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Abstract 
Current work on the mechanism of hypermutation of somatically rearranged antibody variable 

(V) genes shows that the most likely mechanism involves both direct DNA modification 
(deamination of cytosines to uracils by AID deaminase) and strand nicking plus mRNA editing 
(deamination of adenosine to inosine via the ADAR1 deaminase) coupled to a reverse transcription 
process to fix RNA sequence modifications in V gene DNA - most likely involving the repair 
enzyme DNA polymerase eta (rt) known to be an efficient reverse transcriptase in vitro. The DNA 
sequence patterns of families of similar germline V genes reveals that many features of somatically 
mutated and antigen-selected variable genes appear written into the germline V gene arrays of the 
immune system. Lamarckian gene feedback and cellular reverse transcription, coupled to 
Darwinian antigen binding selection of somatically mutated V genes, are concepts which appear 
necessary for a more complete understanding how the V gene complex has evolved. Antibody 
variable (V) genes of the immune system have therefore been used to test ideas on reverse 
transcriptase-coupled soma-to-germline feedback in a complex multicellular system. Such feedback 
constitutes a violation of Weismann's Barrier and thus support for some type of Lamarckian gene 
feedback operative during the evolution of the vertebrate immune system. 
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Introduction 

In this paper I will review the main findings of our 
studies on the mechanism of antigen-driven somatic 
hypermutation of rearranged antibody (immunoglobulin, 
Ig) variable region genes (so called VDJs) and the impact 
of this somatic genetic diversity on the germline V 
segment repertoire. I will then draw general conclusions 
on the origins of genome diversity. Many details of this 
work have already been covered in major reviews (Steele 
et al. 1993; Rothenfluh et al. 1995; Steele et al. 1997; 
Blanden et al. 1998) and in our 1998 book Lamarck's 
Signature (Steele et al. 1998). More recent work will be 
cited in the body of the text. 

General Concepts: Molecular-Cellular 
Immunology and Evolution 

It is generally agreed that the primary evolutionary 
purpose of the immune system of vertebrates is the 
protection of the individual against disease. The 
proteins and carbohydrates which make up the cell 
walls, viral coats and secreted microbial toxins 
constitute the foreign antigens which individual 
immune systems need to react against to preserve the 
intEigrity of the body. The system consists of highly 
mobile blood white cells (lymphocytes) which come in 
two main categories, B cells and T cells which circulate 

© Royal Society of Western Australia 2009 

437 

from blood to lymph via a complex network of 
lymphatic vessels and capillaries. The complexity of the 
system almost rivals that of the brain and central 
nervous system (which in contrast consists of sessile or 
non-mobile nerve cells and fibres which generate their 
complexity in both their sheer cell numbers and cell-cell 
synaptic connections). The progenitors of the white cell 
lineages (B and T lymphocytes, monocytes, neutrophils, 
mast cells, polymorphonuclear leucocytes etc.) arise 
from stem cells in the bone marrow which produce 
many millions of hemopoietic cells on a daily basis 
(and, of course, the senescence of many other 
hemopoietic-derived cells as they exit the system). 
Hormonal and cytokine cell-to-cell communication no 
doubt allows the system to be co-ordinately controlled. 

The primary evolutionary strategy of the immune 
system has been shaped by two selective forces, a) the 
requirement to respond to unexpected antigens thrown 
up by new infectious diseases, and b) the need to prevent 
autoimmune reactions against self antigens. This has 
meant that during vertebrate evolution the immune 
system has developed strategies to learn to recognise and 
respond to the antigenic universe both during ontogeny 
(somatic recognition strategy during life in individual 
animals) and phylogeny (a germ line strategy for antigen 
recognition). The founding concepts of modern 
immunology are based on the Clonal Selection Theory of 
Acquired Immunity of Sir MacFarlane Burnet (Burnet 
1959). A good summary of the theory can be found in the 
Scientific American article by Ada and Nossal published 
in 1987. 
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gene arrays at the immunoglobulin locus in vertebrates. 
This work has allowed us to conclude that a significant 
portion of the somatic mutation and antigen-selection 
pattern in antibody variable genes (-80%) is indeed 
written into the germline V gene arrays at Ig loci. 

