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Abstract

The goal of semantic image segmentation is to partition the pixels of an image into semantically mean-

ingful parts and classifying those parts according to a predefined label set. Although object recognition

models achieved remarkable performance recently and they even surpass human’s ability to recognize

objects, but semantic segmentation models are still behind. One of the reason that makes semantic

segmentation relatively a hard problem is the image understanding at pixel level by considering global

context as oppose to object recognition. One other challenge is transferring the knowledge of an object

recognition model for the task of semantic segmentation. In this thesis, we are delineating some of the

main challenges we faced approaching semantic image segmentation with machine learning algorithms.

Our main focus was how we can use deep learning algorithms for this task since they require the

least amount of feature engineering and also it was shown that such models can be applied to large scale

datasets and exhibit remarkable performance. More precisely, we worked on a variation of convolutional

neural networks (CNN) suitable for the semantic segmentation task. We proposed a model called deep

fully residual convolutional networks (DFRCN) to tackle this problem. Utilizing residual learning makes

training of deep models feasible which ultimately leads to having a rich powerful visual representation.

Our model also benefits from skip-connections which ease the propagation of information from the

encoder module to the decoder module. This would enable our model to have less parameters in the

decoder module while it also achieves better performance. We also benchmarked the effective variation

of proposed model on a semantic segmentation benchmarks.

We first make a through review of current high-performance models and the problems one might

face when trying to replicate such models which were mainly arise from lack of sufficient provided

information. Then, we describe our own novel method which we called deep fully residual convolutional

network (DFRCN). We showed that our method exhibits state of the art performance on a challenging

benchmark for aerial image segmentation.
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Chapter I

Introduction

One main end goal of Computer Vision is to enable computers to have a “high-level” understanding

of the visual information. Semantic image segmentation is one of challenges computer vision needs to

solve to achieve this ultimate goal. The aim of semantic segmentation is to assign a label to each pixel of

an image. Although there have been much efforts to address this problem, but computer vision models

have not been able to beat human performance.

Semantic segmentation has various applications in diverse domains including satellite image analy-

sis, autonomous driving, and medical diagnosis. To be more precise, researchers are interested to auto-

matically extract roadmaps [7] from aerial images. As for the medical imaging, segmenting the nodules

in lung cancer computed tomography (CT) scans [8] or lesions in skin cancer [9] images are of high

importance for diagnostic purposes. Recently, semantic segmentation emerged as a tool to investigate

the interpretability of deep Convolutional Neural Networks (CNNs) [10].

Humans are great at parsing an image to it’s component by just looking at them very briefly. In

a glance, humans can extract a great deal of information from an image and segment virtually all the

components on it. Also, humans are able to easily generalize from seeing a set of objects to recognize

them in previously unseen settings. To name a few challenges computers have to overcome to solve

this problem, one can point to the inherent diversity in scenes and the variability of labels that can

be associated with each scene. A good vision system should be robust to variations in appearance,

viewpoint, pose, illumination.

With the big breakthrough of Convolutional Neural Networks in 2012 for object recognition [11],

it sets a new standard for feature-based learning approaches. Prior to that, the state-of-the-arts object

recognition models relied heavily on hand-crafted features such as Scale Invariant Feature Transforma-

tion (SIFT) [12], Histogram of Oriented Gradients (HOG) [13], Gabor and Haar wavelets [14].

After 2012, it was shown practically that deeper models can achieve better performance [15]. How-

ever, due to some problems in training e.g. vanishing gradients, fitting deeper models (e.g more than

30 layers) was not possible. In 2015, ResNet [16] model resolves many of those issue with residual

connections and successfully trained a 1000 layer model and made a new state-of-the-art performance

benchmark on object recognition task.

After the success of convolutional networks on object recognition, computer vision researchers tried

to extend the model to the other task in computer vision. Region-based Convolutional networks (RCNN)

[17] used CNN for classifying the bounding box proposals acquired by selective search algorithm [18]

for object detection. Furthermore, Fully Convolutional Neural Networks (FCNs) [19] modified the

convolutional neural network of AlexNet to the “fully” convolutional neural network by reinterpreting

the last two fully connected layers as a convolutional layer with kernel size that spans over all the input.

Most of the models proposed for semantic segmentation in the years after are merely a variant of a FCN
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model.

In this work, we present our novel model, Deep Fully Residual Convolutional Neural Networks

(DFRCNs) for semantic segmentation. Deep models (more than 30 layers) tend to have better perfor-

mance, however, they may suffer from degradation problem [16]. With our residual learning process, we

successfully trained a model with more than 50 layers and achieved better performance. Furthermore,

in our decoder module we used simple bilinear interpolation instead of widely used transposed convolu-

tion (a.k.a. deconvolution [20]) to upsample feature maps. We got better performance and faster model

since it requires fewer parameters. We explain the model in the next chapters and show its performance

on road segmentation of aerial images. We also tried to clarify some techniques regardless of model

structure (e.g. batch normalization [21] parameter tuning) for getting a state-of-the-art performance on

semantic segmentation benchmarks.
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Chapter II

Large Scale Computer Vision

2.1 Introduction

The main focus of this thesis is utilizing deep learning algorithms for large scale semantic image seg-

mentation. Therefore, we provided a through review of current deep learning algorithms which have

been proposed for understanding visual information. Primarily, we heavily focused on a variation of

deep learning models called convolutional neural networks. Currently, it is believed to be the de-facto

model to tackle the large-scale machine vision problems.

2.2 ImageNet Classification with Deep Convolutional Neural Networks

Since 2010, a competition has been held annually for processing large scale visual data which is called

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [22]. In 2012, [11] proposed a method

based on CNNs that surpassed the previous year winning entry by a large margin (16% error rate as

opposed to 25% error rate). This sparked a huge interest in CNNs and lead the other researchers working

on the other various large scale vision field such as object detection, semantic segmentation to think

about adapting CNNs to their field.

