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Abstract

Building simulation requires a large number of uncertain inputs and parameters. These in-

clude quantities that may be known with reasonable confidence, like the thermal properties of

materials and building dimensions, but also inputs whose correct values cannot be known

with absolute certainty, notably weather and occupancy. Building simulation is commonly

used to estimate the impact of design decisions on indoor conditions to enable relative com-

parisons. A simulation run is not, strictly, a prediction. Since the parameters and calculations

are approximations of real-world phenomena and materials, the exercise is essentially un-

certain. Regardless of whether simulation is interpreted as a prediction or an approximation

indicative of average behaviour, including explicit bounds of uncertainty is more informative

for a decision-maker than a single point estimate.

Climate or weather as input to building simulation is the dominant theme of this thesis.

Current practice calls for the use of a typical weather file to evaluate design choices based

on energy consumption. The typical year file is intended to represent the mean climate, and

therefore mean energy usage: it does not represent the range of impact on the final indoor

environment. That is, a confidence or variability interval about the mean response cannot be

calculated using a typical year file.

This thesis presents results for two related but independent proposals for sensitivity and

uncertainty analyses in building simulation, particularly to weather. The first is a novel,

generalisable procedure for generating synthetic weather data to carry out a Monte Carlo

experiment with a building simulation model. The second is a technique for training emulators

or response surfaces to rapidly obtain estimates of performance outputs from simulation

models, using Gaussian Process regression on small training data sets. The two parts, together

and separately, enable the quantification of the lack of knowledge about an input, and the

impact of this uncertainty on the final results.

The synthetic weather time series developed are an ensemble of realistic hourly data whose

mean statistical characteristics are close to the typical year used to generate them. The

procedures developed are generalisable with minimal expert input. We avoid presenting a

unified model for all climates, leaving some tuning parameters like the extent of correlation,

and the unknown coefficients of stationary time series models, to be calculated empirically

(based on the typical file of a given climate). The emulators are created using regression,
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Abstract

comparing the performance of classical parametric regression with a non-linear technique

based on Gaussian random processes. The issue with representing a highly non-linear and

non-smooth process like building simulation with classical regression is that the models are

only reliable within very restricted sampling domains. We were able to overcome this with

Gaussian Process regression. Our proposal trains reliable models on small samples, reducing

the computational burden, and gives an explicit estimate of the uncertainty for a prediction,

since the response at any sampled point is modelled as a Normally-distributed random process.

Once again, we avoid a unified emulator or regression model because the response from one

building (defined by its geometry and usage in this case) is not necessarily an appropriate

description of the response of another.

This work is a step towards practical tools for the use of building simulation in a stochastic

paradigm. Both elements of the thesis contribute toward explicitly estimating the uncertainty

in the results of building simulation, using empirical or data-driven techniques. The types of

the time series and emulator models are general enough to work on any climate or building,

with parameters obtained from the simulated/typical sample at hand, but the importance

of different aspects and the nature of a building’s response are determined uniquely (i.e.,

parameter values). The work is easily extensible to the analysis of the sensitivity of a building,

or groups of buildings, to any inputs. The concepts proposed in this thesis may also be used

for stochastic optimisation and models to predict performance metrics other than the annual

sum of energy.

Keywords:
adaptation, building simulation, climate change, climate resilience, climate risk, en-
ergy efficiency, sensitivity analysis, stochastic simulation, weather generator, uncer-
tainty analysis
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Résumé
Sur la sensibilité des bâtiments au climat : l’interaction des conditions climatiques
et de l’enveloppe des bâtiments sur la détermination de leur consommation d’éner-
gie future

La simulation des bâtiments nécessite une bonne connaissance d’une multitude de
données d’entrée, de facteurs incertains et de paramètres. Ceux-ci incluent des quan-
tités qui peuvent être connues avec suffisamment de certitude, comme les propriétés
thermiques des matériaux et les dimensions du bâtiment, mais aussi de certains autres
paramètres qui ne peuvent pas être définis de façon satisfaisante, notamment la mé-
téo et l’utilisation effective du bâtiment. La simulation est alors plutôt un outil pour
estimer l’impact des décisions de conception sur les conditions intérieures, afin de
permettre des comparaisons relatives et non une prédiction. Les paramètres des cal-
culs sont des approximations des phénomènes et des matériaux réels, donc l’exercice
est fondamentalement incertain. Les résultats de la simulation devraient être interpré-
tés comme des prédictions ou des indications de performance moyenne. Ceci inclut
des déclarations explicites sur l’incertitude d’un certain résultat, plus communément
exprimé comme intervalle de confiance autour d’une réponse moyenne.
Le thème principal de cette thèse est la considération du climat et de la météorologie
comme données d’entrée dans la simulation de la consommation d’énergie d’un
bâtiment. L’usage se veut d’utiliser des données typiques pour évaluer le design. Le
fichier climatique annuel représente le climat moyen, et ainsi l’énergie moyenne
utilisée, et non l’ensemble des influences du climat sur l’environnement intérieur. En
d’autres mots, un intervalle de confiance ne peut pas être calculé en utilisant un seul
fichier climatique annuel.
Cette thèse présente les résultats de deux approches liées mais indépendantes pour
faire des analyses de sensibilité et d’incertitude. La première est une nouvelle pro-
cédure généralisable pour produire des données météorologiques synthétiques afin
d’effectuer une simulation de Monte Carlo d’un modèle de simulation d’un bâtiment.
Le second est une technique pour former des émulateurs ou « response surfaces » à
partir d’un nombre réduit de données, afin d’obtenir rapidement des estimations de
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Résumé