Rearrangement, Gene Expression and Somatic 
Hypermutation of VDJ genes 

A critical factor in the analysis depends on what has 
been established about the germline and somatic 
expression of immunoglobulin genes - they have clear 
'germline' and 'somatic' configurations (Figure 5 and see 
Honjo et aI. 2004). These facts allow us to infer and 
deduce that genetic information has indeed flowed from 
the somatic compartment to the germ cell compartment 
over evolutionary time. 

The figure shows a schematic outline of a mammalian 
immunoglobulin heavy chain in its germline 
configuration and its somatic configuration. The 
germline, or unrearranged DNA configuration, exists in 
germ cells and all non-lymphoid cells in the body (e.g. 
kidney cells, liver cells, etc., Honjo et al. 2004). Thus on 
the left hand side (5' side) are the array of so-called 'V­
elements' or 'V-segments', which would typically encode 
approximately 95 amino acids and the 100-200 V-

elements are encoded in a span of chromosomal DNA of 
about 1 Mb in the human genome . This repertoire of 
unrearranged V-elements lies about 100Kb upstream (in 
the transcriptional sense) of very short genetic elements 
termed diversity (D) and joining (J) regions. There are 
1O~30 D regions and 4-5 J regions at typical mammalian 

i IgH loci (together they would encode after VDJ assembly 
.approximately 25 additional amino acids). Further 
downstream, encompassing about 10 Kb lie successively 
the intronic enhancer and nuclear Matrix Attachment 
Region (EiMAR) and then the Ig class switch region DNA 
repeat elements and then a series of constant region 
exons encompassing Ig heavy chain isotypes, mu (u), 
delta (8), the various y chain subclasses (IgG1, IgG2a, 
IgG2b IgG3) and then the a chains for secretory IgA and 
E chains for mast cell binding and allergy-activating IgE 
antibodies. Further downstream is the 3' enhancer region 
(Honjo et al. 2004). 
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The various Ig classes reflect the functional properties 
of the antibody once antigen has been bound by the 
antigen combining site. The functional properties would 
include Complement activation and thus opsonisation of 
foreign particles for phagocytosis by monocyte scavenger 
cells (e.g. macrophages). The antigen binding site is a 
heterodimer of a light (L) and heavy (H) chain so antigen 
binding and thus antigen-mediated selection can only 
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Figure 5. Rearrangement and immunoglobulin gene expression. 

occur on a fully assembled Ig molecule or a B cell that 
displays such an antigen receptor on its surface 
membrane. 

A key process not shown in Figure 5 is 
immunoglobulin class switching (CSR) whereby 
following cytokine signalling from other lymphocytes (T 
cells) and white cells, the B cell will switch from 
transcribing and assembling IgM heavy chains (u chains), 
and reposition the productively assembled VDJ gene 
further downstream in front of one of the down stream 
Ig isotypes. This is a looping out DNA recombination 
m€chanism such that the B cell retains the original 
selected VDJ but now has it joined to a different set of 
constant region exons (Honjo et al. 2004). 

It is already clear that Ig loci display a degree of 
genetic complexity not observed in more straight forward 
Single-copy house keeping or tissue-specific protein 
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coding genes. T-cell receptor genes also display the same 
general genetic organisation and expression strategy (but 
typically do not normally somatically hypermutate their 
assembled VDJ genes). There is evidence that the 
protocadherin synaptic receptor genes in the central 
nervous system show a similar variable-to-constant 
rearranging strategy as seen for immunoglobulins and T­
cell receptor genes but in these cases it is executed at the 
RNA level by an alternative splicing mechanism (for a 
mini-review see Chess 2005). 

Germline V-elements per se are never transcribed into 
RNA for inclusion in a mRNA prior to translation into Ig 
proteins. In this sense they are transcriptionally and 
translationally silent. As such V-elements or their 
products are never the direct targets of antigen-binding 
selection. This type of antigen-mediated somatic selection 
is only directed to a fully assembled VDJ gene in the 
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context' of a light chain VJ gene co-expressed in the same 
B cell (and thus clonally selected). 

