
How Service-Centric Systems Change the
Requirements Process

S.V. Jones, N.A.M. Maiden, K. Zachos & X. Zhu

Abstract. Service-centric systems engineering, and in particular systems
development with web services, presents new challenges for requirements
processes, techniques and tools. This paper reports a new requirements process
that has been developed within the SeCSE consortium to address these
challenges. It describes the distinguishing characteristics of the process, and
demonstrates them with an example from web services development in the
automotive domain, The paper ends with a review of related requirements work
and describes future work in SeCSE.

1. Service-Centric Systems and Requirements

Service-centric systems are an important and emerging paradigm in computing.
Service-centric systems are systems that integrate services from different providers
regardless of the underlying operating systems or programming languages of those
applications. A software service is a set of operations offered by some software
application. Users can access such services through a well-defined interface
independently of where the service is actually being executed. Most research into
service-centric systems is on the integration of web services that are accessible to
developers and users through the Internet, although software services can also be
provided through reusable software components or shrink-wrapped off-the-shelf
packages.

Although not immediately obvious, the development of service-centric systems has
several important consequences for determining the requirements of these systems.
Firstly, developers will want to discover candidate software services early in the
development process to explore what capabilities, functions and features of a new
service-centric application are possible. Therefore, requirements will form elements
of queries with which to discover candidate services for an application. Secondly, and
perhaps more importantly, registries of service descriptions and executable services
available over the Internet will, for the first time, provide end-users with direct access
to elements the solution space without the need to go through software developers.
This, we conjecture, will change the nature of requirements processes and service-
centric applications, and introduce relevance feedback – query reformulation using

Centre for HCI Design, City University
Northampton Square, London EC1V OHB, UK

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/18294871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S.V. Jones, N.A.M. Maiden, K. Zachos & X. Zhu

the results of queries – to change requirements in light of available services and their
descriptions.

In this paper we exploit how service-centric systems engineering offers new
opportunities for improving requirements specifications. One opportunity is that
service descriptions that are retrieved in response to service queries can then refine
and decompose the original requirements that gave rise to the query. For example,
imprecise and incomplete requirements for a restaurant location application can be
refined quickly using detailed descriptions of the behaviour and non-functional
qualities of restaurant location services discovered in service registries. The more
precise and complete requirements can then form more precise queries that discover
more compliant services, and so on. However, to make the most of the new
opportunities we need new requirements processes, techniques and tools for
expressing requirements to enable query formulation and exploiting retrieved service
specifications in different requirements tasks such as requirements exploration,
decomposition and refinement.

We are exploring these opportunities and challenges in the EU-funded FP6 SeCSE
(Service-Centric Systems Engineering) integrated project. This paper reports a new
requirements process that uses descriptions of services, made available by service
providers and discovered by systems integrators to improve the specification of
requirements of service consumers. It is in 5 sections. Section 2 describes research
drivers in service-centric computing. Section 3 outlines how services are discovered
for different purposes in the requirements process. Sections 4 describes the SeCSE
requirements process and software tool support, and demonstrates it using a simple
example of requirements and services taken from one of SeCSE’s application
domains – automotive engineering. The paper ends with initial feedback on the
process from SeCSE industrial partners and plans for future development and
evaluation of the process.

2. It’s a Service-Centric World

Recent developments in web services and standards have been rapid. Standards
such as SOAP and WSDL are now well established. Major vendors such as IBM,
Microsoft, Sun and HP provide support for services in their development platforms,
and many companies are offering web service interfaces to their systems. Web service
discovery standards have been established and organisations such as UDDI have
established directories of web service providers. Leavitt (2004) reports that worldwide
spending on web services-based software projects will reach $11 billion by 2008,
compared to $1.1 billion in 2003. He also reports a Gartner survey of 110 companies
that reports that 54% are already working on web service projects or plan to start
soon. Given these trends, development of service-centric systems with web services is
a new research challenge for software engineering.

Another important trend is the growth in end-user computing. Sutcliffe &
Mehanijev (2004) report that, by 2005 in the US alone, there will be 55 million end-
user developers compared with 2.75 million professional software developers. As
software becomes more ubiquitous, end-users become more knowledgeable about

How Service-Centric Systems Change the Requirements Process 3

what software can offer them, and more articulate about requirements and features for
new applications. This empowerment of end users has important implications for the
development of service-centric systems. We anticipate that, as service registries grow
and access to them becomes easier, end user service consumers as well as systems
developers will access them to explore what software can do for them prior to
expressing their requirements for a new system. This also has important implications
for requirements processes and how requirements will be expressed.

