
Wayne State University

Wayne State University Dissertations

1-1-2015

Semantic Web Based Relational Database Access
With Conflict Resolution
Fayez Khazalah
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Khazalah, Fayez, "Semantic Web Based Relational Database Access With Conflict Resolution" (2015). Wayne State University
Dissertations. Paper 1315.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56687244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1315?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages


SEMANTIC WEB BASED RELATIONAL DATABASE ACCESS
WITH CONFLICT RESOLUTION

by

FAYEZ S. KHAZALAH

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

2015

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date



c©COPYRIGHT BY

FAYEZ S. KHAZALAH

2015

All Rights Reserved



DEDICATION

To

my MOTHER and FATHER

my Wife

my Kids, Yamen, Bushra, and Saleem

my Brothers, Sisters, and their families

ii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

PART I: THESIS INTRODUCTION . . . . . . . . . . . . . . . . . . . 1

CHAPTER 1: Introduction and Problem Statement . . . . . . . . . . . . . 2

1.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 7

PART II: SEMANTIC WEB BASED RELATIONAL DATABASE ACCESS WITH

ONTOLOGY EXTRACTION AND MAPPINGS. . . . . . . . . . . . 8

CHAPTER 2: Ontop and the Semantic Web . . . . . . . . . . . . . . . . 9

2.1 Semantic Web Overview . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 RDFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.5 SPARQL Query Language . . . . . . . . . . . . . . . . . . . . 14

2.2 Ontology Based Data Access (OBDA) . . . . . . . . . . . . . . . . . 14

2.3 Motivating Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3: Ontop Mapping Rules and OWL Ontology Extraction from Rela-

tional Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 The Metadata of a Relational Schema . . . . . . . . . . . . . . . . . . 24

3.2 Rules for extracting Ontop mapping rules from relational schema . . 25

3.2.1 Independent Table rule . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Dependent Table rule . . . . . . . . . . . . . . . . . . . . . . . 29

iii



3.2.3 Recursive Table rule . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Binary Join Table rule . . . . . . . . . . . . . . . . . . . . . . 37

3.2.5 n-ary Join Table rule . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Extracting OWL Ontology from Ontop Mapping Rules . . . . . . . . 47

3.4 Implementation and Experiments . . . . . . . . . . . . . . . . . . . . 48

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 60

PART III: RESOLVING CONFLICTS EFFICIENTLY IN CDSS USING COM-

MUNITY FEEDBACKS . . . . . . . . . . . . . . . . . . . . . . 62

CHAPTER 4: Collaborative Data Sharing Systems and Conflicts . . . . . . . 63

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Schema mapping . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 Duplicate detection . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Data fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 CDSSs Conflict Resolution Overview . . . . . . . . . . . . . . . . . . 72

4.3.1 BeliefDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Trust mappings . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Uncertain databases . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.4 Youtopia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.5 Collaborative Data Sharing System (CDSS) . . . . . . . . . . 77

4.3.6 Orchestra CDSS . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.7 Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Discussion and Future Directions . . . . . . . . . . . . . . . . . . . . 82

iv



CHAPTER 5: Automated Conflict Resolution in CDSS . . . . . . . . . . . 87

5.1 Remote Reputation of a Provider Peer (RRPP) . . . . . . . . . . . . 90

5.2 Local Reputation of a Provider Peer (LRPP) . . . . . . . . . . . . . . 98

5.2.1 Rating updates . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Computing the LRPP value . . . . . . . . . . . . . . . . . . . 99

5.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Computing the RRPP . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Computing the LRPP . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3 Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Implementation Model and Results . . . . . . . . . . . . . . . . . . . 107

5.4.1 One Consumer and Multiple Providers . . . . . . . . . . . . . 108

5.4.2 Multiple Consumers and Providers . . . . . . . . . . . . . . . 110

5.4.3 Execution Time Comparison . . . . . . . . . . . . . . . . . . . 114

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 117

APPENDIX A: Helper functions for extracting Ontop mappings . . . . . . . 119

APPENDIX B: List of Publications . . . . . . . . . . . . . . . . . . . . 126

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . 143

v



LIST OF FIGURES

2.1 BookStore Schema. . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 OntoBookStore, an equivalent ontology for BookStore schema. 18

2.3 A pictorial mapping between schema and ontology. . . . . . . 21

3.1 The architecture of the proposed approach. . . . . . . . . . . 23

4.1 Collaborative data sharing system example . . . . . . . . . . 80

5.1 Proposed CDSS architecture . . . . . . . . . . . . . . . . . . 88

5.2 Experiment Results of Two Data Sets (A and B). . . . . . . 109

5.3 Reputation and Credibility Assessment with 90% High. . . . 111

5.4 Reputation and Credibility Assessment with 60% High. . . . 113

5.5 Execution time results . . . . . . . . . . . . . . . . . . . . . . 115

vi



LIST OF TABLES

2.1 Mappings between an ontology and a relational schema. . . . 22

3.2 Data instance for the relational schema from Listings 3.1 and 3.3. 49

3.3 Data instance for the relational schema from Listing 3.7. . . . 51

3.4 Data instance for the relational schema from Listing 3.10. . . 54

3.5 The SPARQL query’s result from Listing 3.14. . . . . . . . . 55

3.6 The SPARQL query’s result from Listing 3.16. . . . . . . . . 55

3.7 The SPARQL query’s result from Listing 3.18. . . . . . . . . 55

4.8 Reconciliation of F(organism, protein, function). . . . . . . . 81

4.9 Comparison between community-based systems and models . 85

5.10 Definition of symbols. . . . . . . . . . . . . . . . . . . . . . . 90

5.11 Reconciliation of F(organism, protein, function). . . . . . . . 101

5.12 The deferred set of peer p1. . . . . . . . . . . . . . . . . . . . 102

5.13 Computing p2’s RRPP and raters’ new credibility values. . . 104

5.14 Computing p3’s RRPP and raters’ new credibility values. . . 105

vii



1

PART I: THESIS INTRODUCTION
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CHAPTER 1: Introduction and Problem Statement

The vision of the Semantic Web was introduced in the early part of this century to

convert the existing World Wide Web from the Web of Documents to the Web of Data.

The latter defines a medium where data is structured and classified into taxonomies

of concepts, attributes, and the relations between those concepts and attributes (i.e.,

ontological) (Doan et al., 2002). Since the Semantic Web’s inception (and long before

that), relational database systems have been used for storing the resulting data; due

mainly to the maturity, performance and efficiency of the relational database model

(Beckett and Grant, 2003). This has led to the development of dedicated database

systems (a.k.a. triple stores) for storing the Semantic data (del Mar Roldan-Garcia

and Aldana-Montes, 2006). However, in recent years the research focus has shifted

towards supporting the access to the already existing and massive data (usually stored

in relational databases). The motivation behind this direction is to bring the relational

database communities into the Semantic Web world. Statistics show that more than

two-thirds of the data on the Internet is stored in structured or relational databases

(Chang et al., 2004). The data items are mostly hidden from search engines and

Web crawlers, and can only be accessed through dynamic Web pages, generated per

user queries (using interfaces by data owners, or invoking Web services) (Geller et al.,

2008). Since semantic data is scarce at best, the Semantic Web community will not

be able to achieve higher growth rates and productivity without the involvement of

relational databases.

From the viewpoint of the relational database community, a complete tran-

sition from the relational model into the Semantic Web is a complex and difficult

decision at best. Therefore, we believe that encouraging the database community to

adopt the Semantic Web technology is more effective if it is accomplished in a grad-
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ual and smooth manner. In recent years, technologies have been proposed to allow

the extraction of an ontology from a relational source, defining mappings between a

relational source and an existing ontology, and running user queries over the defined

ontology and getting back answers from the relational source that is mapped to the

ontology. These efforts can be divided into two distinct areas (Spanos et al., 2012):

The first area aims at extracting an ontology from an existing relational schema, while

the other area aims at finding mappings between an existing relational source and an

existing ontology. In this thesis, we focus on the former.

Developing a new ontology from scratch is usually very difficult and costly

(both in monetary and chronological terms), and requires expert opinions from the

relevant domain of knowledge. Thus, ontology learning techniques have been pro-

posed. These techniques have been used later in ontology-based data access (OBDA)

(Sequeda et al., 2009). OBDA assumes that there is a mediating ontology between

end users and a data source, such that each entity in the relational schema is mapped

to an equivalent entity in the ontology, in such a way that end users are not required

to know about the underlying source schema structure (Poggi et al., 2008). Recently,

the Ontop1 framework (Rodriguez-Muro and Calvanese, 2012) has positioned itself

as one of the competitive approachs for OBDA (after the success of the well-known

D2RQ framework). For instance, in a recent evaluation study (Rodrıguez-Muro et al.,

2013) it is shown that the Ontop framework is efficient, and achieves good perfor-

mance. Ontop deploys query rewriting techniques with Semantic Query Optimization

in an efficient manner. Thus, the queries execute faster. Moreover, redundant joins

are eliminated in the optimization process, which is beneficial when SQL queries are

written by inexpert users. (Rodriguez-Muro et al., 2013) also shows that the per-

formance of the SQL queries that are generated by Ontop are superior, compared to

1http://ontop.inf.unibz.it
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other systems that translate SPARQL queries into SQL (e.g., D2RQ and Virtuoso

RDF Views), and other well known triple stores (e.g., OWLIM, Stardog, and Virtu-

oso). We posit that the continuous development of the Ontop framework by commu-

nity, its open-source, in addition to providing a tool to translate R2RML mappings

(Cyganiak et al., 2012) into Ontop mappings and vice versa, will increase the popu-

larity of the Ontop framework, making it potentially one of the leading solutions for

ontology-based data access.

Manually extracting Ontop mapping rules and OWL ontology from a rela-

tional schema is a very complex, time consuming process, and it needs expert people

to complete the job. Therefore, automated approaches for the extraction process are

needed to facilitate, speed up this process, and minimize the need for expert people.

One of the primary uses for Ontology Based Data Access approaches (e.g., Ontop)

is for integration of distributed relational databases that either have heterogeneous

schemata , heterogeneous data instances, or both. An example on such an environ-

ment where we can apply Semantic Web based data integration is in collaborative

sharing systems, such as CDSS. However, we need to address the problem of conflict

resolution in CDSS if we want to use Ontology based data access approaches for the

collaborative sharing and integration. This is what we are discussing next.

In collaborative data sharing systems, groups of users usually work on dis-

parate schemas and database instances, and agree to share the related data among

them (periodically). Each group can extend, curate, and revise its own database in-

stance in a disconnected mode. At some point later, the group can publish its updates

to other groups and get updates of other ones (if any). The reconciliation operation

in the CDSS engine is responsible for propagating updates and handling any data dis-

agreements between the different groups. If a conflict is found, any involved updates
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are rejected temporally and marked as deferred. Deferred updates are not accepted

by the reconciliation operation until a user resolves the conflict manually.

The administrator of each peer in a CDSS is usually responsible for declaring

and managing trust policies. While the administrator can be expected to define trust

policies for a small number of participant peers, the same is not true for a large number

of participants. In addition, assuming that a community of hundreds or thousands

of members can authorize a user or a group of users to define trust policies for their

community may not be plausible. Moreover, a CDSS does provide a semi-automatic

conflict resolution approach by accepting the highest-priority conflicting updates, but

it leaves for individual users the responsibility of resolving conflicts for the updates

that are deferred. However, the assumption that individual users can decide how to

resolve conflicting updates is not strong, as users of the community may have different

beliefs and may agree or disagree with each other about which conflicting updates to

accept and why (i.e., on which bases). Therefore, the challenge lies in providing a

conflict resolution framework that requires minimal or no human intervention.

1.1 Research Contributions

The main contributions of this thesis can be summarized in the following points:

• We propose a Semantic Web based approach for accessing relational data. In the

proposed approach, Ontop mappings and OWL ontology are extracted from a

given relational source. At the beginning, we classify a relational source entities

into different relation types (i.e., independent, dependent, recursive, binary, n-

ary, inheritance, partitioning, etc.). We then define an Ontop mapping rule’s

template for each entity type. An algorithm is used to generate each of these

templates. The extractor module uses the templates to extract Ontop mapping
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rules for a relational source. In addition, it extracts an OWL ontology that

is equivalent to the relational source’s schema. Finally, a SPARQL endpoint

that is built on top of Ontop’s Quest reasoner is used to access relational data

through the extracted OWL ontology and the extracted Ontop mappings rules.

We summarize this contribution below:

– The proposal of an automatic Ontop mappings rules and ontology extrac-

tion from a relational schema.

– A prototype system implementation of the proposed approach. We have

implemented the proposed approach in Java. The end-users can access

any remote relational data through a JDBC connection. After establishing

the connection, end-users can extract the Ontop mapping rules and OWL

ontology from the underlying data source, pose SPARQL queries over the

extracted ontology (to access the relational data) and get the results back.

In addition, end-users can alter both the extracted rules and the ontology

according to their needs.

– A set of experiments have been conducted to evaluate the proposed ap-

proach. We have evaluated the proposed approach using different freely

available relational databases. The evaluation process is composed of two

steps: In the first step, the ontology and mapping rules are extracted. In

the second step, SPARQL queries (over the extracted ontologies) are used

to access the relational data sources.

• We define a novel conflict resolution approach that extends the CDSS to au-

tomate the resolution of conflicts in the deferred set of a CDSS’s reconciling

peer. We define a distributed trust mechanism to compute the weight for each

conflicting update.
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1.2 Dissertation Organization

The remaining of the dissertation is organized as follows. Chapter 2 is a background

on Semantic Web and ontology-based data access. We present our proposed ap-

proach for extracting mapping rules and OWL ontology from a relational schema in

Chapter 3. Chapter 4 gives an overview for collaborative sharing systems and con-

flict resolutions. We finally introduce our proposed approach for resolving conflicts

automatically in Collaborative Data Sharing System (CDSS) in Chapter 5.
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CHAPTER 2: Ontop and the Semantic Web

As mentioned in the introduction chapter (1), Ontop is one of the widely used frame-

work for OBDA. However, mappings extraction is not the core focus of the Ontop

research group (initially assuming that the Ontop mappings can be written manu-

ally), the recent release added an automatic extraction option for Ontopmappings and

ontology from an existing data source in the OntoPro plugin for Protegé (Rodriguez-

Muro et al., 2008). However, this tool follows a basic approach for automating the

process of extraction. Namely, it simply extracts an ontology that is an exact copy

of the relational schema and does not consider the relationships between relational

entities. This complicates the process of mapping the extracted ontology with do-

main ontologies that have a rich structure than that of a relational schema. Some

other shortcomings and incompatibilities in the existing extracted Ontop mappings

are defined in the following:

• It does not recognize a binary relation. Instead, it extracts incorrect Ontop

mappings for representing binary relations.

• It represents the n-ary relation as n separate relations between the n relations

that are composing the n-ary relation. Thus, it may require up to n separate

SQL joins to retrieve the data that represents the n-ary join relation (which is

clearly inefficient).

• It does not recognize a recursive reference. Thus, it fails to extract Ontop

mapping rules for representing recursive references.

• It does not recognize a fragmented table that is represented using more than

one table. When extracting ontology concepts from the tables that represent

the fragmented table, only one concept should be extracted for all fragmented
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tables. In other words, one OWL (Motik et al., 2012) concept is generated, and

all attributes in the fragments are represented as OWL properties that have the

extracted concept as their domain.

• It does not recognize the inheritance relationship between tables (i.e., IS-A

relationship). Finding the inheritance relationship is sometimes ambiguous with

the fragmented table, because in both fragments and inheritance, all tables have

the same primary key. However, they can be distinguished by analyzing the data

instances using data mining techniques; which is only available when there is

ample data.

• It ignores other database constraints (e.g., check, null, not null, etc.) and multi-

valued columns (e.g., enum etc.).

To overcome the above mentioned limitations, we propose an approach for au-

tomating the process of Ontop mappings extraction from an existing database schema.

The proposed approach considers the different relationships (binary vs. n-ary etc.)

between the entities of the schema. It extracts Ontop mapping rules based on the

type of a database table, where the possible types are independent, dependent, recur-

sive, binary, and n-ary relation. An Independent table is a primary or a master table

that is not dependent on other tables. In other words, it does not have any foreign

key that references other tables. Extracting the Ontop mappings for representing the

Independent table rule is a straightforward. On the contrary, a Dependent table has

at least one attribute that is a foreign key referencing another table. A Recursive

table can thus be classified under the dependent table. However, the Ontop mapping

rule for representing the recursive relation has a different format than that for rep-

resenting the non-self referencing tables. A Binary Join table represents the relation

between two tables. This relation is a many-to-many, that can be divided into two
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one-to-many relations, one from the first table to the second and vice versa. When

extracting Ontop mappings for a Binary Join, it very important to consider whether

the Binary Join table has some other non-key attributes or not. In the case that it

does not have any non-key attributes, we should not extract an equivalent class for

this table. It is enough just to extract two object properties for representing each

one-to-many relation that is composing the binary join. However, if there are some

non-key attributes in the binary join table, we deal with it the same way as in the

n-ary join table. The n-ary join table represents the relation between two or more

tables. We cannot represent the n-ary relation directly in the OWL ontology. In-

stead, we extract an object property that represents this relation. The domain of the

extracted object property is the equivalent class that is extracted from the n-ary join

table. It also has (as its range) the group of extracted classes that are equivalent to

the underlying n tables that are composing the n-ary join table. We thus do not break

the n-ary join relation into multiple binary relations as it is done in other approaches.

2.1 Semantic Web Overview

The majority of the current Web’s content can only be translated by humans. The

Semantic Web is a new paradigm that establishes the foundation for the next gen-

eration of the visioned web (aka Web 3). The goal of Semantic Web is to improve

the current state of the Web by making the information accessible and processed

via machines. We discuss below the most popular technologies and tools that exist

nowadays for representing, defining, and deploying Semantic Web applications.
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2.1.1 Ontologies

The history of the term ontology returns back a long time ago to a subfield of philoso-

phy that was dedicated for studying the nature of existence (Antoniou, 2008). It tries

to identify the existing things using general terms and discusses they that they can

be described. Recently, the term ontology has been used in the computer science field

in different meaning. An ontology is defined as “an explicit and formal specification

of a conceptualization” (Antoniou, 2008). An ontology is usually a domain based.

Even more, the same domain can be represented by different ontologies. An ontol-

ogy is composed of concepts and properties that describe the relationships between

these concepts. A concept is denoted by a class and a relationship is denoted by

a property. In addition, an ontology supports hierarchical structures among classes

and properties. In other words, a one class can be a sub-class from another class

and a property can be a sub-property from another property. Nowadays, ontologies

can be represented over the Web by different ontology languages. The most popular

languages are RDF, RDF Schema, and OWL. We next provide brief details of them.

2.1.2 RDF

The Resource Description Framework (RDF) (Wood et al., 2014) is a W3C standard

language for exchanging data over the Web. The core of the RDF is simply describing

Web resources by using the concept of a triple that consists of three parts: subject,

predicate and object. A triple is a statement that describes a particular property

(stated in the predicate part) of a Web resource (stated in the subject part) by the

value in the object part. It asserts that there is a relationship between resources (i.e.,

subject and object of the statement) that is represented by this particular predicate.

A group of RDF triples forms an RDF graph, where the nodes are the subject or object
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of triples and the directed edge between any two nodes represents the relationship

between them. The resource is simply anything in the world (i.e., physical things,

documents, abstract concepts, numbers, strings, etc.). Every resource is identified

by unique Internationalized Resource Identifier (IRI). The subject and predicate of a

triple should be always an IRI resource, whereas the object of a triple can be either

an IRI resource or a literal. A literal is a constant value of a specific data type (i.e.,

number, string, date, etc.) that restricts the possible values that can be assigned to

this literal.

2.1.3 RDFS

The RDF Schema (RDFS) (Guha and Brickley, 2014) is a data-modeling vocabulary

that semantically extends the basic RDF vocabulary. It provides new mechanisms to

describe resources and their inter-relations. For example, it adds the terms rdfs:class

to indicate the type of a resource, rdfs:domain and rdfs:range to determine the pos-

sible domains and ranges of a particular resource. RDFS is somehow similar to

object-oriented paradigms. However, it differs in the way classes and properties are

described. In object-oriented models, a class is defined by the properties that its

instance may have. In the contrary, the properties in RDFS are described by the

possible classes of resources that they may be applied to.

In RDFS, a resource is represented by a class as in object-oriented approach.

A resource is said to be of a class type using RDFS class rdfs:Class. Each class is

identified by an IRI and its features are described by RDF properties. The set of

RDF triples that describe a class are called the instances of the class. An instance

is stated to be a member of a class using RDF property rdf:type. Classes can also

be represented hierarchically for supporting the inheritance by using RDFS property
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rdfs:subClassOf. For example, the triple ”A rdfs:subClassOf B”, says that the class

A is a subclass of a class C. rdfs:Literal represents the class of literal values (i.e.,

numbers, strings, etc.).

2.1.4 OWL

OWL is an ontology language with a richer semantic for describing classes and their

properties (Guha and Brickley, 2014). For example, it can describe equality or disjoint

relations between classes, symmetric relations, cardinality, richer typing of properties,

enumerated classes, etc.

2.1.5 SPARQL Query Language

SPARQL (Prud’hommeaux and Seaborne, 2008) is query language for RDF data. It

is simply based on matching RDF graph patterns with the RDF data graph. An

RDF graph pattern is a set of one or more triple patterns. A triple pattern is simply

an RDF triple with variables represented by wild cards instead of using the RDF

terms for subject, predicate, or object of an RDF triple. Given a SPARQL query

pattern, the result of the query is computed by matching SPARQL query’s RDF

triple patterns with an RDF triple store (i.e., RDF graph). The RDF triples that

are matched with the wild card variables of the query triple patterns are returned as

results of the query.

2.2 Ontology Based Data Access (OBDA)

One of the primary benefits of linking relational databases with the Semantic Web

is to extract Semantic data out of already existing data that resides inside relational

databases. It is widely believed that a primary obstacle in the broader realization of
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the Semantic Web is the scarce number of tools, applications, and unavailability of

adequate Semantic data (Konstantinou et al., 2010). In the early days of Semantic

Web research, the focus was to transform all relational data into Semantic Web data

(i.e., ETL process). The ETL process (Rodriguez-Muro et al., 2012) is composed of

three steps. The first step is to Extract the data from the relational source. The

second step is to Transform the extracted data into RDF triples or OWL instances in

the target ontology. The last step is to Load those data into a SPARQL endpoint or

an OWL reasoner. However, this approach has serious shortcomings. It duplicates the

data storage, and does not guarantee that the current semantic data that is exported

from a relational source is up-to-date, thus a re-export process for refreshing data

is required, which is an impractical solution at best. In addition, the high cost

of duplicating storage, especially when the size of the data is huge, makes it an

undesirable solution.

OBDA approach has thence emerged as an alternative for transforming re-

lational data into semantic terms that facilitates direct data access and does not

require data transformation or multiple storage. The focus is therefore to provide

tools for end-users to access data sources through a high-level conceptual view, that

is presented using ontologies (Calvanese et al., 2007). It assumes the availability of

an ontology that acts as an intermediate layer between the end-users, and the un-

derlying data source (Spanos et al., 2012). However, the end-users are assumed not

to be aware about the underlying database schema, structure of entities, and storage

details (Poggi et al., 2008).