2.3 Large Scale Semantic Segmentation

The aim of image semantic segmentation is to segment pixels of an image according to a pre-defined

meaningful concept. This is relied heavily on the provided definition of concepts. One choice is to

segments images to “objects”. However, “objects” or “things [23]” or ambiguous. As an example all

the objects on the dining table in Figure 2.2 are labeled as dining table or humans in a monitor won’t be

regarded as person category.

Before deep learning became a de-facto algorithm for feature extraction on many large scale vision

problems including semantic segmentation, Random forest based feature extractors [24] were commonly

used for semantic segmentation. One early neural network approach was patch classification [25] which

was used to segment the neuronal membranes in Electron Microscopy (EM) images. At the core of

that model, was a neural-network-based classifier which predicts a label for each patch given its neigh-

bor patches. One drawback of the model was it could only handle fixed size images since it had two

fully connected layer at the back-end. In 2014, [19] proposed FCNs model to resolve this issue. They

reinterpreted the last fully connected layers as a convolution layer with kernel size as the input size. Fur-

thermore, as a result of pooling layers the resulted activation map has a smaller spatial size than the input

image. They introduced transposed convolution [20] (a.k.a deconvolution) for upsampling coarse fea-
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Figure 2.1: An example of input and output in a dataset for semantic segmentation task. Source: Pascal

VOC dataset.

Figure 2.2: All the items on the dining table has the label of dining table. Source: (Pascal VOC dataset

[1]).
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Figure 2.3: U-Net architecture. Source: U-Net paper [2]

Figure 2.4: Deconvolution Network architecture. Source: Learning Deconvolution Network for Seman-

tic Segmentation [3]

ture maps. These modification enabled them to obtain a fully convolutional network that can efficiently

transfer the learned features during image classification to be used for dense prediction. FCN model

became the building block of almost every dense prediction task. Still a main challenge remained: how

to recover the spatial features after the sub-sampling (e.g. pooling) operation. In other words, how to

aggregate both spatial features (e.g. local, pixel-level features like precise detection of edges) and global

features (e.g. dynamics of a scene) was unclear. In the coming years, people have come up with two

solutions: 1) Using encoder-decoder module [2][3] for training 2) Using Dilated Convolution [26][27].

For the first case, encoder module reduce the spatial size after each pooling operation which enable the

network to increase the depth while decoder recovers the location-wise features from coarse output of

encoder module. Furthermore, skip connections from encoder to decoder ease the training process by

preserving the gradients from being vanished. Famous examples of encoder-decoder model are U-Net

depicted in Figure2.3 and Deconvolutional network in Figure2.4. Dilated convolution (aka atrous con-

volution, hole convolution) which was first used in 1D signal processing is extended to semantic image

segmentation by DeepLab-v1 [26]. The algorithm provided the benefit of computing the responses of
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any layer with desirable resolution. One other important feature of dilated convolution is that it can be

used both post-hoc (after the image classification training has been done) or it can also be seamlessly

incorporated while training.

Dilated means hole in kernel of the convolution. It will increase receptive field exponentially for

capturing global context. Compare to vanilla convolution plus pooling (which are the building blocks

for encoder-decoder module), dilated convolution make it possible to expand receptive field size expo-

nentially with fewer parameters.

If the dilation rate parameter is equal to one, dilated convolution is a regular 2D convolution. If

the rate is greater than one, it performs convolution with holes, convolving with the input values every

rate pixels in both height and width dimensions. The other way to look at dilated convolution is a

convolution which the kernel that has an upsampled filters, produced by inserting rate-1 zeros between

two consecutive elements of the filters in both height and width dimensions. Both dilated network

[27] and DeepLab-v1 [26] built a model based on cascaded dilated convolution. To go deeper on the

dilated network, they disregarded last two pooling layers of a pretrained image classification network

(VGG network [15]) and the subsequent convolutional layers between third pooling layer and fourth

one have dilation rate 2 and convolution layers after fourth pooling layer have dilation rate of 4. With

this settings they were able to fine-tune an image classification network for semantic segmentation task

without introducing any additional parameters. Furthermore, they incorporated a separate module called

context module which consist of multiple cascaded dilated convolution with different rate parameters.

Through utilizing this additional module they were able to produce aggregated multi scale output and

hence improve the performance.

2.4 RefineNet (downside of dilated convolution)

Although dilated convolution allows exponential growth of effective receptive field size with only linear

growth in number of parameters, it is computationally expensive. That is it takes a lot of memory since

they have to be applied on a large (in terms of spatial size) feature maps. RefineNet [4] proposed an

spatial encoder-decoder module to address aggregation of global context while being memory efficient.

The encoder of RefineNet is ResNet-101 [16] image classification network. The decoder module has

RefineNet blocks which gradually fuse dense feature maps of encoder and upsampled coarse output of

previous RefineNet block together. The architecture of RefineNet model can be viewed in Figure2.5.

2.5 Pyramid Scene Parsing Network (PSPNet)

In 2016, PSPNet [5] devised a model based on pyramid feature pooling [28] to capture global context.

They modified ResNet-101 with all the convolution layers of third block to have dilation rate 2 and all

the convolution layers of fourth block to have dilation rate 4, this would produce an output of size 1/8

of the input size. The input to the pyramid pooling module is the output of dilated ResNet-101 network.

Pyramid pooling module consist of multiple pooling operation with large kernels (e.g 10, 20, 30, 60).
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To be precise, the kernels of pooling layer has the size of whole, 1/2, 1/3 and 1/6 of the input feature

map. The aim of such pyramid pooling is to capture both multi-scale features and also global context.

They concatenate the output of dilated ResNet-101 with the output of pyramid pooling module for final

prediction. The schematic of their model is provided in Figure 2.6.

While the idea of pyramid pooling seems simple it gives a noticeable boost ( 3%) to the final predic-

tion [5]. However, one important component of PSPNet is training of batch normalization parameters.