Existing requirements processes are not well suited to service-centric systems
engineering. Firstly, service-centric systems blur old-fashioned distinctions between
development, deployment and implementation. The availability of executable services
means that applications can be deployed quickly, and requirements will be referenced
during implementation when services are monitored for requirements compliance.
Secondly, using discovered service descriptions to improve specifications means that
requirements process will be both highly iterative and incremental, leading to shorter
development phases. Thirdly, end-user browsing of service registries is likely to
change the nature of requirements expression from statements of abstract properties
that a future system shall exhibit to more comparative statements equivalent to “I
want one like that”.

In contrast, commercial requirements methods such as RUP (Jacobson et al. 2000)
and research-based processes such as i* (Yu & Mylopoulos 1994) and KAOS (van
Lamsweerde 2004) assume a more top-down approach to requirements specification
that do not facilitate the frequent exploration of solution spaces. Similarly,
requirements management tools provide little support for evolving service-centric
architectures alongside requirements specifications, and offer none of the
functionality needed to discover, explain and select between services, then revise
requirements in terms of the selected services.

Current developments in service discovery in service-centric computing do not
consider requirements and requirements processes explicitly. Systems developers
locate new services by browsing existing UDDI registries using the UDDI Inquiry
Application Programming Interface (API). This API supports 3 different types of
inquiry: browsing, drilling-down and invocation (Alonso et al. 2004, Guruge 2004).
When browsing, a developer searches using a broad categorization of interest, and
then refines the inquiry using more specific criteria as each set of results is displayed.
Categorizations would typically relate to the UDDI data structures of businessEntity
(containing business information about service providers), businessService
(containing descriptive information, meaningful to human readers, about sets of
services being offered by previously identified businessEntities), bindingTemplate
(containing binding information necessary to invoke and use a particular, previously
described, service) and tModel or ‘technical model’ (containing more technical
descriptions about, and pointers to technical specifications of, a particular service).
Drilling-down involves accessing a known, specific service using a UDDI key, which
may have been obtained from a previous session of browsing. Finally, invocation
involves locating and then running a particular service.

The UDDI data structure most relevant during service discovery is the
businessService entity. Ideally, the developer queries each service’s behaviour and
capabilities using requirements that express the desired capabilities and behaviour.
However UDDI data structures provide no guidelines for formulating these queries,

4 S.V. Jones, N.A.M. Maiden, K. Zachos & X. Zhu

for defining their level of abstraction, or for using structures that improve the
probabilities of successful discovery.

Web service brokers offer some refinements on these interfaces, for example
searching across multiple registries, and displaying only web services that are
working. SalCentral (http://www.salcentral.com/Search.aspx) allows users to search
on elements such as country, data type, description, input parameters and methods (as
well as 16 others). WSIndex (http://www.wsindex.org/) and WebserviceX.NET
(http://www.webservicex.net/WS/default.aspx) provide basic categorizations such as
companies, communications, graphics and multimedia and governance, and WSIndex
also allows users to enter free text search strings for which the search engine will look
for exact or similar matches. However, again, there is no explicit interface to
requirements processes, structures and techniques during these brokering processes.

3. Requirements-Based Service Discovery in SeCSE

The mission statement of SeCSE is to create new methods, tools and techniques for
system integrators and service providers that support the cost-effective development
and use of dependable services and service-centric applications (SeCSE 2005). The
four-year research program is in 4 main activity areas:

1. Service engineering, which addresses the needs of service developers who
require methods to define and develop dependable services. The focus is
on service specification of functional and non-functional aspects of the
service for service consumers and integrators, and service validation when
the providers do not know who your future users will be;

2. Service discovery, which addresses the discovery of the specified services
by service integrators from registries using the needs of service
consumers. Services are discovered both before deployment to improve
requirements specification and architecture modeling, and after
deployment to replace services that do not comply with these
requirements based on monitoring data;

3. Service-centric systems engineering, which supports systems integrators
to compose services to obtain behaviours and results not available from a
service in isolation. Services are composed through service-oriented
architectures using architecture styles for such systems;

4. Service delivery, which offers support to manage deployed services by
monitoring these services for compliance with agreed service contracts,
based on the specified requirements, and dynamically switching services
during execution if one fails.