Many systems that provide direct access to relational data using ontology-

based data access and SPARQL queries have been introduced in the literature (D2RQ

server (Bizer and Seaborne, 2004), Virtuoso RDF (Erling and Mikhailov, 2010),

Triplify (Auer et al., 2009), to name a few). However, these systems have some, but



16

serious drawbacks (e.g., lack of the semantics support and poor query performance

(Rodriguez-Muro et al., 2012)). The OBDA Ontop framework (Rodriguez-Muro and

Calvanese, 2012) has been proposed to tackle the shortcomings of the existing ap-

proaches.

Ontop is an OBDA framework that supports on-the-fly SPARQL queries over

RDBs through OWL and RDFS ontologies. Ontop is composed of two components:

Quest and ontoPro. Ontop Quest (Rodriguez-Muro and Calvanese, 2012)(Rodriguez-

Muro et al., 2012) is a Semantic Web inference system and SPARQL engine that

comes with Ontop. In contrast with conventional RDF triple store that transform

relational data into RDF triple before querying it, the Quest engine accesses the

relational data and reasoning over it directly and on the fly, without transforming

it into OWL assertions or RDF triples. Thus, it eliminates the performance issues

related to memory limitations over large data. This mode of access is called virtual

ABox mode. The Quest supports access to RDBs by using mapping rules (written

in a mapping language) to translate SPARQL queries into SQL queries. It also

deploys the query rewriting techniques efficiently and utilizes the high performance,

scalability, and the maturity of the underlying RDBMS for executing and answering

SPARQL queries. Quest uses a powerful mapping language introduced in (Poggi

et al., 2008) for writing the Ontop mapping rules. A mapping rule is composed of

two parts: a source part that is simply an SQL query, and a target part represents

an ABox assertion template that is mapped with the source query. The template is

simply a set of RDF triples written in Turtle format. The columns of the SQL query

are mapped to the subject and object of the target’s template triples, and the values

of columns in the retrieved result are used to generate the virtual ABox assertions.

OntoPro is a plugin that can be integrated into Protegé. It provides the required

tools to connect to relational databases using JDBC, defines mappings between an
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Figure 2.1: BookStore Schema.

active ontology and the database, and provides support using Quest reasoner to query

relational data directly from Protege.

2.3 Motivating Scenario

In this section, we illustrate Ontop framework through an example. Assume we have

a relational database schema (BookStore) that is shown in Figure 2.1. It stores

and manages data about books and the authors of books. Assume we also have an

OWL ontology (OntoBookStore) as shown in Figure 2.2 that is similar or equivalent

to (BookStore), in such that both are representing the same domain of knowledge.

Through using Ontop framework, we can query the relational schema. Ontop’s

mapping language provides the support for defining and managing mapping rules

between the ontology and its equivalent or similar relational schema for the purpose

of accessing the relational data. An Ontop’s mapping rule is simply an axiom that
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Figure 2.2: OntoBookStore, an equivalent ontology for BookStore schema.

relates relational entities and attributes to the correspondent concepts and properties

of a similar or equivalent ontology.

We want, in this example, to declare the minimal number of Ontop mapping

rules that are efficient and comprehensive for the purpose of querying the underly-

ing relational data through SPARQL queries. We take a relational schema and an

ontology as inputs and manually find a set of mapping rules that relates the rela-

tional schema’s tables and fields to the classes and attributes of the ontology. The

mechanism that we follow to declare the set of mappings is as follows:

• Find the mapping correspondences between entities/fields of the relational schema

and concepts/properties of the equivalent ontology. For example, Books table

in Figure 2.1 is paired with Book class in Figure 2.2.

• For each table/class pair found in above (i.e., Books/Book andAuthors/Author),

define a mapping rule that connects the table to its correspondent class from
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the ontology. The body of the mapping rule is composed of two parts: target

and source. The target part is an ABox assertion template that maps the ele-

ments of the OWL ontology with their correspondent elements in the relational

schema. It can also have one or more triples. The source part is simply an SQL

query that represents all the database entities that are part of the mappings

performed in the target part.

• Construct the subject template that represents the unique id of the virtual

instance of the class that is derived from the related table. This subject template

will plays as the subject for all the triples that belong to the mapping rule. The

subject template is defined using the following format:

:< Class Name > /{< Table Primary Key >} where< Table Primary Key >

is the primary key of the relational table that is equivalent to the ontology class.

• Add the following triples to the target part of each rule:

– a class triple that maps the given table with the equivalent class from the

ontology.

– a data property triple for each field in the table that maps the field in the

table with the correspondent data attribute in the ontology.

– an object property triple for each foreign key field in the table. It maps

the foreign key and its referenced primary key in the other table with the

correspondent relation in the ontology. The relation is simply an object

property that has the class that is a correspondent to the foreign key’s

table as its domain and the class that is a correspondent to the primary

key’s table as its range.
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• Write the appropriate SQL query and add it to the source part of the mapping

rule.

• The remaining table (Book Authors) does not have an equivalent class. How-

ever, this table is simply a binary-join relation on Books and Authors tables. If

we look at the ontology, we will find that the object property hasBookAuthor

is equivalent to the table Book Authors as it represents the relation between

Book and Author classes. Thus, to represent this binary relation we add a

mapping rule with only one triple in the target part. The subject of the triple

is a subject template for class Book with the part of the composite primary

key (for table Book Authors) that references table Books and the object is a

subject triple for class Author with the second part of the composite primary

key that references table Authors.

The extracted mapping rules are shown in Table 2.1. Figure 2.3 also shows

a pictorial representation for the mapping rules and their associations with the rela-

tional schema and the OWL ontology, where the black dotted arrows represent the

mappings between the elements of (the relational schema and ontology) and the map-

ping rules, and the red dotted arrows represent the relations among mapping rules.

The motivating example shows that extraction of ontology and Ontop mapping rules

from a relational schema is tedious and needs much time in addition to expert people.

Therefore, there is a need to automate the extraction process.
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Figure 2.3: A pictorial mapping between BookStore schema, OntoBookStore ontol-
ogy, and the mapping rules.
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Table 2.1: Mapping rules between OntoBookStore ontology and BookStore relational
schema.

1. map-books:

TARGET: : book/{BOOK ID} a : Book; :hasBookID {BOOK ID}; :hasBookTitle {BOOK TITLE};

SOURCE: SELECT ∗ FROM books

2. map-authors:

TARGET: : author/{AUTHOR ID} a : Author; :hasAuthorID {AUTHOR ID};
:hasAuthorName {AUTHOR NAME};

SOURCE: SELECT ∗ FROM authors

3. map-authors-to-books:

TARGET: : book/{BA BOOKID} : hasBookAuthor : author/{BA AUTHORID};

SOURCE: SELECT ba bookid, ba authorid FROM book authors



23

CHAPTER 3: Ontop Mapping Rules and OWL Ontology

Extraction from Relational Schema
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Figure 3.1: The architecture of the proposed approach.

In this section, we show our approach for extracting both the Ontop mapping

rules, and the equivalent OWL ontology from the schema of a relational data source.

The extraction process is composed of three modules: Schema Metadata Extractor

module that uses a Connection Wrapper (implemented through JDBC API (Fisher
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et al., 2003)) to extract the definition of the relational schema (i.e., the SQL DDL

details), Ontop Mappings Extractor (OMsE) module that uses the schema metadata

to extract the required Ontop mapping rules to enable end users from accessing the

given relational schema through SPARQL queries, and the OWL Ontology Extractor

(OOE) module that depends on the metadata and Ontop mapping rules extracted

from the second module to generate the equivalent OWL ontology for the given re-

lational schema. OMsE module takes the description of the schema (as SQL DDL)

and extracts Ontop mappings rules. The proposed approach is built on top of the

Quest inference system as shown in Fig. 3.1.

Before we show our approach for extracting Ontop mappings and OWL ontol-

ogy from a relational database schema, we define the terms used hereafter:

3.1 The Metadata of a Relational Schema

• Σ: A metadata of a relational schema that represents the entities and their

relationships in a particular domain. It is defined as Σ: {T1, T2, ..., Tt}, where

Ti is a particular table/entity in the schema and t is the total number of tables

in the schema.

• Ti: {Ni, Ai, PKi, FKi, NKi}, where Ni is the name of the table, Ai is the set

of all Ti’s columns, PKi is the set of Ti’s primary key columns, FKi is the set of

Ti’s foreign key columns, and NKi is the set of Ti’s non primary key columns.

Therefore, PKi
⋂
NKi = φ.

• Ai: {a1:d1, a2:d2, ..., an:dn}, where n is the number of columns in Ti and aj:dj

is the pair of column j’s name (aj) and the SQL data type (dj).
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• PKi is either a single column key or a composite key, such that PKi = {KP 1
i
,KP 2

i
,

. . . ,KPn
i
}, where KP t

i
is the column t in PKi and n is the total number of

columns that are composing PKi.

• FKi = {KF 1
i
,KF 2

i
, . . . ,KFm

i
}, where KF t

i
is the foreign key t in FKi and m is

the number of foreign keys in Ti.

• KFx
i

= {Kf1 ,Kf2 , . . . ,Kfv}, where Kf t is the column t in KFx
i

and v is the

number of columns in foreign key KFx
i
.

• PF i is the list of some foreign keys in Ti, such that for each foreign key KF t
i

in

PF i, all columns in this foreign key are also in the primary key.

• PFLi is the list of all columns in Ti that are also in the primary key list PKi.

3.2 Rules for extracting Ontop mapping rules from relational

schema

In this section, we describe the Ontop Mappings Extractor (OMsE) mechanisms to

extract the Ontop mappings (M) from a relational schema.

Assuming we have the SQL DDL for a relational schema Σ as an input to the

OMsE, Algorithm 3.2.1 illustrates the extraction process:

Definition 1. Independent Table. Let Ti be a table that has a primary key PKi. If

the foreign keys set FKi of the table Ti is empty, we say that Ti is an independent table

3.2.1 Independent Table rule

If a table has a primary key and no foreign keys (PK 6= φ && FK = φ), we apply the

independent table rule by calling the extraction of Ontop mapping rules algorithm in
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ALGORITHM 3.2.1: Extracting Ontop Mapping rules from a relational schema.

input : Σ = {T1,T2,...,Tt}
output: M

1 foreach Ti ∈ Σ do
2 if PKi 6= φ then
3 if FKi = φ then
4 EOMRsForIndependentTable(Ti,M) ;
5 else if size(PF i) ≤ 1 then
6 EOMRsForDependentTable(Ti,M) ;
7 else if size(PF i) = 2 then
8 if NKi = φ then
9 EOMRsForBinJWithNoNKs(Ti,M) ;

10 else
11 EOMRsForNaryJoinTable(Ti,M) ;

12 else if size(PF i) > 2 then
13 EOMRsForNaryJoinTable(Ti,M) ;
14 else if size(FKi) ≥ 1 then
15 EOMRsForDependentTable(Ti,M) ;

16 else if size(FKi) ≥ 1 then
17 EOMRsForDependentTable(Ti,M) ;
18 else
19 EOMRsForIsolatedTable(Ti,M) ;
20 Note: This rule is to represent an isolated table with neither a primary key nor a

foreign key. We did not implement this rule in our approach because such a table
is not an important.
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Line 4 of Algorithm 3.2.1. The process of extracting an Ontop mapping rule from an

independent table is shown in Algorithm 3.2.2. The algorithm takes the metadata of

the independent table Ti andM as inputs. It then generates an Ontop mapping rule

for the given table and adds it to M.

ALGORITHM 3.2.2: Extracting Ontop Mapping Rules from an Independent Table.

1 Function EOMRsForIndependentTable(Ti,M)

2 OntopRule ← GenerateOntopMappingRule(Ti) ;
3 sub ← GenerateSubject(Ti, null, null, null);
4 triple ← GenerateClassTriple(Ti, sub);
5 OntopRule.target ← Add(triple, “ClassTriple”);
6 foreach aj ∈ Ti do
7 obj ← GenerateDataPropertyObject(Ti, aj);
8 predicate ← GenerateDataPropertyPredicate(Ti, aj);
9 triple ← GenerateDataPropertyTriple(Ti, sub, predicate, obj);

10 if aj is not last attribute in Ti then
11 triple ← triple + “ ; ”;
12 else
13 triple ← triple + “ . ”;
14 OntopRule.target ← Add(triple, “DataPropertyTriple”) ;

15 OntopRule.source ← GenerateSqlQuery(Ti, null, null) ;
16 M ←M ∪ OntopRule ;
17 returnM;

We can represent the target part of the independent table rule by a class triple

template and a data property template for each column that belongs to Ti as shown

in (3.1).

TARGET : : T i/KP1
i

= {KP1
i
} [ ; KP t

i
= {KP t

i
}
t=2..i

] a : T i ;

: Ti#a1 {Ti.a1} ;

: Ti#a2 {Ti.a2} ;

... ... ;

: Ti#an {Ti.an} . (3.1)

SOURCE : SELECT ∗ FROM Ti (3.2)
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The class triple template has the form subject(: T i → Ti) a : T i as shown in the

first line of (3.1). subject(: T i → Ti) maps class : T i’s data property attributes that

represent : T i’s primary key with the corresponding columns of table Ti. This term

represents the subject of each triple of Ontop mapping rule’s target query. The second

term, a, is the predicate of the class triple template, and it is simply a syntactical

shortcut for rdf : type. The last term is the object that represents the class type for

each individual that has a subject that matches with the subject of the class triple

template.

Each one of the remaining lines in (3.1) represents a data property triple

template to map a data property attribute of class : T i with its correspondent column

in table Ti. Here, we omit the subject of each data property triple because Ontop

mapping rules are declared using the turtle format. Turtle is fast becoming the de

facto standard for representing RDF files. In turtle, if the same subject is repeated

many times, but with different predicates, we may separate each pair of predicate and

object by semicolons. In the same way, if both subject and predicate are repeated, we

may separate objects by commas. n in the last line of (3.1) represents the number of

data attributes that class :T i has or the number of column that are in table Ti. The

source query part of Ontopmapping rule for Independent Table is shown in (3.2). The

target part of independent table rule are generated by Lines 2 to 14 of Algorithm 3.2.2,

whereas the source part is generated by calling the function GenerateSqlQuery in

Line 15.

Independent Table Example. We explain Algorithm 3.2.2 through this exam-

ple. Assume we have a table, dept, as shown in Listing 3.1, that stores information

about departments in an organization. The primary key of dept is the department

number field (deptno). It also has the department name (dname) and department
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location (loc) fields. Since dept has only a primary key constraint and no foreign

key constraints, the independent table rule applies to dept. Thus, Algorithm 3.2.2

that extracts an Ontop mappings from an independent table is executed in Line 4 of

Algorithm 3.2.1. Listing 3.2 shows the extracted Ontop mapping rule for dept. The

resulting target part of the rule is according to the target triple template in (3.1) and

the resulting source part of the rule is according to the source template in (3.2).

1 CREATE TABLE dept

2 (

3 deptno int (2 ) ,

4 dname varchar (14) NOT NULL,

5 l o c varchar (13) NOT NULL,

6 CONSTRAINT pk dept PRIMARYKEY ( deptno )

7 ) ;

Listing 3.1: Independent Table sample schema.

1 t a r g e t : Dept/deptno={deptno} a : Dept ;

2 : Dept#deptno {deptno }ˆˆ xsd : i n t e g e r ;

3 : Dept#dname {dname} ; : Dept#l o c { l o c } .

4 source SELECT ∗ FROM dept

Listing 3.2: Ontop Mapping rule for the Independent Table in Listing 3.1.

Definition 2. Dependent Table. Let Ti be a table in Σ. If (1) PKi 6= φ and |PF i| ≤

1, or (2) PKi 6= φ and PF i = φ and |FKi| ≥ 1, or (3) PKi = φ and |FKi| ≥ 1, we

say that Ti is a dependent table.

3.2.2 Dependent Table rule

If a table has one or more foreign keys that reference other tables and one of the three

cases in the definition above applies, then there is a one-to-many relationship between

each referenced table and this table. In this case, we apply the dependent table rule
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by calling the extracting of Ontop mapping rules algorithm in Lines 6, 15, and 17 of

Algorithm 3.2.1.

The process of extracting Ontop mapping rules from a dependent table is

shown in Algorithm 3.2.3. The algorithm takes the metadata of the dependent table

Ti and M as inputs. It then generates the Ontop mapping rules for the given table

and adds it to M. Algorithm 3.2.3 generates an Ontop mapping rule for the depen-

dent table the same way as in the independent table. It also generates an Ontop

mapping rule for each foreign key in the dependent table. However, it applies the

recursive table rule if a particular foreign key is a self reference to the same table.

The recursive table rule is applied by calling the extracting of Ontop mapping rules

algorithm in Line 8 of Algorithm 3.2.3.

ALGORITHM 3.2.3: Extracting Ontop Mapping Rules from a Dependent Table.

1 Function EOMRsForDependentTable(Ti,M)

2 M ← EOMRsForIndependentTable(Ti,M) ;
3 subi ← GenerateSubject(Ti, null, null, null);
4 foreach KF ∈ FKi do
5 if (Ti.nAryJnTable = false) or (Ti.nAryJnTable = true and KF /∈ PF i) then
6 Tj ← GetReferencedTable(KF);
7 if Tj = Ti then
8 EOMRsForRecursiveTable(Ti,M, KF) ;
9 else

10 OPj ← CreateObjectPropertyName(Tj .name, “has”, Ti.name);
11 OPi ← CreateObjectPropertyName(Ti.name, “has”, Tj .name);
12 OntopRule ← GenerateOntopMappingRule(Ti, KF) ;
13 subj ← GenerateSubject(Tj, null,“DEPENDENT”, null);
14 predicatei ← GenerateObjectPropertyPredicate(Ti, OPi);
15 predicatej ← GenerateObjectPropertyPredicate(Tj, OPj);
16 triple ← GenerateObjectPropertyTriple(Ti, subi, predicatei, subj);
17 OntopRule.target ← Add(triple, “ObjectPropertyTriple”);
18 triple ← GenerateObjectPropertyTriple(Tj, subj, predicatej, subi);
19 OntopRule.target ← Add(triple, “ObjectPropertyTriple”) ;
20 OntopRule.source ← GenerateSqlQuery(Ti, “DEPENDENT”, KF) ;
21 M ←M ∪ OntopRule ;

22 returnM;
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There are two steps for extracting Ontop mapping rules from Ti that satisfies

the dependent table rule. The first step is to extract an Ontop mapping rule as we

do in independet table rule. The second step is to extract an Ontop mapping rule for

each foreign key in Ti. We skip the first step because it is the same as in the previous

rule. The details of the second step follow.

TARGET :

: T i/KP1
i

= {Ti KP1
i
} [ ; KP t

i
= {Ti KP t

i
}
t=2..i

]

: T i#hasTj

: T j/KP1
j

= {Tj KP1
j
} [ ; KP t

j
= {Tj KP t

j
}
t=2..j

] . (3.3)

TARGET :

: T j/KP1
j

= {Tj KP1
j
} [ ; KP t

j
= {Tj KP t

j
}
t=2..j

]

: T j#hasTi

: T i/KP1
i

= {Ti KP1
i
} [ ; KP t

i
= {Ti KP t

i
}
t=2..i

] . (3.4)

SOURCE :

SELECT Ti.KP1
i
AS Ti KP1

i
[ , Ti.KP t

i
AS Ti KP t

i

t=2..i

] ,

Tj .KP1
j
AS Tj KP1

j
[ , Tj .KP t

j
AS Tj KP t

j

t=2..j

]

FROM Ti , Tj WHERE Ti.Kf1
i

= Tj .KP1
j

[ AND Ti.Kft
i

= Tj .KP t
j

t=2..j

] (3.5)

For each foreign key KF t
i

in Ti that references a table Tj, we extract an Ontop

mapping rule with target and source parts. The target part is shown in (3.3) and

(3.4). It has two object property triple templates. The first triple represents the

many-to-one relation from Ti to Tj. The other triple is simply the inverse of first

one. In other words, it represents the one-to-many relation from Tj to Ti. Thus, the

predicate of the second triple is the inverse of the predicate of the first one.



32

The format of the triple template (3.3) is subject(: T i→Ti) : Ti#hasTj subject(: T j

→ Tj). subject(: T i → Ti) maps class : T i’s individuals with their correspondent rows

resulted from the join query of the source that come from table Ti, and subject(: T j →

Tj) maps class : T j’s individuals with their correspondent rows resulted from the join

query of the source that come from table Tj. The format of the triple template (3.4)

is the same as (3.3), except it represents the mapping from the opposite direction.

The target part of an Ontop mapping rule for each foreign key of dependent

table that references a table Tj is generated by Lines 12 to 19 of Algorithm 3.2.3. The

source query part of an Ontop mapping rule for each foreign key of dependent table

that references a table Tj is shown in (3.5). It is generated by calling the function

GenerateSqlQuery in Line 20 of Algorithm 3.2.3. GenerateSqlQuery is shown in

Algorithm E.0.1. Based on the value of the second parameter that is passed to the

function by Algorithm 3.2.3 (i.e., “DEPENDENT”), the function GenerateSqlQuery-

ForDependentRule is called in Line 7 to generate a source query that is compatible

with the Ontop mapping rule for a foreign key of dependent table.

Dependent Table Example. We explain Algorithm 3.2.3 through the following

example. Assume we have two tables: dept and emp. The first one is the same table

that is used in the previous example. The second table, emp, as shown in Listing 3.3,

stores information about employees in an organization. The primary key of emp is

the employee number field (empno), with the employee name (empname), job (job),

hire date (hiredate), and salary (sal) fields. It also has the department number field

(deptno) that represents a foreign key that references deptno (the primary key of table

dept). In addition, it has the manager field (mgr) that represents a self foreign key

reference to the same table.
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1 CREATE TABLE emp

2 (

3 empno int (4 ) ,

4 empname varchar (10) NOT NULL,

5 job varchar (9 ) NOT NULL,

6 mgr int (4 ) , −− can be n u l l f o r the p r e s i d e n t .

7 h i r eda t e date NOT NULL,

8 s a l double (7 , 2) NOT NULL,

9 deptno int (2 ) NOT NULL,

10 CONSTRAINT pk emp PRIMARYKEY (empno) ,

11 CONSTRAINT fk deptno FOREIGN KEY ( deptno ) REFERENCES dept ( deptno ) ,

12 CONSTRAINT fk mgr FOREIGN KEY (mgr) REFERENCES emp(empno)

13 ) ;

Listing 3.3: Dependent and Recursive tables sample schema.

Since emp has a primary key constraint and some foreign key constraints, the

dependent table rule applies on emp. Thus, Algorithm 3.2.3 that extracts an Ontop

mappings from a dependent table is executed in Line 6 of Algorithm 3.2.1. The first

step in Algorithm 3.2.3 is to extract an Ontop mapping rule for table emp the same

way as in the independent table by calling Algorithm 3.2.2 in Line 2. The outcome

of this step is the Ontop mapping rule shown in Listing 3.4. Next, we extract an

Ontop mapping rule for each foreign key in emp. The table emp has two foreign

keys fields: mgr and deptno. The first one is a recursive reference to emp. Thus, we

apply here the recursive rule to extract the Ontop mapping rule that represents the

self-reference by calling Algorithm 3.2.4 in Line 8. We leave the details of extracting

the recursive rule to the next example. The Ontop mapping rule for the foreign key

deptno is then extracted. The resulted Ontop mapping rule is shown in Listing 3.5.

