For an at-
tribute X, we consider uncertain attribute values xi distributed according to
a distribution Pi within a support interval Ii = [li, hi]. The bounds li and hi

indicate the lowest and highest value xi may take. The distribution Pi is repre-
sented by a set of pairs {(vj , fj)} where vj are discrete values from Ii and fj are

the respective frequencies in the underlying data. A histogram P
β

i is built by
partitioning the concrete value instances for xi into β mutually disjoint subsets
(bins) B = {b1, ..., bβ}. Each bin bk represents a sub-interval [lk, hk] of Ii and is
associated with the relative frequency fk computed by aggregating frequencies
fj of all values lying in [lk, hk]. Similarly, we can approximate a continuous
distribution function (pdfi), associating each bin bk of the result histogram with

a density value computed as the integral
∫ hk

lk
pdfi. Figures 2(a) and 2(b) show

two histograms; P ince represents the density function of the predicted (relative)
economic growth ince distributed according to a Gaussian with mean 0 and vari-
ance 1, while P incref represents the (relative) regional revenue increase incref
calculated from historic revenue numbers per city in region Rref . Histograms
can be constructed flexibly by applying different partitioning schemes which we
do not want to investigate at this point (see, e.g., the classification in [5]). At
the moment, we use equi-width histograms due to their construction and update
efficiency. Other forms such as equi-depth histograms could be introduced but

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

150

would require expensive conversions for some of our operators to process them
correctly.

(a) P ince (b) P incref (c) CGauss,0.8 (d) CGauss,0.8

Fig. 2. Representation of univariate distributions, a copula (500 samples), and a cor-
responding ACR. In (d), light levels of gray indicate high density values.

Correlation Similar to one-dimensional distributions, multivariate distributions
can be approximately represented using multidimensional histograms. If we dis-
pose of (historic) fact data containing values for two (or more) attributes, we
can compute a multidimensional histogram1 to represent the common distribu-
tion over the attribute values. However, this approach is not applicable in cases
where only “independent” values are available (e.g., values ince and incref) or
the available data is too sparse. If a user wants to evaluate an assumption that
there is a certain correlation, say, a linear correlation of ρ = 0.8, between those
values, we must provide means to introduce this correlation first. A well-known
approach to address this issue is to use Monte Carlo simulation (see, e.g., [6])
to “generate” samples from the uncorrelated distributions such that the samples
have marginal distributions equal to the distributions of the values to corre-
late and exhibit the desired correlation. Then, we can build a multidimensional
histogram over those samples. Eventually, the correlation will be represented
both encapsulated in the chosen sampling function and the resulting multidi-
mensional histogram. One drawback of this approach is that—depending on the
marginal distributions as well as the structure of dependency in the resulting
distribution—the sampling process can incur high computational costs at run
time. Additionally, the approach is restricted regarding the correlation structures
we can impose and the marginal distributions of the values to correlate.

To circumvent the given restrictions and provide a flexible method for cor-
relation introduction within our solution, we propose to represent correlation
information as a separate artifact, independent from the concrete values to
be correlated. This artifact is constructed as an n-dimensional histogram over
an instance of special functions known as copulas. In brief, a copula is an n-
dimensional distribution function C : [0, 1]

n → [0, 1] with uniform marginals,
representing the functional relation between n individual distributions and their

1 Note that the construction of equi-width histograms can be easily extended to the
multi-dimensional case.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

151

joint distribution. In this paper, without restriction of generality, we consider the
case n = 2. That is, we link two distributions using a two-dimensional copula
with marginals u and v uniformly distributed over [0, 1]. Formally, the concept
of copulas is founded on Sklar’s Theorem [7]. It states that, given H as a bi-
variate distribution with F and G as univariate marginal distributions, there
exists a (copula) function C : [0, 1]

2 → [0, 1] so that H(x, y) = C(F (x), G(y)).
Conceptually, C is a mapping assigning the value of the joint distribution func-
tion H to each ordered pair of values of the marginal distribution functions F
and G. Using the inversion approach (see, e.g., [8]), we can construct a copula
C(u, v) = H(F−1(u), G−1(v)), the structure and degree of the correlation being
determined by the distribution H used to build the copula. We write CH,d to
denote a copula constructed based on a bivariate distribution H with correla-
tion d. For example, we can compute CGauss,0.8 based on a bivariate Gaussian
distribution with a correlation of 0.8, as displayed in Figure 2(c). In order to use
such a copula to correlate two arbitrary distributions Px and Py, we again apply
Sklar’s Theorem, substituting F and G with the desired marginals Px and Py.
For further details on the copula approach, see, e.g., [8].