VDJs are therefore the substrates for both RNA 
polymerase II transcription and somatic hypermutation. 
It is important to note that additional mutational errors 
are introduced by the DNA rearrangement process at the 
V-D and D-J borders (termed 'junctional diversity') and 
because the process is stochastic only a minor portion 
(about 10% of all rearrangements of IgH chains) are 
'productive' i.e. in the correct translational reading frame 
(Honjo et al. 2004). This critical point will be discussed 
later in the context of fused 'VD' pseudogenes at chicken 
IgH loci (Rothenfluh et al. 1995). 

Thus a germline repertoire of 100 functional VH 
elements, 20 D and 5 J regions can theoretically encode 
100 x 20 x 5 or 10,000 VDJ regions; similarly 100 
functional VL elements and 5 J regions would encode 500 
VL. Together there is a potential combinatorial germline 
repertoire of perhaps 10,000 x 500 or 5 x 106 unique 
antibody specificities. Following antigenic stimulation 
and somatic hypermutation this potential repertoire 
could perhaps increase another order of magnitude or 
two (Berek & Milstein 1987,1988). In reality ongoing 
antigen selection sifts and focuses the response for higher 
affinity antibodies so the full potential is unlikely to be 
realised in any individual (and of course the upper limit 
would be set by the total number of B cells generated 
from the bone marrow at any given point in time). 

To summarise, genetic information in the form of 
unrearranged V-elements is never subject to direct 
antigen binding selection on the intact antibody or Ig 
receptor bearing celL In contrast B cells expressing fully 
rearranged VDJ (heavy chain) and VI (light chain) genes 
are subject to direct antigen-binding selection. It is this 
crucial distinction that demarcates the germline from the 
somatic configuration and thus allows deductions on the 
origin of highly non-random DNA sequence patterns. 

The Germinal Centre and Affinity-Based Selection 

A na'ive B cell in the periphery can be selected by 
antigen to immediately secrete its encoded antibody or it 
can migrate to the primary follicle in lymphoid tissue to 
become a founder B cell in a Germinal Centre (termed 
GC). One or just a few B cells locate in a follicle and they 
multiply to form small colonies of 10,000 to 20,000 cells. 
Due to antigen-binding competition between pre-existing 
low affinity antibody and antigen-antibody complexes 
displayed on follicular dendritic cells within the GC, only 
the mutated B cells displaying viable high affinity 
antibodies survive - the rest die by the programmed cell 
death process called apoptosis (~90% of all B cells in a 
Germinal Centre die there). In this way the mutated B 
cell survivors become antibody secreting cells and 
memory cells and they bear the signature of non-random 
DNA sequence modifications typical of intense selection. 
That is, point mutations in the VDJ accrue in those 
regions termed CDR or Complementary Determining 
Regions, which encode the amino acids that make direct 
contact with the molecular shapes of the antigen 
(typically protein, carbohydrate). Typical 'Wu-Kabat' 
plots of this non-random variability are shown in Figure 
6 for· 30 somatically mutated derivatives of the 
rearranged VH186.2 gene in mice (Steele et al. 1993). All 
of these features of the Germinal Centre reaction have 
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Figure 6. Wu-Kabat variability plots. Thirty somatically mutated 
derivatives of the mouse VH-1186.2 heavy chain variable gene 
a~sembled as V(D) is in mature anti-NP antibodies. Variability = 
Number difference at a position / Frequency of most common at 

I that position. VDJ DNA sequences at top; translated protein 
sequences at bottom. Adapted from Steele et al. (1993). 
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been covered at length elsewhere ego in Lamarck's 
Signature (Steele et al. 1998) or can be found in more 
specialised publications (e.g. MacLennan 1994). 