Research results will be applied in the European automotive sector with Fiat and
Daimler-Chrysler, the telecommunication sector with Telecom Italia and Telefonica,
and software development sector with ATOS and Computer Associates.

This paper’s authors are leading the service discovery research that will deliver the
innovative processes and software tools to discover and express requirements that can
be used to discover relevant service specifications, and to use these specifications to

How Service-Centric Systems Change the Requirements Process 5

inform better discovery and expression of requirements. That is what we describe in
the rest of this paper.

In SeCSE we are currently developing service discovery tools that will support
more sophisticated types of query. Systems integrators will be able to search external
registries directly as above, but will also be able to use locally generated service
classifications and patterns to help locate relevant services. Different types of queries,
such as analogical matching and constraint removal, will enable different search
strategies during requirements processes. SeCSE is extending service specifications
beyond the UDDI registries to include semantic information about a service’s
capabilities, qualities such as performance, reliability and usability, and behaviour to
handle particular classes of abnormal external event. This will enable SeCSE tools to
retrieve descriptions of services compliant with non-functional requirements and fine-
grain behaviours that handle unexpected inputs. SeCSE partners such as Microsoft
and Computer Associates are working to establish these semantic service registries as
standard. All of this is underpinned by one important assumption – that providers will
describe services using informal or semi-formal because most will not be able to
deliver more formal documentation for a service.

In the next section we describe SeCSE’s requirements process, developed in
collaboration with our industrial partners, to discover and use services with these
tools. The process assumes the existence of a requirements-based service discovery
engine that we outline in this paper, but is described in detail elsewhere.

4. The SeCSE Requirements Process

SeCSE’s requirements process has been designed to encourage 4 characteristics of
a service-centric requirements process: (i) an incremental and iterative process; (ii)
the divergence from and convergence to established requirements; (iii) a requirements
process that can be tailored to local contexts, and (iv); integration with established
requirements processes, techniques and representations. Each is described in turn.

4.1. An Incremental and Iterative Process

The SeCSE requirements process is iterative and incremental. Systems integrators
form queries from a requirements specification to discover services that are related to
the requirements in some form. Descriptions of these discovered services are retrieved
and explained to the stakeholders, then used to revise and refine the requirements
specification to enable more accurate service discovery, and so on. In this aspect of
the process we build on Fischer et al.’s (1991) observations about how queries are
incrementally improved by critiquing results from the previous query. Relevance
feedback, as this is known, has important advantages in the requirements process.
Stakeholders such as service consumers will rarely express requirements at the correct
levels of abstraction and granularity to match to the descriptions of available services.
Relevance feedback enables service consumers and integrators to re-express their
requirements to increase the likelihood of discovering services that are compliant with
their requirements. Furthermore, accurate relevance feedback provides information
about whether requirements can be satisfied by available services, to guide the

6 S.V. Jones, N.A.M. Maiden, K. Zachos & X. Zhu

integrators to consider alternative build, buy or lease alternatives or explore trade-offs
to see whether most requirements can be met at acceptable cost by the available
services. In this sense SeCSE’s requirements process is similar to commercial off-the-
shelf (COTS)-based software development processes such as COMPOSE (Kotonya et
al. 2003) and SCARLET (Maiden et al. 2002) that use relevance feedback from
selected packages to improve the requirements specification.

SeCSE’s iterative and incremental process is depicted in Figure 1. Service queries
are extracted from the requirements specification. In most socio-technical systems not
all of the required system behaviour will be implemented using a service – human
actors and other software solutions such as legacy, bespoke, component and COTS
solutions will also be selected during the work allocation task to implement
behaviour. Queries are fired at service registries to retrieve service descriptions that
are explained to service integrators and consumers to enable them to select the most
appropriate service(s). These services are then used to change the requirements using
different strategies. For example, if no services are found in an initial query, the
process and tools provide advice on how to broaden the query to find services that,
though not exactly matching the needs of the future system, might provide a useful
basis for further specification.