Training with a large batch size improve the generalizability of a model which leads to a better per-

formance. However, due to the nature of dense prediction task (e.g. semantic segmentation and object

detection), training with a large batch size (usually more than 16) requires a large amount of GPU mem-

ory. To overcome this issue, PSPNet use a modified version of caffe [29] deep learning library which

enables them to synchronize batch norm parameters across multiple GPU instances. They trained their

model using 8 GPU devices with 2 batch of images with crop size of 473 on each device which makes

a total of 16 batches. Without using synchronized batch normalization, the performance of their model

dropped almost 4% compared to using synchronized batch normalization. In chapter 3, we tried to show

the effect of batch normalization for the performance of semantic segmentation model.

2.6 Rethinking Atrous Convolution (DeepLab-v3)

In 2017, DeepLab-v3 [6] model proposed a similar model as PSPNet which exhibits roughly the same

performance based on Atrous Spatial Pyramid Pooling (ASPP). Similar to PSPNet, the output of encoder

(either ResNet-101 or ResNet-50) is concatenated with the output of ASPP module. In ASPP module,

there are one 1× 1 convolution, three dilated convolution and with different large dilation rate (e.g. 6,

12, 18) and a global average pooling (image-level feature) operation followed by spatial upsampling

to the desired size. However, they took a different training scheme as PSPNet. Their training can be

viewed as two stages. In the first stage, in order to be able to fit a large batch size for training, they

manipulated dilation rate of ResNet network to have an output stride (the spatial ratio of input image

of ResNet to its output) of 16. Note that the output stride in PSPNet was kept at 8. They also used a

crop size of 513 for images with batch size 16. Unlike PSPNet they didn’t use sync batch normalization,

however, they used a very large momentum (0.9997) for tuning batch normalization parameters (see

Equation 2.2). It is worth to note that batch normalization layer has different behavior in training and

testing. In training, the normalization is done based on each batch statistics (e.g. mean and variance).

Also during the training, there are two parameters namely global running mean and running variance

which gets updated in exponential moving average scheme with a momentum parameter (see equation

2.1).

x̂i =
xi−µ√
σ2 + ε

(2.1)

x̂new = (1−momentum)× xt +momemtum× x̂ (2.2)

In equation 2.1, x̂i is the input xi after normalization with µ and σ as the mean and variance respectively

computed over the batch dimension. In equation 2.2 which shows the exponential moving statistics
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Figure 2.5: RefineNet model. Source: [4]

Figure 2.6: PSPNet model. Source: [5]

update rule, xt is the new observed value and x̂ is the computed global statistics for previous iterations.

These global statistics then were used during testing instead of each batch (or image) for normaliza-

tion. However, if the momentum parameter is chosen to be close to one, it means that each training batch

statistics would have very much little effect on the global statistics which ultimately could be thought

as freezing the global mean and variance. In the second stage for training deeplab, they decrease the

learning rate (from 0.007 to 0.001), increase the output stride to 8 and freeze the batch normalization

parameters and finetune on both training and validation set. They argued that training with output stride

16 is quite faster than output stride 8 and also more memory efficient which is useful for tuning batch

normalization parameters. However it is not as accurate because it uses coarser feature maps. That

performance will get better by stage two’s fine tuning with using output stride 8. Figure 2.7 shows

DeepLabv-3 architecture.
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Figure 2.7: DeepLab-v3 model. Source: Rethinking Atrous Convolution for Semantic Image Segmen-

tation. [6]
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Chapter III

Implementation of state-of-the-art models

3.1 Motivation

In chapter 2, we covered some of the models that exhibits state of the art performance on the Pascal VOC

leaderboard. However, most of the best performing models do not have publicly available source-codes

to replicate the training process (refer to Table 3.1).

Model Name Institution VOC score Train Code Eval Code Private Dataset

DeepLab-v3 [6] Google 86.9 O O JFT-300

PSPNet [5] CUHK, SenseTime 85.4 X O X

SDN [30] CASIA 86.6 X X X

DIS [31] SYSU, CHUK 86.8 X X IDW

Table 3.1: Semantic segmentation models performance and source code availability

As it was summarized in the table, some method like DeepLab-v3 and Deep Dual Image Segmen-

tation (DIS) [31] model use a private dataset to train or finetune their model. Some other models like

PSPNet did not share their training code and it made others unable to replicate their training procedures

from their publicly available evaluation code. Some other models like Stacked Deconvolutional Net-

work (SDN) [30] and DIS did not share their evaluation code let alone their training code. What follows

is our efforts to implement one of these models based on the information in the paper. Furthermore, we

gave our own detailed analysis on the main components of those models. During the implementation,

we found that some of the important features of those models could be studied more.

3.2 PSPNet implementation

We start by implementing PSPNet in pytorch [32] deep learning framework. We used NVIDIA TITAN

X GPU with 12GB of memory for training. The original implementation was done in modified caffe

deep learning framework and run on 8 GPU devices each with 12 GB of memory. For our own initial

experiment, since it was not possible to fit 16 image batches of cropsize 473× 473 on a 12GB GPU

device, we chose batch size 8 of cropsize 340×340 for training. To compensate the smaller batch size,

we decreased the learning rate by the factor 1√
2

(as suggested by [33]) and also increased the training

iteration from 30K to 100K iterations. This leads to the performance of 71.42% on validation set which

is about 10% lower than the original reported performance of PSPNet. Unlike the PSPNet, we did not

do multi-scale testing which helps boost performance about 1% (refer to Figure 3.7). Furthermore, the

PSPNet with ResNet-101 model as the backbone is a modified form of the original ResNet-101 model in
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a sense that they replace the first 7x7 kernel size convolution layer with three 3x3 kernel size convolution

layer. It is noted by others that this type of modified ResNet has a better performance than the original

ResNet model [34].

Inspired by DeepLab-v3 training of batch norm parameters, we froze the parameters of trained model

and finetune the model for about 30K more iteration, this increased the performance about 1% compare

to the baseline model. However, if we froze the batch norm parameters from the initial ResNet model

(pretrained on the ImageNet dataset only), we would get about 2.2% performance boost. We suspect

that training with small batch size on Pascal VOC dataset may damage the inference performance. We

would like to pinpoint that ResNet-101 model batch normalization layer’s global statistics (mean and

variance) were computed over a "sufficiently large training batch after the training procedure" as stated

by the author. This may be the reason for the better performance of a model that it’s batch normalization

layer parameters were frozen from the initial ResNet model pretrained on ImageNet compare to the one

that was finetuned on Pascal VOC dataset for some training iterations.

