5,119 research outputs found

    ‘The Action of the Brain’. Machine Models and Adaptive Functions in Turing and Ashby

    Get PDF
    Given the personal acquaintance between Alan M. Turing and W. Ross Ashby and the partial proximity of their research fields, a comparative view of Turing’s and Ashby’s work on modelling “the action of the brain” (letter from Turing to Ashby, 1946) will help to shed light on the seemingly strict symbolic/embodied dichotomy: While it is clear that Turing was committed to formal, computational and Ashby to material, analogue methods of modelling, there is no straightforward mapping of these approaches onto symbol-based AI and embodiment-centered views respectively. Instead, it will be demonstrated that both approaches, starting from a formal core, were at least partly concerned with biological and embodied phenomena, albeit in revealingly distinct ways

    Cognitive networks: brains, internet, and civilizations

    Get PDF
    In this short essay, we discuss some basic features of cognitive activity at several different space-time scales: from neural networks in the brain to civilizations. One motivation for such comparative study is its heuristic value. Attempts to better understand the functioning of "wetware" involved in cognitive activities of central nervous system by comparing it with a computing device have a long tradition. We suggest that comparison with Internet might be more adequate. We briefly touch upon such subjects as encoding, compression, and Saussurean trichotomy langue/langage/parole in various environments.Comment: 16 page

    Sociobiology, universal Darwinism and their transcendence: An investigation of the history, philosophy and critique of Darwinian paradigms, especially gene-Darwinism, process-Darwinism, and their types of reductionism towards a theory of the evolution of evolutionary processes, evolutionary freedom and ecological idealism

    Get PDF
    Based on a review of different Darwinian paradigms, particularly sociobiology, this work, both, historically and philosophically, develops a metaphysic of gene-Darwinism and process-Darwinism, and then criticises and transcends these Darwinian paradigms in order to achieve a truly evolutionary theory of evolution. Part I introduces essential aspects of current sociobiology as the original challenge to this investigation. The claim of some sociobiologists that ethics should become biologized in a gene-egoistic way, is shown to be tied to certain biological views, which ethically lead to problematic results. In part II a historical investigation into sociobiology and Darwinism in general provides us, as historical epistemology', with a deeper understanding of the structure and background of these approaches. Gene-Darwinism, which presently dominates sociobiology and is linked to Dawkins' selfish gene view of evolution, is compared to Darwin's Darwinism and the evolutionary' synthesis and becomes defined more strictly. An account of the external history of Darwinism and its subparadigms shows how cultural intellectual presuppositions, like Malthusianism or the Newtonian concept of the unchangeable laws of nature, also influenced biological theory' construction. In part III universal 'process-Darwinism' is elaborated based on the historical interaction of Darwinism with non-biological subject areas. Building blocks for this are found in psychology, the theory of science and economics. Additionally, a metaphysical argument for the universality of process- Darwinism, linked to Hume's and Popper's problem of induction, is proposed. In part IV gene-Darwinism and process-Darwinism are criticised. Gene-Darwinism—despite its merits—is challenged as being one-sided in advocating 'gene-atomism', 'germ-line reductionism' and 'process-monism'. My alternative proposals develop and try to unify different criticisms often found. In respect of gene-atomism I advocate a many-level approach, opposing the necessary radical selfishness of single genes. I develop the concept of higher-level genes, propose a concept of systemic selection, which may stabilise group properties, without relying on permanent group selection and extend the applicability of a certain group selectionist model generally to small open groups. Proposals of mine linked to the critique of germ-line reductionism are: 'exformation', phenotypes as evolutionary factors and a field theoretic understanding of causa formalis (resembling Aristotelian hylemorphism). Finally the process-monism of gene-Darwinism, process-Darwinism and, if defined strictly, Darwinism in general is criticised. 1 argue that our ontology and ethics would be improved by replacing the Newtoman-Paleyian deist metaphor of an eternal and unchangeable law of nature, which lies at tire very heart of Darwinism, by a truly evolutionary understanding of evolution where new processes may gain a certain autonomy. All this results in a view that I call 'ecological idealism', which, although still very much based on Darwinism, clearly transcends a Darwinian world view