The Mechanism of Somatic Hypermutation 

The dominant current model of somatic 
hypermutation, "The DNA Deamination" model is DNA­
based. i.e. all the mutational events occur directly at the 
DNA level (Di Noia & Neuberger 2007; Teng & 
Papvasiliou 2007). The main first step e.ntails 
deamination of Cytosine to Uracil by the enzyme 
activation-induced cytidine deaminase (AID) which 
targets Cytosines in the context of WRCY hot spots (W = 

A or T, R = A or G purines, and Y = C or T pyrimidines). 
The resulting C-to-U lesions in DNA are either repaired 
by a base excision DNA repair pathway (involving uracil 
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DNA glycosylase, UNG), or if not repaired, replicated 
over to produce C-to-T mutations. If repaired by UNG 
the resulting abasic site can be transformed into a nick in 
the DNA by an endonuclease termed apurinic 
apyrimidinic endonuclease (APE). Alternatively the G:U 
mispairs attract the mismatch repair heterodimer MSH2-
MSH6 which also recruits the error-prone translesion 
DNA polymerase-TJ (eta) which introduces mutations in 
the repaired patch by targeting A:T base pairs at WA­
sites (where W = A or T). These series of steps are very 
similar to the V targeted-nicking and error-prone repair 
model of somatic mutation of IgV genes first advanced 
by Brenner and Milstein in 1966. 

However three sets of recent observations by our 
group are not easily reconciled with the standard model 
but are consistent with, or predicted, by the reverse 
transcriptase model (Steele 2009): 

a) DNA polymerase-TJ the accepted and sale A:T 
mutator in SHM is an efficient reverse 
transcriptase in vitro (Franklin et al. 2004); 

b) The RNA editing signature of ADAR1-mediated 
A-to-I deamination, as instanced by the elevated 
A-to-G mutations, is embedded within the SHM 
pattern (Steele et al. 2006); and 

c) The AID deaminase-linked RNA polymerase II 
RNA mutation signature, as instanced by elevated 
mutations at G sites (particularly G-to-C and G-to­
A) is embedded within the SHM pattern (Steele 
2009). 

This work has led us to conclude that the weight of 
evidence now favours "The Reverse Transcriptase Model 
first advanced by Steele and Pollard in 1987. Thus 
somatic hypermutation in B lymphocytes involves: 

a) Direct DNA deamination (C-to-U, thus giving rise 
to C-to-T and G-to-A mutations); 

b) RNA Pol II copying deaminated DNA templates 
carrying U and abasic site lesions generates 
mutated mRNA (giving rise to G-to-C and G-to-A 
strand biased mutation signatures); 

c) RNA deamination (editing) of mRNA causing 
Adenosin.e-to-Inosine mutations via ADAR1 
deaminase (thus causing the A-to-G strand biased 
mutation signature); and 

d) Error-prone reverse transcription by DNA Pol-TJ to 
fix the RNA mutations in B lymphocyte DNA and 
create further strand biased mutations viz. the 
transversions A-to-C and A-to-T. 

To summarize, during somatic hypermutation both 
direct DNA mutations and a variety of RNA mutations 
are copied back into DNA (Steele 2009). As we have 
pointed out earlier (Steele et al. 1997) a role for a cellular 
reverse transcriptase such as DNA polymerase-TJ acting 

;i in its reverse transcriptase mode should no longer be a 
heretical concept given that "telomerase", a ribonucleic 
acid-protein particle has as its core function the capacity 
to copy the RNA repeat into a DNA repeat - a critical 
step in synthesis of the telomere multiple repeat 
chromosomal cap. That is "telomerase" itself is a cellular 
reverse transcriptase (Blackburn 1992). 