The target part of the rule is according Templates (3.3) and (3.4). The source part

is according to Template 3.5.
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1 t a r g e t :Emp/empno={empno} a :Emp ;

2 :Emp#empno {empno}ˆˆ xsd : i n t e g e r ;

3 :Emp#empname {empname} ;

4 :Emp#job { job } ;

5 :Emp#mgr {mgr}ˆˆ xsd : i n t e g e r ;

6 :Emp#h i r eda t e { h i r eda t e } ;

7 :Emp#s a l { s a l }ˆˆ xsd : double ;

8 :Emp#deptno {deptno }ˆˆ xsd : i n t e g e r .

9 source SELECT ∗ FROM emp

Listing 3.4: First Ontop Mapping rule for Dependent table in Listing 3.3.

1 t a r g e t :Emp/empno={emp empno} :Emp#hasDept : Dept/deptno={dept deptno } .

2 : Dept/deptno={dept deptno } : Dept#hasEmp empno={emp empno} .

3 source SELECT emp . empno AS emp empno , dept . deptno AS dept deptno

4 FROM emp , dept WHERE emp . deptno = dept . deptno

Listing 3.5: Second Ontop Mapping rule for Dependent table in Listing 3.3.

Definition 3. Recursive Table. Let Ti be a table that has a primary key PKi. Let

also KF to be a foreign key in table Ti, such that it references the same table (i.e.,

recursive). If there is at least one KF that is a self reference on the table Ti, we say

that this table is a recursive table.

3.2.3 Recursive Table rule

If a table has a foreign key that references itself, then there is a recursive relationship

between this foreign key and its own table. As discussed above, the recursive table

rule is applied as a sub-case of the dependent table rule. Extracting the Ontop

mapping rules from a recursive reference is shown in Algorithm 3.2.4. The algorithm

takes the metadata of the recursive table Ti,M, and the recursive foreign key reference

KF as inputs. It then generates the recursive Ontop mapping rule for the given table

and adds it to M.
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ALGORITHM 3.2.4: Extracting Ontop Mapping Rule from a Recursive Table.

1 Function EOMRsForRecursiveTable(Ti,M, KF)
2 OPi ← CreateObjectPropertyName(Ti.name, “has”, Ti.name);
3 OntopRule ← GenerateOntopMappingRule(Ti, KF) ;
4 subi ← GenerateSubject(Ti, null, “RECURSIV E”, “DOMAIN”);
5 subj ← GenerateSubject(Ti, null, “RECURSIV E”, “RANGE”);
6 predicatei ← GenerateObjectPropertyPredicate(Ti, OPi);
7 triple ← GenerateObjectPropertyTriple(Ti, subi, predicatei, subj);
8 OntopRule.target ← Add(triple, “ObjectPropertyTriple”) ;
9 OntopRule.source ← GenerateSqlQuery(Ti, “RECURSIV E”, KF) ;

10 M ←M ∪ OntopRule ;
11 returnM;

For each recursive foreign key KF in Ti, we extract an Ontop mapping rule with

target and source parts. The target part is shown in (3.6). It has one object property

triple template. This triple represents the recursive relation on Ti that comes from

the recursive reference KF . The format of the triple template (3.6) is subject(: T i →

Ti) : T i#hasTi object(: T i → Ti). The target part of an Ontop mapping rule for a

recursive foreign key in Ti is generated by Lines 3 to 8 of Algorithm 3.2.4. The source

query part of an Ontop mapping rule for a recursive foreign key in Ti is shown in (3.7).

It is generated by calling the function GenerateSqlQuery in Line 9 of Algorithm 3.2.4.

GenerateSqlQuery is shown in Algorithm E.0.1. Based on the value of the second

parameter that is passed to the function by Algorithm 3.2.3 (i.e., “RECURSIVE”),

the function GenerateSqlQueryForRecursiveRule is called in Line 9 to generate a

source query that is compatible with the Ontop mapping rule for a self reference.

TARGET :

: T i/KP1
i

= {Ti child KP1
i
} [ ; KP t

i
= {Ti child KP t

i
}
t=2..i

]

: T i#hasTi

: T i/KP1
i

= {Ti parent KP1
i
} [ ; KP t

i
= {Ti parent KP t

i
}
t=2..i

] . (3.6)
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SOURCE :

SELECT Ti child.KP1
i
AS Ti child KP1

i
[ , Ti child.KP t

i
AS Ti child KP t

i

t=2..i

] ,

Ti parent.KP1
i
AS Ti parent KP1

i
[ , Ti parent.KP t

i
AS Ti parent KP t

i

t=2..i

]

FROM Ti Ti child , Ti Ti parent

WHERE Ti child.Kf1 = Ti parent.KP1
i

[ AND Ti child.Kft = Ti parent.KP t
i

t=2..i

] (3.7)

Recursive Table Example. We explain Algorithm 3.2.4 through this example.

We go back to the previous example and consider table emp shown in Listing 3.3.

The field mgr in emp is a foreign key that references emp itself. Thus, we apply the

recursive table rule by calling Algorithm 3.2.4. The outcome is the Ontop mapping

rule shown in Listing 3.6. The target part of the rule is resulted by applying Template

(3.6) and the source part is resulted by applying the query Template (3.7).

1 t a r g e t :Emp/empno={emp child empno} :Emp#hasEmp :Emp/empno={emp parent empno} .

2 source SELECT emp chi ld . empno AS emp child empno ,

3 emp parent . empno AS emp parent empno

4 FROM emp emp child , emp emp parent

5 WHERE emp chi ld . mgr = emp parent . empno

Listing 3.6: Ontop Mappings for Recursive table in Listing 3.3.

Definition 4. Binary Join Table. Let Ti, Tj, and Tk be three tables with primary

keys PKi, PKj, and PKk, respectively. If (1) the primary key of Ti is composed of

two parts (PF ij and PF ik), where the former is both the first part of PKi and the

foreign key that references the primary key of Tj, and the latter is both the second

part of PKi and the foreign key that references the primary key of Tk, and (2) all Ti’s

columns are in the primary key, we say that Ti is a binary − join table.
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3.2.4 Binary Join Table rule

If a table Ti has a composite primary key of two foreign keys (that reference tables

Tj and Tk) and all Ti’s columns are in the primary key and are also in one of the two

foreign keys (PKi = PFLi, |FKi| = 2, and NKi = φ), then this table represents

a binary relation with non primary key columns that connects Tj and Tk together

in a many-to-many relationship. This binary relation can be divided into two sub

relations; one one-to-many sub-relation from Tj to Tk, and another one-to-many sub-

relation from Tk to Tj.

ALGORITHM 3.2.5: Extract Ontop Mapping Rules for Binary-Join Table with no non-

key attributes.

1 Function EOMRsForBinJWithNoNKs(Ti,M)

2 OntopRule ← GenerateOntopMappingRule() ;
3 foreach KF ∈ FKi do
4 KF other ← FKi - KF ;
5 Tj ← GetReferencedTable(KF);
6 Tk ← GetReferencedTable(KF other);
7 subj ← GenerateSubject(Tj, Ti, “BINARY JOIN”, null);
8 subk ← GenerateSubject(Tk, Ti, “BINARY JOIN”, null);
9 OPj ← CreateObjectPropertyName(Tj .name, “has ”, Tk.name);

10 predicatej ← GenerateObjectPropertyPredicate(Tj, OPj);
11 triple ← GenerateObjectPropertyTriple(Tj, subj, predicatej, subk);
12 OntopRule.target ← Add(triple, “ObjectPropertyTriple”) ;

13 OntopRule.source ← GenerateSqlQuery(Ti, null) ;
14 M ←M ∪ OntopRule ;
15 returnM;

Thus, Ti represents a binary relationship table between the two tables Tj and

Tk. We can represent this kind of binary relation in ontology without adding an

equivalent class entity for table Ti. Instead, we add one object property for each one-

to-many relationship. The first object property has the extracted concept of Tj as

its domain and the extracted concept of Tk as its range. The second object property
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has the extracted concept of Tk as its domain and the extracted concept of Tj as its

range. In other words, each object property is simply the inverse of the other.

In this case, we apply the binary− join table rule by calling the extraction of

Ontopmapping rules algorithm in Line 9 of Algorithm 3.2.1. The process of extracting

an Ontop mapping rule from a binary join table is shown in Algorithm 3.2.5. The

algorithm takes the metadata of the independent table Ti and M as inputs. It then

generates an Ontop mapping rule for the given table and adds it to M.

TARGET :

: Tj/KP1
j

= {KPF1
j
} [ ; KP t

j
= {KPF t

j
}
t=2..j

]

: Tj#hasTk

: Tk/KP1
k

= {KPF1
k
} [ ; KP t

k
= {KPF t

k
}
t=2..k

] . (3.8)

TARGET :

: Tk/KP1
k

= {KPF1
k
} [ ; KP t

k
= {KPF t

k
}
t=2..k

]

: Tk#hasTj

: Tj/KP1
j

= {KPF1
j
} [ ; KP t

j
= {KPF t

j
}
t=2..j

] . (3.9)

SOURCE : SELECT ∗ FROM Ti (3.10)

We can represent the target part of binary−join rule by using two triple tem-

plates. The first template has the form subject(: T j → Ti) : Tj#hasTk object(: T k →

Ti) as shown in (3.8). subject(: T j → Ti) maps class : T j’s data property attributes

that represent : Tj’s primary key with their correspondent columns of table Ti. The

same applies for object(: T k → Ti). : T j#hasTk represents the object property that

maps an individual of class : T j’s with class : T k’s individuals. In other words, it
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performs the task as table Ti that joins both Tj and Tk in a binary relation. The

second template has the form subject(: T k → Ti) : T k#hasTj object(: T j → Ti) as

shown in (3.9). It is simply the reverse of the first template. However, template triple

(3.8) represents the one-to-many sub-relation from Tj to Tk, and template triple (3.9)

represents the one-to-many sub-relation from Tk to Tj, as we mentioned above. The

source query part of Ontop mapping rule for binary − join is shown in (3.10), which

is simply taken the same form as that of independent table rule. The target part of

binary − join rule are generated by Lines 2 to 12 of Algorithm 3.2.5, whereas the

source part is generated by calling the function GenerateSqlQuery in Line 13.

Binary Join Table Example. We explain Algorithm 3.2.5 through this exam-

ple. Assume we have three tables employee, project and employee project, as shown

in Listing 3.7. employee project represents a binary join table that connects both

employee and project. Both employee and project are independent tables. Thus,

their Ontop mapping rules are extracted according to the independent table rules as

shown in Listing 3.8. Table employee project has a composed primary key of emp id

and proj id, such that the former foreign key references table employee and the latter

foreign key references table project. In other words, the primary key is only com-

posed of these two foreign keys, such that each foreign key references another table.

In addition, table employee project does not have any fields other than the ones that

are composing its primary key and both foreign keys that are representing the binary

join. Thus, the binary − join table rule applies here on employee project. Hence,

Algorithm 3.2.5 that extracts an Ontop mappings from a binary join table is called in

Line 9 of Algorithm 3.2.1. The resulted Ontop mapping rule is shown in Listing 3.9.

The target part of the rule is according Template (3.8) and (3.9). The source part is

according to Template (3.10).
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1 CREATE TABLE employee

2 (

3 employee id int NOT NULL,

4 fname varchar (15) NOT NULL,

5 lname varchar (15) NOT NULL,

6 PRIMARYKEY ( employee id )

7 ) ;

8

9 CREATE TABLE p r o j e c t

10 (

11 p r o j e c t i d int NOT NULL,

12 project name varchar (15) NOT NULL,

13 PRIMARYKEY ( p r o j i d )

14 ) ;

15

16 CREATE TABLE employee pro j ec t

17 (

18 emp id int NOT NULL,

19 p r o j i d int NOT NULL,

20 PRIMARYKEY ( emp id , p r o j i d ) ,

21 CONSTRAINT empid fk FOREIGN KEY ( emp id ) REFERENCES employee ( employee id ) ,

22 CONSTRAINT p r o j i d f k FOREIGN KEY ( p r o j i d ) REFERENCES p r o j e c t ( p r o j e c t i d )

23 ) ;

Listing 3.7: An example on a relational schema for Binary relationship table without
non-key columns rule.

1 t a r g e t : Employee/{ employee id } a : Employee ;

2 : Employee#employee id { employee id }ˆˆ xsd : i n t e g e r ;

3 : Employee#fname { fname} ; : Employee#lname { lname} .

4 source SELECT ∗ FROM employee

5

6 t a r g e t : Pro j e c t /{ p r o j e c t i d } a : P ro j e c t ;

7 : P ro j e c t#p r o j e c t i d { p r o j e c t i d }ˆˆ xsd : i n t e g e r ;

8 : P ro j e c t#project name {project name } .

9 source SELECT ∗ FROM p r o j e c t

Listing 3.8: Ontop Mapping rules for the two tables (employee and project) that are
part of the Binary Join Table employee-project.
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1 t a r g e t : Pro j e c t /{ p r o j i d } : P ro j e c t#hasEmployee : Employee/{ emp id} .

2 : Employee/{ emp id} : Employee#hasPro j ec t : Pro j e c t /{ p r o j i d } .

3 source SELECT ∗ FROM employee pro j ec t

Listing 3.9: Ontop Mapping rule for Binary Join Table on Listing 3.7.

Definition 5. n-ary Join Table. Let Ti be a table that has a primary key PKi. Let

T1, T2, ... , Tn be n tables with primary keys PK1, PK2, ..., PKn, respectively. If

(1) the primary key of Ti is composed of n parts (PF i1, PF i2, ... , PF in), where the

1st part is the foreign key that references the primary key of T1, the 2nd part is the

foreign key that references the primary key of T2, ... , and the nth part is the foreign

key that references the primary key of Tn, (2) either n = 2 and NKi 6= φ or n > 2,

we say that Ti is an n− ary join table.

3.2.5 n-ary Join Table rule

This rule applies for an n-ary join table or (a binary-join table with non primary key

columns). The first case is when a table Ti has a composite primary key of three or

more foreign keys, such that each foreign key is referencing another table in Σ, we say

that Ti connects three or more tables together in a many-to-many relationship. The

second case is when a table Ti has a composite primary key of two foreign keys and it

has some non primary key columns. In these two cases, we apply the n−ary join table

rule in Lines 11 and 13 of Algorithm 3.2.1. The difference between the binary join

rule and the n-ary join rule is that in the former, only ontological object properties

are extracted for representing the binary join table, while in the latter, an ontological

class is extracted for representing the n-ary join table. In addition, we also apply the

n-ary join rule on a binary join table with some non primary key columns as stated

above.
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ALGORITHM 3.2.6: Extracting Ontop Mapping Rules for Nary-Join Table or (Binary-

Join Table with non primary key columns.)

1 Function EOMRsForNaryJoinTable(Ti,M)

2 OntopRule ← GenerateOntopMappingRule(Ti, “NaryJoin”) ;
3 subi ← GenerateSubject(Ti, null, null, null);
4 OPi ← CreateObjectPropertyName(Ti.name, “has”, “NaryJoin”);
5 predicatei ← GenerateObjectPropertyPredicate(Ti, OPi);
6 triple ← null ;
7 foreach KF ∈ PF i do
8 triple ← triple ∪ GenerateObjectPropertyTripleForNaryJoin(KF , subi,

predicatei, triple);

9 triple ← triple ∪ “ . ” ;
10 OntopRule.target ← Add(triple, “ObjectPropertyTriple”) ;
11 OntopRule.source ← GenerateSqlQuery(Ti, “NARY JOIN”, null) ;
12 M ←M ∪ OntopRule ;
13

14 Ti.nAryJnTable = true;
15 M ← EOMRsForDependentTable(Ti,M);
16 returnM;

The process of extracting Ontop mapping rules from an n-ary join table is

shown in Algorithm 3.2.6. The algorithm takes the metadata of the n-ary join table

Ti and M as inputs. It then generates the Ontop mapping rules for the given table

and adds it to M. Algorithm 3.2.6 generates an Ontop mapping rule for the n-ary

join table the same way as in the dependent table rule. However, no Ontop mapping

rule is extracted for any foreign key that belongs to the n-ary join relation. After

that, it generates an Ontop mapping rule to represent the n-ary join relation that is

composed of the foreign keys that are skipped in the previous step.

There are three steps for extracting Ontop mapping rules from Ti that satisfies

the n − ary join table rule. The first step is to extract an Ontop mapping rule as

we do in independet table rule. The second step is to extract an Ontop mapping rule

for each foreign key in Ti that does not belong to PF i. The last step is to extract

an Ontop mapping rule from the foreign keys in PF i which are representing the n-
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ary join relation in Ti. We skip the first two steps because they are the same as in

independent and dependent table rules. The details of the last step follow.

We extract an Ontop mapping rule with target and source parts to represent

the n-ary join relation in Ti. The target part is shown in (3.11). It has a number of

object property triple templates that is equal to the number of joined tables (nm).

However, because both the subject and predicate for all triples are the same, we

include the subject and predicate in the first triple and omit them from the rest

of triples. We do this by separating objects by a comma as we mentioned before

using turtle format. Thus, the format of the triple template (3.11) is subject(Ti →

Ti) : T i#hasNaryJoin object(T1 → T1), object(T2 → T2), . . . , object(Tm → Tm). The

predicate hasNaryJoin has the domain : T i and the ranges : T 1, : T 2, ..., and : T m.

OWL and SPARQL cannot represent n-ary relations. To overcome this issue, we

represent the n-ary relation by only one predicate that is named hasNaryJoin. It

maintains the n-ary relation tightly-coupled by having all joined tables as its ranges.

The target part of an Ontop mapping rule for representing the n-ary join

relation in n − ary join table is generated by Lines 2 to 10 of Algorithm 3.2.6.

The source query part is shown in (3.12). It is generated by calling the function

GenerateSqlQuery in Line 11 of Algorithm 3.2.6. GenerateSqlQuery is shown in

Algorithm E.0.1. Based on the value of the second parameter that is passed to the

function by Algorithm 3.2.6 (i.e., “NARYJOIN”), the function GenerateSqlQuery-

ForNaryJoinRule is called in Line 11 to generate a source query that is compatible

with the Ontop mapping rule for an n-ary join relation on n− ary join table.
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TARGET :

: T i/KP1
i

= {KP1
i
} [ ; KP t

i
= {KP t

i
}
t=2..n

]

: T i#hasNaryJoin

: T 1/KP1
1

= {KP1
1
} [ ; KP t

1
= {KP t

1
}
t=2..n1

] ,

: T 2/KP1
2

= {KP1
2
} [ ; KP t

2
= {KP t

2
}
t=2..n2

] ,

... ... ... ... ... ... ...

: T m/KP1
m

= {KP1
m
} [ ; KP t

m
= {KP t

m
}
t=2..nm

] . (3.11)

SOURCE :

SELECT : T i.KP1
i
AS : T i KP1

i
[ , : T i.KP t

i
AS : T i KP t

i

t=2..n

] ,

: T 1.KP1
1
AS : T 1 KP1

1
[ , : T 1.KP t

1
AS : T 1 KP t

1

t=2..n1

] ,

: T 2.KP1
2
AS : T 2 KP1

2
[ , : T 2.KP t

2
AS : T 2 KP t

2

t=2..n2

] ,

[ , : T x.KP1
x
AS : T x KP1

x
[ , : T x.KP t

x
AS : T x KP t

x

t=2..nx

]
s=3..m

]

FROM Ti , T1 , T2 [ , Tx
s=3..m

]

WHERE Kf1
1

= KP1
1

[ AND Kft
1

= KP t
1

t=2..n1

]

AND Kf1
2

= KP1
2

[ AND Kft
2

= KP t
2

t=2..n2

]

[ AND Kf1
x

= KP1
x

[ AND Kft
x

= KP t
x

t=2..nx

]
s=3..m

] (3.12)

n-ary Join Table Example. We explain Algorithm 3.2.6 through this example.

Assume we have the tables employee, component, product and assembly, as shown

in Listing 3.10. Table assembly represents an n-ary join table that connects the

three tables employee, component, and prdouct. Both employee and project are

independent tables. Thus, their Ontop mapping rules are extracted according to the

independent table rule as shown in Listing 3.8.
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1 CREATE TABLE employee

2 (

3 empid int NOT NULL,

4 empname varchar NOT NULL,

5 PRIMARYKEY ( empid )

6 ) ;

7

8 CREATE TABLE component

9 (

10 compid int NOT NULL,

11 comptype varchar NOT NULL,

12 compname varchar NOT NULL,

13 PRIMARYKEY ( compid )

14 ) ;

15

16 CREATE TABLE product

17 (

18 prodid varchar NOT NULL,

19 prodtype varchar NOT NULL,

20 prodname varchar NOT NULL,

21 PRIMARYKEY ( prodid )

22 ) ;

23

24 CREATE TABLE assebmly

25 (

26 empid int NOT NULL,

27 compid int NOT NULL,

28 prodid varchar NOT NULL,

29 d e s c r i p t i o n varchar ,

30 PRIMARYKEY ( empid , compid , prodid ) ,

31 CONSTRAINT assembly employee fk FOREIGN KEY ( empid ) REFERENCES employee ( empid ) ,

32 CONSTRAINT assembly component fk FOREIGN KEY ( compid ) REFERENCES component (

compid ) ,

33 CONSTRAINT as sembly product fk FOREIGN KEY ( prodid ) REFERENCES product ( prodid )

34 ) ;

Listing 3.10: An example on a relational schema for Nary-Join relationship table rule.
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First, we extract Ontop mapping rules for the four tables as shown in List-

ing 3.11. The independent table rule applies on the first three tables. Table assembly

has three foreign keys that are composing the 3 − ary join of tables employee,

component, and prdouct. Thus, the n − ary join rule applies. However, because

all foreign keys in assembly are part of the 3 − ary join relation, an Ontop map-

ping rule is extracted from assembly in the same way as in the independent table.

Second, table assembly has a primary key that is composed of the foreign key fields

empid, compid, and prodid that are referencing employee, component, and prdouct,

respectively. Hence, an Ontop mapping rule that represents this 3 − ary relation is

extracted as shown in Listing 3.12. The target part of the rule is according Template

(3.11) and the source part is according to Template (3.12).

1 t a r g e t : Employee/empid={empid} a : Employee ;

2 : Employee#empid {empid}ˆˆ xsd : i n t e g e r ; : Employee#empname {empname} .

3 source SELECT ∗ FROM employee

4

5 t a r g e t : Component/compid={compid} a : Component ;

6 : Component#compid {compid}ˆˆ xsd : i n t e g e r ;

7 : Component#comptype {comptype} ;

8 : Component#compname {compname} .

9 source SELECT ∗ FROM component

10

11 t a r g e t : Product/ prodid={prodid } a : Product ; : Product#prodid {prodid } ;

12 : Product#prodtype {prodtype} ; : Product#prodname {prodname} .

13 source SELECT ∗ FROM product

14

15 t a r g e t : Assembly/empid={empid } ; compid={compid } ; prodid={prodid } a : Assembly ;

16 : Assembly#empid {empid}ˆˆ xsd : i n t e g e r ;

17 : Assembly#compid {compid}ˆˆ xsd : i n t e g e r ;

18 : Assembly#prodid {prodid } ; : Assembly#d e s c r i p t i o n { d e s c r i p t i o n } .

19 source SELECT ∗ FROM assembly

Listing 3.11: Ontop Mapping rules for the four tables in Listing 3.10.
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1 t a r g e t : Assembly/empid={assembly empid } ;

2 compid={assembly compid } ;

3 prodid={assembly prodid }

4 : Assembly#hasNaryJoin

5 : Employee/empid={employee empid} ,

6 : Component/compid={component compid} ,

7 : Product/ prodid={product prod id } .