Queries

Service
registry

Changed
requirements

Service integrators + consumers

Discovered
services

Query(s)

Requirements

Service integrators
+ consumers

Figure 1. SeCSE’s iterative and incremental requirements process.

4.2. Requirements Divergence and Convergence

Requirements engineering is often divided into early and late requirements
processes. During early requirements processes a requirements team seeks to establish
system boundaries, acquire and discover requirements, and explore dependencies both
with adjacent systems and between actors in the system being specified. Its purpose is
to surface all of the requirements to be specified, and to understand how the future
system will interact with its environment. In contrast, during late requirements
processes, the team specifies these requirements, models the system, and analyses

How Service-Centric Systems Change the Requirements Process 7

these models for important system properties such as robustness and completeness of
the specified functionality.

In SeCSE we use services that are discovered using service query tools to support
early and late requirements processes in different ways. During early requirements,
we use services to encourage divergence activities to challenge system boundaries and
assumptions, and discover new requirements. Until recently requirements engineering
has not been recognized as a creative process (e.g. Nuseibeh & Easterbrook 2000).
However, the emergence of new systems means that stakeholders increasingly create
and invent ideas that they express as requirements. SeCSE uses service descriptions to
support tasks that encourage different forms of creative thinking:

• Analogical matching: discovering services that are analogical to services that
will be implemented in the deployed system, to encourage exploratory
creative thinking about requirements;

• Pattern matching: using problem-solution patterns to discover services that
can perform a function specified in the requirements according to quality of
service requirements;

• Random retrieval: discovering random services to provoke creative thinking
and new ideas about the design of a service-oriented system;

• Constraint removal: relaxing constraints on, for example, domain or quality
of service characteristics in order to retrieve a broader range of services that
can be used to creative and invent new requirements, often by challenging
assumptions and changing system boundaries.

All these types of processes, and the queries needed to deliver them, are supported
within the SeCSE environment.

During late requirements processes we use services to support convergent activities
such as decomposing and refining specifications of requirements, and restructuring
the requirements to enable more effective service monitoring. Service descriptions
provide the requirements team with important quality-of-service information, for
example about likely system performance and reliability, used to specify measurable
fit criteria (Robertson & Robertson 1999) for a requirement.

4.3. Flexible Requirements Processes

Requirements processes are rarely the same, and service-centric requirements
processes are no exception. In SeCSE we have worked closely with our application
partners from the outset to develop requirements processes and tools that can be
tailored to different requirements situations. SeCSE offers 5 different configurations
of processes, techniques and tools to support:

• Creating simple, single function systems using services;
• Creating systems with several different functions;
• Creating more complex systems;
• Developing new and innovative systems;
• Upgrading existing systems using services.

To specify simple function systems, SeCSE uses established requirements
acquisition and business goal or workflow modeling techniques to create simple
queries with which to retrieve candidate services that are then prototyped, selected
and used to refine the requirements. For systems with different major functions,

8 S.V. Jones, N.A.M. Maiden, K. Zachos & X. Zhu

SeCSE also uses use case specifications and scenario walkthroughs to structure
requirements and elaborate queries for discovering a set of related services. For more
complex socio-technical systems, there is greater use of requirements acquisition and
business modeling techniques to associate the service-centric system to its
environment, and the use of impact analyses to explore the consequences of the
service-centric system on its business and domain environment. For more innovative
service-centric projects that develop new systems and products, we also run creativity
workshops (Maiden et al. 2004) that use service descriptions to provoke creative
thinking about the requirements and concepts for the service-centric system. Finally,
for service-driven system upgrades, current system modeling and impact analyses
drive requirements specification and service discovery activities.

Figure 2 shows the allocation of different SeCSE requirements sub-processes for
these 5 different contexts. It provides a guide for service integrators to use the best-fit
processes, techniques and tools during a service-centric development project.

Create
single

function
system

Create
multi-

function
system

Create a
more

complex
system

Develop
innovative
systems

Upgrade
existing
systems

Modeling the current system √
Business goal modeling √ √ √
Requirements acquisition √ √ √
Create business workflow or use
case diagram

√ √ √ √

Develop use case precis √ √ √
Run a creativity workshop √
Develop use case specifications √ √ √
Walk through scenarios √ √ √
Prototype and test services √ √ √ √
Assess system impact √
Select best-fit services √ √ √ √ √
Review effect of service update √ √ √ √ √

Figure 2. Different possible configurations of SeCSE requirements processes to
implement in different project contexts.