performance. Les deux parties abordent, ensemble et séparément, l’enjeu de souligner
explicitement le manque de connaissances sur une certaine donnée d’entrée ainsi
que l’impact de ce manque sur les résultats finaux.
Les données météorologiques synthétiques sont un ensemble de données horaires
réalistes dont les statistiques caractéristiques moyennes sont proches de l’année
météorologique typique utilisée pour les générer. Les procédures utilisées sont géné-
ralisables, suivant une contribution minimale de la part d’experts pour assurer un
contrôle de la qualité. Les émulateurs sont développés en utilisant des techniques de
régression : la performance de régression classique paramétrique est comparée à une
technique non-linéaire basée sur des processus aléatoires gaussiens (Gaussian Process
regression). Le problème lié à la représentation d’un processus hautement non-linéaire
et non-lisse, comme la simulation d’un bâtiment à travers une régression classique,
est que les prédictions ne sont fiables que dans des domaines d’échantillonnage très
restreints. La Gaussian Process regression produit des modèles fiables même sur de
petits échantillons, réduisant ainsi la charge de calcul et donnant une estimation ex-
plicite de l’incertitude pour une prédiction, puisque la réponse est modélisée comme
un processus aléatoire Gaussien. Encore une fois, nous évitons un modèle unifié car
la réponse d’un bâtiment (défini par sa géométrie et son utilisation dans ce cas) n’est
pas nécessairement représentative de la réponse d’un autre bâtiment.
Le travail présenté dans cette thèse est une étape vers des outils pratiques pour
l’utilisation de la simulation des bâtiments dans un paradigme stochastique. Les
deux éléments de la thèse contribuent à estimer l’incertitude dans les résultats de
simulation. Les techniques présentées sont empiriques mais leurs structures sont
constantes et robustes. Les formes des modèles de série temporelle et d’émulation
proposés ici sont suffisamment générales pour fonctionner sur tous les climats et
bâtiments, mais l’importance des différents aspects et la nature de la réponse d’un
bâtiment sont déterminés de manière spécifique. Le travail est facilement extensible
pour l’analyse de sensibilité d’un bâtiment ou d’un ensemble de bâtiments, à tout
type de données d’entrée. Les concepts proposés dans cette thèse peuvent aussi être
utilisés pour faire une optimisation stochastique et de concevoir des modèles afin de
prédire d’autre métriques de performance autre que la somme annuelle d’énergie.
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1 Introduction

... the universe was full of ignorance all around and
the scientist panned through it like a prospector

crouched over a mountain stream,
looking for the gold of knowledge

among the gravel of unreason,
the sand of uncertainty, and

the little whiskery eight-legged swimming things of superstition.

Terry Pratchett, Witches Abroad

1.1 A Provocation

In recent years, energy and sustainability issues have vied with access and cost on the
top of the agenda for the built environment. Put simply, the challenge is to ensure that
every human being has access to a comfortable and safe shelter, without destroying the
environment. And, to paraphrase the Brundtland Commission (World Commission on
Environment and Development 1987), we should have been done with this yesterday,
without exhausting the resources we will need tomorrow.

It is not surprising that much of the initial research or thought about indoor conditions
went into improving indoor lighting and ventilation. The industrial revolution, with
its “dark Satanic mills1” and filthy cities, mostly concentrated in northern Europe,
had a profound impact on the living conditions of the urban populace, much of which

1William Blake was probably not thinking of building simulation when he wrote this though, c. 1808.
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had formerly been the rural populace. Since then, admirable progress has been made
in the condition of the built environment, at least in the industrialised world. In an
unhappy twist, the definition of ‘modernity’ widely adopted by developing nations
today creates buildings that do not give much importance to indoor environmental
quality. While the resulting indoor environments are not as bad as those from the early
decades of the industrial revolution, the pervasive idea of using energy to compensate
for inappropriate design has not gone away. We now have all sorts of clever ways of
measuring the impacts of indoor environmental conditions on human health and
productivity. Somewhat ironically, much of it boils down to the same prescriptions
as a hundred years before the industrial revolution: plenty of fresh warm/cool air,
exercise, and avoidance of toxic substances. Most societies regard access to a safe and
comfortable indoor environment, at home and work, as a necessity, if not a right.

Lack of access to warm or cool interiors in extreme situations can be fatal or, at the
very least, exhausting; and, anybody who has spent time in a tropical country or,
more recently, in a city even in a temperate country, will swear by the benefits of air
conditioning and filtration. In the modern world, therefore, it is not hard to see a
comfortable indoor environment as a necessity. Yet, the definition of this necessity
keeps expanding. As Ackermann (2010) argues persuasively in her book, the “culture
of cool”, and its accompanying energy crisis, arise from largely manufactured needs.
Infrastructure does not just meet demand, it may also create it. It is almost too easy to
point out the excesses of glass towers in the desert heat, contemporary travesties of
Corbusier’s Mur Neutralisant and Respiration Exacte, enabled by space-age materials
and cheap fuel. However, these buildings arise from a certain set of economic and
social factors, and their damage to the environment is more symbolic than statistically
significant. In a perverse way, these buildings are very efficient and high-performing.
In the quest for ever-more efficiency and higher performance, a culture that values
hermetic bubbles over the wholesale improvement of the built environment has taken
hold. It will be far more difficult to tackle the rising demand for cooling and heating
from a billion new dwellings packed into ever-denser cities if we do not address this
cultural conditioning. Therefore, it befits us to consider the simpler, even primitive,
aspects of the problems we are seeking to solve.2

We contend that working with the climate rather than against it, to create the relatively
small range of thermal conditions that humans prefer, is a far more sound course of
action – environmentally, socially, and economically – than any number of efficient
fan-coils. Accepting a lack of control and thermal variability to create delight, rather

2It is difficult to point where exactly, but the discussion in this chapter has been influenced by Banham (1984),
so we will just generally acknowledge his work here.
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than just to avoid discomfort, may lead to simple buildings, but the occupants of these
buildings may learn to adapt far more. A changing climate and more frequent extremes
will necessitate the use of systems, and there are certain climates which cannot be
tackled with clever design alone, but Heating, Ventilation, and Air Conditioning (HVAC)
systems used as back-ups rather than defaults are certainly a desirable outcome. The
philosophical bent of this thesis is not to suggest that the solution to the energy crisis
is a large scale roll-back of the (thermal) comforts we have come to take for granted.