8 source SELECT assembly . empid AS assembly empid ,

9 assembly . compid AS assembly compid ,

10 assembly . prodid AS assembly prodid ,

11 employee . empid AS employee empid ,

12 component . compid AS component compid ,

13 product . prodid AS product prod id

14 FROM assembly , employee , component , product

15 WHERE assembly . empid = employee . empid and

16 assembly . compid = component . compid and

17 assembly . prodid = product . prodid

Listing 3.12: Ontop Mapping rule for Nary-Join Table (ASSEMBLY) on Listing 3.10.

3.3 Extracting OWL Ontology from Ontop Mapping Rules

The process of extracting an equivalent OWL ontology for a relational schema from

existing Ontop mappings is shown in Algorithm 3.3.1. The algorithm takes the

extracted Ontop mappings M for the schema Σ and returns the extracted OWL

ontology W . It scans the Ontop mappings in M. For each Ontop mapping rule,

it checks the target templates; if the type of the template is a class triple, a new

class is added to W ; if its type is an object property triple, a new object property

is added to W ; and if it is a data property triple, a new data property is added to

W . In addition, the domain and range of each extracted object or data property are

also extracted and added to W . Thus, at the end of this process we have a complete

OWL ontology with classes, properties, and relations. Real world examples on how
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ALGORITHM 3.3.1: Extract OWL Ontology from Ontop mapping rules.

input : Σ, M
output: W

1 foreach µi ∈M do
2 targeti ← µi.GetTarget() ;
3 foreach triple ∈ targeti do
4 if triple.type = “ClassTriple” then
5 W ← W ∪ {Cj ← CreateConcept(triple)};
6 else if triple.type = “ObjectPropertyTriple” then
7 OPj ← CreateObjectProperty(triple);
8 OPj .domain ← GetDomain(triple);
9 OPj .range ← GetRange(triple);

10 W ← W ∪ OPj ;
11 else if triple.type = “DataPropertyTriple” then
12 DPj ← CreateDataProperty(triple);
13 DPj .domain ← GetDomain(triple);
14 DPj .range ← GetRange(triple);
15 W ← W ∪ DPj ;

16 return W;

to extract ontology elements from Ontop mappings are discussed in the following

(listings 3.13, 3.15, and 3.17).

3.4 Implementation and Experiments

In this section, we show some examples for accessing relational data through SPARQL

queries. The end users write their SPARQL queries against the extracted ontology.

Note that users do not have any knowledge about the Ontop mappings that link the

ontology to the underlying data source.

Example 6. Table 3.2 represents data instances for dept and emp in Listings 3.1

and 3.3, respectively. The example verifies the correctness of Ontop mappings for

Independent, Dependent, and Recursive rules. For this purpose, we use the SPARQL

query shown in Listing 3.14. It is based on the extracted ontology in Listing 3.13.
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The optional part in the SPARQL query represents the case where the employee does

not have a manager (to avoid a null result). The result of the SPARQL query is

shown in Table 3.5.

Table 3.2: Data instance for the relational schema from Listings 3.1 and 3.3.

DEPT

deptno dname loc

10 Accounting New York
20 Research Dallas
30 Sales Chicago
40 Operations Boston

EMP

empno empname job mgr hiredate sal deptno

7839 King President Null 17-Nov-1981 5000 10
7566 Jones Manager 7839 02-Apr-1981 2975 20
7788 Scott Analyst 7566 09-Dec-1982 3000 20
7902 Ford Analyst 7566 03-Dec-1981 3000 20
7369 Smith Clerk 7902 17-Dec-1980 800 20
7782 Clark Manager 7839 09-Jun-1981 2450 10
7934 Miller Clerk 7782 23-Jan-1982 1300 10
7698 Blake Manager 7839 01-May-1981 2850 30
7499 Allen Salesman 7698 20-Feb-1981 1600 30
7521 Ward Salesman 7698 22-Feb-1981 1250 30
7654 Martin Salesman 7698 28-Sep-1981 1250 30
7900 James Clerk 7698 03-Dec-1981 950 30
7876 Adams Clerk 7788 12-Jan-1983 1100 20

1 PREFIX : <h t t p : // exper iments . org /

2 :Dept r d f : t y p e ow l :C la s s . :Emp r d f : t y p e ow l :C la s s .

3 :Dept#deptno r d f : t y p e owl :DatatypeProperty .

4 :Dept#dname r d f : t y p e owl :DatatypeProperty .

5 :Dept#l o c r d f : t y p e owl :DatatypeProperty .

6 :Emp#deptno r d f : t y p e owl :DatatypeProperty .

7 :Emp#empno r d f : t y p e owl :DatatypeProperty .

8 :Emp#empname r d f : t y p e owl :DatatypeProperty .

9 :Emp#job r d f : t y p e owl :DatatypeProperty .

10 :Emp#mgr r d f : t y p e owl :DatatypeProperty .

11 :Emp#h i r eda t e r d f : t y p e owl :DatatypeProperty .

12 :Emp#s a l r d f : t y p e owl :DatatypeProperty .

13 :Emp#hasDEPT r d f : t y p e owl :ObjectProperty .

14 :Dept#hasEMP r d f : t y p e owl :ObjectProperty .
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15 :Emp#hasEMP r d f : t y p e owl :ObjectProperty .

Listing 3.13: The result of applying independent, dependent, and recursive rules of
the extraction algorithm for Listings 3.1 and 3.3.

1 PREFIX : <http :// exper iments . org/>

2 PREFIX emp : <http :// exper iments . org /emp#>

3 PREFIX dept : <http :// exper iments . org / dept#>

4 SELECT ? e ?eNAME ?eJOB ?eMGR ?mNAME ?dDEPTNO ?dDNAME

5 WHERE {

6 ? e a :Emp .

7 ? e emp : empno ?eEMPNO .

8 ? e emp : empname ?eNAME .

9 ? e emp : job ?eJOB .

10 OPTIONAL

11 {

12 ? e emp : hasEmp ?eMGR .

13 ?eMGR a :Emp .

14 ?eMGR emp : empname ?mNAME .

15 }

16 ? e emp : hasDept ?dDEPTNO .

17 ?dDEPTNO a : Dept .

18 ?dDEPTNO dept : dname ?dDNAME .

19 }

Listing 3.14: A SPARQL query example to access the relational schemas from Listings
3.1 and 3.3 through the extracted ontology (from Listing 3.13) and using Ontop
mappings from Listings 3.2, 3.4, 3.5 and 3.6.

Example 7. Table 3.3 represents data instances for employee − project, employee,

and project in Listings 3.7. The example verifies the correctness of Ontop mappings

for binary join rule. For this purpose, we use the SPARQL query shown in Listing 3.16.

It is based on the extracted ontology in Listing 3.15. The result of the SPARQL query

is shown in Table 3.6.
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Table 3.3: Data instance for the relational schema from Listing 3.7.

EMPLOYEE

employee id fname lname

37 Fraces Newton
1234 Donald Newton

PROJECT

project id project name

10 Online Market
20 Flight Booking

EMPLOYEE PROJECT

emp id proj id

37 10
1234 10
1234 20

1 PREFIX : <h t t p : // exper iments . org /

2

3 :Employee r d f : t y p e ow l :C la s s .

4 :Employee#employee id owl :DatatypeProperty .

5 :Employee#fname owl:DatatypeProperty .

6 :Employee#lname owl:DatatypeProperty .

7

8 : P r o j e c t r d f : t y p e ow l :C la s s .

9 : P r o j e c t#p r o j e c t i d owl :DatatypeProperty .

10 : P r o j e c t#project name owl:DatatypeProperty .

11

12 :Employee#hasPro j ec t owl :ObjectProperty .

13 : P r o j e c t#hasEmployee owl :ObjectProperty .

Listing 3.15: The result of applying the Binary Join rule of the extraction algorithm
from Listing 3.7.

1 PREFIX : <http :// exper iments . org/>

2 PREFIX emp : <http :// exper iments . org /employee#>

3 PREFIX pro j : <http :// exper iments . org / p r o j e c t#>

4 SELECT ∗ WHERE {
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5 ? e a : Employee .

6 ? e emp : employee id ?empid .

7 ? e emp : fname ? empfirstname .

8 ? e emp : lname ?emplastname .

9 ? e emp : hasPro j ec t ? p r o j e c t .

10 ? p r o j e c t pro j : p r o j e c t i d ? p r o j i d .

11 ? p r o j e c t pro j : project name ? projname

12 }

Listing 3.16: A SPARQL query example to access the relation schema from Listing
3.7 through the extracted ontology from Listing 3.15 and using Ontop mappings from
Listings 3.8 and 3.9.

Example 8. Table 3.4 represents data instances for employee, product, component,

and assembly in Listings 3.10. Through this example we want to verify the correctness

of Ontop mappings for n-ary join rules. For this purpose, we use the SPARQL query

shown in Listing 3.18. It is based on the extracted ontology in Listing 3.17. The

result of the SPARQL query is shown in Table 3.7.

1 PREFIX : <h t t p : // exper iments . org /

2

3 :Employee r d f : t y p e ow l :C la s s .

4 :Employee#empid r d f : t y p e owl :DatatypeProperty .

5 :Employee#empname r d f : t y p e owl :DatatypeProperty .

6

7 :Component r d f : t y p e ow l :C la s s .

8 :Component#compid r d f : t y p e owl :DatatypeProperty .

9 :Component#compname r d f : t y p e owl :DatatypeProperty .

10 :Component#comptype r d f : t y p e owl :DatatypeProperty .

11

12 :Product r d f : t y p e ow l :C la s s .

13 :Product#prodid r d f : t y p e owl :DatatypeProperty .

14 :Product#prodname r d f : t y p e owl :DatatypeProperty .

15 :Product#prodtype r d f : t y p e owl :DatatypeProperty .

16

17 :Assembly r d f : t y p e ow l :C la s s .

18 :Assembly#compid r d f : t y p e owl :DatatypeProperty .



53

19 :Assembly#d e s c r i p t i o n r d f : t y p e owl :DatatypeProperty .

20 :Assembly#empid r d f : t y p e owl :DatatypeProperty .

21 :Assembly#prodid r d f : t y p e owl :DatatypeProperty .

22

23 :Assembly#hasNaryJoin r d f : t y p e owl :ObjectProperty .

Listing 3.17: The result of applying the n-ary Join rule of the extraction algorithm
from Listing 3.10.

1 PREFIX : <http :// exper iments . org/>

2 PREFIX assembly : <http :// exper iments . org / assembly#>

3 PREFIX employee : <http :// exper iments . org /employee#>

4 PREFIX component : <http :// exper iments . org /component#>

5 PREFIX product : <http :// exper iments . org / product#>

6 PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>

7 SELECT ? assemblyId ?empName ?compType ?compName ?prodType ?prodName ? assemblyDesc

8 WHERE {

9 ? assemblyId a : Assembly . ?empId a : Employee .

10 ?compId a : Component . ? prodId a : Product .

11 ? assemblyId assembly : hasNaryJoin ?empId .

12 ? assemblyId assembly : hasNaryJoin ?compId .

13 ? assemblyId assembly : hasNaryJoin ? prodId .

14 ?empId employee : empname ?empName .

15 ?compId component : comptype ?compType .

16 ?compId component : compname ?compName .

17 ? prodId product : prodtype ?prodType .

18 ? prodId product : prodname ?prodName .

19 ? assemblyId assembly : d e s c r i p t i o n ? assemblyDesc .

20 }

Listing 3.18: A SPARQL query example to access the relation schema from Listing
3.10 through the extracted ontology from Listing 3.17 and using Ontop mappings
from Listings 3.11 and 3.12.
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Table 3.4: Data instance for the relational schema from Listing 3.10.

EMPLOYEE

empid empname

1 James Bond
2 John Smith

PRODUCT

prodid prodtype prodname

B22 Y22 Corvette
B33 X55 Camoro

COMPONENT

compid comptype compname

563 A33 Wheel
872 M16 Mirror
882 H55 Door hinge
883 H66 Trunk hinge
888 T53 Truck handle

ASSEMBLY

empid compid prodid description

1 563 B22 assembled first
1 872 B22 assembled second
1 563 B33 assembled third
1 872 B33 assembled forth
2 563 B22 assembled fifth
2 882 B22 assembled sixth
2 888 B22 assembled seventh
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3.5 Related Work

There have been two prevalent models defined in the literature for representing ontolo-

gies on the Semantic Web: using OWL for ontology description, or through RDFS. A

relational entity is usually mapped to either an OWL class or an RDFS class, and the

attributes or columns in an entity are mapped to the defined class’s properties. In

OWL, there are two types of properties: data and object properties. A data property

describes an attribute of a concept. It has the concept as its domain and a data type

(i.e., integer, string, etc.) as its range. An object property describes a relationship

between two ontological concepts. A general rule for extracting properties from a re-

lational table is to extract a data property for each non-foreign key attribute and an

object property for each foreign key reference. RDF statements are the data instances

that conform to an ontology. After extracting an equivalent ontology to the relational

schema, the relational instance can then extracted and transformed into RDF state-

ments. Thus, we can distinguish two things in ontology-based data access. First,

extracting an ontology (OWL or RDFS) that is equivalent to a relational schema.

Second, extracting RDF statements that are equivalent to the schema instance and

that conform to the extracted ontology.

A number of works in the literature exist for extracting an ontology from an

existing relational schema. Most of these approaches share common rules for the ex-

traction process. The most common rules that are repeated in the different approaches

(e.g., in (Astrova, 2009), (Buccella et al., 2004), (Albarrak and Sibley, 2009), (Lubyte

and Tessaris, 2009), (Sonia and Khan, 2008), (Cerbah, 2008), (Curino et al., 2009),

(Alalwan et al., 2009), and (Tirmizi et al., 2008)) are as follows: default (or basic

approach), binary relationship, n-ary relationship, hierarchy, and fragmentation rules

(See (Spanos et al., 2012) for a comprehensive survey). A default rule is simply a ba-
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sic and naive approach for extracting equivalent OWL concepts and properties from

relations and their attributes. The basic approach is to map a relation to an OWL

class, a non-foreign key attribute to an OWL data property, a foreign key attribute to

an OWL object property, and a relation row to an individual of an OWL class. The

first two rules of our proposed approach (i.e., independent and dependent rules) are

similar to the basic approach. In addition, all the previously mentioned approaches

have similar rules for the default and binary rules. (Albarrak and Sibley, 2009), (Cer-

bah, 2008), and (Curino et al., 2009) do not have a rule for representing the n-ary

relationship. The hierarchy (or sub-class) rule is not considered by (Buccella et al.,

2004), (Lubyte and Tessaris, 2009), and (Curino et al., 2009), whereas the fragmen-

tation rule is not considered in all mentioned approaches, except in (Alalwan et al.,

2009) . Hierarchy and fragmentation rules are very similar and one cannot distin-

guish between them unless he/she knows the intent of the schema designers or by

mining the relational instance. The latter usually requires mining the data instance

if enough data are available or using heuristic approaches, etc. Thus, most existing

approaches misrepresent the hierarchy and fragmentation rules. In other words, they

apply the hierarchy rule when in fact they should apply the fragmentation rule, and

vice versa. In our approach, we decide to leave the discussion of the hierarchy and

fragmentation rules for future research as these depend primarily on the availability

of a relational instance with sufficient data. In addition, we leave the discussion of

extracting equivalent OWL axioms for the relational constraints for future research.

Relational.OWL (de Laborda and Conrad, 2005) uses OWL itself to extract

the semantics of the relational schema and represent it as an OWL/RDFS ontology.

It then can represent the data instances of the relational schema as instances of

the schema ontology. The primary advantage of this approach is that both schema

and data changes can be automatically reversed on the schema ontology and its
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instance. However, a primary drawback of the Relational.OWL approach is that all

the relational data should be transferred into RDF triples or OWL individuals before

using SPARQL requests to access the data, which is an inefficient approach, especially

when we have a huge data volume (Konstantinou et al., 2008). DB2OWL (Ghawi

and Cullot, 2007) is a similar tool used to extract an OWL ontology from a relational

schema. It only considers a few cases mentioned earlier, such as binary relation and

sub-table relation. However, unlike our approach it does not consider recursive or

n-ary relations. Furthermore, it does not discuss the case when a binary relation

has other non-key attributes. It also uses an R2O mapping language (Barrasa et al.,

2004) to automatically generate a mapping file that defines the relationship between

the extracted ontology components and the relational schema. OntoAccess (Hert

et al., 2010) focuses on the bidirectional access into the relational databases through

SPARQL queries and SPARQL update languages. Thus, it is possible to update the

underlying data sources through SPARQL updates in addition to querying them using

SPARQL queries. However, it only supports basic relation to class and attribute to

property mappings.

D2RQ (Bizer and Seaborne, 2004) is another widely used approach for ontology-

based data access. It generates an RDFS ontology that is equivalent to a relational

schema. It provides access to relational data through virtual RDF graphs that com-

ply with the RDFS schema. However, it applies a simple approach (i.e., table to class

and column to predicate) for extracting the mappings automatically. Furthermore,

several studies show that the performance of its queries start to degrade when the

size of the data is huge and it even stops responding in some cases. In addition, it

does not support OWL ontologies.

Current approaches do not consider the evolution of both database schemas

and ontologies due to the needs of end users and frequently changed applications.
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However, we believe that approaches should adapt the current Ontop mappings to

those changes, instead of re-extracting them from scratch. We are also planning to

add a Managing module to the proposed approach. The managing module will be

responsible for managing the extracted OWL ontology and the Ontop mapping rules

between it and the relational schema. It will maintain both ontology and mapping

rules consistency by frequently watching the relational schema and responding to any

change. It will also update the ontology and the mappings rules after every change

made on the relational schema when it is necessary.

Most current approaches are also interested only in the unidirectional access

to the relational databases through Semantic Web ontologies. In other words, they

only address the read-only access and do not consider write access (i.e., insert, up-

date and delete). Research in the area of ontology-based data update has started to

gain more popularity after the emergence of SPARQL Update language for updat-

ing RDF graphs (Seaborne et al., 2008). Furthermore, SPARQL update is recently

sent to W3C as a recommendation after several years of improvements (Passant et al.,

2013). To date, only a few research works have used the SPARQL update language for

the purpose of updating the relational databases through SPARQL queries (Spanos

et al., 2012). The idea is to write SPARQL update requests according the SPARQL

update language, transform them into equivalent SQL manipulation statements, and

accordingly update the underlying relational databases. Examples are D2RQ/Update

(Eisenberg and Kanza, 2012) that extends the D2RQ framework to write access to

relational data and OntoAccess that provides both read and write access to the rela-

tional data (Hert et al., 2010). However, the previously mentioned works only covered

basic SPARQL/Update statements to SQL statements. Moreover, the SPARQL Up-

date language is still in the development process and it has not reached a mature

level yet. The SPARQL Update language should be extended so it can support com-
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plex mapping SPARQL/Update to SQL statements. In future work, we plan also

to extend the Ontop framework to support bidirectional Semantic Web based data

access.

3.6 Conclusion and Future Work

We proposed an approach for extracting Ontop mappings and OWL ontology from a

relational schema. The proposed approach defines an Ontop mapping rule’s template

for each type of relational entities. It covers the extraction rules for independent

tables, dependent tables, recursive tables, binary join tables, and n-ary join tables. It

also defines algorithms for automatically extracting Ontop mappings for a relational

entity according the the defined templates. After all the Ontop mappings are ex-

tracted from the relational schema, the process of extracting an OWL ontology from

those extracted mappings rules becomes a straightforward.

Our proposed approach can be extended to cover other type of relations, such

as fragment entities, sub-entities (inheritance), enumerated attributes, and others. In

addition, we will develop approaches for extracting equivalent ontological elements

for database constraints (i.e., check, enum, null, not null, etc.) as discussed in the

introduction.

Current approaches do not consider the evolution of both database schemas

and ontologies due to the needs of end users and frequently changed applications.

However, we believe that approaches should adapt the current Ontop mappings to

those changes, instead of re-extracting them from scratch. We are also planning to

add a Managing module to the proposed approach. The managing module will be

responsible for managing the extracted OWL ontology and the Ontop mapping rules

between it and the relational schema. It will maintain both ontology and mapping
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rules consistency by frequently watching the relational schema and responding to any

change. It will also update the ontology and the mappings rules after every change

made on the relational schema when it is necessary.

Most current approaches are also interested only in the unidirectional access to

the relational databases through Semantic Web ontologies. In other words, they only

address the read-only access and do not consider write access (i.e., insert, update and

delete). Research in the area of ontology-based data update has started to gain more

popularity after the emergence of SPARQL update language for updating RDF graphs

(Seaborne et al., 2008). Furthermore, SPARQL update is recently sent to W3C as a

recommendation after several years of improvements (Passant et al., 2013). To date,

only a few research works have used the SPARQL update language for the purpose

of updating the relational databases through SPARQL queries (Spanos et al., 2012).

The idea is to write SPARQL update requests according the SPARQL update lan-

guage, transform them into equivalent SQL manipulation statements, and accordingly

update the underlying relational databases. Examples are D2RQ/Update (Eisenberg

and Kanza, 2012) that extends the D2RQ framework to write access to relational

data and OntoAccess that provides both read and write access to the relational data

(Hert et al., 2010). However, the previously mentioned works only covered basic

SPARQL/Update statements to SQL statements. Moreover, the SPARQL update

language is still in the development process and it has not reached a mature level yet.

The SPARQL update language should be extended so it can support complex map-

ping SPARQL/Update to SQL statements. In future work, we plan also to extend

the Ontop framework to support bidirectional semantic web based data access.
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CHAPTER 4: Collaborative Data Sharing Systems and Conflicts

4.1 Preliminaries

A collaborative data sharing system facilitates users (usually in communities) to work

together on a shared data repository to accomplish their (shared) tasks. Users of such

a community can add, update, and query the shared repository (Gatterbauer et al.,

2009) (please see (Overbeek et al., 2004; Buneman et al., 2006a; Bairoch et al., 2005;

Tudor and Dvornich, 2001; Gouveia et al., 2004) for examples of some collaborative

projects). While the shared database evolves over time and users extend it con-

tinuously, it may contain inconsistent data, as users may have different beliefs about

which information is correct and which is not (Gatterbauer and Suciu, 2010). While a

relational database management system (RDBMS) can be used to manage the shared

data, RDMSs lack the ability to handle such conflicting data (Gatterbauer et al.,

2009).

