1,816 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    DEEP FULLY RESIDUAL CONVOLUTIONAL NEURAL NETWORK FOR SEMANTIC IMAGE SEGMENTATION

    Get PDF
    Department of Computer Science and EngineeringThe goal of semantic image segmentation is to partition the pixels of an image into semantically meaningful parts and classifying those parts according to a predefined label set. Although object recognition models achieved remarkable performance recently and they even surpass human???s ability to recognize objects, but semantic segmentation models are still behind. One of the reason that makes semantic segmentation relatively a hard problem is the image understanding at pixel level by considering global context as oppose to object recognition. One other challenge is transferring the knowledge of an object recognition model for the task of semantic segmentation. In this thesis, we are delineating some of the main challenges we faced approaching semantic image segmentation with machine learning algorithms. Our main focus was how we can use deep learning algorithms for this task since they require the least amount of feature engineering and also it was shown that such models can be applied to large scale datasets and exhibit remarkable performance. More precisely, we worked on a variation of convolutional neural networks (CNN) suitable for the semantic segmentation task. We proposed a model called deep fully residual convolutional networks (DFRCN) to tackle this problem. Utilizing residual learning makes training of deep models feasible which ultimately leads to having a rich powerful visual representation. Our model also benefits from skip-connections which ease the propagation of information from the encoder module to the decoder module. This would enable our model to have less parameters in the decoder module while it also achieves better performance. We also benchmarked the effective variation of the proposed model on a semantic segmentation benchmark. We first make a thorough review of current high-performance models and the problems one might face when trying to replicate such models which mainly arose from the lack of sufficient provided information. Then, we describe our own novel method which we called deep fully residual convolutional network (DFRCN). We showed that our method exhibits state of the art performance on a challenging benchmark for aerial image segmentation.clos

    Weed Recognition in Agriculture: A Mask R-CNN Approach

    Get PDF
    Recent interdisciplinary collaboration on deep learning has led to a growing interest in its application in the agriculture domain. Weed control and management are some of the crucial tasks in agriculture to maintain high crop productivity. The inception phase of weed control and management is to successfully recognize the weed plants, followed by providing a suitable management plan. Due to the complexities in agriculture images, such as similar colour and texture, we need to incorporate a deep neural network that uses pixel-wise grouping for identifying the plant species. In this thesis, we analysed the performance of one of the most popular deep neural networks aimed to solve the instance segmentation (pixel-wise analysis) problems: Mask R-CNN, for weed plant recognition (detection and classification) using field images and aerial images. We have used Mask R-CNN to recognize the crop plants and weed plants using the Crop/Weed Field Image Dataset (CWFID) for the field image study. However, the CWFID\u27s limitations are that it identifies all weed plants as a single class and all of the crop plants are from a single organic carrot field. We have created a synthetic dataset with 80 weed plant species to tackle this problem and tested it with Mask R-CNN to expand our study. Throughout this thesis, we predominantly focused on detecting one specific invasive weed type called Persicaria Perfoliata or Mile-A-Minute (MAM) for our aerial image study. In general, supervised model outcomes are slow to aerial images, primarily due to large image size and scarcity of well-annotated datasets, making it relatively harder to recognize the species from higher altitudes. We propose a three-level (leaves, trees, forest) hierarchy to recognize the species using Unmanned Aerial Vehicles(UAVs) to address this issue. To create a dataset that resembles weed clusters similar to MAM, we have used a localized style transfer technique to transfer the style from the available MAM images to a portion of the aerial images\u27 content using VGG-19 architecture. We have also generated another dataset at a relatively low altitude and tested it with Mask R-CNN and reached ~92% AP50 using these low-altitude resized images
    corecore