This thesis takes the optimistic and somewhat self-serving view that the climate is
a very important factor in building design, second only to the wishes of the user.
Naturally, nothing can be constructed without a budget and availability of materials.
All else being the same, though, climate and usage should guide everything from site
selection through massing to the number of panes in each window. With the advent of
mechanised climate control and inexpensive energy, this order of preference has been
turned on its head somewhat. However, energy is not limitless (yet), and some of the
by-products of energy production – pollution, environmental degradation, and Green
House Gas (GHG) emissions – tend to undermine the collective efforts of humanity to
improve its living conditions. Our view is optimistic in the sense that we expect new
generations of architects and engineers to regard bioclimatic (read: energy-conscious)
design as the norm. Ticking check-lists of prescriptive norms about insulation and
window conductance can hardly be the basis for 21st century building design.

This work is not an attempt to provide concrete rules and guidance for bioclimatic
architecture. Rather, we focus on the mathematical tools to provide additional know-
ledge of certain factors and their interactions, and to quantify our lack of knowledge
about these quantities. Specifically, this thesis describes methods to analyse the sens-
itivity of indoor environmental conditions to certain properties of the climate and
building envelope. Where permitted by the mathematics of the problem, we quantify
uncertainty about the values of these exogenous (lit. ‘outside of the system’) variables,
climate and envelope, on the expected energy need for space heating and cooling.
The procedures described in this thesis should not be interpreted as value judgements,
but as epistemological quantifiers: they are not meant to show what is good or bad,
they are only meant to help quantify one’s knowledge, or lack of it, about the inputs,
outputs, and their relationships. Human judgement does not need to be replaced
by ever-smarter algorithms or tools, or yet another set of guidelines. What we aim
to show is how much impact not knowing something (e.g., future weather) has on
something else one is trying to control (e.g., indoor comfort, energy use).

We begin with a prophetic warning from Douglas Adams.
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THE Great Ventilation and Telephone Riots of SrDt 3454 had started off
as just a lot of hot air.

Hot air was, of course, the problem that ventilation was supposed to
solve and generally it had solved the problem reasonably well up to the
point that someone invented air-conditioning, which solved the problem
far more throbbingly. And that was all well and good, provided you could
stand the noise and the dribbling until someone else came up with some-
thing even sexier and smarter than air-conditioning, which was called
in-building climate control. Now this was quite something. The major
differences from just ordinary air-conditioning were that it was thrillingly
more expensive, and involved a huge amount of sophisticated measuring
and regulating equipment which was far better at knowing, moment by
moment, what kind of air people wanted to breathe than mere people
did. It also meant that, to be sure that mere people didn’t muck up the
sophisticated calculations which the system was making on their behalf,
all the windows in the buildings were built sealed shut. This is true. While
the systems were being installed, a number of the people who were go-
ing to work in the buildings found themselves having conversations with
Breathe-O-Smart systems fitters which went something like this:

“But what if we want to have the windows open?”
“You won’t want to have the windows open with new Breathe-O-Smart.”
“Yes, but supposing we just wanted to have them open even for a little

bit?”
“You won’t want to have them open even for a little bit. The new Breathe-

O-Smart system will see to that.”
“Hmmm...” “Enjoy Breathe-O-Smart!”
“Okay, so what if the Breathe-O-Smart breaks down or goes wrong or

something??”
“Ah! One of the smartest features of the Breathe-O-Smart is that it can-

not possibly go wrong. So. No worries on that score. Enjoy your breathing
now, and have a nice day.”

...
Major heat waves started to coincide, with almost magical precision,

with major failures of the Breathe-O-Smart systems. To begin with, this
merely caused simmering resentment and only a few deaths from asphyxi-
ation.

Douglas Adams, Mostly Harmless (1992).
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1.2 This Thesis: Novelty and Organisation

...it is well known that a vital ingredient of success
is not knowing that what you’re attempting can’t be done.

A person ignorant of the possibility of failure can be
a half-brick in the path of the bicycle of history.

Terry Pratchett, Equal Rites

We begin by discussing our approach – what is unique about it, why it is relevant, and
how it can be of use to simulation practitioners – and what the reader can expect in
the rest of this thesis. This is discussed again in the final chapter (Section 5.3).

1.2.1 Contribution

As we have discussed elsewhere, modern Building Performance Simulation (BPS) tools
do not explicitly solve core differential equations stochastically, with few exceptions.
Rather, they rely on multiple runs with random inputs to quantify uncertainty or
sensitivity. That is, unless one is explicitly modelling changing material properties, or
randomly seeding a ray-tracing algorithm, every simulation run of a given building
model can be expected to give exactly the same output. The approach advocated in
this thesis changes this paradigm: we ask the user to not expect the same answer with
every simulation. Instead, every simulation may be interpreted as an experimental
run, and the sensitivity of the system being simulated determines the variation in
output that can be expected from uncertain inputs.

