39,340 research outputs found

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Two ways to Grid: the contribution of Open Grid Services Architecture (OGSA) mechanisms to service-centric and resource-centric lifecycles

    Get PDF
    Service Oriented Architectures (SOAs) support service lifecycle tasks, including Development, Deployment, Discovery and Use. We observe that there are two disparate ways to use Grid SOAs such as the Open Grid Services Architecture (OGSA) as exemplified in the Globus Toolkit (GT3/4). One is a traditional enterprise SOA use where end-user services are developed, deployed and resourced behind firewalls, for use by external consumers: a service-centric (or ‘first-order’) approach. The other supports end-user development, deployment, and resourcing of applications across organizations via the use of execution and resource management services: A Resource-centric (or ‘second-order’) approach. We analyze and compare the two approaches using a combination of empirical experiments and an architectural evaluation methodology (scenario, mechanism, and quality attributes) to reveal common and distinct strengths and weaknesses. The impact of potential improvements (which are likely to be manifested by GT4) is estimated, and opportunities for alternative architectures and technologies explored. We conclude by investigating if the two approaches can be converged or combined, and if they are compatible on shared resources

    Semantic Gateway as a Service architecture for IoT Interoperability

    Get PDF
    The Internet of Things (IoT) is set to occupy a substantial component of future Internet. The IoT connects sensors and devices that record physical observations to applications and services of the Internet. As a successor to technologies such as RFID and Wireless Sensor Networks (WSN), the IoT has stumbled into vertical silos of proprietary systems, providing little or no interoperability with similar systems. As the IoT represents future state of the Internet, an intelligent and scalable architecture is required to provide connectivity between these silos, enabling discovery of physical sensors and interpretation of messages between things. This paper proposes a gateway and Semantic Web enabled IoT architecture to provide interoperability between systems using established communication and data standards. The Semantic Gateway as Service (SGS) allows translation between messaging protocols such as XMPP, CoAP and MQTT via a multi-protocol proxy architecture. Utilization of broadly accepted specifications such as W3C's Semantic Sensor Network (SSN) ontology for semantic annotations of sensor data provide semantic interoperability between messages and support semantic reasoning to obtain higher-level actionable knowledge from low-level sensor data.Comment: 16 page

    ADN: An Information-Centric Networking Architecture for the Internet of Things

    Full text link
    Forwarding data by name has been assumed to be a necessary aspect of an information-centric redesign of the current Internet architecture that makes content access, dissemination, and storage more efficient. The Named Data Networking (NDN) and Content-Centric Networking (CCNx) architectures are the leading examples of such an approach. However, forwarding data by name incurs storage and communication complexities that are orders of magnitude larger than solutions based on forwarding data using addresses. Furthermore, the specific algorithms used in NDN and CCNx have been shown to have a number of limitations. The Addressable Data Networking (ADN) architecture is introduced as an alternative to NDN and CCNx. ADN is particularly attractive for large-scale deployments of the Internet of Things (IoT), because it requires far less storage and processing in relaying nodes than NDN. ADN allows things and data to be denoted by names, just like NDN and CCNx do. However, instead of replacing the waist of the Internet with named-data forwarding, ADN uses an address-based forwarding plane and introduces an information plane that seamlessly maps names to addresses without the involvement of end-user applications. Simulation results illustrate the order of magnitude savings in complexity that can be attained with ADN compared to NDN.Comment: 10 page
    • …
    corecore