No. GPUs Batch size Crop size No. iterations BN freezing VOC score

1 8 340 100K N (baseline) 71.42

1 8 340 100K Y (from baseline) 72.60

1 8 340 100K Y (from ImageNet ResNet) 73.64

Table 3.2: Our PSPNet implementation performance Part1

We also tried to increase the batch size and crop size and train on multiple GPUs. So we tried with

batch size 16 on 4 GPUs (4 on each GPU) with crop size 473× 473. We trained the new model for

30K iterations. We got 72.5% performance on the validation set. We also tried to use larger output

stride (16 instead of 8) for the ResNet101 model. This made us enable to use 32 batches for training.

However, we purposefully did not update the running mean/variance of the batch normalization layers.

This got 74.94% performance on the validation set which is 2.44% boost relative to the previous model.

Also we fine tuned this model by using output stride 8, however, with smaller batch size (16) and frozen

batch normalization for additional 30K iterations. The resulted performance achieved was 76.41%.

Our PSPNet implementation details is available at the table 3.2 and 3.3. In order to show the effect

of cropsize in multi-GPU settings, we made another experiment with keeping every parameters expect

cropsize same with the baseline model. Using larger cropsize will enhance the performance by 1.2%

(table 3.4).

No. GPUs Batch size Crop size No. iterations BN freezing VOC score

4 16 473 30K N (baseline) 72.51

4 32 (OS 16) 473 30K Y (global stats only) 74.94

4 16 (OS 8) 473 30K Y (fixed affine transformation) 76.41

Table 3.3: Our PSPNet implementation performance Part2. In above table OS indicates output stride.
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Figure 3.1: Our baseline implementation of PSPNet[5] performance on Pascal VOC validation set. First

column is input image, second column is groundtruth, third column is model’s prediction and fourth

column is original PSPNet result. Refer to table 3.2 first row.
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Figure 3.2: Freezing batch normalization layer parameters of the baseline model. First column is input

image, second column is groundtruth, third column is model’s prediction and fourth column is original

PSPNet result. Refer to table 3.2 second row.

No. GPUs Batch size Crop size No. iterations BN freezing VOC score

4 16 340 30K N 71.34

4 16 473 30K N 72.51

Table 3.4: The effect of cropsize on model’s performance in multi-GPU settings

3.3 Implementation analysis

Normalization plays a critical role in order to have a good performance on a large scale vision benchmark

[35][36]. Since batch normalization proposed, it enhanced the object classification accuracy models.

To effectively train batch normalization parameters, however, the size of mini-batch should be large

enough or it may not perform well because of behavior difference in training time and inference time.
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Figure 3.3: Freezing batch normalization layer parameters of the ImageNet ResNet-101. First column

is input image, second column is groundtruth, third column is model’s prediction and fourth column is

original PSPNet result. Refer to table 3.2 third row.
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Figure 3.4: Our baseline multi-GPU implementation of PSPNet. First column is input image, second

column is groundtruth, third column is model’s prediction and fourth column is original PSPNet result.

Refer to table 3.3 first row.
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Figure 3.5: Our multi-GPU implementation of PSPNet with frozen running statistics of batch normaliza-

tion layer. First column is input image, second column is groundtruth, third column is model’s prediction

and fourth column is original PSPNet result. Refer to table 3.3 second row.
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Figure 3.6: Our multi-GPU implementation of PSPNet with fixed batch normalization layer. First col-

umn is input image, second column is groundtruth, third column is model’s prediction and fourth column

is original PSPNet result. Refer to table 3.3 third row.
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Unfortunately, for object detection and semantic segmentation since output has the same size as input, it

is hard to fit large mini-batch on limited GPU memory. As we observed with implementation of multi-

GPU PSPNet model and it was noted by [35] also, the number of min-batches on each GPU is crucial

to the overall performance of the model. The change in mean/variance statistics computed by batch

normalization with different number of mini-batch in each GPU will introduce different levels of random

variation. PSPNet tried to resolve this issue by synchronizing the batch normalization across multi

GPUs. Precisely, in each iteration, the mean of each mini-batch on all GPU workers were broadcasted

to the master GPU and it then computes the global mean. After that the global mean were broadcasted

to each worker to compute the variance with regard to global mean. After each worker computed the

variance, all get broadcasted to master to compute the global variance. After the global variance was

computed by the master, each worker can normalize their mini-batch with regard to global mean/variance

rather than the mean/variance of mini-batch fitted on that specific GPU worker. In this way it would work

as if a large mini-batch is used on a single worker. We would like to note that if no synchronous batch

normalization is used, the performance of PSPNet drops by almost 4% (we found this via personal

communication with the authors). In our experiments we noticed that crop size is also very important

and can contribute to the overall performance by 1% (from 340 to 473).

We would like to mention other approaches than syncing batch normalization. As Deeplab-v3, they

tend to freeze the batch norm global mean/variance and not update it for the semantic segmentation

task. We also observed that freezing the batch normalization mean/variance will indeed improve the

performance. However, frozen batch normalization seems like a sub-optimal solution since it requires

more amount of training time as with the case of DeepLab-v3 model.

