146 research outputs found

    Machine Learning and Data Mining Applications in Power Systems

    Get PDF
    This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid’s reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries

    Machine Learning Methods with Noisy, Incomplete or Small Datasets

    Get PDF
    In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Remote sensing of agricultural crops and soils

    Get PDF
    Research results and accomplishments of sixteen tasks in the following areas are described: (1) corn and soybean scene radiation research; (2) soil moisture research; (3) sampling and aggregation research; (4) pattern recognition and image registration research; and (5) computer and data base services

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    On the sensitivity of buildings to climate:the interaction of weather and building envelopes in determining future building energy consumption

    Get PDF
    Building simulation requires a large number of uncertain inputs and parameters. These include quantities that may be known with reasonable confidence, like the thermal properties of materials and building dimensions, but also inputs whose correct values cannot be known with absolute certainty, notably weather and occupancy. A simulation run is not, strictly, a prediction. Since the parameters and calculations are approximations of real-world phenomena and materials, the exercise is essentially uncertain. Regardless of whether simulation is interpreted as a prediction or an approximation indicative of average behaviour, including explicit bounds of uncertainty is more informative for a decision-maker than a single point estimate. This thesis presents results for two related but independent proposals for sensitivity and uncertainty analyses in building simulation, particularly to weather. The first is a novel, generalisable procedure for generating synthetic weather data to carry out a Monte Carlo experiment with a building simulation model. The second is a technique for training emulators or response surfaces to rapidly obtain estimates of performance outputs from simulation models, using Gaussian Process regression on small training data sets. The two parts, together and separately, enable the quantification of the lack of knowledge about an input, and the impact of this uncertainty on the final results. The synthetic weather time series developed are an ensemble of realistic hourly data whose mean statistical characteristics are close to the typical year used to generate them. The procedures developed are generalisable with minimal expert input. We avoid presenting a unified model for all climates, leaving some tuning parameters like the extent of correlation, and the unknown coefficients of stationary time series models, to be calculated empirically (based on the typical file of a given climate). The emulators are created using regression, comparing the performance of classical parametric regression with a non-linear technique based on Gaussian random processes. Our proposal trains reliable models on small samples, reducing the computational burden, and gives an explicit estimate of the uncertainty for a prediction, since the response at any sampled point is modelled as a Normally-distributed random process. Once again, we avoid a unified emulator or regression model because the response from one building (defined by its geometry and usage in this case) is not necessarily an appropriate description of the response of another. This work is a step towards practical tools for the use of building simulation in a stochastic paradigm. Both elements of the thesis contribute toward explicitly estimating the uncertainty in the results of building simulation, using empirical or data-driven techniques. The types of the time series and emulator models are general enough to work on any climate or building, with parameters obtained from the simulated/typical sample at hand, but the importance of different aspects and the nature of a buildingâs response are determined uniquely (i.e., parameter values). The work is easily extensible to the analysis of the sensitivity of a building, or groups of buildings, to any inputs. The concepts proposed in this thesis may also be used for stochastic optimisation and models to predict performance metrics other than the annual sum of energy

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique
    corecore