Evolution of the Germline V-Segment 
Repertoire and Soma-to-Germline Feedback 

Is there any evidence that somatically mutated 
variable genes can be fed back to the germline V-segment 
repertoire? It is possible to answer this question in the 
affirmative because germline V-segments can never be the 
targets of somatic hypermutation nor direct antigen­
mediated selection at the protein level i.e. on an intact Ig 
antigen receptor on a mature B cell surface. This fact is 
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Figure 7. Key features of the repertoire Germline V Segments (Blanden et al. 1998). 
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often not addressed nor appreciated by those in the field 
speculating on the evolution of the V-segment repertoire. 
As we have documented elsewhere the germline V 
repertoires of families of similar V segments display all 
the hallmarks of strong somatic mutation and antigen­
mediated selection i.e. a significant portion of the 
somatically mutated VDJ repertoire generated during 
evolutionary time in vertebrates has been fed back to the 
germline most likely by a reverse transcriptase 
intermediate step and targeted to unrearranged V genes 
by homologous recombination (approx 2':80% of the 
assembled VDJ gene is comprised of the V element). 
Figure 7 summarises the main findings of this work 
which has been extensively published in refereed 
literature (Rothenfluh et al. 1994; Rothenfluh et al. 1995; 
Weiller et al. 1998; Blanden et al. 1998; Zylstra et al. 2003). 

In short, a highly -non-random somatic mutation and 
selection signature dominates the DNA sequence pattern 
of families of similar V genes arrayed, usually in tandem, 
in the vertebrate germline. 

As suggested above these are 'subtle' somatic mutation 
signatures - they are of a different class from the more 
obvious retro-sequence impact events that dominate 
vertebrate and mammalian genomes. They argue for a 
requirement for innovative ways of interpreting the DNA 
landscape of the genome. Thus sites of hyper­
recombination near RNA splice site borders in the L-V 
intron make sense in this model (Weiller et al. 1998) as do 
the strange features of chicken VH pseudogenes which all 
have fused 'D' bits in the correct reading frame 
(Rothenfluh et al. 1995; Ota & Nei 1995). 

From our research thus far we therefore conclude: 

1. Somatic hypermutation of antibody V genes 
operates by direct DNA and RNA base 
modifications coupled to reverse transcription and 
integration of mutated cDNA retrotranscripts back 
into chromosomal DNA within a B lymphocyte. 

2. Over evolutionary time somatically mutated and 
selected ("successful") V sequences from B 
lymphocytes have undergone homologous 
recombination into germline DNA, thus 
contributing to germline diversity and the 
maintenance of a functional germline V gene 
repertoire. 

Evidence from other systems 

Is Soma-to-Germline feedback a general phenomenon 
in complex biological systems? We address this by briefly 
reviewing the work of other groups. 

Corrado Spadafora 

From about the late 1980s to the present Corrado 
Spadafora and colleagues in Rome have published a 
series of important papers clearly showing that 
mammalian spermatozoa can take up foreign nucleic acid 
molecules and express the genetic information in 
progeny organisms. In particular mouse spermatozoa in 
vitro can absorb both foreign DNA and RNA, and if the 
latter then a LINE-I-derived reverse transcription step 
will be executed copying the RNA into DNA. In a small 
number of cases (:::; 10% ) the DNA sequences are 

integrated into the germline genome. In the majority of 
cases the sperm-absorbed DNA/RNA exists as 
extrachromosomal episomes which replicate along with 
the host somatic cells during development displaying 
mosaic tissue expression (see reviews in Smith & 
Spadafora 2005; Spadafora 2008). This work clearly 
shows there is no physical barrier to uptake of DNA or 
RNA, although there maybe clear developmental stages 
in spermatogenesis when spermatozoa are susceptible to 
foreign nucleic acid uptake (Zoraqi & Spadafora 1997). 

Patrick Fogarty 

Using an innovative technique based on P-elements 
and delivering DNA transgenes intravenously in simple 
vesicles, Fogarty has shown that 50% of progeny from 
such male mice inherit the gene sequence (Fogarty 2002). 
The critical integration event requires a transposase. This 
works suggests that non-cellular DNA can readily 
transverse the testes tissue barriers, that normally 
quarantine the production of sperm, be integrated into 
the germline and be transmitted to progeny. 