In most scientific communities (Ives et al., 2005; Taylor and Ives, 2006; Green

et al., 2007; Ives et al., 2008; Kot and Koch, 2009), there is usually no consensus

about the representation, correction, and authoritativeness of the shared data and

corresponding sources (Ives et al., 2008). For example, in bioinformatics, various

sub-communities exist where each focuses on a different aspect of the field (e.g.,

genes, proteins, diseases, organisms, etc.), and each manages its own schema and

database instance. Still these sub-disciplines may have sharing links with their peer

communities (e.g., a sharing link between genes and proteins sub-communities). A

collaborative data sharing system thus needs to support these communities (and

associated links), and provide data publishing, import, and reconciliation support for

inconsistent data.
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Traditional integration systems usually assume a global schema such that au-

tonomous data sources are mapped to this global schema, and data inconsistencies are

solved by applying conflict resolution strategies ((Naumann et al., 2006), (Bleiholder

and Naumann, 2006), (Bilke et al., 2005), (Motro and Anokhin, 2006), (Bleiholder

et al., 2007), and (Motro and Anokhin, 2004) are example systems). However, queries

are only supported on the global schema and these systems do not support any kind

of update exchange. To remedy this shortcoming, peer data management systems

(Bernstein et al., 2002; Halevy et al., 2003) support disparate schemas, but are not

flexible enough to support the propagation of updates between different schemas, and

handling data inconsistency issues. In contrast, a collaborative data sharing system

(CDSS) (Ives et al., 2005; Taylor and Ives, 2006; Green et al., 2007; Ives et al., 2008)

allows groups of scientists that agree to share related data among them, to work on

disparate schemas and database instances. Each group (or peer) can extend, curate,

and revise its own database instance in a disconnected mode. At some later point, the

peer may decide to publish the data updates publicly to other peers and/or get the

updates from other peers. The reconciliation process in the CDSS engine (that works

on top of the DBMS of each participant peer) is responsible for propagating updates

and handling the disagreements between different participant peers. It publishes re-

cent local data updates and imports non-local ones since the last reconciliation. The

imported updates are filtered based on trust policies and priorities for the current

peer. It then applies the non-conflicting and accepted updates on the local database

instance of the reconciling peer. For the conflicting updates, it groups them into

individual conflicting sets of updates. Each update of a set is assigned a priority level

according to the trust policies of the reconciling peer. The reconciliation process then

chooses from each set, the update with the highest priority to be applied on the local

database instance, and rejects the rest. When it finds that many updates have the
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same highest preference or there is no assigned preferences for the updates in a set,

it marks those updates as “deferred”. The deferred updates are not processed and

not considered in future reconciliations until a user manually resolves the deferred

conflicts.

4.1.1 Problem Description

The administrator of each peer in a CDSS is usually responsible for declaring and

managing trust policies. While the administrator can be expected to define trust

policies for a small number of participant peers, the same is not true for a large

number of participants. In addition, assuming that a community of hundreds or

thousands of members can authorize a user or a group of users to define trust policies

for their community may not be plausible. Moreover, a CDSS does provide a semi-

automatic conflict resolution approach by accepting the highest-priority conflicting

updates, but it leaves for individual users the responsibility of resolving conflicts for

the updates that are deferred. However, the assumption that individual users can

decide how to resolve conflicting updates is not strong, as users of the community

may have different beliefs and may agree or disagree with each other about which

conflicting updates to accept and why (i.e., on which bases). Therefore, the challenge

lies in providing a conflict resolution framework that requires minimal or no human

intervention.

The remainder of this part is organized as follows. Section 4.2 serves as a

brief introduction of the data integration problem and conflict resolution in conven-

tional integration systems. Conflict resolution in community-based collaborative data

sharing systems is presented in Section 4.3. Discussion and future directions are pre-
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sented in Section 4.4. We then discuss the proposed approach for automated conflict

resolution in a CDSS in Chapter 5.

4.2 Data Integration

A conventional integrative information system aims to combine heterogeneous (and

possibly autonomous) data sources or schemas to provide users with a single uni-

fied (and usually reconciled) view of the data, which is known as a global or me-

diated schema (Hull, 1997; Ullman, 1997; Halevy, 2001). The heterogeneous data

sources may have different data models, schemas, and data representations (Motro

and Anokhin, 2006). The global schema provides a single representation for any real-

world object that might have multiple representations in different data sources. In

other words, when users submit queries against the global schema, they should not be

aware about the multiple and heterogeneous data sources behind this global schema,

and the query result should contain a consistent answer in respect to all the heteroge-

neous data sources. The most common integration scenario for integrating multiple

and heterogeneous sources into a unified view is composed of three steps (Naumann

et al., 2006). The three steps are schema matching and mapping, duplicate detection,

and data fusion. Before the data integration process starts, we should have access to

the remote data sources, which is currently solved by many technologies, like ODBC

and JDBC connections, Web services, and many others. In the following, we provide

a brief overview of the three steps of the data integration process.

4.2.1 Schema mapping

Assuming that the technical issues with connecting to the remote sources are solved,

the first step in the data integration process is the resolution of schematic heterogene-
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ity (Naumann et al., 2006). Schema mapping is an approach that is used to resolve

the heterogeneity in data sources. It assumes that we are given two heterogeneous

schemas, a source and a target (or a global schema), and the goal is to generate a

set of correspondences between attributes of the source schema and the attributes

of the global schema. Such correspondence determines how users’ queries over the

global schema are answered. The purpose of the mapping between source and global

elements is to specify how to transform the data in a source element to a target el-

ement, such that the transformed data conforms to the global schema (Popa et al.,

2002; Melnik et al., 2005).

We mention here two basic approaches that are used to establish such a map-

ping between source schemas and the global schema (Lenzerini, 2002): The first

approach is called GAV (Global-As-View), which generates a global schema that con-

forms to the data sources (i.e., the global schema is just a view over the available

data sources). The second approach is called LAV (Local-As-View), where the global

schema is independent from the sources, and each source is represented as a view over

the global schema. User queries are answered through the global schema, and users

usually are not aware of the fact that the data are gathered from multiple heteroge-

neous data sources. A query over the global schema needs to be initially reformulated

in terms of a set of queries over the heterogeneous data sources (Lenzerini, 2002).

An important addition to schema mapping are the schema matching techniques

that initially and semi-automatically try to find a set of element correspondences

between two schemas. (Rahm and Bernstein, 2001a) has classified schema matching

techniques based on the type and level of information that each method can handle.

The outcome of the schema mapping of two (or possibly more) heterogeneous schemas

is that all entities from different schemas but represent the same thing are represented

homogenously (i.e., a mapping is found between equivalent objects in both schemas).
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Different schema matching techniques have been described in the literature. These

techniques vary according to the type and level of the information that are used

in the matching process. For example, the matching techniques can be schema-

based, instance-based, attribute-based, constraint-based, etc. The Match operation

is defined as “a function that takes two schemas as input and returns a mapping

between elements of the two schemas that corresponds semantically to each other as

output” (Rahm and Bernstein, 2001b,a).

4.2.2 Duplicate detection

The second step in the data integration process is duplicate detection (see (Elma-

garmid et al., 2007) for a comprehensive survey about duplicate record detection).

It aims to identify the different objects in the sources and thus find the multiple

(and possibly inconsistent) representations of the same real-world objects (if any)

(Bleiholder and Naumann, 2006). The outcome of the duplicate detection step is

an addition of an ID field that is assigned for each real-world object. Objects that

have the same ID are considered to be duplicates as they represent the same rep-

resentation for a real-world object. Duplicate detection techniques can be classified

into two groups: field matching techniques and duplicate record detection techniques

(Elmagarmid et al., 2007).

Field matching techniques

Most of the field matching techniques that have been introduced in the literature

compare the data at the attribute-level, focusing mainly on the comparison of string

data (with less approaches defined to deal with numerical data). These techniques are

classified into three groups: character-based, token-based, and phonetic-based simi-
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larity metrics (Elmagarmid et al., 2007). The character-based matching techniques

are suitable for handling typographical errors. In contrast, the token-based matching

techniques are suitable to find the duplication between two strings when the position

of some words in the strings are fully misplaced, thereby character-based matching

techniques are not suitable in this case. The last group of matching techniques mea-

sure the phonetic similarity between strings.

An example on a technique used to measure character-based similarity is Lev-

enshtein distance (aka Edit distance) (Levenshtein, 1966). It measures the similarity

between two strings by computing the minimum number of edit operations required

to transfer one string to another, where the allowed operations on the first string are

insertion of a single character into the string, deletion of a single character from the

string, and replacing one character from the string with another character.

Atomic strings (Monge and Elkan, 1996) is an example on token-based similar-

ity techniques. An atomic string is a sequence of alphanumeric characters delimited

by punctuation characters. The algorithm considers two atomic strings are similar if

they completely match or one is a prefix of the other. The similarity between two

data elements is then computed by dividing the number of matched atomic strings in

both data elements on the average of their total atomic strings.

Duplicate record detection techniques

Common duplicate record detection techniques can be classified into probabilistic,

learning-based, distance-based, and rule-based models (Elmagarmid et al., 2007). The

probabilistic models use the Bayesian theory to classify pair of records as matched or

unmatched. Supervised learning techniques (Cochinwala et al., 2001; Tejada et al.,

2002, 2001) assume the existing of a training set of pair records in which their label,

whether matched or not matched, is already known. Any new unknown pair of records
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can then be classified according to the training data set. Rule-based techniques (Wang

and Madnick, 1989; Lim et al.) depend on a set of defined rules to decide whether

two records match or not, while distance-based approaches (Monge and Elkan, 1996,

1997; Dey et al., 1998) use a single or combination of field matching techniques to

find if a pair of records are similar or not without the need for training data.

4.2.3 Data fusion

Data fusion is the last step of the integration process. It takes the output of the previ-

ous step as input and tries to fuse the duplicate representations of the same real-world

object together into a single consistent representation after resolving such inconsis-

tencies in the data (Naumann et al., 2006). Data fusion can be implemented using

different approaches of conflict resolution strategies as we will see next (See (Blei-

holder and Naumann, 2009) for a comprehensive survey about conflict classifications,

strategies, and systems in heterogeneous sources).

Data conflicts

Data conflicts (or inconsistencies) issue comes after duplicate detection is done, when

multiple representations of the same real-world objects are found. The conflict occurs

when two or more matched tuples that represent the same object having inconsistency

in some correspondent attributes’ values. Data conflicts can be classified into data

contradictions and data uncertainties. A contradiction is when two or more duplicate

tuples have different non-null values for the same correspondent attributes. The most

common reasons that lead to such conflict are typos, misspellings, outdated data

values, or even when the different sources do not agree on the value. An uncertainty

is when one of the duplicate tuples has a non-null value while the others have null
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values for the same correspondent attributes. The most common reasons that lead

to such uncertainties are missing information or completely missing attribute in one

tuple.

Conflict handling strategies

Conflict handling strategies in the literature are generally classified into three cate-

gories based on the procedures used to handle conflicting data (Bleiholder and Nau-

mann, 2006): ignorance, avoidance, and resolution. In conflict ignorance strategies,

an integration system usually does not need to be aware about data conflicts as they

are ignored at all. pass it on and consider all possibilities are two examples of conflict

ignorance strategies. The first one keeps all conflicting values and passes them to the

user or application so they can decide what to do to solve these conflicts. The second

one considers all possible combinations of attribute values and passes them to the user

or application to let them decide which combination to choose (Burdick et al., 2005).

Conflict avoidance strategies usually decide at the beginning whether to handle a

conflict or not. When handling a conflict, they decide which values to choose even

before looking at the conflicting values, though they do not resolve a conflict and even

are not aware of it. Conflict avoidance strategies, in turns, can be classified into two

classes based on whether taking into account metadata when deciding which value to

choose: instance based and metadata based. take the information and no gossiping

are two examples of instance based avoidance strategies. The first strategy is only

suitable for data uncertainties, where unnecessary null values are ignored (Bleiholder

and Naumann, 2006). The second one just takes the consistent data and leaves aside

the inconsistent ones. An example of metadata based conflict avoidance is trust your

friends. In this strategy, the user can have the option to prefer data from one source

over data from other sources. TSIMMIS (Chawathe et al., 1994; Papakonstantinou
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et al., 1996; Garcia-Molina et al., 1997) and Hermes (Subrahmanian et al., 1995) are

two systems that implement trust your friends strategy. On the other hand, conflict

resolution strategies look at conflicting values and related metadata before deciding

on how to resolve a conflict. They can be divided into two subcategories based on

values chosen for resolution: deciding and mediating strategies. A deciding strat-

egy chooses a value from the already present conflicting values, whereas a mediating

strategy may choose a value that is not existing in conflicting values. cry with the

wolves and roll the dice are two examples of instance-based, deciding strategies. The

first one chooses the most common value among the conflicting ones, while the second

chooses a random value among the conflicting ones. An example of a metadata-based,

deciding strategy is keep up to date that chooses the most recent value. Meet in the

middle is an example of a mediating strategy that tries to invent a value that is close

to all conflicting values.

4.3 CDSSs Conflict Resolution Overview

Several studies have been recently introduced in the area of collaborative data sharing

communities. Some of these studies describe conflict resolution approaches to deal

with data inconsistency issues. BeliefDB (Gatterbauer et al., 2009) adopts an ap-

proach to resolve conflicts by using annotations to represent different beliefs of users

in data sharing communities. Similarly, (Ives et al., 2005) and (Taylor and Ives, 2006;

Green et al., 2007; Gatterbauer and Suciu, 2010) adopt trust mappings to resolve

conflicts in community shared databases. (Pichler et al., 2010) adopts an approach

for conflict resolution by collecting feedbacks from users of the local community. We

summarize below the above mentioned works in more details.



73

4.3.1 BeliefDB

BeliefDB (Gatterbauer et al., 2009) is a new annotation-based database model. Anno-

tations are usually realized as superimposed information that have been used recently

for the purpose of explaining, correcting, or refuting the base data without actually

modifying the data items (Maier and Delcambre, 1999). In other words, annotations

are a kind of metatdata which are added to the existing data, usually without any

underlying semantics (Srivastava and Velegrakis, 2007). Recently, annotations have

gained popularity in the field of database community (Bhagwat et al., 2005; Buneman

et al., 2006b, 2001; Chiticariu et al., 2005; Geerts and Van Den Bussche, 2007; Geerts

et al., 2006).

The motivation of the BeliefDB model is to handle the conflicts that might

arise in the shared data of scientific database applications. In this type of applications,

a group of users or scientists have a shared repository and they all contribute to it by

adding, updating, and revising operations. Relational database management systems

(DBMSs) are used to manage such shared data, but they lack the ability to express

and manage the conflicting facts in the database.

A belief database contains both base data in the form of tuples and belief

statements that annotate these tuples. Users are enabled to annotate existing data

or even exiting annotations by adding their own beliefs that might agree or disagree

with the exiting facts. In other words, annotations should express the conflict between

what users believe and what others believe. Thus, BeliefDB represents a set of belief

worlds, such that each world belongs to a different user.

Moreover, a belief-aware query language is introduced to represent queries over

a belief database. This query language can be used to retrieve facts that are believed

or not believed by a particular user. It also can be used to query for the agreements
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or disagreements on particular facts between users. An algorithm is also described to

translate belief database queries into equivalent relational SQL queries.

4.3.2 Trust mappings

A semi-automatic data conflict resolution for community shared databases based on

trust mappings between users is proposed in (Gatterbauer and Suciu, 2010). In

a community shared database, many users participate in a project and share the

same data repository. They can add, update, or monitor the shared repository. For

example, a group of scientists work together on a scientific project, etc. Each user

can agree or disagree on any data value that is shared in the database. Users usually

have trust relationships between each other in the community, such that a user can

assign different trust weight to each user. The paper states that trust mapping is

a relation between two users where one is willing to accept the other’s data value.

While the database is growing, it might contain conflicting information. Users can

resolve conflicting data that comes from different trusted users by accepting the data

value that comes from the most trusted user, by means of priorities. For example,

a user X trusts data values that come from a user Y more than data values that

come from a user Z. In such a shared database, each user is shown his own consistent

version of the shared database based on his trust mappings and priorities with other

users, such that a user can assign different trust weight to each user.

4.3.3 Uncertain databases

(Pichler et al., 2010) describes an approach that depends on users rating to handle

inconsistent data in collaborative data sharing communities. It is similar to the work

done in (Gatterbauer et al., 2009), as both assume a multi-versioned database model.
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However, each user in (Gatterbauer et al., 2009) is shown a version of the database

that is consistent with his/her own beliefs. Whereas in (Pichler et al., 2010), all

users see a consistent version of the database that has the best rating. This work

assumes that a group of users in collaboration, are working on a shared database. All

updates done by users are stored in the shared database. For conflicting updates, all

versions of those updates will be inserted into the database in parallel, resulting a

multi-versioned database.

Users can update, query, and even rate the quality of updates (or data items).

Each user, based on her own beliefs, can rate the quality of an update. The rating

is usually weighted according to the reputation of the user who does the rating.

Conflicting updates are usually various versions of the same tuple, sharing the same

key, but having different values for non-key attributes. For each version of a single

tuple (i.e., for each update), the rating of different users are collected, and the average

rating for this version is computed. The reputation of a user who initiates the rated

update can be then computed by comparing aggregate ratings of his updates to

aggregate ratings of others. The computation of a user’s reputation is incrementally,

such that a new reputation value is computed for the user each time a new rating

arrives. It can also be possible to compute the average rating of each version (or

world) of the whole database.

For answering a query from a user, the average rating of each consistent version

of the database is computed, and the best rated world is found. After that, a user

query is answered according to this consistent version of the database. It is possible

here that more than one world have the same best rating. In this case, a world with

the most recent updates is preferred.
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4.3.4 Youtopia

Youtopia (Kot and Koch, 2009) enables a community of users to manage collaboration

and integration of relational data. Youtopia provides a notion for update exchange,

similar to that of (Green et al., 2007), by allowing for changes to the data to prop-

agate through a set of user-defined mappings, or in other words, tuple-generating

dependencies (tgds). Youtopia borrows the concept of best-effort cooperation from

the Web 2.0 and tries to satisfy it as much as possible. The best-effort means that

the system should allow for any user to add their content on the Internet even if it

is incomplete, as other users of the community may have the knowledge to complete

this data later. The main layer in the architecture of the system is the Storage Man-

ager. The goal of the storage manager layer is to provide the logical abstraction of

the tables and views in the repository where the data resides. Users are responsible

for managing (i.e., define, update, and delete of mappings when needed) the set of

mapping rules that relates tables to each other, for the purpose of propagating any

updates to the data.

Youtopia uses a backward (tgd) chase procedure (that extends the classical

(tgd) chase procedure (Maier et al., 1979)) to propagate any changes to the data by

chasing the affected mappings and doing the required modification, whether inserting,

updating, or deleting some tuples. A violation of a tgd usually occurs after a user

insert, delete, or update a particular tuple where the mappings between two relations

are no longer satisfied. In backward chase procedure, Youtopia combines the classical

chase with user intervention. A user can intervene, for example, when there is a need

to delete some tuples that would handle the violation of a particular tgd rule. In

addition, Youtopia can use forward and backward chase to correct any violation of a
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tgd rule. Youtopia differs from Orchestra in that it does not collect data provenance

information.

4.3.5 Collaborative Data Sharing System (CDSS)

A CDSS is a new architecture introduced recently to support collaborative data shar-

ing communities in general, and scientific communities specifically. The motivation

behind the developing of this architecture is to enable scientific communities (e.g.,

bioinformatics) to share data among them. In such type of communities, usually

there is no consensus about the representation, correction, and authoritative sources

of shared data. In bioinformatics, for example, a group of heterogeneous peers might

collaborate by sharing some related data among each other. You can consider peers

as different sub-communities of bioinformatics field; say one interested in genes, an-

other in proteins, and another in diseases, etc. Each peer has its own schema and its

own database instance, but it might have associations with other peers. For example,

there might be an association link between genes and proteins peers. According to

the type of link, uni- or bi-direction, a peer needs to synchronize its version of shared

data with other peers whom it has associations with. The synchronization can be

accomplished by frequently exchanging updates among associated peers.

CDSS was first introduced in (Ives et al., 2005) as a new architectural model

for collaborative data sharing. (Taylor and Ives, 2006) continues the effort to real-

ize the CDSS by focusing on the propagation and reconciliation of updates between

participant peers. Finally, (Green et al., 2007) completes on the previous works by

introducing new methods to exchange peer’s updates by using mappings and prove-

nance information. We summarize below the work done in the above mentioned works

in order.
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4.3.6 Orchestra CDSS

Traditional integration systems follow a top-down approach by defining a global

schema, where many heterogeneous sources are mapped to. This global schema is

then targeted by user queries to get consistent answers. In addition, it does not sup-

port updates. However, in some scientific communities, the case is different, where

the need is for bottom-up collaborative data sharing. In such communities, groups of

scientists are working on different schemas and different data instances and agree to

share related data among them. Each group has full control over its own version of

the shared data usually by curating, revising, and extending this data. Each group,

at some time, decides to publish the most recent updates to other groups and it gets,

in turn, the recent updates from the others. It then applies the accepted updates

and rejects the rest, keeps its database instance consistent and free of conflicts. This

process is usually called the reconciliation.

Orchestra (Ives et al., 2008) is a prototype system that addresses the issues of

collaborative data sharing for the certain type of communities mentioned above. In

this system, a group of autonomous participants, each has its own local database, are

collaborating together by sharing some related data. Each participant works on its

local instance and later publishes the updates to others. Participants are connected

together through direct relation. The direction of the relation is from the independent

participant to the dependent one. The dependent participant usually needs to import

the recent updates from participants whom have links with, and it applies these

updates to its local instance taking in the consideration keeping its instance consistent.

A participant in Orchestra usually operates in disconnected mode. While it is in

disconnected mode, it can extend, curate, and modify its local instance, and later

it decides to publish and/or reconcile. The reconciliation of a specific participant
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is the process of exchanging updates with the others and applying the incoming

updates to the local instance after filtering the updates based on trust policies and

priorities and rejecting the conflicting updates. The first step in the reconciliation is to

import the recent updates from others since the last reconciliation. Second, determine

which updates to accept based on the instance mappings, and rejecting the conflicting

updates. Third, propagates to the participant relation only those updates that are

both accepted and do not have conflicts. At last the reconciliation process records

the updates made by the participant or accepted by it for future reconciliations.

4.3.7 Reconciliation

This paper (Taylor and Ives, 2006) is the first effort to realize the CDSS (Ives et al.,

2005), a new architecture for supporting collaborative data sharing communities. The

end goal of CDSS is to enable data sharing across disparate schemas and disparate

data instances. This study assumes a group of autonomous participants or peers,

sharing a single schema, and each one manages its own database instance. Data shar-

ing links might exist between the different participants. Each participant is willing

to share its data and updates with the others.

This study focuses on the propagation of updates among participants, which is

the central problem in CDSS and it is usually called reconciliation. Participants make

updates to their local database instances, and they later publish the updates upon

their decisions. Each participant has acceptance rules that filter the update exchange

based on the trust priority level for updates coming from the other participants.

The job of the reconciliation process of a participant is to determine which updates

are accepted and which are rejected. All updates that satisfies the acceptance rules

and do not conflict with either the accepted updates or the reconciling participant’s
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instance state are accepted. The priorities defined in acceptance rules are utilized

Figure 4.1: Collaborative data sharing system with three bioinformatics data ware-
house participants sharing data on protein functions (Taylor and Ives, 2006).

to determine which conflicting updates, if any, to accept. If the conflicting updates

have the same priority or have no priorities assigned at all, then all these updates

are marked as deferred, and they are not accepted until a user resolves the conflict

manually. The reconciliation process also marks any future updates that conflict with

unresolved updates as deferred, too.

Scenario Example: Consider a CDSS community of three participant peers

(p1, p2, and p3) that represent three bioinformatics warehouses as shown in Fig. 4.1

(example from (Taylor and Ives, 2006)). The three peers share a single relation

F(organism, protein, function) for protein function, where the key of the relation is

composed of the fields organism and protein. Peer p1 accepts updates from both p2

and p3 with the same trust priority level. p2 accepts updates from both p1 and p3, but

it assigns a higher priority for updates that come from p1. p3 only accepts updates
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that come from p2. We illustrate the reconciliation operation of this CDSS example

as shown in Table 4.8.