3.4 Conclusion

To summarize what we observed is having large cropsize and big batch size are important to have a

better model. We also noticed that training on multi GPU (data parallel scheme) does not affect the

final performance. The factor that is important in multi GPU settings is the number of batches per

GPU. Furthermore, we noticed that normalization namely batch normalization is crucial to the overall

performance. In order to have a better model there is need to have a large batch size. As cross GPU

synchronous batch normalization was used for training the original PSPNet model to simulate a large

batch size, we noticed that freezing batch normalization can improve the performance by around 4% as

well (Table 3.5).
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No. GPUs Crop size Batch size Batch Normalization freezing performance

1 340 8 N 71.42

4 340 16 N 71.34

4 473 16 N 72.51

4 473 16 Y 76.41

Table 3.5: Our PSPNet implementation performance summary

Figure 3.7: PSPNet performance breakdown on ADE-20K dataset. Source: It is taken from PSPNet

presentation slides[5].
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Chapter IV

Aerial Image Segmentation

4.1 Motivation

When a natural disaster strikes an area, maps and accessibility information become an invaluable source

for crisis response. In case of an earthquake in a less accessible zone, road maps will ease the process

of helping the people in need. Also in aftermath of such events, aerial images can be a source for

approximating the damage. Take a wild fire as an example, in order to get a sense of what proportion

of forest were caught by fire, damage experts compare the before and after aerial images. In this thesis,

we would like to address the challenge of automatically segmenting road and street networks from

aerial images. Some specific applications of this problem is road navigation maps, urban planning,

autonomous vehicles and geographic information monitoring. We devised a novel approach based on

deep learning to tackle this problem.

The problem consists of extracting roads from satellite images. For this problem, a set of satel-

lite/aerial images acquired and annotated by [7], are provided. Ground-truth images where each pixel is

labeled as (road, background) are also provided. The goal is to train a classifier to segment roads in these

images, i.e. assign a label (road=1, background=0) to each pixel. Most of the methods proposed to solve

this problems can be categorized in two groups of road area extraction and road centerline extraction.

Road area extraction [7][37][38] will outputs a map that labels each pixel with road or background class.

The goal of road centerline extraction [39] is to provide skeletons of a road. We would like to mention

that there are also methods which extract both road areas and centerline, simultaneously [40]. We sat

upon ourselves to tackle road area road extraction problem since getting road centerline from road area

maps are somewhat trivial [41].

In this thesis we mainly focused on using deep learning algorithms for solving road extraction since

it requires less amount of feature engineering, furthermore, the model with minor changes can effectively

be used in other aerial image analysis domains like object detection and scene recognition. However,

there are challenges when applying deep learning algorithms to get a robust accurate segmentation model

for road extraction such as dataset class imbalance, boundary effect and low resolution of images present

in the dataset which were discussed in more details in the this chapter.

4.2 Related work

One of the early deep learning algorithms suggested for aerial road extraction was made by Mnih and

Hinton [7]. Their proposed model was based on Restricted Boltzmann Machines (RBMs) for patch-

based semantic segmentation task. Input aerial image was partitioned into 64×64 patches. They applied

pre-processing on the raw images and performing some post-processing algorithms on the output of
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their model. Their preprocessing consisted of applying Principal Component Analysis (PCA) to reduce

data dimension. Furthermore, their post-processing was based on applying Conditional Random Field

(CRF) algorithms to capture low-level pixel dependencies like road connectivity. They evaluated the

performance on a large aerial image dataset that covered around 500 km2.

Saito et al [37] devised a convolutional neural network which simultaneously segmented pixels of

aerial images to buildings and roads. They trained a CNN that had a three-channel output layer for

prediction of three categories (roads, buildings and background). Their model achieved a better perfor-

mance than [7] while it didn’t need further performance boosting techniques such as noise models and

structured prediction (e.g. CRF post processing step) which were employed by Mnih and Hinton. How-

ever, unlike this model, our model is fully convolutional which enable us to use arbitrary size images

for testing. We also make use of residual learning which made training deep networks feasible hence

improve the accuracy.

4.3 Thesis goals

In this thesis, we proposed a novel deep fully residual convolutional neural networks for road extraction.

We employed dilated convolution in our deep networks in order to control the feature extraction (e.g.

encoder) part of our network. Furthermore, we effectively transferred the features learned by a deep

network during general image classification task to the problem of aerial image road extraction by using

a joint scheme of a naive sampling strategy and also introducing auxiliary deep supervision loss. Instead

of time consuming post-processing CRF method, we incorporated a simple yet effective test time aug-

mentation technique to enhance the network result. In this chapter, we described our model in details

and reviewed its important components.

4.4 Deep Fully Residual Convolutional Neural Network (DFRCN)

4.4.1 Model structure

Our approach is based on patch-based semantic segmentation framework that is commonly used in deep

learning algorithms for semantic segmentation problem. Our model employs residual learning which

was proposed by [16]. Specifically, we took the ResNet-50 layers as the backbone model of our encoder

module. We replaced the vanilla convolution layers of all ResNet blocks with dilated convolution.

Replacing the vanilla convolution enabled us to control the output stride which is the ratio of input to

the output of our encoder (e.g. ResNet-50 network). We speculated that using output stride bigger than

4 can hurt the convergence for the two following reasons:

1. The ratio of road pixels to the non-road was very small, i.e. that road parts are usually a thin lines

in the whole images. If a large output stride is chosen recovering this thin road areas from a small

output (more than 1
4 of the input) would be extremely hard since many of the spatial features are

aggregated in order to have robust depth features.
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2. Using a large output stride would requires employing more parameters in the decoder module

and hence more number of parameters in total which ultimately requires more data or complex

regularization technique. We tried to keep the model simple which make it possible to apply our

model to other aerial image segmentation problems such as extracting building, vehicles, etc.

Our decoder module follows a U-Net [2] structure. We concatenated the upsampled features with the

encoder module features of second and first block plus first convolution layer of the ResNet-50 model. In

upsampling the features, we used three consecutive convolution layers with kernel size of 3 followed by

a bilinear interpolation layer. In our decoder module we refrain from using transposed convolution [20]

cause it would increase the computation time since it performs convolution on the upsampled feature

maps. It can also introduce checkerboard artifacts [42] that may heavily decrease the performance in

road extraction.