The intention of our work related to the creation of synthetic weather data is not to
predict future weather. Incorporating stochasticity does not automatically improve the
predictive power of simulation for a specific time in the future. Weather or climate pre-
dictions are imprecise and usually expected to be ‘true’ only in some broad statistical
sense. The same is true for normative usage schedules published by standard-setting
bodies such as the Swiss Society of Engineers and Architects (SIA). Rather, we expand
the role of simulation in exploring design options by broadening the test conditions to
explicitly calculate variation due to unknown future weather conditions. We propose
to do this by simulating a building model with an ensemble of weather files, i.e. a
Monte Carlo (MC) simulation. The principal difficulty, and the novelty in our work, lies
in finding a time-efficient and sufficiently generalizable way to generate this dataset
without requiring access to large historical datasets.
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This thesis, thus, presents two contributions: (1) Synthetic weather time series that
enable the explicit calculation of the uncertainty in building simulation due to weather
inputs; and, (2) A customisable emulator that supplements full-scale simulation for
computationally-intensive uncertainty or sensitivity analyses. The calculation of
uncertainty using synthetic weather time series may be interpreted as a Monte Carlo
(MC) simulation (of a building thermal model) with respect to the weather input.
The influence of weather input on simulated energy consumption does of course
interact with other building properties. That is to say, the work presented here is
easily extensible to the examination of uncertainty due to any inputs and should
thus be treated as a brief foray into a stochastic paradigm for BPS. Since uncertainty
or sensitivity analyses are usually computationally-intensive, a strategy is proposed
to construct meta-models or emulators as rapid-response supplements to full-scale
simulation. In principle, the examination of uncertainty or sensitivity does not need an
emulator, and using one adds error and uncertainty to the system. However, practical
limits on computational time force one’s hand. In addition, the technique used in
this thesis to construct emulators yields an explicit distribution of the output at some
unknown point, i.e., a formal quantification of the uncertainty at that point.

What does it mean then, to use simulation in a “stochastic paradigm”? The concept
of a “paradigm” within which scientific enquiry is carried out comes from the work
of Thomas Kuhn3, and more broadly, philosophy and history of science. We use a
loose paraphrasing of Kuhn’s insights into the nature of scientific progress to explain
how a paradigm shift may be interpreted. The essence of a paradigm shift is that
one has to change one’s perspective on a certain problem to be able to use the new
techniques or procedures that are proposed as solutions. Not all of the underlying
assumptions and vocabulary of the existing system will apply in the new system
or paradigm. Often, a change of paradigm may directly contradict the established
conventions of the previous system. In this these, the proposed shift of paradigm is
more about perspective than a new theory or discovery.

If a user is looking for a precise ‘answer’ from a building simulation, then the tech-
niques proposed in this thesis are useless. The ‘synthetic’ files proposed in this thesis
are not precise predictions of the future weather. The emulators are approximate
supplements, not replacements, for physics-based models. The point of an emulator
is to allow the probing of a rapid-response surrogate for computationally intensive
tasks like sensitivity analysis, or exploration of design alternatives with uncertainty,
but it will always deliver responses with an approximate confidence interval. Since

3TS Kuhn (2012). The structure of scientific revolutions. 4th ed. Chicago; London: The University of Chicago
Press
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building simulation is an approximation of the energy used by a planned building in
its lifetime, we contend that the use of Monte Carlo Analysis (MCA) with an emulator
to explicitly include uncertainty improves the information available to the user. In a
paradigm of deterministic simulations, for a highly non-linear system like building
simulation, the user cannot know the extent to which the ‘answer’ from a typical file is
representative of the range of ‘answers’ that are reasonable for a given climate.

The synthetic weather files and stochastic emulator proposed in this thesis offer a
framework to: (1) quantify the uncertainty in simulation outputs; and, (2) examine
the sensitivity of a building’s performance to variation in various climate- and build-
ing-based inputs of interest. The concepts of uncertainty analysis are certainly not
exclusive to thermal simulation, so are discussed in the wider context of BPS. The
same can be said of the synthetic weather data introduced in Chapter 3: the time series
may be used for modelling any system that uses weather as an input. Future research
will extend the usage of these files to PhotoVoltaic (PV) systems, urban simulation,
and modelling demand for electrical networks (Section 5.3).

PRÉCIS

• All inputs to building simulation are uncertain, with different levels and sources
of uncertainty.

• Not all of this uncertainty can be eliminated, though some of it can be reduced.

• A solution/design focussed on just the mean or deterministic inputs only answers
the requirements under these conditions.

• The actual conditions experienced by the building, and its as-built properties,
may vary substantially from the mean.

� Explicitly including the uncertainty of inputs through, for example, approximate
confidence intervals, improves the robustness of design.

1.2.2 Thesis Structure

This thesis is divided into two distinct streams: one dealing with the creation of
synthetic weather time series, and one with regression-based emulators for rapid sens-
itivity analyses. These two are both required to achieve the overall goal of the thesis
– practical sensitivity and uncertainty analyses, especially with respect to weather
inputs – but they are also usable independently.

This chapter, INTRODUCTION, discusses the motivation and background for the thesis.
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Chapter 2, STATE OF THE ART summarises the extant literature about the problems of
concern to this work, and solutions that have been proposed so far. It also covers the
techniques and results upon which the work is built.

Chapter 3, SYNTHETIC WEATHER INPUTS FOR BUILDING SIMULATION, introduces the
synthetic weather generation procedure. First, we lay out the process of extracting
random and deterministic components from a weather time series, and discuss the
resulting quantities. Then, we describe the process of simulating the random compon-
ents to create synthetic time series. Finally, we demonstrate how these files may be
used in a simulation workflow to analyse the impact of different weather conditions
on the annual energy use. The chapter includes random series with and without
climate-change forecasts.

Chapter 4, EMULATORS FOR UNCERTAINTY AND SENSITIVITY ANALYSES, discusses three
classical (parametric) techniques, from the simplest most restrictive technique to the
most generalised, and a partially parametric technique, Gaussian Process regression.
The goal is to create a workable model with relatively small data sets. The techniques
are discussed using two theoretical examples.