Copulas have been widely used, e.g., for stochastic modeling in the field of
risk management [9]. However, to the best of our knowledge, they have not yet
been applied in the database field. We propose to pre-compute copulas and store
them in the form of histogram-based approximate correlation representations
(ACRs, denoted by CH,d) for a number of possible correlation structures and
degrees. For example, Figure 2(d) displays the ACR for the copula shown in
Figure 2(c). ACR histograms induce only small memory costs, depending on
the parameters of the histogram construction. Further, when using ACRs to
introduce correlation between distributions at run time, we can avoid expensive
sampling and function calls. In the next section, we describe an operator for
introducing the correlation represented by an ACR between two concrete values.

3.2 Operators for Handling Uncertainty

We now present our set of logical operators supporting the features motivated
earlier. We group operators according to whether they support functionality
for representation (and converting representations), analysis, or modification of
uncertain data.

Representation of Uncertainty As discussed above, we can use either sym-
bolic or histogram-based representations of uncertainty. To enable users to flex-
ibly use the representation that best fits their needs, we provide the following
functionality.

Statistic properties: We provide a basic interface for retrieving moments of
a distribution and the function values of the probability density pdf(x), dis-
tribution cdf(x), and inverse distribution invcdf(p) functions. Apart from
gaining insight into the statistic characteristics of data, those functions are

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

152

used in the computation of our operators. In particular, for introducing cor-
relation information we make use of invcdf(p) as will be described below.

Derive uncertainty DRV (V , tgt) = xnew: Given input values V from a set of
fact data, users can introduce uncertainty by approximating the discrete
data by a distribution Pnew. Using DRV , they can either build a histogram

P
β

new or derive parameters for an (assumed) distribution function, depend-
ing on the specified target distribution tgt. Histograms are built based on
parameters specifying the desired type (e.g., equi-width) and the number
of bins within a support interval. As an example in the context of T1, a
user can apply DRV on the quarterly revenue growth numbers collected for
cities in region Rref . The resulting value incref reflects the distribution of
those numbers which then can be assumed as reference distribution for other
regions. Figure 2(b) displays the associated result histogram P incref .

Convert representations CNV (x1, tgt) = x2: The CNV operator converts
any symbolic representation of x1 into its approximate histogram-based
form, or vice versa, depending on the parameters specifying the target distri-
bution tgt. Note that the accuracy of a conversion from an histogram-based
into a symbolic representation depends on the requested target distribution.
That is, the user needs knowledge about the nature of the distribution (e.g.,
whether the data roughly follows a Gaussian distribution) to compute the
appropriate parameters from underlying values.

Analysis and Computation over Uncertain Values We support standard
analysis operators similar to relational algebra such as selection and aggregation,
incorporating the uncertainty in data.

Filter FIL(X, cond, prob) = {xi|P (cond(xi)) > prob}: The user can perform se-
lections similar to selections known from relational algebra, providing an at-
tribute of interest X, a selection condition cond in terms of an operator and
a value for comparison, and a probabilistic threshold value prob. The value of
prob determines the lowest admissible probability of the predicate holding.
For example, for an uncertain attribute value xi uniformly distributed over
the interval [0, 5] the condition xi < 4.5 with a required minimum probability
of prob = 0.8 evaluates to true, and xi passes the selection filter.

Aggregate AGG({x1, ..., xn}) = xAGG: Similar to aggregation over certain data
we support the computation of aggregates over uncertain values, such as their
sum (AGGSUM) or maximum (minimum) (AGGMAX , AGGMIN). Sum-

mation is performed by convolution over the associated histograms P
β

i (or
symbolically, if applicable). The basic strategy for computation of MAX or
MIN is to compute the maximum or minimum of the expected values E(xi).
As an alternative approach, we could, e.g., consider the complete support
interval Ii of each xi, thus taking into account all realizations of involved
uncertain values (with the negative effect of including possible outliers in
the distribution).

Calculate CLC(formula, attributes) = xresult: We allow the use of custom
operators to calculate a result value xresult from values of a set of input

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

153

Fig. 3. Applying inversion to introduce correlation between ince and incref based on
an approximate copula representation (in this case using a copula CGauss,0.8)

attributes. For example, we can calculate the product of a key figure and a
factor representing the prospected increase of this figure. This is applied to
compute the revenue forecast revnew for region Rnew in T1.