4.4.2 Preprocessing and sampling strategy

The aerial image dataset [7] consists of 1171 satellite images of Massachusetts, each of them of 1500×
1500 pixels. The data was partitioned into 1108 training images, 14 validation images, and 49 test

images. The acquired dataset is quite noisy. There were many samples that satellite image were not

complete (see Figure4.1). Furthermore, a tiny portion of each image had been labeled as road, which

makes the dataset quite imbalanced. We devised a simple approach to solve this issue. We only sampled

batches that have more than 10% of it labeled as road and also use a large crop size to cover a larger area

(256 rather than 64 in [7]). We also augment our dataset with random flipping and random 90 degree

rotation. For each image in original dataset there will be 8 (4 possible rotation and left-right flipping)

images in the augmented dataset. Before feeding the images to the model, channel-wise dataset mean

values are subtracted from each sample to normalize the data.

4.4.3 The choice of loss function

As for the loss function we tested for combination of of binary cross entropy, minimum square error

and weighted dice coefficient loss which are the common choices for binary classification. Binary cross

entropy loss is defined as follows:

JBCE(W ) =
−1
N

N

∑
n=1

[ynlogŷn +(1− yn)log(1− ŷn)] (4.1)

where yn is the target value of sample n and ŷn = g(w.xn) and g is the logistic function. In many

semantic segmentation dataset, there is one or more classes that are underrepresented which makes the

whole dataset imbalanced. In such cases the class of interest occupies only a very small portion of the

image. Dice loss is successfully applied to many medical image segmentation problems [43][44]. The

dice coefficient loss is computed as follows:

JDice(W ) = 1− (2∗∑
N
n=1 ŷn ∗ yn)+λ

∑
N
n=1 yn +∑

N
n=1 ŷn +λ

(4.2)
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Figure 4.1: An example of road data provided by [7]. In some of the images in the dataset, aerial image

is incomplete but the corresponding groundtruth has the complete annotation.

Where λ is small value that will be added to the numerator and denominator. If both of the output

and target are empty, it will make the dice to be 1. If either of output or target are empty (e.g. all image

pixels are non-road), then higher choice for lambda would make the loss smaller (e.g. close to zero).

Also we used minimum square error (MSE) as loss function as well which is computed as below:

JMSE(W ) =
1
N

N

∑
n=1
‖(ŷn− yn)‖2 (4.3)

We trained our model with each of the mentioned loss functions and also we experimented with a

weighted sum of both dice loss and minimum square loss.

4.4.4 Implementation

We implemented our model using tensorflow [45]. We trained our network using Momentum optimizer

[46] algorithms with momentum parameter set to 0.9. As for the learning rate policy we used “poly”

learning rate policy, where the initial learning rate is multiplied by (1− currentiteration
maxiterations )power with power

set to be 0.9. Since the global structure (like whether the image is taken from urban area or rural area)

of aerial image plays an important role for segmentation, we used a large cropsize to train our patch

segmentation model. Furthermore, since we are using dilated convolution with large rate, in order to

have valid values (e.g. convolution on the feature maps rather on the zero-padded regions), we have to

use a large crop size. We took crop size of 256×256 taken randomly from an image. We use extensive

studies on the components of the model such as number of min-batches, using shallower network, the

choice of loss function, etc. Figure 4.2 gives an overview of our model.
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Figure 4.2: Our novel deep fully residual convolutional neural networks (DFRCN).

4.5 Evaluation metrics

4.5.1 Relaxed precision/recall

The common evaluation metric for binary classification methods are precision and recall. It is also

known as correctness and completeness in road prediction as well. Precisely, precision is the fraction of

correctly predicted road pixels over all predicted road pixels. Recall is the fraction of all the road pixels in

the ground truth labeled map that are correctly predicted by the model. Mnih and Hinton [7] introduced

relaxed precision and recall scores since correctly labeling all the road pixels were difficult. The relaxed

precision is the fraction of number of pixels predicted by the model as road within a proximity of ρ

pixels from pixels labeled as road in the groundtruth label map. The relaxed recall is the fraction of

number of pixels labeled as road that are in a proximity of ρ pixels from pixels that are predicted by the

model as road. In all our experiments that involves computing relaxed precision/recall we chose ρ to be

3 which is consistent choice with previous studies [47] [37].
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4.5.2 Mean Intersection over Union (mIoU)

We also report the mean Intersection over Union (IOU) also know as Jaccard Index. It measures the

intersection over the union of the labelled segments for each class labels and reports the average over

classes. In other words, it is defined as follows: IOU = T P
T P+FP+FN where TP, FP, FN stands for true

positive, false positive and false negative respectively. Note that in computing mIOU we didn’t use

relaxed measurements as proposed by [7].
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Chapter V

Experiments

5.1 Introduction

For testing the components of our model deep fully residual convolutional neural networks (DFRCN),

we conducted experiments on road extraction from aerial images on Massachusetts road dataset.

5.2 Experimental Results

We experimented with different variations of the components of our model. What follows is the summary

of experiments with both quantitative and qualitative result. Some sample images from dataset can be

viewed in Figure 5.1

5.2.1 The choice of loss function

We mentioned in chapter 3 that we had three options for training our model: Binary cross entropy (BCE),

Dice coefficient loss and Minimum square error (MSE). Our motivation for using dice loss comes from

the intrinsic dataset imbalance that is observed in many aerial image segmentation tasks such as road

extraction. For example, in road extraction a tiny portion of an aerial image is occupied by road and

most of the pixels of the image are labeled as background. This class imbalance usually lead to learning

process to stuck at a local minima of the loss function which produce a model that its prediction are

biased towards the background class. In such cases, the class of interest (e.g. roads in road extraction

task) is often missing (all the pixels are predicted as background) or partially detected. To remedy

this problem of class imbalance, some used sample re-weighting in the loss function where foreground

regions are given more importance than background ones. However, this is heavily sensitive to the ratio

that is being used for re-weighting.