4.4. Using Existing Requirements Artifacts

To ensure the industrial uptake of SeCSE solutions, the process uses established
requirements specification techniques as a basis for developing service discovery
queries. For example, to specify the required system behaviour the process uses
UML-compliant use case specifications and diagrams (Jacobson et al. 2000). To
specify the required properties in a testable form suitable for generating service
monitoring policies, it uses a modified version of the VOLERE requirements shell
(Robertson & Robertson 1999). And to acquire and discover requirements from
stakeholders, it combines well-established techniques such as interviews and card
sorting (Maiden & Rugg 1996) with scenario walkthroughs (Maiden 2004). As such,
the SeCSE process is designed to extend the Rational Unified Process without
enforcing its use and mandating unnecessary processes that are unsuitable in different
project contexts.

How Service-Centric Systems Change the Requirements Process 9

The next section demonstrates key elements of the SeCSE requirements process
using a real-world case study from the project. The case study, taken from FIAT, one
of our application partners, explores how services for use in automotive systems can
inform the requirements and specification of these service-centric systems.

5. An Example of SeCSE Requirements and Services

FIAT, the automotive manufacturer, is looking to use web services in the
automotive domain for different purposes. One is to improve customer satisfaction by
providing the car with an advanced and customizable telematics device capable of
providing the driver with high numbers of services. The second is to improve the
customer relationship management process, and consequently customer satisfaction,
by activating some services like the remote diagnosis and repair. We are developing
the SeCSE requirements process to support the specification of such systems. Service-
centric applications include repair diagnostics, navigation and localization,
communication and information, and spare parts store management. These services
are provided to the driver via a haptic device in the car that the driver can use without
decreasing safety whilst driving.

In the example we will demonstrate two simple iterations of the SeCSE process
depicted in Figure 1. Early on in the process we use a simple use case précis to
discover one candidate service that is compliant with these requirements. Later on we
use the discovered service description to revise the précis to produce a use case
specification that in turn enables more precise service discovery.

At the start of the requirements process, service integrators work with future
service consumers to develop simple use case précis that describe the required
behaviour of the service-centric application. Figure 3 describes a typical use case
précis, defining what a stakeholder service consumer – the driver – might want from
an on-board car service. Figure 4 defines some simple stakeholder requirements for
that application that are associated with the précis. The first, a functional requirement,
specifies what the service shall do, and the second, the non-functional requirement,
specifies desirable qualities of the service. In SeCSE we use a modified version of the
VOLERE shell (Robertson and Robertson 1999).

A driver is driving his car. The car’s on-board diagnostic system detects an engine
problem. The engine is misfiring. The driver activates FIAT’s remote-maintenance
service. The service provides the location of the nearest garage to repair the car.
The driver follows directions to the garage.

Figure 3. A simple use case précis for an onboard remote maintenance
application, which is used to formulate queries with which to discover services.

FR1: The remote-maintenance service will provide the driver with directions to
the nearest garage.

RR1: The remote-maintenance service will provide the driver with reliable
directions to the nearest garage.

Figure 4. Requirements on the on-board remote maintenance application.

10 S.V. Jones, N.A.M. Maiden, K. Zachos & X. Zhu

Figure 5 shows the use case form and VOLERE shell for requirement FR1
implemented in the web-enabled SeCSE environment. Not all of the shell fields need
to be completed when a requirement is first identified. The description field may then
be used to generate a query to help identify candidate services. The results returned
from such a query may lead to the requirement being modified and more fields in the
requirement shell be completed. The web-enabled tool depicted in Figure 5 shows
how specifications (and queries) are formed from structured text, thus allowing
service consumer representatives and other end-user developers (e.g. automotive
engineers) to use the SeCSE platform.

Figure 5. The use case précis form and a requirement partially specified in the
SeCSE environment.

Service integrators use the use case précis and functional requirements to generate
service queries using the précis text and requirement descriptions fields. If needed, the
integrators can also construct more complex queries by including shell attribute
values from the non-functional requirements, such as measures of the required quality
of service and terms that describe required qualities of the service. In the SeCSE
environment, queries are formed using simple functions that export selected elements
of the specification to a pre-formed query using a small number of mouse clicks.