Chapter 5, CONCLUSION, summarises the contributions of this thesis and future
extensions of this work. The appendices carry additional concepts and results related
to each stream, Appendix A for Chapter 3, and Appendix B for Chapter 4.

1.2.3 Terms and Terminology

This thesis uses a number of concepts and techniques from different fields, so it is
useful to get some terminology out of the way first. A detailed glossary/nomenclature
is provided in the appendix. Longer explanations and background for some terms and
concepts are also provided in the appendices (Appendices A and B).

The words ‘weather’ and ‘climate’ are not interchangeable, though they are often
confused outside specialist circles. Among the many definitions available, we present
a succinct statement by Essenwanger (2001): “... ‘weather’ is an instantaneous state
of the atmosphere and ‘climate’ is an average state”. Human reports are notoriously
unreliable vis-à-vis climate reports, and when most people talk about ‘climate’, they
are usually referring to the weather they have perceived in the last few days or, at best,
the past season. Another relevant definition of climate is by the World Meteorological
Organization (WMO), adopted at the World Climate Conference (1979): “climate is
the synthesis of weather events over the whole of a period statistically long enough

8
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to establish its statistical ensemble properties (mean value, variation, probabilities
of extreme events, etc.) and is largely independent of any instantaneous events”
(ibidem).

In the context of weather data inputs for building simulation, weather ‘file’ implies the
weather time series input. Most building simulation programs accept weather data as
a separate ‘file’, usually a rectangular text file. Hence, the words ‘series’, ‘file’, and ‘input’
should be considered interchangeable in the context of weather data. Most weather
data input to simulation programs is at an hourly time step, though the calculations
themselves must often be run at a sub-hourly time step (due to stability conditions
in finite difference networks with capacitance, for example). In this work, we deal
almost exclusively with weather data at an hourly time step – giving 8760 hours in a
year. We will generally reserve the word ‘data’ to denote measured or recorded data.
Synthetic values, whether they are modelled, interpolated, or re-sampled, are referred
to as ‘time series’ or just ‘series’. This is not an important distinction, and a cause
of frequent lapses, because we expect the reader to know that of course modelled
time series are not the same as recorded data. ‘Projections’ or ‘forecasts’ of future
climate are predictions based on computer models. The word ‘projection’ should
not be confused with the mathematical operation of ‘projecting’ or mapping higher-
dimensional spaces or objects onto lower dimensional basis spaces. In this thesis, we
use future time series of mean values from the CORDEX website4.

We will use the term ‘energy need’ and ‘energy demand’ to denote the energy require-
ments of a building, calculated as an ideal load. This is an integral quantity, so is
usually stated over some period, like a year. It is equivalent to saying ‘energy con-
sumption’, or ‘effective energy’. If a mechanical system is added to the calculations,
and its efficiency taken into account, then we arrive at ‘final energy’. If this ‘chain’ of
energy is continued, then we can arrive at the ‘primary energy’, which is the amount
of energy extracted from nature. This thesis does not include calculations involving
mechanical systems, so we will always deal only with energy need or consumption,
stated in kWh/m2 (Energy Use Intensity (EUI), or energy use divided by the floor area).
None of these quantities should be confused with ‘power’, stated in Watts [W], which
is not used in this thesis.

The terms stochastic and random are used interchangeably in this thesis. They mean
the same thing, in the contexts that we are familiar with. Favouring simplicity over
pedantry, we will try to use random or randomness, unless otherwise forced by the
context. For example, ‘stochastic weather files’ mean time series with random com-

4World Climate Research Programme 2015.
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ponents fed as input to building simulation. Technically, any random number genera-
tion/simulation is sampling a pseudo-random series. A pseudo-random series should
approximate the uniform distribution of truly random numbers, in the interval [0,1],
and the draws should be independent (Kleijnen and Groenendaal 1992).

The words façade/facade and building envelope are usually used interchangeably. For
the most part, we will use the latter term in this thesis. This is to make a distinction
between the facade as the veneer, or outward face of the building, in contraposition to
the envelope, the layer(s) that together make up the interface between the indoors
and outdoors. Facade usually only refers to the walls of a building, while the ‘envelope’
includes the roof, floor, and underground walls as well. In this thesis, we are interested
in this concept of the envelope as a skin, so the use of facade is less appropriate.

The phrase ‘Building Performance Simulation (BPS)’ and the word ‘simulation’ should
be interpreted to mean building thermal simulation, unless explicitly stated otherwise.
According to Kleijnen and Groenendaal (ibidem), a (numerical) simulation is a model
with a time dimension, which is the case in this thesis. The only common exception
to this will be the use of the phrase ‘Monte Carlo simulation’, which is the sampling
of some random distribution for sensitivity, what-if, or uncertainty analyses. The
term model is used extensively in this work. Kleijnen and Groenendaal (ibidem) state
that in principle, “... a model is anything that represents something else”. For our
purposes, this definition is far too broad. Thus we limit ourselves to the concept
of “abstract models”: equations, and the computer programs that solve them. A
further categorisation of models is into deterministic and stochastic/random models.
Deterministic models, which most building performance simulation is based on, are
perfectly repeatable. In the sense that one combination of inputs will always give the
same outputs, regardless of how many times a simulation is run. Stochastic or random
models are, broadly speaking, not exactly repeatable because of intrinsic randomness
in one variable or more. The randomness could also arise due to the use of stochastic
differential equations, for example. NB: The way we use the terms determinism and
deterministic should not be confused with the philosophical concept of determinism.5

The words ‘meta-model’, ‘surrogate model’, ‘response surface’, and ‘emulator’, all
usually refer to a regression-based mathematical approximation of a real system or
simulation. We will generally use only the last term, emulator, and we are of course
approximating a simulation, which itself is an approximation of a complicated real
system. Each of these names gives a useful insight into the purpose of these mathem-

5“The world is governed by (or is under the sway of) determinism if and only if, given a specified way things are
at a time t , the way things go thereafter is fixed as a matter of natural law” (Hoefer 2015).
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atical objects: they are models-of-models (meta-models); they are replacements or
substitutes for something that is usually more cumbersome or otherwise expensive
to probe (surrogates); they fit a continuous, mathematically tractable function to dis-
crete data (response surfaces); they imitate the behaviour of some complex underlying
system (emulators). Two terms often used in regression are ‘parameter’ and ‘variable’;
a variable is directly observable, a parameter is not. In addition, variables can be
endogenous or exogenous: i.e., intrinsic to a model or extrinsic to it (ibidem).