    How to shift bias: Lessons from the Baldwin effect

    Get PDF
    An inductive learning algorithm takes a set of data as input and generates a hypothesis as output. A set of data is typically consistent with an infinite number of hypotheses; therefore, there must be factors other than the data that determine the output of the learning algorithm. In machine learning, these other factors are called the bias of the learner. Classical learning algorithms have a fixed bias, implicit in their design. Recently developed learning algorithms dynamically adjust their bias as they search for a hypothesis. Algorithms that shift bias in this manner are not as well understood as classical algorithms. In this paper, we show that the Baldwin effect has implications for the design and analysis of bias shifting algorithms. The Baldwin effect was proposed in 1896, to explain how phenomena that might appear to require Lamarckian evolution (inheritance of acquired characteristics) can arise from purely Darwinian evolution. Hinton and Nowlan presented a computational model of the Baldwin effect in 1987. We explore a variation on their model, which we constructed explicitly to illustrate the lessons that the Baldwin effect has for research in bias shifting algorithms. The main lesson is that it appears that a good strategy for shift of bias in a learning algorithm is to begin with a weak bias and gradually shift to a strong bias

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    In the Beginning Was the Verb: The Emergence and Evolution of Language Problem in the Light of the Big Bang Epistemological Paradigm.

    Get PDF
    The enigma of the Emergence of Natural Languages, coupled or not with the closely related problem of their Evolution is perceived today as one of the most important scientific problems. \ud The purpose of the present study is actually to outline such a solution to our problem which is epistemologically consonant with the Big Bang solution of the problem of the Emergence of the Universe}. Such an outline, however, becomes articulable, understandable, and workable only in a drastically extended epistemic and scientific oecumene, where known and habitual approaches to the problem, both theoretical and experimental, become distant, isolated, even if to some degree still hospitable conceptual and methodological islands. \ud The guiding light of our inquiry will be Eugene Paul Wigner's metaphor of ``the unreasonable effectiveness of mathematics in natural sciences'', i.e., the steadily evolving before our eyes, since at least XVIIth century, \ud ``the miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics''. Kurt Goedel's incompleteness and undecidability theory will be our guardian discerner against logical fallacies of otherwise apparently plausible explanations. \ud John Bell's ``unspeakableness'' and the commonplace counterintuitive character of quantum phenomena will be our encouragers. And the radical novelty of the introduced here and adapted to our purposes Big Bang epistemological paradigm will be an appropriate, even if probably shocking response to our equally shocking discovery in the oldest among well preserved linguistic fossils of perfect mathematical structures outdoing the best artifactual Assemblers

    Motility at the origin of life: Its characterization and a model

    Full text link
    Due to recent advances in synthetic biology and artificial life, the origin of life is currently a hot topic of research. We review the literature and argue that the two traditionally competing "replicator-first" and "metabolism-first" approaches are merging into one integrated theory of individuation and evolution. We contribute to the maturation of this more inclusive approach by highlighting some problematic assumptions that still lead to an impoverished conception of the phenomenon of life. In particular, we argue that the new consensus has so far failed to consider the relevance of intermediate timescales. We propose that an adequate theory of life must account for the fact that all living beings are situated in at least four distinct timescales, which are typically associated with metabolism, motility, development, and evolution. On this view, self-movement, adaptive behavior and morphological changes could have already been present at the origin of life. In order to illustrate this possibility we analyze a minimal model of life-like phenomena, namely of precarious, individuated, dissipative structures that can be found in simple reaction-diffusion systems. Based on our analysis we suggest that processes in intermediate timescales could have already been operative in prebiotic systems. They may have facilitated and constrained changes occurring in the faster- and slower-paced timescales of chemical self-individuation and evolution by natural selection, respectively.Comment: 29 pages, 5 figures, Artificial Lif

    Lamarck and immunity: Somatic and germline evolution of antibody genes

    Get PDF
    Current work on the mechanism of hypermutation of somatically rearranged antibody variable (V) genes shows that the most likely mechanism involves both direct DNA modification (deamination of cytosines to uracils by AID deaminase) and strand nicking plus mRNA editing (deamination of adenosine to inosine via the ADAR1 deaminase) coupled to a reverse transcription process to fix RNA sequence modifications in V gene DNA - most likely involving the repair enzyme DNA polymerase eta (rt) known to be an efficient reverse transcriptase in vitro. The DNA sequence patterns of families of similar germline V genes reveals that many features of somatically mutated and antigen-selected variable genes appear written into the germline V gene arrays of the immune system. Lamarckian gene feedback and cellular reverse transcription, coupled to Darwinian antigen binding selection of somatically mutated V genes, are concepts which appear necessary for a more complete understanding how the V gene complex has evolved. Antibody variable (V) genes of the immune system have therefore been used to test ideas on reverse transcriptase-coupled soma-to-germline feedback in a complex multicellular system. Such feedback constitutes a violation of Weismann's Barrier and thus support for some type of Lamarckian gene feedback operative during the evolution of the vertebrate immune system
    • 

    corecore