SeCSE’s requirements-based service discovery algorithm has 2 basic components.
The first uses the WordNet 2.0 on-line lexical reference system (Morato et al. 2004)
to expand the service query. Query expansion is a process of adding new terms to a
given query in an attempt to provide better contextualization, in order to retrieve

How Service-Centric Systems Change the Requirements Process 11

documents that are more useful to the user (Baeza-Yates et al. 1999). It is particularly
well suited to requirements-based queries that, by definition, are incomplete and
inconsistent. In the second component, SeCSE applies word sense disambiguation to
an expanded query. An ambiguous query term is a word with multiple senses, where a
sense is a group of similar usages of a word dissimilar from other usages (Schütze et
al. 1995). It is often impossible to resolve which sense is intended when words are
taken out of their context. However, when the context is taken into account, the sense
can be determined by various cues, like nearby words and semantics. Several word
sense disambiguation algorithms have been developed. In SeCSE we are currently
implementing the structural semantic interconnection algorithm (Navigli et al. 2004).

Furthermore, the algorithm uses conceptual structures in WordNet to implement
different types of queries by expanding them in different ways to retrieve different
types of service description. The query strategies that we are implementing include:
• Semantic matching: using synonyms of actor names and terms taken from the

requirements in order to discover a wider range of services that might be
compliant with the requirements;

• Analogical matching: searching for analogous services in different domains, as
a means of exploring the requirements space;

• Constraint removal: relaxing constraints given in non-functional requirements,
in order to explore the requirements space, especially where these may have
been over-specified;

• Pattern matching: matching generalizations of requirements against pre-
defined patterns in the ESD repository, as a route to identifying relevant
services and thereby refining requirements.

Returning to our automotive case study, SeCSE’s service discovery engine uses the
semantic matching strategy to discover service descriptions of services that are
compliant with the specified requirement. Each service description is structured using
extensions to existing UDDI registries such as that shown in Figure 6. Other service
discovery strategies, if applied, will discover other service descriptions to support
other requirements tasks, for example analogical retrieval might retrieve services that
diagnose computer hardware faults in a network that can provoke discovery of new
requirements. Similarly, constraint removal might retrieve services that both diagnose
and auto-correct faults directly, providing alternative boundaries and requirements for
service integrators and consumers to consider.

Attribute Description
Service ID (key) Uuid:A761A500-674B-FC35-F678-5468987D5364
Service name Advanced Diagnostic Service
Service provider business ID D2348745-4dfgr-456d-45df-743735649j87
Service provider business name X_Service
Service provider business
description

X_Service FIAT solution provider

Service provider business
contact info

Roberto Palermo

Service provider industry Automotive servicers
Service provider location Italy
Service description This advanced diagnostic service sends automotive fault data to

diagnostic services of the part suppliers identified as responsible
of the problem.

12 S.V. Jones, N.A.M. Maiden, K. Zachos & X. Zhu

Detailed service description This advanced diagnostic service sends automotive fault data to
diagnostic services of the part suppliers identified as responsible
of the problem. Having received the response from the supplier
services, builds a sorted list of causes with the related
workarounds and advices to fix the problem.

Figure 6. An example retrieved service description for the automotive domain.

The SeCSE environment presents and explains each discovered service to service
integrators and consumers to enable their selection and acceptance or rejection as
relevant to the service-centric application. In our example, the service integrator
accepts the described service as potentially compliant with the requirements as
specified, and uses it to drive further requirements specification using use case
specifications and the more complete VOLERE requirements shell. An example of
such a specification is shown in Figure 7. Many of the use case attributes are shown.
The service integrator writes normal course specification using information from the
discovered service presented in Figure 6. Actions specify different diagnoses
activities and data exchange between the different diagnostic services, and
requirements specified for action number 7 (bolded in the use case) refine the earlier
specification. As such, the integrator is specifying the requirement for a system that
might implement the discovered service and use its features. SeCSE currently does
not support inclusion of abstract services in the use case specification, but we plan to
extend it to include references to discovered services to simplify and speed up the
specification process.