In this work we used dice loss which comes from Dice Similiarity Coefficient (DSC). It measures

the amount of agreement between two image regions. It is widely used as a metric to evaluate semantic

segmentation models in medical image analysis. It is defined as the below formula:

DSC =
2∗ |GT ∩PR|
|GT |+|PR|

(5.1)

In above formula |GT | and |PR| is the number of pixels labeled as class of interest in ground truth

image and model’s prediction respectively. Also |GT ∩PR| is the number of pixels that has the label

of class of interest in both ground truth and prediction in the exact same location. Unfortunately, the

DSC can not be used as a loss function since it is not differentiable. However, a continuous version of

the dice score (known as dice loss, refer to Equation 4.2) have been suggested that allow differentiation
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Figure 5.1: Samples from training data of Massachusetts road dataset. (a) Input image; (b) Groundtruth.

and can be used as loss function for updating network parameters in each iteration of backpropagation

algorithm.

Nonetheless, there are other loss functions that can be used for dense prediction task. One of such

loss functions is mean squared error (MSE) that is commonly used in low-level vision tasks such as

super resolution, image denoising, etc. We believed that using dice loss would result in a precise model
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since it values the intersection of both ground truth and prediction yet using MSE would result in a

model with higher recall. As compared to mean squared error, dice loss gives less weight to outliers

meaning it values strong local connectivity of pixels. In the end we tested our model with a weighted

combination of both MSE and dice loss (refer to Equation 4.2). The final model that is trained with a

weighted combination of both loss functions have a better performance than model’s that were trained

with only individual losses.

We trained the same network with batch size 8 of crop size 256x256 images and initial learning

rate 0.001. The training time kept same for all models with different loss functions. We initialized the

encoder part of all models from a ResNet-50 model that was pretrained on ImageNet dataset for image

classification. For combination of Dice and MSE loss we multiplied Dice loss with α = 10 to be in

the same order of magnitude with MSE loss. The result of all models are in table 5.1. We noticed that

training with BCE converge to all zero output. One possible explanation for this behavior could be the

class imbalance and the presence of log function in computing binary cross entropy. As we observed,

training with Dice loss would result to a more precise model but with lower recall. However, training

with MSE would result with a model with higher recall and lower precision.

MSE loss Dice loss BCE loss Dice+MSE loss

relaxed precision 0.85 0.89 X 0.88

relaxed recall 0.86 0.76 X 0.83

mean IOU 40.12 41.24 X 42.64

Table 5.1: The effect of loss function choice on the performance of model

5.2.2 Deep supervision

Deep supervision [48] is shown to stabilize the training process of deep networks and also helps to get

a better performance. Training deeper network (e.g. more than 20 layers) for dense prediction can be

cumbersome task. In order to smooth this process, [48] proposed adding auxiliary loss computation

branches to intermediate layers of the networks. Also PSPNet [5] trained their model with deep super-

vision loss as well. Here we add this auxiliary loss to the last layer of encoder. In order to compute the

auxiliary loss, we downsampled the groundtruth label map to the size of encoder output. The network

incorporated with deep supervision produces better output. The quantitative results of model with and

without deep supervision is in table 5.2. Also to have a visual comparison, we show some of output of

the model with and without deep supervision in 5.3.

5.2.3 Batch size

The effect of batch size on the performance of semantic segmentation model is mentioned in the chapter

3. Furthermore, it was already emphasized in [36][6] paper. We were curious whether the number of

batches are important to the final performance of the model in aerial image segmentation as well. So we
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Figure 5.2: Example results on the validation set of Massachusetts road dataset. (a) Using MSE loss; (b)

Using dice loss; (c) Using weighted MSE and dice loss; (d) Ground truth; (e) Input image.

with deep supervision without deep supervision

relaxed precision 0.85 0.82

relaxed recall 0.86 0.85

mean IOU 40.12 37.67

Table 5.2: The effect of deep supervision (e.g. auxiliary loss) on the performance of model

experimented with ResNet-50 as encoder with batch size 1, 2, 4 and 8 with cropsize 256×256 without

using deep supervision. Trained models performance can be seen in table 5.3. We observed that when a

model is trained with 1 batch it can have a better performance compare to the model that was trained with

8 batches of images. This may be due to the fact that batch normalization has different behavior during

training and inference. Furthermore it was shown that model’s final performance is highly sensitive

to the computed batch normalization running statistics (mean and variance). Unfortunately we couldn’t

train a model with large batch size (bigger than 16) because of GPU memory limit. We also would like to

mention other normalization techniques that are less sensitive to the batch size like weight normalization

[49].
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Figure 5.3: Example results on the validation set of Massachusetts road dataset. (a) Without deep

supervision; (b) With deep supervision; (c) Ground truth.

Batch size 1 Batch size 2 Batch size 4 Batch size 8

relaxed precision 0.91 0.84 0.83 0.82

relaxed recall 0.73 0.86 0.85 0.85

mean IOU 38.87 39.56 38.89 37.67

Table 5.3: The effect of batch size on the performance of model

5.2.4 Decoder feature map upsampling

In this section we will discuss the role of decoder in road extraction task. Unlike RefineNet[4] and U-

Net[2], PSPNet[5] did not rely on a multi-layer decoder to upsample and transform the encoded feature

map to the final prediction output. Furthermore, the first version of DeepLab-v3 [6] also did not employ

multi-layer decoder. However, in their next work DeepLab-v3+ [50], they used a simple decoder mainly

based on concatenating early layers with higher layers and upsampling them with bilinear interpolation

of DeepLab decoder. In this section, we wanted to know the difference (in terms of performance)

between a model with and without a decoder module. We would like to mention that there are many

ways to devise a novel decoder. However, it wasn’t our focus. Our main focus in this part is whether a
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simple decoder can improve the performance or not. For this matter, we devised our decoder based on

U-NET (one of the early simple ways to upsample feature maps in deep convolutional neural networks).

In the controlled study of our decoder module, we further investigated the effect of feature map

upsampling choices. We fixed the encoder part (ResNet-50) and the skip-connection links from the mid

layers of the encoder. All the training parameters were kept same except the upsampling choices.

In our encoder-decoder model we have five upsampling layers since there are five down-sampling

layers in our deep encoder. We have four skip-connection links in the form of concatenating the feature

maps from the encoder module with the upsampled feature maps of our decoder (refer to Figure 5.4).