Finally, a note on spelling and orthography. By force of habit, we use the British/Com-
monwealth variants for most spellings. For example, optimization is optimisation,
color is colour, center is centre, but regression is still regression. The only exception is
when we are directly quoting an author, publication, or manual. This leads to some
inconsistencies but leaves us with a clear conscience. We will also avoid umlauts
(Köppen → Koeppen), accents (rôle → role), cedillas (façade → facade), and other
orthographic fancies, unless they alleviate confusion in a certain context.

Content that is formatted with wider margins like this is a direct quote
from another author. These quotes are intended to be part of the argument,
but have not been paraphrased because the original writing succinctly
conveys exactly what we were trying to say in that context.

NOTE ON PRÉCIS IN THE TEXT

• Whenever text is grouped like this with a bar on the left, it is either summarising
the argument from a section or making a crucial didactic point, usually as part of
an informal syllogism.

• The ordinary bullet (•) indicates a premise or proposition.

• The ‘�’ denotes a conclusion.

• Since this is not a work of formal logic, we are not particularly concerned with
respecting the rules governing syllogisms. This is just a useful structure to fit
arguments, and that is how it is used.

• Despite being informal, the arguments are meant to be sound and valid, and the
justification can usually be found in the text of the section where a précis appears.

� These should be treated as informal arguments based on assertions and infer-
ences.
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Chapter 1. Introduction

1.3 Climate and Buildings

The structure which in a given environmental setting reduces undesir-
able stresses, and at the same time utilizes all natural resources favorable
to human comfort, may be called ‘climate balanced’.

Design with climate : bioclimatic approach to architectural regionalism,
Olgyay and Olgyay (1992)

1.3.1 History, and Business As Usual

Jean Dollfus, in his sweeping review of world habitation (Aspects de l’architecture
populaire dans le monde, 1954), concluded that dwelling types are defined less by
national frontiers than by climate zones. He argued that, “allowing for some variation
in local taste and tradition [like superstitions, religious beliefs, or cultural norms], the
general forms of [traditional] native habitation are born of the climate” (ibidem, ref.
13-14). An analogy may be drawn between the evolution of building forms in distinct
regions and the phenomenon of ‘convergent evolution’ seen in nature6. Any number
of examples of pre-modern built environments from geographically separate but
climatically similar regions show a remarkable convergence of urban and individual
building morphology, bioclimatic strategies, and even material use. For example, the
tightly clustered urban forms of the hot deserts of North Africa, medinas, are very
similar to the tightly-packed old cities of South Asia, like Old Delhi or Ahmedabad in
India7. The same is true of house styles in the Alps and those in the Himalayas, with
their rubble masonry walls, timber structure, and slate tiles8.

We are only claiming that climate was a dominant driver of the evolution of the
built environment in pre-industrial societies, not the sole driver. For example, the
twisting entrances, jaali screens9, and general inward plan of South Asian courtyard
houses, or havelis, serve to keep the occupants hidden from the view of passers-by,
regardless of their climatic benefits10. We are also not saying that these architectural
cultures developed in isolation, trade and diplomacy doubtless ensured extensive

6“... the process by which unrelated or distantly related organisms evolve similar body forms, coloration, organs,
and adaptations” (Pianka 2008)

7We have avoided using images not produced by us to be able to distribute this document freely. For those not
familiar with these examples, a simple search on the internet will furnish adequate images.

8See Footnote 7.
9Carved stone or wood screens, found across south and west Asia, the Mediterranean, and east Africa.

10Again, Footnote 7.
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cross-fertilisation. Modern societies, with their efficient systems, cheap fuel, and
advanced materials, are relatively free from the ‘tyranny’ of climate, or have at least
degraded the importance of responding to the climate. However, if the designer and/or
the client care enough about such things as comfort and energy use, then harnessing
the climate is a sound and prudent strategy.

PRÉCIS

• Climate has a significant and complicated effect on building performance. Re-
gardless of system sizing, climate is still the boundary condition that drives the
system.

• Buildings are often built to last several decades, exposing them to a huge variety
of weather conditions, only some of which can be anticipated from historical data.

� The assessment of building performance should include an analysis of sensitivity
to weather parameters, like temperature. This may be expressed as variability on
the output.

The relationship between buildings and the climate is complex, and this thesis only
investigates the thermal aspects of this relationship. Buildings have been variously
described as a ‘third skin’, i.e., after the biological skin and clothes; as interfaces
between the ‘indoors’ and the ‘outdoors’; and other choice metaphorical objects.
Simply put, the complexity arises from a constant need for balance. The same building
(envelope) that holds in the heat well to make a cosy indoor living space in winter
may become unbearably stuffy in the summer. The relatively mild winters of summer-
dominated climates may be quite uncomfortable in buildings designed for shade
and breeze. Heschong (1979) describes the relationship as arising from necessity
because living beings, particularly humans, only survive well in a relatively narrow
range of temperatures. The title of her book, Thermal Delight in Architecture, does
indicate however that it is unusual to find a culture that stops at that. Therefore,
buildings have this self-contradictory task of both protecting us from the elements
and harnessing their power for our benefit, of being a barrier without cutting us off
from our surroundings.