Modification of Uncertainty Introducing and changing assumptions about
developments, and thus, uncertainty in data, is a central task in the process of
analyses for decision support. Therefore, we introduce the following operators al-
lowing the modification of values and the introduction of correlation for creation
of new scenarios.

Modify uncertainty MOD(xold, xnew) = xΔ: We allow the modification of
an uncertain value represented by xold to a value xnew. We do not per-
form in-place modification but rather store the new value and a reference
to the initial (modified) value. This form of modification management fa-
cilitates the traceability of modifications as well as comparison of scenarios
derived through modifications in an analysis process. The histogram PΔ is
computed as a delta (histogram) of Pnew to P old, i.e., we keep for each bin
of P old the difference of density values to the respective bin of Pnew.

Introduce correlation COR(x, y,H, d) = (x, y): This operator enables users
to introduce a specified correlation between two distributions Px and Py.
The approach is illustrated in Figure 3. Conceptually, the result of this
operator is a bivariate distribution Px,y with Px and Py as marginal dis-
tributions and the specified correlation. Internally, we use a suitable ACR
CH,d to compute the concrete distribution Px,y, represented by histogram
P x,y. We do so by applying the inversion method to each of the bins bi,j of
CH,d, considering each bin as a representative of the accumulated samples
from the copula CH,d. In the basic approach, we assume the center of bi,j
as its coordinates (ui, vj); the associated frequency fi,j indicates the rela-
tive number of represented samples with those coordinates. Then, we apply
the invcdf functions of Px and Py to compute samples of the target joint

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

154

distribution function as (invcdfx(ui), invcdfy(vj)). Finally, we add the fre-
quency fi,j to that bin of the resulting joint distribution histogram P x,y to
which (invcdfx(ui), invcdfy(vj)) belongs. For example, if we want to intro-
duce a linear correlation of d = 0.8 between the distributions Pincref and

Pince , we use an ACR CGauss,0.8. We apply the inversion method, accessing
P incref and P ince to compute (invcdfincref (ui), invcdfince(vj)) as samples of

the joint distribution Pincref ,ince for each bi,j in CGauss,0.8. To introduce a
different structure of dependency, we could simply apply a different ACR,
such as CT (1),0.8 which models the effect of highly dependent extreme val-
ues based on a bivariate T distribution with one degree of freedom. In a
first implementation, we extended the described basic approach by draw-
ing a number (relative to fi,j) of uniformly distributed samples per bin bi,j ,
rather than simply assigning fi,j to the inverted center of bi,j . This approach
proved to yield a much higher accuracy of the resulting joint distribution.

4 Implementation and Scenario Evaluation

We have implemented a prototype to evaluate the described data model and
provide a basic operator set. The introduction of generic correlation other than
linear correlation is subject to current work. A detailed description of the im-
plementation is out of the scope of this paper; instead, we point out some of
its central concepts to give a coarse understanding of how operators and their
composition are implemented.

Architecture We extended an existing proprietary engine that computes complex
analytical queries by means of so-called Calculation Views (CV). Those views
enable OLAP analysis functionality as well as application of custom operations
provided as Python or C++ implementations. Each CV can be queried like a
base table or serve as input to further CVs. The topmost CV along with its
ancestors forms a directed acyclic graph and is stored as a Calculation Scenario.

Model and Operator implementation In the graph introduced in Figure 1, the
phase of what-if analysis is preceded by steps for loading data and analyzing
selected data on an appropriate level of granularity. To implement those steps,
we create CVs specifying the required input tables, attributes, aggregation func-
tions, and filter conditions indicating the grouping, aggregation, and selected
scope of the resulting CV. The described operators are implemented either as
stacked CVs using only the native analysis functionality, or their computation
is (partially) implemented by means of custom operator functions.