Table 4.8: Reconciliation of F(organism, protein, function) (Taylor and Ives, 2006).

t p3 p2 p1

0 I3(F )|0={} I2(F )|0 = {} I1(F )|0 = {}
T3:0 :{+F(rat,prot1,cell-metab;3)}
T3:1 :{F(rat,prot1,cell-metab →

rat,prot1,immune;3)}
1 <publish and reconcile>

I3(F )|1 :{(rat,prot1,immune)}
T2:0 :{+F(mouse,prot2,immune;2)}
T2:1 :{+F(rat,prot1,cell-resp;2)}

2 <publish and reconcile>
I2(F )|2 :{(mouse,prot2,immune),

(rat,prot1,cell-resp)}
3 <reconcile>

I3(F )|3 :{(mouse,prot2,immune),
(rat,prot1,immune)}

4 <reconcile>
I1(F )|4 :{(mouse,prot2,immune)}
DEFER: {T3:1, T2:1}

In the beginning, we assume that the instance of relation F at each participant

peer pi, denoted by Ii(F )|0, is empty (i.e., at time 0). At time 1, p3 conducts two

transactions T3:0 and T3:1. It then decides to publish and reconcile its own state (to

check if other peers made any changes). Since the other two participant peers have

not yet published any updates, p3’s instance, after the reconciliation operation is

completed, I3(F )|1 denotes the result (the second transaction is only a modification

to the first one). At time 2, p2 conducts two transactions T2:0 and T2:1. It then

publishes and reconciles its own state. Note that the resulting instance I2(F )|2 of p2

contains only its own updates. Although there is a recently published update by p3,

which is trusted by it, p2 does not accept p3’s published update because it conflicts

with its own updates. At time 3, p3 reconciles again. It accepts the transaction T2:0

that is published by p2 and rejects p2’s second update T2:1 because it conflicts with

its own state. At time 4, p1 reconciles. It gives the same priority for transactions

of p2 and p3. Thus, it accepts the non-conflicting transaction T2:0, and it defers the

conflicting transactions T2:1 and T3:1.
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4.4 Discussion and Future Directions

In recent years, few collaborative data sharing applications, which support data ex-

change among multiple and heterogeneous schemas, have emerged. As mentioned

earlier, in these applications, users usually organize themselves in groups or com-

munities, such that each community focuses on a specific, and probably distinctive

domain. While each community manages its own schema, it can have sharing links

with other communities. Sharing links enable different communities to exchange

data between them in a managed and restrictive manner, that usually depends on

predefined trust relationships and priorities. Examples applications can be found in

scientific communities, academic communities (e.g., DBLP, ACM), blog communities,

etc. (Ives et al., 2005). However, the exchanged data between different communities

may be inconsistent and produce variable results. Thus, there is a need for efficient

techniques to handle such inconsistency in data (and its integration).

Approaches for the problem of inconsistent data have been described in detail

in the context of conventional integrations systems. For instance, (Naumann et al.,

2006; Bleiholder and Naumann, 2006; Bilke et al., 2005; Motro and Anokhin, 2006;

Bleiholder et al., 2007; Motro and Anokhin, 2004) described different approaches for

conflict resolution while integrating heterogeneous database sources. However, all

conventional integration systems usually aim to map heterogenous data sources to

a unified global schema. Users can then submit their queries to this global schema

without being aware of the involved heterogeneity. In addition, these systems are

usually built on top of the Relational DBMS, which does not support conflicts in

the data to be represented in the database. Thus, these integration systems are not

sufficient to support the collaboration needs for users of scientific communities.
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Approaches for handling conflicts in community shared databases, based on

the concept of multi-versioned databases, are described in (Gatterbauer et al., 2009;

Pichler et al., 2010; Gatterbauer and Suciu, 2010). In (Gatterbauer et al., 2009), a

BeliefDB system enables users to annotate existing data or even existing annotations,

by adding their own beliefs that may agree or disagree with existing data or anno-

tations. (Gatterbauer and Suciu, 2010) describes an automatic conflict resolution

technique based on trust mappings between users. To resolve the conflict, a user only

accepts a data value that comes from the most trusted user. Thus, each user is shown

his own consistent version of the shared database (based on his trust mappings and

priorities with other users). In essence, a network of prior trust mappings between

users have to be defined or known (Taylor and Ives, 2006). (Pichler et al., 2010)

handles inconsistent data by allowing users to rate data. Updates done by users are

stored in a shared, uncertain database, where all versions of conflicting updates are

inserted into the database in parallel. The work done in (Pichler et al., 2010) is sim-

ilar to that of (Gatterbauer et al., 2009; Gatterbauer and Suciu, 2010), in that all

apply a multi-versioned database model to resolve conflicts. However, each user in

(Gatterbauer et al., 2009; Gatterbauer and Suciu, 2010) sees his own consistent ver-

sion of the shared database based on his own beliefs or trust mappings. In contrast,

all users in (Pichler et al., 2010) see the most consistent version of the database which

has the best rating. The shortcoming of all the above approaches that try to solve

the problem of inconsistency in data by implementing a multi-versioned database, is

that they only support the collaboration needs of a single community of users (and

usually suitable for public communities of users). Thus, they do not support the

collaboration needs for the sort of communities mentioned earlier.

In contrast, a CDSS (Ives et al., 2005; Taylor and Ives, 2006; Green et al.,

2007; Ives et al., 2008) allows groups of scientists to work on disparate schemas and
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database instances, while each group can have sharing links with other groups. The

reconciliation process in the CDSS engine (that works on top of the DBMS of each

participant peer) is responsible for propagating updates and handling the disagree-

ments between different participant peers. It publishes recent local data updates and

imports non-local ones since the last reconciliation. The imported updates are fil-

tered based on trust policies and priorities for the current peer. It then applies the

non-conflicting and accepted updates on the local database instance of the reconciling

peer. For the conflicting updates, it groups them into individual conflicting groups

of updates. Each update of a group is assigned a priority level according to the trust

policies of the reconciling peer. The reconciliation process then chooses from each

group, the update with the highest priority to be applied on the local database in-

stance, and rejects the rest. When it finds that many updates have the same highest

preference or there is no assigned preferences for the updates in a group, it marks

these updates as “deferred”. The deferred updates are not processed and not consid-

ered in future reconciliations until a user resolves the deferred conflicts manually. The

administrator of each peer in a CDSS is usually responsible for declaring and man-

aging trust policies. While the administrator can successfully manage to define trust

policies for a few number of participant peers, this task is not easy for a huge number

of participants. In addition, assuming that a community of hundreds or thousands

of members can authorize a user or a group of users to define trust policies for their

community is usually not possible. Moreover, a CDSS does provide a semi-automatic

conflict resolution approach by accepting the highest-priority conflicting updates, but

it leaves for individual users the responsibility of resolving conflicts for the updates

that are deferred. However, the assumption that individual users can decide how to

resolve conflicting updates is not strong, as users of the community may have different
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beliefs and may agree or disagree with each other about which conflicting updates to

accept and why (i.e., on which bases).

Table 4.9: Comparison between community-based systems and models .
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Orchestra (Ives et al., 2008) X X X X X X X X X X
Youtopia (Kot and Koch, 2009) X X X X X X
BeliefDB (Gatterbauer et al., 2009) X X X X X
DCUUTM (Gatterbauer and Suciu, 2010) X X X X X X X
UDBinCDM (Pichler et al., 2010) X X X X X
HumMer (Bilke et al., 2005) X X X X X
Fusionplex (Motro and Anokhin, 2006) X X X X X X
FuSem (Bleiholder et al., 2007) X X X X X
MBCR (Motro and Anokhin, 2004) X X X X X X

We conclude that the conventional integration systems cannot support the col-

laboration needs for scientific communities. Recent collaborative sharing approaches

in this regard usually manage one community of users and support a single schema,

with disparate instances. However, they do not support collaboration needs for mul-

tiple distinctive communities. In addition, they are usually more suitable for public

users who organize themselves in communities, where each community is specialized

in a specific domain (e.g., sport, games, etc.). On the other hand, CDSS can fully

support the collaboration needs between different communities that usually have dis-

parate schemas and instances, but they may have some relations in common that

require sharing links and data exchange. Table 4.9 shows a comparison between the

different approaches discussed earlier. An X in the table cell means that the require-

ment stated in the column’s header is supported by the approach or system stated
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in the row’s header. We see that there is still a room to improve the CDSS. We list

below some of the directions for future research works to improve the CDSS:

• Automatic Conflict Resolution:

We believe a fully automated approach to resolve conflicts that may arise due to

the propagation of updates among related peers in a CDSS is a prime require-

ment. Automation can be achieved by resolving conflicts in the deferred set (of

a CDSS’s reconciling peer) by collecting feedbacks about the quality of the con-

flicting updates from the local community (i.e., local users) and remote peers.

However, the use of feedbacks should be limited. For instance, deploying the

community feedback for the purpose of resolving conflicts between the updates

of conflict groups in the deferred set of a local peer. This can enable each par-

ticipant peer to maintain a relational and consistent database instance, where

conflicts between data are not allowed due to the restrictions of the relational

DBMS.

• Automatic Trust Mappings and Policy Definitions:

We can extend the above work to utilize community feedbacks not only to resolve

conflicts for the updates in the deferred set, but also to deploy community

feedbacks for the purpose of automatically defining trust policies for the local

peer, thereby omitting the role of the administrator in defining trust policies.
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CHAPTER 5: Automated Conflict Resolution in CDSS

In this section, we discuss our approach for resolving conflicts in the set of conflict

groups of updates that are added to the deferred set of a CDSS’s participant peer

during its reconciliation operation. Fig. 5.1 shows the general architecture of a CDSS

participant peer using the proposed approach. Before further discussion, we need

to define the key entities/players of the CDSS: (i) Provider Peer is the entity that

shares its data updates with other peers in the CDSS. (ii) Consumer/Reconciling

Peer is the entity that receives (possibly conflicting) updates on the same data from

multiple providers. (iii) Remote/Rater Peer is the entity that helps the consumer in

the reonciliation process by providing ratings about the provider. (iv) Multiple Users

(which may be human) are registered with one peer in a mutually exclusive manner.

In the proposed approach, after the reconciliation operation of the consumer adds a

new conflict group to the deferred set, the following steps are taken:

1. The reconciliation operation inquires other remote peers (i.e., remote raters)

about their past experiences with the provider peers that have conflicting up-

dates in this conflict group. The following sub-steps are then taken to compute

the remote assessed reputation of each provider:

(a) After receiving all replies from remote raters, the credibility values of re-

sponding raters are (re)computed based on the majority rating and the

aggregation of the previously, computed remotely assessed reputations of

this provider.

(b) Reported ratings provided by remote raters are then weighted according to

the new credibility values. The credibility value of a remote rater represents

to what degree the reconciling peer trusts the rating value reported by the

remote rater.
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Figure 5.1: Proposed CDSS architecture

(c) Weighted reported reputation values are then aggregated for each update in

the conflict group. This aggregated value represents the remotely assessed

reputation of a particular provider peer as viewed by the reconciling peer.

2. The reconciliation operation informs local users of the reconciling peer to rate

updates in this conflict group. Whenever this conflict group is rated by a number

of users more than a predefined threshold, then it is marked as closed. Local

users are thence not allowed to rate this closed conflict group or change their

previous rating. The following sub-steps are then taken to compute the local

assessed reputation of each provider peer:

(a) Whenever a conflict group is marked as closed, then for each provider peer

that has an update in this conflict group, the credibility values of users

that rate the updates of this provider peer, are (re)computed based on the
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majority rating and the aggregation of the previously computed locally

assessed reputations of this provider.

(b) The reported ratings provided by users are then weighted according to the

new credibility values. The credibility value for a user represents to what

degree the reconciling peer trusts the provided rating for the update of a

particular provider peer.

(c) Weighted reported ratings are then aggregated for each update in the con-

flict group. This aggregated value represents the locally assessed reputa-

tion of a particular provider as viewed by the reconciling peer.

3. The assessed reputation of each provider peer that is involved in the closed

conflict group is computed by weighting both computed remotely and locally

assessed reputations of this provider peer. The weights that are given for both

computed values depend on the reconciling peer’s administrator. The admin-

istrator may assign the local reputation of a provider higher weight than the

remote reputation of a provider, or vice-versa.

4. Finally, the update which is imported from the provider peer with the highest

assessed reputation value is applied to the reconciling peer’s instance (making

sure it does not violate its integrity constraints).

In the following, we describe in details how to compute both remote and local repu-

tations of a provider peer. We assume a CDSS, where a group of autonomous peers

share a single schema, and each one manages its own database instance. Every rela-

tion in the database has a key, and a tuple is an entry in the database identified by

a key. Disagreement on the non-key values of a tuple leads to several versions of this

tuple. Table 5.10 lists the definition of symbols used henceforth.
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Table 5.10: Definition of symbols.

Symbol Definition

P Set of CDSS’s participant peers {p1, ... ,pn}.
Σ Schema that represents the relations in the system.

Ii(Σ) Local database instance controlled by a peer pi.
t Reconciliation time counter.
pi Peer who is reconciling.
pj Remote peer.
Gc Particular conflict group in the deferred set of pi.
gc:j Particular conflicting update of Gc that is imported from remote peer pj .
tGc Closing Time of the rating process for an unresolved conflict group Gc.
pxi Local user x of pi who participates in the rating process.
σi Threshold of % of raters for pi to close the rating on updates of Gc.
hx Last h non-neutral rating by pxi to pj ’s from already resolved conflict groups.
γ Smoothing factor in the interval[0, 1] for determining the weights of recent ratings.
MR Value of the majority rating.
MR∆ Change in credibility due to the majority rating.

RRPP Aggregation value of previously k assessed reputations of a particular peer.

RRPP∆ Effect on credibility due to agreement or disagreement with RRPP .
Φ Credibility adjustment normalizing factor.
Ψ Amount of change in credibility.
ρ Pessimism factor.

f(ϕ) Aggregation function.

5.1 Remote Reputation of a Provider Peer (RRPP)

When a new conflict group is added to the deferred set of a consumer peer, it needs

to resolve the conflict by choosing a single update from the group, and reject others.

This decision is based on the feedbacks collected from both, other remote CDSS

peers, and the local user community (that forms the consumer peer). In this section,

we provide details on feedbacks collection from remote peers, while we discuss the

feedbacks collected from the local user community in the next section.

In the proposed system, each CDSS participant peer records its perception

of the reputation of the provider peer(s). This perception is called the personal

evaluation of a provider peer in the consumer’s view. In this study, we assume that

a consumer peer computes this personal evaluation every time it needs to resolve a

conflict for any conflict group added to its deferred set and only for provider peers

that have their updates in this particular conflict group. Let pj be a provider peer and

px be a rater peer. px maintains Rep(pj, px) that represents its personal evaluation
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of pj’s reputation score. Other peers may differ or concur with px’s observation of pj.

A consumer peer pi that inquires about the reputation of a given provider peer pj

from rater peers may get various differing personal evaluations or feedbacks. Thus,

to get a correct assessment of pj, all the collected feedbacks about pj need to be

aggregated. The aggregation of all feedbacks collected from remote raters to derive a

single reputation value (RRPP ) represents pj’s remote assessed reputation as viewed

by pi. Consumer peers may employee different aggregation techniques. Formally,

the remote assessed reputation RRPP (pj, pi) of a provider peer pj as viewed by a

consumer peer pi is defined as:

RRPP (pj , pi) = f(ϕ)x∈L(Rep(pj , px)) (5.1)

where L denotes the set of rater peers which have interacted with pj in the past

and are willing to share their personal evaluations of pj with pi, Rep(pj, px) is the

last personal evaluation of pj as viewed by px, and f(ϕ) represents the aggregation

function, which can be simply the average of all feedbacks, or it can be a more complex

process that considers a number of factors.

A major drawback of feedback-only based systems is that all ratings are as-

sumed to be honest and unbiased. A provider peer that usually produces high quality

updates may get incorrect or false ratings from different evaluators due to several ma-

licious motives. In order to deal with this issue, a reputation management system

should weigh the ratings of highly credible raters more than raters with low credibil-

ities (Delgado and Ishii, 1999). In our approach, the reputation score of the provider

peer is calculated according to the credibility scores of the rater peers. The credibility

score of a rater peer px assigned by a consumer peer pi determines to what degree

pi trusts the reputation value assigned by this rater to a provider peer pj. Taking

into consideration the credibility factor, the RRPP of pj is calculated as a weighted
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average according to the credibilities of the rater peers. Thus, the Equation (5.1)

becomes:

RRPP (pj , pi) =

∑L
x=1(Rep(pj , px) ∗ Cpx)∑L

x=1 Cpx
(5.2)

where Cpx is the credibility of px as viewed by pi. The credibility of a rater peer lies

in the interval [0,1] with 0 identifying a dishonest rater and 1 an honest one. The

overall rater credibility assessment process follows.

Evaluating Rater Credibility: To minimize the effects of unfair or inconsistent

ratings we screen the ratings based on their deviations from the majority opinion (sim-

ilar to other works in (Buchegger and Boudec, 2004), (Whitby et al., 2005), (Walsh

and Sirer, 2005), (Weng et al., 2005), etc). The basic idea is that if the reported rating

agrees with the majority opinion, the rater’s credibility is increased, and decreased

otherwise. However, unlike previous models, we do not simply disregard/discard the

rating if it disagrees with the majority opinion but consider the fact that the rating’s

inconsistency may be the result of an actual experience. Hence, only the credibility

of the rater is changed, but the rating is still considered. We use a data cluster-

ing technique to define the majority opinion by grouping similar feedback ratings

together. We use the k-mean clustering algorithm (Macqueen, 1967) on all current

reported ratings to create the clusters. The most densely populated cluster is then

labelled as the “majority cluster” and the centroid of the majority cluster is taken as

the majority rating (denoted MR). To obtain a better measure of the dispersion of

ratings, we calculate the Euclidean distance between the majority rating (MR) and

each reported rating (R). The resulting value is then normalized using the standard

deviation (σ) in all the reported ratings. The normalization equation (to assess the
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change in credibility due to majority rating), denoted by MR∆ is then defined as:

MR∆ =


1−

√∑n
k=1(MR−Rk)2

σ
if

√√√√ n∑
k=1

(MR−Rk)2 < σ;

1− σ√∑n
k=1(MR−Rk)2

otherwise.

(5.3)

Note that MR∆ does not denote the rater’s credibility (or the weight), but only de-

fines the effect on credibility due to agreement/disagreement with the majority rating.

How this effect is applied will be discussed shortly. There may be cases in which the

majority of raters collude to provide an incorrect rating for a particular provider peer.

Moreover, the outlier raters (ones not belonging to the majority cluster) may be the

ones who are first to experience the deviant behavior of the providers. Thus, a ma-

jority rating scheme “alone” is not sufficient to accurately measure the reputation of

a provider peer.

We supplement the majority rating scheme by adjusting the credibility of a

rater based on the past behavior of a provider as well. The historical information

provides an estimate of the trustworthiness of the raters (Sonnek and Weissman,

2005) (Whitby et al., 2004). The trustworthiness of a provider peer is computed by

looking at the “last assessed reputation value” (for a provider peer pj), the present

majority rating for pj, and the rater peer’s corresponding provided rating. We define

a credible rater as one which has performed consistently, accurately, and has proven

to be useful (in terms of ratings provided) over a period of time.

We believe that under controlled situations, a consumer peer’s perception of

a provider peer’s reputation should not deviate much, but stay consistent over time.

We assume the interactions take place at time t and the consumer peer already has

record of the previously assessed RRPP , then:

RRPP = f(ϕ)t−kt−1RRPP (pj , pi)
t (5.4)
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where RRPP (pj, pi) is the assessed RRPP of a provider peer pj by a consumer peer

pi for each time instance t, f(ϕ) is the aggregation function and k is the time duration

defined by each consumer peer. It can vary from one time instance to the complete

past reputation record of pj. Note that RRPP is not the “personal evaluation”

of either the rater peer or the consumer peer but is the average of the “remote

assessed reputation” calculated by a consumer peer at the previous time instance(s).

If a provider behavior does not change much from the previous time instances, then

RRPP and the present reported rating R should be somewhat similar. Thus, the

effect on credibility due to agreement or disagreement with the aggregation of the

last k assessed RRPP values (denoted RRPP∆) is defined in a similar manner as in

Equation (5.3):

RRPP∆ =


1−

√∑n
k=1(RRPP −Rk)2

σ
if

√√√√ n∑
k=1

(RRPP −Rk)2 < σ;

1− σ√∑n
k=1(RRPP −Rk)2

otherwise.

(5.5)

In real-time situations it is difficult to determine the different factors that cause

a change in the state of a provider peer. A rater peer may rate the same provider

peer differently without any malicious motive. Thus, the credibility of a rater peer

may change in a number of ways, depending on the values of R,MR∆ , and RRPP∆.

The general formula is:

Cpx = Cpx ± Φ ∗Ψ (5.6)

where Φ is the credibility adjustment normalizing factor, while Ψ represents amount of

change in credibility due to the equivalence or difference of R withMR and RRPP .

The signs ± indicate that either + or − can be used, i.e., the increment or decrement

in the credibility depends on the situation. These situations are described in detail

in the upcoming discussion.
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We place more emphasis on the ratings received in the current time instance

than the past ones, similar to previous works as (Buchegger and Le Boudec, 2004)

(Whitby et al., 2004). Thus, equivalence or difference of R with MR takes a prece-

dence over that of R with RRPP . This can be seen from Equation (5.6), where the

+ sign with Φ indicates R ' MR while − sign with Φ means that R 6= MR. Φ is

defined as:

Φ = Cpx ∗ (1− |Rx −MR|) (5.7)

Equation (5.7) states that the value of the normalizing factor Φ depends on the cred-

ibility of the rater and the absolute difference between the rater’s current feedback

and the majority rating calculated. Multiplying by the rater’s credibility allows the

honest raters to have greater influence over the ratings aggregation process and dis-

honest raters to lose their credibility quickly in case of a false or malicious rating.

The different values of Ψ are described next.

Adjusting Rater Credibilities: Ψ is made up of MR∆ and/or RRPP∆, and

a “pessimism factor” (ρ), which is used to normalize the change factor (for rater

credibility). The exact value of ρ is left at the discretion of the consumer peer,

with the exception that its minimum value should be 2. The lower the value of

ρ, the more optimistic is the consumer peer and higher value of ρ are suitable for

pessimistic consumers (this value is inverted in Equations (5.10 and 5.11)). We define

a pessimistic consumer as one that does not trust the raters easily and reduces their

credibility drastically on each false feedback. Moreover, honest rater’s reputations

are increased at a high rate, meaning that such consumers make friends easily. On

the other hand, optimistic consumers tend to “forgive” dishonest feedbacks over short

periods (dishonesty over long periods is still punished), and it is difficult to attain

high reputation quickly. Only prolonged honesty can guarantee a high credibility in

this case. R, MR, and RRPP can be related to each other in one of four ways, and
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each condition specifies how MR∆ and RRPP∆ are used in the model. Note that

the normalizing factor (ρ in our case) is common among all the four conditions. The

difference is in the different ‘amounts’, that are based on equalities or inequalities

among R,MR, and RRPP . In the following, we provide an explanation of each and

show how the credibilities are updated in our proposed model using different values

for Ψ.

Case 1. The reported reputation value is similar to both the majority rating

and the aggregation of the previously computed RRPP values (i.e., R ' MR '

RRPP ). The equality MR ' RRPP suggests that majority of the raters believe

that the quality of updates imported from a provider peer pj has not changed. The

rater peer’s credibility is thus updated as:

Cpx = Cpx + Φ ∗
(
|MR∆ +RRPP∆|

ρ

)
(5.8)

Equation (5.8) states that since all variables are equal, the credibility is incremented.