At this stage in the process, the integrator is beginning to associate particular
services with the functionality defined in particular use cases. Elements of use case
specifications are used to generate queries which will identify sets of services relevant
to particular use cases as described below. Again, SeCSE’s web-enabled environment
enables FIAT’s service integrators to specify such as use case, as shown in Figure 8.
The problem statement, added value and justification fields may be used to provide
additional context for, for example, disambiguation of terms when constructing the
query. The definitions of successful and unsuccessful end states may also be used to
refine the query.

Attribute Description
Use Case ID UC1
Use Case Name Deliver remote maintenance service
Author Sara Jones
Date 15th March 2005
Source FIAT stakeholders, Torino
Actors Driver, on-board diagnosis system, remote maintenance service, garage.
Problem statement Car drivers lack the on-board and up-to-date information with which to diagnose

and treat engine faults.
Precis A driver is driving his car. The car’s on-board diagnostic system detects an engine

problem. The engine is misfiring. The driver activates FIAT’s remote-maintenance
service. The service provides the location of the nearest garage to repair the car.
The driver follows directions to the garage.

Functional
Requirements

FR1: The remote-maintenance service will provide the driver with directions to
the nearest garage.

Non-functional
Requirements

RR1: The remote-maintenance service will provide the driver with reliable
directions to the nearest garage

Added Value Improved customer relationship management, leading to increased return business
and revenue.

Justification The availability of maintenance service information from reliable sources.

How Service-Centric Systems Change the Requirements Process 13

Triggering event The car engine misfires.
……….
Normal Course 1. The on-board diagnosis system detects the engine problem.

2. The on-board diagnosis system diagnoses the category of engine problem.
3. The on-board diagnosis system informs the driver of the problem.
4. The driver activates the remote maintenance service.
5. The advanced diagnostic service identifies the relevant parts suppliers who

are responsible for the problem.
6. The advanced diagnostic service sends automotive fault data to the

diagnostic services of the parts suppliers.
7. Each diagnostic service of a parts supplier provides diagnoses of using

the fault data.
FR2: The diagnostic service shall rate each diagnosis with a likelihood

score.
FR3: The diagnostic service shall rate each diagnosis with a severity

score.
PR1. The diagnostic service shall provide the diagnosis within 1 minute

of the request being made.
8. ……..

………..

Figure 8. Part of the use case specification for remote maintenance.

Figure 9. The use case specification modeled in the SeCSE environment.

As in the previous iteration, the service integrator can create a query to discover
candidate services for one function of the system using the action description and the
requirements associated with that action – that is the bolded text in Figure 8.
Retrieved service descriptions can again be used to refine that part of the use case
specification, and in particular refine and trade-off the satisfaction of non-functional
requirements that cannot be complied with fully from the available services.

14 S.V. Jones, N.A.M. Maiden, K. Zachos & X. Zhu

To conclude this simple example demonstrates the requirements and use case
structures that SeCSE’s requirements processes uses as part of a wider service-centric
systems engineering process, and outlines the software tools that we are developing to
support it. It also demonstrates how even simple discovered service descriptions can
provide relevance feedback to inform further requirements specification processes,
thus driving an iterative and incremental process.

6. Related and Future Work

This paper reports the results of exploratory research to investigate new problems
in requirements engineering – processes, techniques and tools to support service-
centric systems engineering. It draws on previous research in relevance feedback
during query formulation, query expansion and word sense disambiguation in
information retrieval, as well as on established requirements engineering techniques.
In the first 6 months of SeCSE we have established agreed processes and information
structures that provide the context and requirements for requirements-based service
discovery tools that are also outlined in the paper.

Although there is increasing research in web services, there is little related
requirements research. Robinson (2003) applies the KAOS requirements method to
monitor web services for requirements compliance. Monitors are assigned from
obstacle analysis, and derived from requirements specifications. Savigni and Tisato
(2004) also address the requirements monitoring challenges of deployed
environments. In contrast, there is little reported work on tightly-coupled
requirements specification and service discovery tools such as that presented.

The next stages in our work are to evaluate the utility and usability of SeCSE’s
specification environment with application partners, and to complete the
implementation of the first version of the service discovery algorithm and engine.
Although the SeCSE process has been developed with our industrial partners, we
currently lack formal feedback evaluation from systems developers. During formal
evaluation we will explore whether end-user developers such as automotive engineers
can use SeCSE to discover service descriptions that inform requirements processes.

Acknowledgements

The authors wish to thank all members of the SeCSE project consortium. The work
reported in funded by EU Integrated Project contract 511680.