Minoo Rassoulzadegan 

The group of Minoo Rassoulzadegan has shown that 
mature sperm carry more than just a compact haploid 
DNA nucleus (Rassoulzadegan et al. 2006). Thus sperm 
heads contain gene-specific regulatory RNAs (miRNA) 
which at fertilisation can have profound genetic effects in 
progeny. The phenomenon described involves an allele­
specific "paramutation" effect of the Kit locus (important 
in mammalian development) yet the implications of the 
finding are far reaching. Certainly the effects can be 
transmitted to an additional breeding generation. The 
mechanism is unclear given that animal miRNA systems 
are not thought to amplify their miRNA precursors by a 
double stranded RNA polymerase as in plants. Perhaps 
the transgenerational effects are based on long lived RNA 
molecules? However the whole phenomenon raises the 
possibility of germline fixation of such epigenetic 
intermediary effects via a reverse transcription step at 
some level of the RNA regulatory process. 

John Mattick 

Since the mid 1990s John Mattick and colleagues have 
been documenting the extent and importance of the RNA 

I regulatory networks of what we now call the extended 
. 'transcriptome" (Mattick 2007; Mattick et al. 2009). Thus 

non-protein coding regions produce ncRNAs which are 
regulatory in nature, regulating gene-specific expression 
of protein coding genes. Only about 2% of the entire 
mammalian 'transcriptome' codes for proteins - the rest 
(>98% genome) are involved in specific gene regulation 
in a multilayered complex best described as the "RNA 
regulatory universe". In more recent papers Mattick 
concedes the necessity for some form of soma-to-germline 
feedback to be operative (Mattick 2009) to ensure that 
selected genetic changes at this level contribute to the 
evolution of complex systems, particularly the brain and 
central nervous system (Mattick & Mehler 2008). 
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Lars Holmgren 

For a number of years Holmgren and colleagues have 
studied the potential genetic consequences in metastases 
of horizontal transfer of tumor genes via dispersal and 
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uptake of apoptotic bodies (Bersmedh et al. 2001; Ehnfors 
et al. 2009). These studies clearly show that if the laterally 
spreading DNA confers a selective advantage on the 
recipient cell then integration of the DNA is manifest and 
the DNA sequences propagated to progeny cells. We 
speculated on this type of somatic gene transfer in the 
late 1970s (Steele 1979). . 

Genetic Cargo of Sperm? 

This is an appropriate question given the interesting 
findings of Spadafora and Rassoulzadegan 'we have just 
discussed. Indeed when one considers an ovum at about 
the time of natural fertilization there are more questions 
than answers raised by the phenomenon (Figure 8). 

Have we become so used to an image like this that we 
have forgotten how truly amazing it really is. Apparently 
one sperm succeeds in the race to fertilisation (one 
possibility is arrowed). Given conventional wisdom all 1 

the other attached sperm have no further say in the 
genetic outcome. Apart from the non-Mendelian routes 
of genetic transfer in the experiments of Spadafora and 
Rassoulzadegan we have known for many years (e.g. 
Keissling et al. 1987) that sperm heads have clusters of 
attached endogenous retroviruses - to what end one 
might ask? Moreover, ERV concentrations are very high 
in seminal fluid (;:::1011 per ml) and ERVs are emitted in 
copious quantities from activated lymphocytes (they also 
are prominent in Germinal Centres following 
immunisation). ERVs have been observed coating the 
female placenta (see Rothenfluh 1995 for more references 
of this type). Again the question arises - to what 
biological purpose should cells of the immune system 
and reproductive tissue be so predominantly associated 
with either ERV production or unexpected ERV tissue 
localisation? 

Concluding Remarks 

We conclude that both Darwinian antigen-binding 
selection and Lamarckian soma-to-germline feedback 
play key roles in the evolution of antibody variable 

Figure 8. Sperm fertilising ovum. 
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genes. There is also evidence supporting the view that 
reverse transcription is central to a better understanding 
of the somatic and germline evolution of these genes. 
The work of a number of groups suggest that the ease of 
gene movement between cells, whether they be germline 
or somatic, suggests that soma-to-germline feedback is 
likely to be general in complex biological systems and 
contributes to genome diversity. Thus Weismann's 
Barrier is viewed as being selectively penneable to somatic 
genetic information provided it is beneficial to both 
parent and progeny organisms (Figure 9). Acquired 
somatic genetic information ("experience") may therefore 
not be lost with the death of the individual but be 
propagated to progeny who would then be selected in a 
Darwinian manner for fitness. 
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