13



Chapter 1. Introduction

1.3.2 Climate Change

“I wish it need not have happened in my time,” said Frodo.
“So do I,” said Gandalf, “and so do all who live to see such times.

But that is not for them to decide.
All we have to decide is what to do with the time that is given us.”

J.R.R. Tolkien,
The Lord of the Rings: The Fellowship of the Ring

Climate change introduces an additional, and very significant, risk factor in the built
environment. We will by and large avoid a discussion of the necessity for mitigation
of the environmental impact of the built environment versus adaptation, after this
section. We take it as given that the climatic robustness of buildings must be improved
concurrently with their environmental impact. It would hardly be progress to deliver
high performance buildings that consume more energy than before11. Broadly, mitiga-
tion is the reduction of the impact of buildings on the environment, particularly their
contribution to energy use and emissions. Adaptation is the modification of designs or
operation to accommodate the slow change of mean climate, and the extreme weather
events that may occur with changed frequency and intensity.

Mitigation still remains an extremely important task for the building industry, since
buildings constitute up to 40% of energy use in industrialised countries (European
Union 2010). Allowing for some difference in calculation methodologies, de Wilde
and Coley (2012, and references 4 and 5 therein) put the contribution of buildings
to anthropogenic greenhouse gas emissions at 25-40%, of which 40-95% are usually
caused by operational energy use. However, adaptation to climate change is equally
important for human health and safety in the built environment of the future because,
regardless of how the world acts now, the widely-held view among climate scientists is
that some climate change is inevitable.

The IPCC’s latest Synthesis Reports (AR 5) state unequivocally that the climate is chan-
ging (IPCC 2014a,b). In these reports, possible future conditions of the global climate
are represented by several different Representative Concentration Pathways. However,
the report makes no claim as to which of these possible pathways or scenarios will
eventually turn out to have been correct. Designing and retrofitting current buildings
to meet future demands poses a tremendous challenge to the industry, since we can
not know future weather precisely. Thus, we limit the discussion of climate change in

11Though that was exactly the definition used in the first half of the 20th century!
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1.4. Energy-Conscious Building Design in an Uncertain Climate

this thesis to an exploration of its contribution to uncertainty in building simulation.
In the case of weather inputs, the state of the art calls for a simulation of thermal
performance based on typical weather data, a Typical Meteorological Year (TMY) or
Design Reference Year (DRY), although there has been some research questioning
their utility, e.g. Crawley (2011), Crawley and Huang (1997) and Crawley and Lawrie
(2015b).

The difficulty of accurately predicting the behaviour of a system that depends on the
climate with normative (historical) data is that we cannot fully characterise the climate
itself, especially future climate. In other words, while the distribution of a weather
parameter’s past values (e.g., average and extreme daytime temperatures) can be
known from historical data, using past data without any modification represents an
assumption about the future: that of a stable climate.

PRÉCIS

• Climate change will affect the built environment across the world, with effects
ranging from mild warming indistinguishable from the effect of urban heat islands,
to severe heat waves of previously unknown intensity, and/or increased frequency.

• Buildings consume a significant share of global energy production, and this figure
will only grow (in absolute terms, not necessarily as a portion of the total usage)
as the rest of the world catches up with the developed world.

� Building design must consider both adaptation to, and mitigation of, climate
change.

1.4 Energy-Conscious Building Design in an Uncertain Climate

Buildings don’t use energy: people do.

Janda (2011)

Energy-conscious building design, in the context of this thesis, is design for efficient
operational energy use for space heating and cooling. We are not looking at embedded
or grey energy, during construction or demolition. Nor are we concerned with the
so-called ‘plug loads’, i.e., electrical energy use for appliances, lighting, and processes,
except for the internal heat gain from these. It is also assumed that the building is
designed to be comfortable, appropriately ventilated and lit, preferably with daylight
to create desirable interiors and save even more energy. This throws up two questions
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Chapter 1. Introduction

which we will address in this section: what is ‘comfortable’, and how do we know if a
design is going to be comfortable (appropriate for our indoor environmental goals)?

1.4.1 Comfort and Expectations

It is important to acknowledge that energy-conscious design only exists in the context
of comfort expectations and the means to achieve them. That is to say that energy
usage for space heating and cooling is only required if certain thermal conditions
are desired, and these cannot be achieved through the design alone. From this per-
spective, the most efficient building is one that uses no mechanical energy for heating,
cooling, and ventilation. Hence, we begin a discussion about energy-conscious build-
ing design with a brief note on thermal comfort. Once that is out of the way, we will
proceed to ignore it for the rest of the thesis, assuming that the user will adjust all
methods to account for different static or adaptive standards of thermal comfort (see
Section 2.3.1). Future work will explore the interaction of comfort and expectations
with weather uncertainty, and the performance of regression models with these ‘extra’
factors (Section 5.3.3).

Thermal comfort may be defined as “that condition of mind that expresses satisfac-
tion with the thermal environment” (ASHRAE Standard 55-2010). This statement is
somewhat vague because it is an acknowledgement of the fact that comfort arises
from a complex interplay of physical, physiological, psychological, and social factors
(Grondzik, Kwok et al. 2011). It would not be a stretch to say that much of what
determines an individual’s comfort with their surroundings is down to expectation.
Expectation is not amenable to measurement, though, so thermal comfort research
has focussed largely on heat transfer/exchange models of the human body and its
surroundings, so far. In this thesis we use the static American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) comfort model, using a pair
of set-points for heating and cooling in each simulation. That is, the “target” temper-
ature is fixed, regardless of outside conditions or time of year. The settings for each
case study are not particularly important to the work presented in this thesis, and
interested readers will find the original Energy Plus input files (IDF) with the archival
entry of this thesis (infoscience.epfl.ch).
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PRÉCIS

• We assume that a building is designed to consume as little energy as possible.