4.1 Scenario implementation

Revenue forecasting (T1) In Figure 4, we show the composition of operators
implementing task T1. The final goal is to derive a forecast for the revenue
revnew in region Rnew. As described, operators are composed by creating stacked

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

155

Fig. 4. Implementation of task T1 as an example of scenario creation in what-if analyses

views, their intermediate results being indicated in Figure 4 as input and output
data items. In a first step, a user loads relevant historic revenue data as well
as data reflecting the forecast economic growth ince. The user then views the
revenue data on the level of quarterly revenue increases per city of Rref . Based
on this information, he derives incref , which represents the distribution of the
quarterly regional revenue increase for Rref . To apply the assumption that a
linear correlation of 0.8 holds between ince and incref , the user applies COR to
calculate a bi-dimensional distribution over those values. The revenue of quarter
Q4/2009 for region Rnew serves the user as a base value b for the forecast of
revnew, which is derived by applying CLC to increase b by the quarterly increase
reflected by ince,ref . Finally, the expert stores the scenario for later reference.

Assuming alternative buying patterns The created scenario only represents one
possible future development. The forecast (or further steps succeeding the fore-
cast, for that matter) could yield different results if, e.g., a different correlation or
different economic data was incorporated. For an alternative scenario, consider
a situation where the expert wants to forecast revenues for the special class
of high-end products. He could make the assumption that consumers’ buying
pattern for such goods is not linearly correlated with economic growth. Rather,
given a very high economic growth, a particularly large part of consumers might
be inclined to “treat themselves” to some luxurious products. Conversely, with
a very strong economic decline, even those who earn well might avoid unnec-
essary spendings. Moderate changes of the economy, on the other hand, might
have no directly visible effects on consumers’ behavior. To consider such a case,
a user must incorporate high dependencies of extreme values of the marginal
distributions (i.e., those values close to the lower and upper bounds of Iince and
Iincref , respectively). Therefore, in such a case the expert might apply an ACR
representing, e.g., the copula CT (1),0.8 rather than a Gauss-copula.

Product portfolio planning (T2) Task T2 also involves many assumptions
and thus uncertainty. Its implementation is displayed in Figure 5. The user wants
to evaluate which effect the launch of a product PB at tlaunchB has on sales of
product PA. To do this, he first assumes that PB is similar to a previously

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

156

Fig. 5. Process graph depicting the implementation of T2

launched product PC as regards their effect on salesA. To provide the informa-
tion representing this correlation, he derives a bivariate distribution from the
sales of PC (salesC) and the sales increase (or decrease) of product PA (incA)
recorded for corresponding stores and times after the launch of PC (tlaunchC).
Second, the expert assumes the current sales of PC (salesC) as initial value for
salesB . Third, he wants to evaluate different scenarios applying changes to the
assumed value of salesB . For simplicity, this is not shown in the figure. As ex-
ample, imagine that the expert is positive that appropriate marketing measures
will be taken to decrease the risk of very low sales numbers of product PB . This
assumption could be introduced by applying operator MOD to decrease the
probabilities of low values in the distribution of salesB .

5 Related Work

Uncertainty management has been an important field of database research dur-
ing the last decade. Most approaches, such as the prominent TRIO [2] and
MayBMS [4] systems, address the modeling and querying of discrete uncertainty
relying on model extension approaches. Alternative tuples and attribute val-
ues are associated with a probability of occurrence and lineage information is
recorded to enable correct handling of introduced dependencies. In recent devel-
opments, one can also observe growing support for continuous distributions, e.g.,
in the Orion 2.0 system [1] and in proposals described in [3]. We take a similar
approach to [1], modeling continuous uncertainty in a generic way using his-
tograms as an approximation. However, we additionally allow the independent
representation of correlation information, while [1] only represents this informa-
tion implicitly in multidimensional histograms over concrete value instances. An
alternative approach to model extension is the sample-first approach employed,
most prominently, by [6] which relies completely on Monte Carlo simulation.
Here, stochastic models are implemented through variable generation functions,
which are used to generate samples according to the assumed model. Queries
are then evaluated over the samples. This approach is highly flexible and en-
ables the computation of complex stochastical models. However, the models are
completely encapsulated in generation functions and intermediate (uncertain)

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

157

results can not be retained for later use, as opposed to the histogram-based
approach described in this paper.