We will see in the following that in the current case, the factor multiplied to Φ is the

largest (due to the variable equalities).

Case 2. The individual reported reputation rating is similar to the majority

rating but differs from the previously assessed reputation, i.e. (R ' MR) and

(R 6= RRPP ). In this case, the change in the reputation rating could be due to

either of the following. First, the rater peer may be colluding with other raters to

increase or decrease the reputation of a provider peer. Second, the quality of updates

imported from the provider peer may have actually changed since RRPP was last

calculated. The rater peer’s credibility is updated as:

Cpx = Cpx + Φ ∗
(
MR∆

ρ

)
(5.9)
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Equation (5.9) states that since R ' MR, the credibility is incremented, but the

factor R 6= RRPP limits the incremental value to (
MR∆

ρ
) (not as big as the previous

case).

Case 3. The individual reported reputation value is similar to the aggregation

of the previously assessed RRPP values but differs from the majority rating, i.e.

(R 6=MR) and (R ' RRPP ). The individual reported reputation value may differ

due to either of the following. First, px may be providing a rating score that is

out-dated. In other words, px may not have the latest score. Second, px may be

providing a “false” negative/positive rating for a provider peer. The third possibility

is that px has the correct rating, while other rater peers contributing to MR may

be colluding to increase/decrease the provider peers reputation. None of these three

options should be overlooked. Thus, the rater peer’s credibility is updated as:

Cpx = Cpx − Φ ∗
(
RRPP∆

ρ

)
(5.10)

Equation (5.10) states that since R 6=MR, the credibility is decremented, but here

the value that is subtracted from the previous credibility is adjusted to (
RRPP∆

ρ
).

Case 4. The individual reported reputation value is not similar to both the

majority rating and the calculated aggregation of assessed RRPP values, i.e. (R 6=

MR) and (R 6= RRPP ). px may differ from the majority rating and the past

aggregation of RRPP values due to either of the following. First, px may be the

first one to experience the provider peer’s new behavior. Second, px may not know

the actual quality of the provider peer’s imported updates. Third, px may be lying

to increase/decrease the provider peer’s reputation. In this case, the rater peer’s

credibility is updated as:

Cpx = Cpx − Φ ∗
(
|MR∆ +RRPP∆|

ρ

)
(5.11)
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Equation (5.11) states that the inequality of all factors means that rater peer’s cred-

ibility is decremented, where the decremented value is the combination of both the

effects MR∆ and RRPP∆.

5.2 Local Reputation of a Provider Peer (LRPP)

In our proposed solution, users can rate deferred updates according to their own

beliefs about which update is the most correct.

5.2.1 Rating updates

The reconciliation operation in a consumer peer pi notifies local users when a new

conflict group of updates (Gc) is inserted into the deferred set Deferred(pi). It also

specifies the closing time (tGc) of the rating process for this unresolved conflict group.

Local users of pi rate the updates of unresolved Gc in Deferred(pi). A user x (pxi )

of pi assigns a probabilistic rating (ri:x,j) in the interval[0, 1] to each update gc:j of a

provider peer pj in Gc, where 0 identifies the rater’s extreme disbelief and 1 identifies

the rater’s extreme belief in an update. Moreover, a user can assign a neutral rating

(−1) to an update to express his lack of opinion about this particular update. A trig-

ger is fired to inform the reconciliation operation when a voting period of unresolved

Gc is ended. The reconciliation operation then checks whether this Gc is rated by a

number of users exceeding a predefined percentage of the total number of local users

(σi). If the number of users who rate this Gc exceeds σi, the reconciliation operation

marks this Gc as “closed” and users cannot rate this Gc anymore. Otherwise, the

reconciliation operation extends the rating period of this particular Gc (to attain the

threshold).
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5.2.2 Computing the LRPP value

We adopt the same technique introduced in Section 5.1 to compute the LRPP value.

Each participant peer records the past computed LRPP values for each provider peer

it works with. We also assume that a consumer peer computes a new LRPP value

every time it needs to resolve a conflict for any conflict group added to its deferred set

and only for provider peers which they have their updates in this particular conflict

group Gc. Then, Rep(pj, p
x
i ) represents the rating assigned by a local consumer’s user

pxi to the update of provider pj in Gc. Formally, the LRPP of a provider peer pj as

viewed by a consumer peer pi, computed post closing a conflict group Gc, is defined

as:

LRPP (pj , pi) =

∑L
x=1(Rep(pj , p

x
i ) ∗ Cpxi )∑L

x=1 Cpxi
(5.12)

where L denotes the set of local users who have rated pj’s update in Gc, Rep(pj, p
x
i )

is the rating of pj, and Cpxi is the credibility of a local user pxi as viewed by pi. This

Equation is the same as Equation (5.2). The only difference is that we here aggregate

the summation of ratings given by local users, for the purpose of computing the

LRPP value for a particular provider peer. The credibility of a local user assigned

by a parent peer pi determines to what degree pi trusts the ratings assigned by a

local user to a provider peer pj. As mentioned earlier, we follow the same approach

discussed previously to compute the credibility of local users. We do not provide

the details here to avoid redundancy as only minor changes are required. The only

modification to Equations 5.1 through 5.11 is using ratings assigned by local users

of a reconciling peer to provider peers’ updates in a closed conflict group. Notice

that LRPP is computed by an equation similar to RRPP (as in Equation (5.4)).

However, LRPP represents the aggregation of the past LRPP computed by pi for

pj, assuming that pi keeps records of the previously computed LRPP .
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5.3 Illustrative Example

In this section, we provide a comprehensive example to illustrate the proposed ap-

proach. Let us consider a CDSS community of three participant peers (p1, p2, and

p3) that represents three bioinformatics warehouses (example adapted from (Taylor

and Ives, 2006)). The three peers share a single relation F(organism, protein, func-

tion) for protein function, where the key of the relation is composed of the fields

organism and protein. Peer p1 accepts updates from both p2 and p3 with the same

trust priority level. p2 accepts updates from both p1 and p3, but it assigns a higher

priority for updates that come from p1. p3 only accepts updates that come from p2.

For the purpose of the illustration, we also assume that there are 10 other participant

peers (p4 through p13). In this example, we assign different roles for the participant

peers. We consider peers p2 and p3 as provider peers for the rest of peers, peer p1 as

a consumer peer who imports updates from the provider peers and needs to reconcile

its own instances. The remaining peers (p4 through p13) play the role of raters which

are assumed to have interacted with the provider peers in the past and are willing

to share their experiences with other consumer peers. Similar to (Taylor and Ives,

2006), we illustrate the reconciliation operation of this CDSS example as shown in

Table 5.11, taking into consideration our proposed modification for the system.

In the beginning (i.e., at time 0), we assume that the instance of relation F

at each participant peer pi, denoted by Ii(F )|0, is empty. At time 1, p3 conducts

two transactions T3:0 and T3:1. It then decides to publish and reconcile its own state

(to check if other peers made any changes). Since the other two participant peers

have not yet published any updates, p3’s instance, after the reconciliation operation is

complete; I3(F )|1 denotes the result (the second transaction is only a modification to

the first one). At time 2, p2 conducts two transactions T2:0 and T2:1. It then publishes
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Table 5.11: Reconciliation of F(organism, protein, function).

Time p3 p2 p1

0 I3(F )|0 = {} I2(F )|0 = {} I1(F )|0 = {}
T3:0 : {+F(rat, prot1, cell-metab;
3)}
T3:1 : {F(rat, prot1, cell-metab →

rat, prot1, immune; 3)}
1 <publish and reconcile>

I3(F )|1: {(rat, prot1, immune)}
T2:0 : {+F(mouse, prot2, immune;
2)}
T2:1 : {+F(rat, prot1, cell-resp; 2)}

2 <publish and reconcile>
I2(F )|2: {(mouse, prot2, immune),

(rat, prot1, cell-resp)}
3 <reconcile>

I3(F )|3: {(mouse, prot2, immune),
(rat, prot1, immune)}

4 <reconcile>
I1(F )|4: {(mouse, prot2, immune)}
DEFER: {T3:1, T2:1 }

T3:2 : {+F(cat, prot3, cell-metab;
3)}

5 <publish and reconcile>
I3(F )|5: {(cat, prot3, cell-metab),

(mouse, prot2, immune),
(rat, prot1, immune)}

6 <reconcile>
I1(F )|6: {(rat, prot1, immune),

(cat, prot3, cell-metab),
(mouse, prot2, immune)}
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and reconciles its own state. Note that the resulting instance I2(F )|2 of p2 contains

only its own updates. Although there is a recently published update by p3, which

is trusted by it, p2 does not accept p3’s published update because it conflicts with

its own updates. At time 3, p3 reconciles again. It accepts the transaction T2:0 that

is published by p2 and rejects p2’s second update T2:1 because it conflicts with its

own state. At time 4, p1 reconciles. It gives the same priority for transactions of p2

and p3. Thus, it accepts the non-conflicting transaction T2:0, and it defers both the

conflicting transactions T2:1 and T3:1.

p1’s reconciliation operation forms a conflict group G1 (shown in Table 5.12)

that includes both deferred transactions that are added to the deferred set of p1 during

the reconciliation. p1 first inquires other remote peers about their trust placed in the

provider peers that have conflicting updates in G1. Second, it notifies its local users

that a new conflict group is added to Deferred(p1), so they can start rating updates

in this particular conflict group. The result of these two steps is the computing of

RRPP and LRPP values for each provider peer that has an update in G1 (p2 and

p3 in this case). p1 then computes the assessed trust for each provider peer who

has update in G1 by weighting the values of RRPP and LRPP according to its

pre-defined preferences. Next, we provide the details of these steps.

Table 5.12: The deferred set of peer p1.

Gc Txn p1
1 p2

1 p3
1 p4

1 p5
1 p6

1 p7
1 p8

1 p9
1 p10

1 Status σi

G1
T3:1 0.95 0.65 1.00 0.60 0.97 1.00 0.95 0.90 0.95 1.00

Closed 100%
T2:1 0.45 0.80 0.45 0.75 0.40 0.40 0.45 0.40 0.45 0.43

5.3.1 Computing the RRPP

We assume here that the local peer p1 maintains a table of all the previously assessed

reputation values of provider peers that it interacts with. For instance, the last 10
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RRPP values previously computed by p1 for provider peers p2 and p3 are {0.58, 0.55,

0.56, 0.62, 0.60, 0.63, 0.59, 0.51, 0.53, 0.55} and {0.95, 1.00, 0.94, 0.89, 0.90, 0.94,

0.85, 0.87, 0.96, 0.92} respectively. Similarly, as mentioned earlier, p1 maintains a

credibility value for each rater peer that responds to its request for any pj’s rating.

After a new conflict group G1 is added to the deferred set of p1, assume that p1

gets back responses from rater peers p4, p5, ..., p13. The received responses (in-order)

for p2 are {0.70, 0.65, 0.50, 0.46, 0.52, 0.67, 0.55, 0.43, 0.47, 0.90}, and for p3 are

{0.98, 0.88, 0.93, 0.96, 0.99, 0.91, 0.90, 0.89, 0.95, 0.45 }. Using this information, p1’s

reconciliation operation performs the following series of steps for each provider peer

in G1:

1. p1 computes the values of MR, MR∆, RRPP , and RRPP∆ factors for each

provider peer in G1. The computed values for p2 are (0.57, 0.59, 0.67, .67) and

for p3 are (0.92, 0.88, 0.68, 0.67), respectively.

2. p1 computes the new credibility values for each rater peer, as shown in Table

5.13, who has provided their ratings for p2. Then, it takes the new computed

credibility values as an input to compute the new credibility values for consumer

raters who provides their ratings to p3, as shown in Table (5.14), assuming that

each consumer rater has provided his rating for all provider peers that appear

in the conflict group F1. We provide more details about the computations done

in Tables 5.13 (and 5.14) in the following:

(a) The first row of Table 5.13, titled (Cpx(old)), shows the current credibility

values for rater peers (p4, p5, ..., p13).

(b) In the second row of Table 5.13, the values of Φ variable are shown after

Equation (5.7) is applied.
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Table 5.13: Computing p2’s RRPP and the new credibility values for remote raters
who respond to the inquiry regarding the reputation of the provider peer p2.

p2 Remote Rater Peers

Factor p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

Cr(x)old 0.95 0.97 0.89 0.88 0.97 0.90 0.95 0.93 0.94 0.95
Φ 0.84 0.91 0.81 0.77 0.91 0.82 0.92 0.79 0.83 0.65

R 'MR 0.12 0.07 0.09 0.13 0.06 0.09 0.03 0.16 0.12 0.32

MR ' RRPP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

R ' RRPP 0.13 0.08 0.07 0.11 0.05 0.10 0.02 0.14 0.10 0.33
Case(1− 4) 1 1 1 1 1 1 1 1 1 4

Ψ 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.01 0.10
Cr(x)new 0.96 0.97 0.90 0.89 0.97 0.91 0.95 0.95 0.95 0.88

Rw 0.67 0.63 0.45 0.41 0.51 0.61 0.52 0.41 0.45 0.79

(c) The rows (3-5) show the equalities between the factor pairs (R ' MR),

(MR ' RRPP ), and (R ' RRPP ), for each consumer rater. Here, we

assume that the two compared factors are equal if the amount of difference

between them is equal or less than 0.20. Otherwise, they are considered not

to be equal. If we look at Table 5.13, we see that all pairs are considered

equal, except for the consumer rater p13. For those raters who have (R '

MR ' RRPP ), Case (1) conditions are met, and thus we apply Equation

(5.8) for computing the new credibility values. For p13, we have (R 6=MR)

and (R 6= RRPP ). Thus, Case (4) is met, and we apply Equation (5.11)

for computing the new credibility value. Since the reported rating value by

p13 is not similar to both the majority opinion and the aggregation of the

previously computed RRPP values of provider peer p2, p13 is penalized (by

decreasing its credibility and giving a less weight for its reported rating).

(d) The rows (6-8) of Table 5.13 show the matched case, the value of Ψ, and

the new computed credibility value (Cpx(new)), for each rater.

(e) The last row, titled Rw, shows the weightage of reputation values received

from the different raters.
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(f) Based on the last two rows of Table 5.13, p1’s reconciling operation com-

putes the RRPP for provider peer p2 (RRPP (p2, p1) = 0.58) by applying

Equation (5.2).

Table 5.14 values are obtained in the same manner as defined above, and the

RRPP for p3 is computed as RRPP (p3, p1) = 0.89 by applying Equation (5.2). Note

that the new credibility values computed in Table 5.13 are used as inputs to compute

the new credibility values for consumer raters who provided their reputation values

for provider peer p3. Again, credibilities of all consumer raters are altered according

Case (1), except for consumer rater p13 where its credibility is altered according Case

(4).

Table 5.14: Computing p3’s RRPP and the new credibility values for remote raters
who respond to the inquiry regarding the reputation of the provider peer p3.

p3 Remote Raters

Factor p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

Cr(x)old 0.96 0.97 0.90 0.89 0.97 0.91 0.95 0.95 0.95 0.88
Φ 0.87 0.97 0.85 0.82 0.87 0.88 0.94 0.94 0.89 0.50

V 'MR 0.10 0.00 0.05 0.08 0.11 0.03 0.02 0.01 0.07 0.43

MR ' RRPP 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

V ' RRPP 0.06 0.04 0.01 0.04 0.07 0.01 0.02 0.03 0.03 0.47
Case(1− 4) 1 1 1 1 1 1 1 1 1 4

Ψ 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.21
Cr(x)new 0.97 0.98 0.90 0.89 0.98 0.91 0.95 0.95 0.95 0.78

Vw 0.95 0.86 0.83 0.86 0.97 0.83 0.86 0.84 0.90 0.35

5.3.2 Computing the LRPP

Note that the local peer p1 (the reconciling peer in our running example) maintains a

table of all previously assessed LRPP values of provider peers that it interacts with.

For instance, the last 5 LRPP values for p2 and p3 are {0.41, 0.43, 0.58, 0.52, 0.38}

and {0.90, 0.89, 0.89, 0.94, 0.90} respectively. Similarly, it maintains a credibility value

for each local user (remember each peer is composed of n users) that has provided

reputation ratings regarding different conflicts in the past. The credibility values
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change according to the new assessed LRPP values of provider peers computed by

the local peer p1. Let us also assume here that all 10 users of p1 (denoted p1
1, p2

1,...,

p10
1 ) have participated in the rating of all the updates in conflict group, and the

rating process is considered to be closed, as illustrated in Table 5.12. When this

requirement is met, p1’s reconciliation operation marks the conflict group G1 as closed

to inform users to stop giving new ratings to updates of this conflict group. After

G1 is marked as closed, p1’s reconciliation operation performs the same steps as in

computing the RRPP value above for each provider peer in G1. We omit the LRPP

computation steps (and associated tabular results) here to avoid redundancy as they

are very similar to the above mentioned steps that we follow to compute the RRPP

value. Instead, we only summarize the outcome of these steps as follows: (i) p1

computes the values of MR, MR∆, LRPP , and LRPP∆ factors for each provider

peer in G1. The computed values for p2 are (0.47, 0.50, 0.68, .67) and for p3 are

(0.90, 0.90, 0.67, 0.67), respectively. (ii) Based on the local user credibilities, and

reported ratings p1’s reconciling operation computes the LRPP for provider peers p2

(LRPP (p2, p1) = 0.48) and p3 (LRPP (p3, p1) = 0.91), respectively.

5.3.3 Conflict Resolution

After the conflict group G1 is closed, and RRPP and LRPP values are computed

for each provider peer in G1, p1’s reconciliation operation computes the assessed rep-

utations of provider peers p2 and p3. The assessed reputation of a provider peer

is computed by weighing the RRPP and LRPP values. As mentioned earlier, the

administrator of the reconciling peer p1 is responsible for defining the appropriate

weightages. For our example, let us assume that the weight given for the RRPP

is 40% and for the LRPP is 60%. Thus, the assessed reputation of p2 will be
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(Rep(p2, p1) = 0.58 ∗ 40% + 0.48 ∗ 60% = 0.52), and the assessed reputation

of p3 will be (Rep(p3, p1) = 0.89∗40% + 0.91∗60% = 0.90). Since p3 has the higher

reputation value, the transaction T3:1 of p3 is considered in the next reconciliation

operation, and applied to the local instance of peer p1 as it does not violate its local

state or does not conflict with other accepted transactions during the reconciliation.

However, the transaction T2:1 of p2 is rejected, and it is not considered in the next

reconciliations.

In continuation of the scenario as illustrated in Table 4.8, at time 5, p3 ap-

plies a new transaction T3:2. It then decides to publish and reconciles its own state,

and it ends with the instance I3(F )|5. At time 6, p1 decides to reconcile. It ends

up with applying the transaction T3:1, resulting from the ratings on the updates of

conflict group G1, to its local instance. It also accepts and applies the new published

transaction T3:2 of p3. Hence, p1 ends up with I1(F )|6.

5.4 Implementation Model and Results

In this section, we illustrate the implementation details of the proposed approach us-

ing the above mentioned scenario. We modeled the different entities (as defined at the

beginning of this section) as Java-based simulator to see how the algorithms perform

with large number of conflicts and different qualities of providers and raters. The

experiments are conducted in a closed environment, where we can capture the actual

behavior of providers and raters. The validity of the proposed approach can thus be

measured by observing the difference between the actual behavior of the providers

and raters, and their computed reputation values and credibilities, respectively. The

provider CDSS updates are created in a semi-automated manner, to follow one of five
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classes of providers (details in Section 5.4.2). Similarly, the percentages of honest and

dishonest raters are changed to see their impact on the proposed approach.

5.4.1 One Consumer and Multiple Providers

In the first set of experiments, we developed a CDSS with three participant peers.

p1 is the reconciling peer, whereas p2 and p3 are the provider peers. p1 has 100

local users. The provider peers are initially assigned degrees of quality or behavior

randomly on a scale of [0, 1] where 0 denotes the lowest quality and 1 the highest.

For p2, the value lies between 0.1 and 0.7, and between 0.7 and 1.0 for p3. We further

divided the One consumer and Multiple providers case into two sets of experiments.

In the first set, 80% of users are high quality users (i.e., they provide accurate rating

values in the range [0.8, 1], and 20% of them are low quality users (i.e., they provide

poor rating values in the range [0.1, 0.4]). In the second set, we keep the quality level

of rating for both groups of users the same as in the first set, but we only increase

the percentage of dishonest raters (to 50%) and decrease the percentage of honest

ones (to 50%). At the beginning of the simulation, we assume that all local users of

the reconciling peer have credibility of 1. Each time during the simulation, p2 and p3

generate identical tuples (i.e., tuples that have the same key but differ in values of the

non-key attributes) and then publish their updates. When p1 reconciles (i.e., imports

the newly published updates from both p2 and p3), a conflict is found in the pair

of updates with the same key but imported from different providers. The conflict is

resolved by either accepting the update of p2 or p3, according to the weighted ratings

of users. The simulation ends when p1 resolves the conflict numbered 3600.

Fig. 5.2 shows the results for the above mentioned experiment sets. For con-

ciseness, the average of 10 rounds of experiments is shown. In the first set (denoted
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Figure 5.2: Experiment Results of Two Data Sets (A and B). A: Honest Raters
Out-number Dishonest Raters. B: Dishonest Raters Equals to Honest Raters

by A), honest raters out-number dishonest ones. Fig. 5.2(A) shows the effect of

this inequality in calculating raters’ credibilities, providers’ reputations, and thus

the number of accepted updates per each provider. The average credibility of each

group of users is shown in Fig. 5.2(A.1) with increasing number of conflicts, while

Fig. 5.2(A.2) represents the average reputations of providers peers, and the number

of accepted updates from each provider is shown in Fig. 5.2(A.3). Because there

are more honest raters, we can see that the average assessed reputation for each

provider is almost identical to their actual behaviors. Moreover, the average credi-

bility of honest raters is always high compared to that of dishonest group where it

is drastically decreasing for consecutive conflicts. The result of the second set where
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the number of honest and dishonest raters are equal is shown in Fig. 5.2(B). This

equality results in the dishonest raters’ ratings forming the majority rating on several

occasions. Therefore, we see an increase in the updates of p2 being accepted by p1.

This causes a degradation in the credibility of honest raters, since their opinion dif-

fers from the majority opinion, and an increment in the dishonest raters’ credibilities

(Fig. 5.2(B.1)).

5.4.2 Multiple Consumers and Providers

In the second set of experiments, we developed a CDSS of 40 participant peers,

where 20 of them are only providers, and the other 20 peers are only consumers, with

each consumer peer having 20 local users. We have divided the provider peers into 5

different behavioral groups that represent the real life scenarios: providers that always

perform with consistently high quality (i.e., their updates are correct and of high

value), providers that always perform with consistently low quality, providers that

perform high at the beginning but start performing low after the time instance 200,

providers that perform low at the beginning but they start performing high after the

time instance 200, and the final group of providers that perform in a random manner,

oscillating between high and low performance quality. We ran several experiments

to cover the above mentioned CDSS cases, where each experiment is run multiple

times for each scenario, and the averaged results over those runs are presented in the

following.