References

Alonso G., Casati F., Kuno H. and Machiraju V., 2004, ‘Web Services: Concepts, Architectures
and Applications’, Springer, 2004.

How Service-Centric Systems Change the Requirements Process 15

Baeza-Yates, R. and Ribiero-Neto, B., 1999 “Modern Information Retrieval”, Addison-Wesley,
1999.

Fischer G., Henninger S. & Redmiles D., 1991, ‘Intertwining Query Construction and
Relevance Evaluation’, Proceedings CHI’91, eds S.P. Robertson, G.M. Olson & J.S. Olson,
ACM Press, 55-62.

Guruge A., 2004, ‘Web Services: Theory and Practice’, Elsevier Digital Press.
Jacobson I., Booch G. & Rumbaugh J., 2000, ‘The Unified Software Development Process’,

Addison-Wesley
Kotonya, G., Sommerville, I., and Hall, S., 2003 . Towards A Classification Model For CBSE

Research. Proceedings of the 29th Euromicro Conference, Antalya, Turkey.
Leavitt N., 2004, ‘Are Web Services Finally Ready to Deliver?’, IEEE Computer, 37(11), 14-

18.
Maiden N.A.M., ‘Systematic Scenario Walkthroughs with ART-SCENE’, in ‘Scenarios, Stories

and Use Cases’, Eds Alexander & Maiden, to be published by John Wiley;
Maiden N.A.M., Kim H. & Ncube C., 2002, ‘Rethinking Process Guidance for Software

Component Selection’, Proceedings 1st International Conference on COTS-Based Software
Systems, Lecture Notes on Computer Science LNCS 2255, Springer-Verlag, 151-164.

Maiden N., Robertson S. & Gizikis A., 2004, ‘Provoking Creativity: Imagine What Your
Requirements Could be Like’, IEEE Software, September/October 2004 21(5), 68-75

Maiden N.A.M. & Rugg G., 1996, 'ACRE: Selecting Methods For Requirements Acquisition,
Software Engineering Journal 11(3), 183-192.

Morato J., Marzal M. A., Llorens J., and Moreiro J., 2004. “WordNet Application”,
Proceedings of GWC 2004. The Second Global Wordnet Conference 2004, Brno, Czech
Republic, Junuary 20-23.

Navigli, R. and Velardi, P., 2004 “Structural Semantic Interconnection: a Knowledge-Based
Approach to Word Sense Disambiguation”, to appear in Proc. of SENSEVAL-3 Workshop
(SENSEVAL), in the 42th Annual Meeting of the Association for Computational Linguistics
(ACL 2004), Barcelona, Spain, July 25-26th, 2004.

Nuseibeh B & Easterbrook S. 2000, ‘Requirements Engineering: A Roadmap’, Proceedings
IEEE International Conference on Software Engineering (ICSE-2000), 4-11 June 2000,
Limerick, Ireland, ACM Press.

Robertson S. & Robertson J., 1999, ‘Mastering the Requirements Process’, Addison-Wesley-
Longman.

Robinson W.N., 2003, ‘Monitoring Web Service Requirements’, Proceedings 11th International
Conference on Requirements Engineering, IEEE Computer Society Press, 65-74.

Savigni A. & Tisato F., 2004, ‘Requirements Monitoring in a Reflective Architecture’,
Proceedings, SoRE’2004 workshop, 12th IEEE International Conference on Requirements
Engineering, Kyoto, Japan, September 2004.

SeCSE 2005, secse.eng.it.
Schütze, H., Pedersen, J.O., 1995 “Information retrieval based on word senses”, in Proceedings

of the Symposium on Document Analysis and Information Retrieval, 4: 161- 175, 1995.
van Lamsweerde, A. (2004), ‘Goal-Oriented Requirements Engineering: A Roundtrip from

Research to Practice’, Proceedings 12th IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, p. 4-7.

Sutcliffe A.G. & Mehanijev N., 2004, ‘End-User Development’, Communications of the ACM
47(9), 31-32.

Yu E. & Mylopoulos J.M., 1994, ‘Understanding “Why” in Software Process Modelling,
Analysis and Design’, Proceedings, 16th International Conference on Software Engineering,
IEEE Computer Society Press, 159-168.