Here we studied the effect of using transposed convolution or a bilinear up-convolution as our up-

sampling layer (blue blocks in Figure 5.4). In an experiment we used five bilinear interpolation for our

upsampling layers. Here we should note that unlike transposed convolution, bilinear interpolation does

not have any learnable parameters that can be optimized by the network. In another experiment, we

used 5 transposed convolution with kernel size 4x4 and stride 2 as an upsampling layer. To make a fair

comparison, we made an experiment and utilized an additional convolution layer after each bilinear in-

terpolation layer to have a model with the exact same number of parameters as the model with transposed

convolution. We call this layer bilinear up-convolution. The performance of each model is in Table 5.4.

We observed that using transposed convolution instead of a simple bilinear interpolation would increase

the performance about 1.65%. This is somewhat expected since transposed convolution would benefit

from additional tunable parameters for upsampling the feature maps. We also observed that a model

with bilinear interpolation followed by a convolution layer that has equal parameters with the model that

utilizes transposed convolution has 1.3% better performance in terms of mean intersection over union.

The better performance would be the result of alleviating the checkerboard artifact that is produced as a

side-effect of using transposed convolution.

One way to look at transposed convolution is a convolution that is applied on the input feature maps

that are interleaved with zero between each element (Figure 5.5). This type of convolution would result

in some area of input feature map to have uneven overlap. The uneven overlap on a 2D image would

result in artifacts that look like checkerboard with some areas have varying magnitude than the others.

The checkerboard artifact can affect the final performance of model for road extraction task (Figure 5.6).

Bilinear upsampling Transposed convolution Bilinear up-convolution

relaxed precision 0.73 0.74 0.77

relaxed recall 0.89 0.87 0.89

mean IOU 32.65 34.30 35.60

Table 5.4: Decoder upsampling choice effect on the final performance of the road extraction model

5.2.5 Output stride

Using dilated convolution enable us to have control over the ratio of encoder output to it’s input which is

known as output stride. The other benefit of dilated convolution is we can use the weight that are trained
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Figure 5.4: The schematic of our decoder module.

Figure 5.5: The difference of transposed convolution and bilinear interpolation. Left: Input feature map.

Middle: Input to transposed convolution. Right: Bilinear upsampled input feature map.

with vanilla convolution. This made dilated convolution an important tool for dense prediction tasks.

Specially, when for some of these tasks like aerial image segmentation a large (relative to ImageNet)

dataset is not available and therefore, a pretraining from an image classification model would heavily

ease the training process.

In this section we investigate the role of output stride in our model’s performance. We experimented

with various output stride of ResNet-50 model (e.g. 32, 16, 8, 4). Note that using output stride 32

means we are using dilated convolution with rate 1 which acts like a vanilla convolution. As a result of

changing the output stride, we were bound to make some minor modifications to the decoder module as

well. These modifications include manipulating the bilinear upsampling ratio after the first convolution

layer in decoder. The quantitative results are in table 5.5 and to figure 5.7 depict some of the results.
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Figure 5.6: Checkerboard artifacts in the prediction of a decoder with transposed convolution. Left: The

result of a model with a decoder that has transposed convolution as an upsampling layer, Right: The

result of a model with Bilinear up-convolution (Bilinear interpolation with a convolution

Output stride 4 Output stride 8 Output stride 16 Output stride 32

relaxed precision 0.85 0.82 0.81 0.79

relaxed recall 0.86 0.84 0.82 0.82

mean IOU 40.12 36.20 34.72 34.43

Table 5.5: The effect of output stride on the performance of model

5.2.6 Test time augmentation

In this section, we are testing the performance of our simple yet effective test time augmentation. As a

common practice for many of the state-of-the-art models like [5][6], which use left right flipping during

test time for increasing the performance we make use of D4 dihedral group 4 for test time augmentation

[51]. Precisely, we rotate each image with three 90 degree rotations(refer to figure for 5.8). We do the

inverse rotation on the output of the model and average all to make the final prediction. Here we report

the result of model with and without test time augmentation. Refer to table 5.6.
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Figure 5.7: Example results on the validation set of Massachusetts road dataset. (a) Output stride 32; (b)

Output stride 8; (c) Output stride 4.

with test time augmentation without test time augmentation

relaxed precision 0.88 0.86

relaxed recall 0.83 0.84

mean IOU 42.64 41.35

Table 5.6: The effect of test time augmentation on the performance of model

5.2.7 Comparison with other models

The common metric that is used for reporting each model’s prediction accuracy for road extraction task

is called break-even point [7][37]. Break-even point is the point that precision and recall have the closest

value to each other. A higher break-even point means a better performance in both precision and recall.

Table 5.7 is for comparison of our proposed model in terms of break-even point for road extraction task

on Massachusetts roads test dataset against other deep learning based models.
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Figure 5.8: Test time augmentation for final prediction.

Model Break-even point

Mnih-CNN [7] 0.8873

Mnih-CNN+CRF 0.8904

Saito-CNN [37] 0.9047

Ours (DFRCN) 0.9132

Table 5.7: Comparison of the road extraction models in terms of break-even point.
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Chapter VI

Conclusion

Semantic image segmentation is a sub-field of computer vision that aims to partition each image into

predefined semantically meaningful parts. In recent years, approaches to solve this problem were mainly

based on deep learning algorithm. To be precise, they were all a variant of Fully Convolutional Network

(FCN). In this thesis, we tried to implement one of the famous recently proposed Pyramid Scene Parsing

Network (PSPNet) since there were no available source code to replicate the training process. Along

the implementation, we found some important details regarding the performance such as training batch

normalization layer parameters.

Furthermore, we devised our own Deep Fully Residual Convolutional Neural Network (DFRCN) for

semantic image segmentation. In our experiments, we tested our model on road extraction task which

is challenging problem in aerial image segmentation. We made a through analysis on the components

of our model and the contribution of each component to the final performance. In the end, we would

like to mention that our model can be used for any semantic segmentation task with minor modification

because we devised it in such a way that can used as an off-the-shelf framework.
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