The experiment rounds starts at time instance 0 and finish at time instance

400. The databases of all peers are empty at time instance 0. At the beginning

of each time instance, all provider peers insert a new single update to their local

instances, and then they publish their most recent update to others. The inserted



111

Providers Quality Consistently High

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

40 80 120 160 200 240 280 320 360 400

Conflicts

R
ep

ut
at

io
n 

Va
lu

e

Group1-A

Group1-R

Providers Quality Consistently Low

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

40 80 120 160 200 240 280 320 360 400

Conflicts

R
ep

ut
at

io
n 

Va
lu

e

Group2-A

Group2-R

Providers Quality Degrades from High to Low

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

40 80 120 160 200 240 280 320 360 400

Conflicts

Re
pu

ta
tio

n 
Va

lu
e

Group3-A

Group3-R

Providers Quality Upgrades from Low to High

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

40 80 120 160 200 240 280 320 360 400

Conflicts

Re
pu

ta
tio

n 
Va

lu
e

Group4-A

Group4-R

Providers Performance Oscillates

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

40 80 120 160 200 240 280 320 360 400

Conflicts

R
ep

ut
at

io
n 

Va
lu

e

Group5-A

Group5-R

Average Credibilities of Low and High quality Users

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

40 80 120 160 200 240 280 320 360 400

Conflicts

C
re

di
bi

lit
y High

Low

Average Number of accepted updates

0

50

100

150

200

250

300

G1 G2 G3 G4 G5

Providers

N
um

be
r o

f u
pd

at
es

 
ap

pl
ie

d 
to

 in
st

an
ce

s

A

C

E

B

D

F

G

Figure 5.3: Reputation and Credibility Assessment: High Credibility users - 90%

updates at each time instance are almost identical. In other words, they all have

the same value for the primary key attribute, but they have different values in at

least one non-key attribute. In the same way, after all providers publish their most

recent updates at a particular time instance, each consumer peer reconciles its local

instance with the recently published updates. As all providers will publish conflicting

updates at each time instance, a consumer peer will find that all imported updates

conflict with each other at each reconciliation point. Thus, a new conflict group that

contains all imported updates in this particular time instance is added to the deferred

set of the reconciling peer. Provider peers are assigned degrees of quality or behavior

in the following manner: it is in the range [0.9, 1.0] for the first group, [0.1, 0.2] for



112

the second group, [0.9, 1.0] for the third group in the first half of the experiment run

and [0.1, 0.2] in the second half, [0.1, 0.2] for the fourth group in the first half of the

experiment run and [0.9, 1.0] in the second half, and [0.1, 1.0] for the last group.

We further divided the experiments to model the different percentages of hon-

est and dishonest users. In the interest of space, we present two cases in the following.

In the first one, 90% of the users are high quality users (i.e., are honest), with values

in the range [0.8, 1.0], and 10% of them are low quality users in the range [0.1, 0.2].

In the other set, the percentage of high quality users is set to 60%. A high quality

rater generates a rating that differs at most 10% from the actual value. In contrast, a

low quality rater generates a value that differs at least by 75% from the actual rating

value. At the beginning of the experiment rounds, we assume that all local users of

the reconciling peers and all peers have their credibility values set to 1.0 (i.e., the

maximum credibility value).

The plots (A-E) in Fig. 5.3 and Fig. 5.4 show the effect of the size of low

quality raters in calculating the reputation values of each provider group. Each plot,

from A to E, shows the comparison between the average of actual provider group

quality (GroupX-R) and the average of assessed provider group reputation (GroupX-

A). Similarly, plot F shows the comparison between the average credibility values

of high and low quality user groups in all consumer peers. The last plot (G) shows

the average number of updates accepted by all consumer peers from each group of

providers.

It can be seen from Fig. 5.3 that when the percentage of low quality users

is only 10% of the total number of local users, the computed assessed reputation

values are almost equal to the original provider behavior. This is expected because

Low quality users’ behavior is captured and their credibilities are thus reduced (Fig.

5.3.F), which means that their provided ratings are also decreased. Fig. 5.3.G shows
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Figure 5.4: Reputation and Credibility Assessment: High Credibility users - 60%

the average number of updates accepted by reconciling peers from each group. The

chance of accepting updates from groups G1 and G3 are the same at the first half of

the simulation time, while it is the same for groups G1 and G4 at the second half.

We can see that there are no updates accepted from either group G2 or group G5, as

the reputation values for members of these groups are low most of the time.

Fig. 5.4 shows the result of the second set, where 40% of users are low quality.

We see from Fig. 5.4.F that credibilities of both low and high quality users are

decreased, and thus the difference between actual and assessed reputation is high.

But within the same time, credibilities of low quality users are still decreased more,

which reduces the difference between actual and assessed reputation. The simulation
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results show that our approach can effectively assess the reputation of providers even

when the percentage of low quality users reaches 40% of the total number of users.

5.4.3 Execution Time Comparison

We also evaluate the execution time of our approach in comparison to the Orchestra

system (Taylor and Ives, 2006) (a primary CDSS). In orchestra, reconciliation is not

trust-based, and transactions are applied (i.e. reconciled) if they satisfy a given set of

requirements. Others are either deferred or rejected. Fig. 5.5(a) shows the execution

times for an average peer with one transaction. Here we assume that a distributed

storage scheme is followed, where “requests to follow antecedent transaction chains

dominate the running time” (Taylor and Ives, 2006). We can see that ACR’s running

time is slightly higher than Orchestra, due to the number of trust-messages exchanged

in addition to the normal updates. In either case, frequent reconciliations put a heav-

ier load on overall system resources, potentially reducing performance. Similarly,

Fig. 5.5(b) shows the execution times with increasing number of participant peers.

We can see that with a higher number of peers, more transactions need to considered

and compared. This automatically increases the number of trust-messages across the

network, and thereby the total reconciliation time. However, we posit that the au-

tomated reconciliation that ACR provides, with better accuracy, justifies the slightly

higher running times.

5.5 Related Work

In this section, we provide a brief overview of related literature on conflict resolution

and trust management in peer-oriented environments. Approaches for the problem

of inconsistent data have been described in detail in the context of traditional data
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Figure 5.5: Execution Times with: (a) Variable Reconciliation Interval (with transac-
tion size at one). RI is the number of transactions published between reconciliations.
(b) Variable Number of Peers

integration systems. For instance, (Naumann et al., 2006), (Bleiholder and Naumann,

2006), (Bilke et al., 2005), (Motro and Anokhin, 2006), (Bleiholder et al., 2007), and

(Motro and Anokhin, 2004) described different approaches to conflict resolution while

integrating heterogeneous database sources (See (Bleiholder and Naumann, 2009)

for a comprehensive survey about conflict classifications, strategies, and systems in

heterogeneous sources).

Approaches for handling conflicts in community shared databases, based on

the concept of multi-versioned database, are described in (Gatterbauer et al., 2009),

(Pichler et al., 2010), and (Gatterbauer and Suciu, 2010). In (Gatterbauer et al.,

2009), a BeliefDB system enables users to annotate existing data or even existing

annotations, by adding their own beliefs that may agree or disagree with exiting data

or annotations. A belief database contains both base data in the form of tuples and

belief statements that annotate these tuples. It also represents a set of belief worlds,

where each world belongs to a different user. Moreover, a belief-aware query language

is introduced to represent queries over a belief database. This query language can be

used to retrieve facts that are believed or not believed by a particular user. It also

can be used to query for the agreements or disagreements on particular facts between
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users. An algorithm is also proposed in (Gatterbauer et al., 2009) to translate belief

database queries into equivalent relational database queries.

Ref. (Gatterbauer and Suciu, 2010) describes an automatic conflict resolution

based on trust mappings between users. A user usually has trust relationships with

other users in the community. A user also assigns different trust priorities for different

trusted users. To resolve a conflicting data, a user accepts a data value that comes

from the most trusted user. Thus, each user is shown his own consistent version of

the shared database based on his trust mappings and priorities with other users.

Ref. (Pichler et al., 2010) handles inconsistent data by allowing users to rate

data. Updates done by users are stored in a shared, uncertain database, where all

versions of conflicting updates are inserted into the database in parallel. In other

words, all update operations, whether insertion, replacement, or deletion, are treated

as insertion operations. Users in (Pichler et al., 2010) can update, query, and even

rate the quality of updates, based on their own beliefs. The rating is usually weighted

according to the reputation of the user who does the rating. Conflicting updates are

usually various versions of the same tuple, sharing the same key, but having different

values for non-key attributes. For each version of a tuple, the ratings of different users

are collected, and the average rating for this version is computed. The reputation of

a user who initiates the rated update can be then computed by comparing aggregate

ratings of his updates to aggregate ratings of others. The computation of a user’s

reputation is incrementally, such that a new reputation value is computed for the

user each time a new rating arrives. For answering a query from a user, the average

rating of each consistent version (or world) of the database is computed, and the best

rated world is found. After that, a user query is answered according to this consistent

version of the database.
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The work done in (Pichler et al., 2010) is similar to that of (Gatterbauer et al.,

2009) (Gatterbauer and Suciu, 2010), in that all apply a multi-versioned database

model to resolve conflicts. However, each user in (Gatterbauer et al., 2009) (Gat-

terbauer and Suciu, 2010), based on his own beliefs or trust mappings, sees his own

consistent version of the shared database. In contrast, all users in (Pichler et al.,

2010) see the most consistent version of the database which has the best rating. Our

approach is similar to (Pichler et al., 2010) in that it also deploys community feedback

to resolve conflicts. However, we only deploy the community feedback for the purpose

of resolving conflicts between the updates of conflict groups in the deferred set of a

local peer. Moreover, our approach is based on the CDSS, where each participant peer

maintains a relational and consistent database instance, where conflicts between data

are not allowed due to the restrictions of the relational DBMS. On the other hand,

(Pichler et al., 2010) deploys the concept of uncertain and multi-versioned database,

such that all conflicting updates are kept permanently in the same database, and

users’ queries are answered based on the combination of updates that have the best

rating.

5.6 Conclusion and Future Work

We presented an approach to resolve conflicts that may arise due to the propagation

of updates among related peers in a CDSS. The focus is to resolve conflicts in the

deferred set (of a CDSS’s reconciling peer) by collecting feedbacks about the quality

of the conflicting updates from the local community (i.e., local users) and remote

peers. When a new conflict group is added to the deferred set of a reconciling peer,

it first inquires the participant remote peers about their experience while dealing

with the provider peers that have updates in this particular conflict group. Then, for
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each provider peer in the conflict group, the reconciling peer aggregates the rating

values received from remote raters to compute the remote assessed reputation value

(RRPP ) of the provider peer. Second, after a new conflict group is added to the

deferred set of a reconciling peer, local users also rate the provider peers that have

updates in this particular conflict group according to the quality of their updates. It

then computes the local assessed reputation (LRPP ) for each provider peer in the

conflict group. Last, the assessed reputation of each provider peer in the conflict group

is aggregated by weighting both RRPP and LRPP values. Thus, the reconciling peer

can resolve the conflict in a conflict group by accepting and applying the update that

comes from the provider peer with the highest reputation value to its local instance,

provided it does not violate its state. All other updates in the conflict group are

rejected. Experiment results suggest that the CDSS can be extended with very little

overhead (in terms of execution time) to automatically and efficiently resolve conflicts

that may arise during the reconciliation operation of a participant peer. We plan to

extend this work, to utilize community feedbacks not only to resolve conflicts for the

updates in the deferred set, but also to deploy community feedbacks for the purpose

of automatically defining trust policies for the local peer, thereby omitting the role

of the administrator in defining trust policies.
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APPENDIX A: Helper functions for extracting Ontop mappings

ALGORITHM E.0.1: GenerateSqlQuery.

1 Function GenerateSqlQuery(Ti, ruletype, KF)
2 if ruletype is null then
3 sqlSelect← “ ∗ ”;
4 sqlFrom← Ti.name;
5 sqlWhere← null;

6 else if ruletype is “DEPENDENT” then
7 sqlQuery ← GenerateSqlQueryForDependentRule(Ti, KF) ;
8 else if ruletype is “RECURSIV E” then
9 sqlQuery ← GenerateSqlQueryForRecursiveRule(Ti, KF) ;

10 else if ruletype is “NARY JOIN” then
11 sqlQuery ← GenerateSqlQueryForNaryJoinRule(Ti) ;
12 if sqlWhere is null then
13 sqlQuery ← “SELECT ” + sqlSelect+ “ FROM ” + sqlFrom;
14 else
15 sqlQuery ← “SELECT ” + sqlSelect+ “ FROM ” + sqlFrom+
16 “WHERE ” + sqlWhere;

17 return sqlQuery;
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ALGORITHM E.0.2: GenerateSqlQueryForDependentRule.

1 Function GenerateSqlQueryForDependentRule(Ti, KF)
2 Tj ← GetReferencedTable(KF);
3 sqlSelect← null;
4 sqlFrom← Ti.name + “ , ” + Tj .name;
5 sqlWhere← null;
6 foreach Kp ∈ PKi do
7 sqlSelect←

sqlSelect + Ti.name + “.” + Kp.name + “ AS ” + Ti.name +“ ” + Kp.name + “, ”

8 foreach ai ∈ KF do
9 sqlWhere← sqlWhere + Ti.name + “.” + ai.name + “ = ”;

10 aj ← GetReferencedColumn(ai);
11 sqlSelect←

sqlSelect + Tj .name + “.” + aj .name + “ AS ” + Tj .name + “ ” + aj .name;
12 sqlWhere← sqlWhere + Tj .name + “.” + aj .name;
13 if ai is not last attribute in KF then
14 sqlSelect← sqlSelect + “, ”;
15 sqlWhere← sqlWhere + “ AND ”;

16 sqlQuery ← “SELECT ” + sqlSelect+ “ FROM ” + sqlFrom+
17 “WHERE ” + sqlWhere;
18 return sqlQuery;
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ALGORITHM E.0.3: GenerateSqlQueryForRecursiveRule.

1 Function GenerateSqlQueryForRecursiveRule(Ti, KF)
2 sqlSelect← null;
3 sqlWhere← null;
4 sqlFrom← Ti.name + “ ” + Ti.name + “ child” + “ , ” + ;
5 Ti.name + “ ” + Ti.name + “ parent”;
6 foreach Kp ∈ PKi do
7 sqlSelect←

sqlSelect+ Ti.name+ “ child.” +Kp.name+ “AS ” + Ti.name+ “ child ” +Kp.name+ “, ”;

8 foreach ai ∈ KF do
9 sqlWhere← sqlWhere + Ti.name + “ child.” + ai.name + “ = ”;

10 aj ← GetReferencedColumn(ai);
11 sqlSelect←

sqlSelect+ Ti.name+ “ parent.” +Kp.name+ “AS ” + Ti.name+ “ parent ” +Kp.name;

12 sqlWhere← sqlWhere + Tj .name + “ parent.” + aj .name;
13 if ai is not last attribute in KF then
14 sqlSelect← sqlSelect + “, ”;
15 sqlWhere← sqlWhere + “ AND ”;

16 sqlQuery ← “SELECT ” + sqlSelect+ “ FROM ” + sqlFrom+
17 “WHERE ” + sqlWhere;
18 return sqlQuery;
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ALGORITHM E.0.4: GenerateSqlQueryForNaryJoinRule.

1 Function GenerateSqlQueryForNaryJoinRule(Ti)

2 NaryJoinFKs ← φ ;
3 foreach KF ∈ FKi do
4 if Attributes(KF ) ∈ PKi then
5 NaryJoinFKs ← NaryJoinFKs ∪ KF ;

6 sqlSelect← null;
7 sqlFrom← Ti.name;
8 sqlWhere← null;
9 foreach Kp ∈ PKi do

10 sqlSelect←
sqlSelect+ Ti.name+ “.” +Kp.name+ “AS ” + Ti.name+ “ ” +Kp.name+ “, ”;

11 foreach KF ∈ NaryJoinFKs do
12 Tj ← GetReferencedTable(KF);
13 sqlFrom← sqlFrom + “ , ” + Tj .name;
14 foreach ai ∈ KF do
15 sqlWhere← sqlWhere + Ti.name + “.” + ai.name + “ = ”;
16 aj ← GetReferencedColumn(ai);
17 sqlSelect←

sqlSelect + Tj .name + “.” + aj .name + “ AS ” + Tj .name +“ ” + aj .name;
18 sqlWhere← sqlWhere + Tj .name + “.” + aj .name;
19 if ai is not last attribute in KF OR KF is not last key in NaryJoinFKs

then
20 sqlSelect← sqlSelect + “, ”;
21 sqlWhere← sqlWhere + “ AND ”;

22 sqlQuery ← “SELECT ” + sqlSelect+ “ FROM ” + sqlFrom+
23 “WHERE ” + sqlWhere;
24 return sqlQuery;
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ALGORITHM E.0.5: GenerateSubject.

1 Function GenerateSubject(Ti, Tj, ruleType, subjectType)

2 subject← “ : ” + Ti + “/”;
3 foreach ai ∈ PKi do
4 subject← subject + ai.name + “ = ”;
5 if ruleType is null then
6 subject← subject + “{” + ai.name + “}”;
7 else if ruleType is “DEPENDENT” then
8 subject← subject + “{” + Ti + “ ” + ai.name + “}”;
9 else if ruleType is “RECURSIV E” and subjectType is “DOMAIN” then

10 subject← subject + “{” + Ti + “ child ” + ai.name + “}”;
11 else if ruleType is “RECURSIV E” and subjectType is “RANGE” then
12 subject← subject + “{” + Ti + “ parent ” + ai.name + “}”;
13 else if ruleType is “BINARY JOIN” then
14 // Get attribute aj in Tj that is referring to ai in Ti.
15 aj ← GetReferringColumn(ai, Ti, Tj);
16 subject← subject + “{” + aj .name + “}”;

17 if ai is not last attribute in PKi then
18 subject← subject + “; ”;

19 return subject;

ALGORITHM E.0.6: GenerateClassTriple.

1 Function GenerateSubject(Ti, sub)

2 triple← sub + “ a ” + “ : ” + Ti + “ ; ”;
3 return triple;

ALGORITHM E.0.7: GenerateDataPropertyObject.

1 Function GenerateDataPropertyObject(Ti, aj)

2 numeric ←
{INTEGER, INT, SMALLINT, TINY INT,MEDIUMINT,BIGINT,
DECIMAL,NUMERIC, FLOAT,DOUBLE};

3 if ai.type ∈ numeric then
4 object← “{” + aj .name + “}” + “ˆ̂ ” + SqlToXsdDataType(aj);
5 else
6 object← “{” + aj .name + “}”;
7 return object;
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ALGORITHM E.0.8: GenerateDataPropertyPredicate.

1 Function GenerateDataPropertyPredicate(Ti, aj)

2 predicate← “ : ” + Ti + “#” + aj ;
3 return predicate;

ALGORITHM E.0.9: GenerateDataPropertyTriple.

1 Function GenerateDataPropertyTriple(Ti, sub, predicate, obj)

2 triple← sub + “ ” + predicate + “ ” + obj;
3 return triple;

ALGORITHM E.0.10: CreateObjectPropertyName.

1 Function CreateObjectPropertyName(table, prefix, postfix)

2 name← table + “#” + prefix + postfix;
3 return name;

ALGORITHM E.0.11: GenerateObjectPropertyPredicate.

1 Function GenerateObjectPropertyPredicate(Ti, OPi)

2 predicate← “ : ” + Ti + “#” + OPi;
3 return predicate;

ALGORITHM E.0.12: GenerateObjectPropertyTriple.

1 Function GenerateObjectPropertyTriple(Ti, sub, predicate, obj)

2 triple← sub + “ ” + predicate + “ ” + obj + “ .”;
3 return triple;

ALGORITHM E.0.13: GenerateObjectPropertyTripleForNaryJoin.

1 Function GenerateObjectPropertyTripleForNaryJoin(KF , subi, predicatei, triple)
2 Tj ← GetReferencedTable(KF);
3 objectj ← GenerateSubject(Tj, null, null, null);
4 if triple is null then
5 triple← subi + “ ” + predicatei + “ ” + objectj ;
6 else
7 triple← triple + “ , ” + objectj ;
8 return triple;
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ALGORITHM E.0.14: SqlToXsdDataType.

1 Function SqlToXsdDataType(ai)

2 if ai.type ∈ {CHAR, V ARCHAR,BINARY,BLOB, TEXT} then
3 xsdType← “rdfs : literal”;
4 else if ai.type ∈

{INTEGER, INT, SMALLINT, TINY INT,MEDIUMINT,BIGINT} then
5 xsdType← “xsd : integer”;
6 else if ai.type ∈ {DECIMAL,NUMERIC} then
7 xsdType← “xsd : decimal”;
8 else if ai.type ∈ {FLOAT,DOUBLE} then
9 xsdType← “xsd : double”;

10 else if ai.type ∈ {DATETIME, TIMESTAMP} then
11 xsdType← “xsd : datetime”;
12 return xsdType;
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Journal Publications

1. F. Khazalah, Z. Malik, and A. Rezgui, “Automated Conflict Resolution in CDSS

using Community Feedbacks”, Information Sciences, vol. 298, pp. 407–424,

March 20, 2015.

Conference Publications

1. F. Khazalah, Z. Malik, and A. Rezgui, “Automatic Mapping Rules and OWL

Ontology Extraction for the Ontop”, 10th IEEE International Conference on

Collaborative Computing: Networking, Applications and Worksharing (Collab-

orateCom), Oct. 22-25, 2014, Miami, FL, USA.

2. F. Khazalah, B. Medjahed, and Z. Malik, “Automatic Conflict Resolution in a

CDSS”, 24th International Conf. on Scientific and Statistical Database Man-

agement (SSDBM 2012), 25-27 June 2012, Greece.
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This thesis focuses on (1) accessing relational databases through Semantic

Web technologies and (2) resolving conflicts that usually arises when integrating data

from heterogeneous source schemas and/or instances.

In the first part of the thesis, we present an approach to access relational

databases using Semantic Web technologies. Our approach is built on top of Ontop

framework for Ontology Based Data Access. It extracts both Ontop mappings and

an equivalent OWL ontology from an existing database schema. The end users can

then access the underlying data source through SPARQL queries. The proposed

approach takes into consideration the different relationships between the entities of

the database schema when it extracts the mapping and the equivalent ontology. In-

stead of extracting a flat ontology that is an exact copy of the database schema, it

extracts a rich ontology. The extracted ontology can also be used as an intermediary

between a domain ontology and the underlying database schema. Our approach cov-

ers independent or master entities that do not have foreign references, dependent or

detailed entities that have some foreign keys that reference other entities, recursive

entities that contain some self references, binary join entities that relate two entities
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together, and n-ary join entities that map two or more entities in an n-ary relation.

The implementation results indicate that the extracted Ontop mappings and ontology

are accurate. i.e., end users can query all data (using SPARQL) from the underlying

database source in the same way as if they have written SQL queries.

In the second part, we present an overview of the conflict resolution approaches

in both conventional data integration systems and collaborative data sharing com-

munities. We focus on the latter as it supports the needs of scientific communities

for data sharing and collaboration. We first introduce the purpose of the study, and

present a brief overview of data integration. Next, we talk about the problem of

inconsistent data in conventional integration systems, and we summarize the conflict

handling strategies used to handle such inconsistent data. Then we focus on the prob-

lem of conflict resolution in collaborative data sharing communities. A collaborative

data sharing community is a group of users who agree to share a common database

instance, such that all users have access to the shared instance and they can add

to, update, and extend this shared instance. We discuss related works that adopt

different conflict resolution strategies in the area of collaborative data sharing, and

we provide a comparison between them. We find that a Collaborative Data Sharing

System (CDSS) can best support the needs of certain communities such as scientific

communities. We then discuss some open research opportunities to improve the effi-

ciency and performance of the CDSS. Finally, we summarize our work so far towards

achieving these open research directions.
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