The introduction and modification of uncertainty for what-if scenario cre-
ation have not received attention in most previous research. Most systems such
as [2] focus on querying uncertain data but do not allow its flexible handling for
forecasting and scenario analysis. The approach presented in [6] is situated in
the decision support context and allows modeling and evaluation of scenarios,
but as stated above relies completely on sampling while we represent uncertain
values and assumptions (such as modifications and introduced correlation) as
concrete artifacts which we can later reuse. The MayBMS [4] system includes
a “repair-key” operator to provide for introduction of uncertainty to initially
certain data, but addresses only the management of discrete probabilities on
tuple level while we allow modifications over (histogram-based representations)
of continuous uncertain values. Similar to our work, [10] addresses the special
relevance of correlation in uncertain data. The authors describe an approach for
representing tuple correlations using probabilistic graphical models and factored
representations of joint probabilities. They redefine the relational operators to
process factors during query evaluation. Their approach does, however, not ad-
dress the separate representation and application of arbitrary correlations to
independently represented continuous distributions. The system described in [1]
can also represent joint distributions over several values, but does not enable the
introduction of correlation information. Nor does any of the other approaches
evaluated provide this feature we described as part of our work.

6 Conclusion and Future Work

In this paper, we addressed the modeling of uncertain data and correlation in
such data with the special focus on enabling flexible what-if analysis in decision
support. Our major objectives were the expressivity of the probabilistic data
model as well as versatile functionality for analyzing and processing uncertain
data. With focus on the iterative process of analysis and what-if scenario cre-
ation we discussed different characteristics of uncertainty. For the representation
of uncertainty—and more specifically, for the support of arbitrary distributions—
we described a generic histogram-based uncertainty representation. We further
introduced a set of operators including functionality such as the derivation and
analysis of uncertain values, the modification of such values, and the introduc-
tion of different correlation structures to previously uncorrelated values (i.e.,
values for which no correlation information is present in the database). The last
aspect has not yet been addressed for uncertain data management, although
experts’ knowledge or assumptions about correlation indeed can be important
information when analyzing risks and chances of business decisions. Based on
two example tasks, we illustrated the application and composition of our op-
erators and explained special aspects of introduced assumptions. In particular,
we showed where the introduction of correlation comes into the picture and

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

158

provided simple examples for applying different correlation structures, e.g., to
evaluate alternative consumption patterns.

A first prototype implements most of the described features. Currently, the
introduction of correlation is restricted to basic linear correlation. The imple-
mentation of the generic correlation introduction as well as an evaluation of its
performance with respect to both run times and accuracy is subject of current
work. Further, to support the iterative nature of the decision support process,
we aim to provide a graphical visualization of (intermediate) results of applied
operators in the analysis process. This way, we could present the user with an
intuitive view of how information in a given scenario was derived or how values
(more precisely, the distribution of those values) in alternative scenarios differ.
Another interesting aspect would be the application of the discussed functional-
ities on real-world data (e.g., sales data). Such data will most probably exhibit
more diverse distributions than artificially generated data and thus open up
better possibilities to investigate the flexible analysis process.

References

1. Singh, S., Mayfield, C., Mittal, S., Prabhakar, S., Hambrusch, S., Shah, R.: Orion
2.0: Native Support for Uncertain Data. In: SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD, New York, NY, USA, ACM (2008) 1239–1242

2. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T.,
Widom, J.: Trio: A System for Data, Uncertainty, and Lineage. In: VLDB ’06: Pro-
ceedings of the 32nd International Conference on Very Large Data Bases, VLDB
Endowment (2006) 1151–1154

3. Agrawal, P., Widom, J.: Continuous Uncertainty in Trio. In: MUD, Stanford
InfoLab (2009)

4. Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: A Probabilistic Database
Management System. In: SIGMOD ’09: Proceedings of the 35th SIGMOD Inter-
national Conference on Management of Data, New York, NY, USA, ACM (2009)
1071–1074

5. Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved Histograms for
Selectivity Estimation of Range Predicates. SIGMOD Rec. 25(2) (1996) 294–305

6. Jampani, R., Xu, F., Wu, M., Perez, L.L., Jermaine, C., Haas, P.J.: MCDB: A
Monte Carlo Approach to Managing Uncertain Data. In: SIGMOD ’08: Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of Data,
New York, NY, USA, ACM (2008) 687–700

7. Sklar, A.: Fonctions de repartition à n dimensions et leurs marges. Publications
de l’Institut de Statistique de L’Universite de Paris 8 (1959) 229–231

8. Nelsen, R.B.: An Introduction to Copulas. Springer Series in Statistics. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2006)

9. Embrechts, P., Lindskog, F., McNeil, A.: Modelling Dependence with Copulas and
Applications to Risk Management (2001)

10. Sen, P., Deshpande, A.: Representing and Querying Correlated Tuples in Prob-
abilistic Databases. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd Interna-
tional Conference on. (2007) 596–605

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

159