• If people do not demand certain indoor conditions, i.e., they accept the indoor
conditions created passively by the building, then there is no need to use energy.

• People do demand that indoor conditions stay in a certain band, which may be
fixed at some arbitrary value for a particular design exercise, based on one’s choice
of comfort model.

� Energy use can only be minimised under some arbitrary assumptions on comfort.

1.4.2 The Role of Building Performance Simulation

Achieving a high quality indoor environment at acceptable cost has
always presented a challenge for the construction industry. With aspects
of sustainable development now being added ... this challenge is set to
become even more formidable. Simulation represents a possible solution
... by enabling comprehensive and integrated appraisals of design options
under realistic operating conditions.

Energy Simulation in Building Design, Clarke (2001)

The design of any building involves a complex array of decisions with cascading effects.
Are the energy savings from using triple-pane windows instead of double-pane ones
enough to cover the costs of installation? Or, would increasing the insulation level
substantially decrease the need for heating in the winter without causing problematic
overheating in the summer? Or, how should the building be oriented to maximise the
view outside enabled by the relatively well insulated triple-pane windows and walls?
However, merely using complicated software is not the end of the story. The ultimate
prospect of Building Performance Simulation (BPS), is that “of a truly powerful compu-
tational approach to design whereby arbitrarily complex models may be evolved on a
task-sharing basis, such models readily exchanged and understood by others, industry
standard assessments automatically invoked, and seamless integration within the
temporally evolving design process assured” (Clarke 2015). At the moment, however,
it is probably more accurate to say that the use of simulation is limited to “... code
compliance checking or thermal load calculations for sizing of heating, ventilation
and air-conditioning systems in detailed design” (Hopfe 2009).
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PRÉCIS

• To minimise the energy use of a building, the planner has to be able to predict the
impact of design decisions under the given site and usage conditions.

• It is time consuming, expensive, and extremely impractical to keep experimenting
with systems and components once a building is built.

• Simulation is an efficient means of conducting what-if analyses like these. In the
case of building simulation, we are almost always interested in future conditions
and responses.

� Building simulation is useful for energy conscious design because it enables “the
emulation of future realities at the design stage” (Clarke 2001).

1.5 Quantifying Uncertainty, Sensitivity, or Both?

Ultimately, building simulation is just that: an imitation or simulation of reality.
Improving the fidelity of the model, i.e., the representation of a design and site in a
software, improves estimates of the likely (energy) impacts of decisions. However,
simulation is neither a perfect prediction, nor a substitute for judgement. It may
provide guidance, but the work presented in this thesis does not take this literally.
Instead, we take the position that it is good practice to account for the possible effects
of the uncertainty about, and the variation of, the values of inputs. Specifically, in the
domain of this thesis, these inputs are the weather parameters, and their interaction
with the building envelope. Throughout this thesis we will discuss methods to conduct
uncertainty and sensitivity analyses. These two concept are related in this context,
but they are not the same.

1.5.1 Does Simulation Imply Prediction?

Seasoned users of simulation will argue that prediction is not the point of BPS at all.
Rather, it is the exploration of design alternatives through a series of what-if scenarios.
While we agree with this in principle, it is unusual to find a simulation exercise not
being interpreted as a prediction. Interpreting the output from a simulation run as
the prediction for a specific point of time in the future is certainly incorrect. Two
particular boundary conditions – weather and occupancy – will almost certainly not
be the same at a specific hour in the future as they are at the same hour in a simulation
run based on typical data and normative schedules. Yet, we expect that the output
from a simulation using typical or normative data is a valid mean response, i.e., the
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response of a building to typical or mean conditions12. A user also expects that the
differences between the energy use of alternative designs obtained from simulation
with typical inputs are similarly indicative of the mean/median difference. This too is
usually the case. However, the mean difference is not representative of the spread of
the difference between two options. A mean or median is always to be interpreted as a
single-point estimate of a sample distribution – its representativeness is a subjective
matter. This also implies, however, that it is entirely conceivable for the difference
between two options to be statistically insignificant.

In a review of literature on predicting building energy consumption, Zhao and Magoulès
(2012) point out that the complexity of predicting energy use makes precise prediction
difficult. In this thesis we take the position that, while precision is a matter of choice,
accurate prediction of future energy consumption beyond very short time horizons
(usually within a day) is impossible or, at best, impracticable. One can say that a
building will consume exactly ~38 kWh/m2 of energy for heating next year (Figure 1.1),
a very precise prediction based on a typical weather file13. But is it useful, when
simulations of the same model with recorded weather data over 20-odd years show
variations between ~30-48 kWh/m2 (Figure 1.1 again)? We argue that prediction must
strike a balance between precision and accuracy as they seem to follow a relationship
not unlike that of momentum and position in Heisenberg’s uncertainty principle. The
more precise a future value of energy used is, the less likely it is to be accurate or
correct. The more likely to be correct or accurate one seeks to make a prediction, the
less precise it inevitably ends up becoming14.

When dealing with inputs that are not known with absolute certainty, it is almost tau-
tological to say that the precision and accuracy of outputs depends on the precision
and accuracy of inputs. In the context of building simulation, even if the represent-
ation of a building in a software is completely reconciled to the design, or as-built
conditions, neither future weather conditions nor occupancy and usage are exactly
predictable. Weather or climate predictions cannot be exact, based on the current
state of knowledge, and are usually expected to be “true” only in some broad statistical
sense. In this thesis, we make the case that this is how the outputs from the modified
building simulation workflow introduced in this thesis should be interpreted.

12Not always though, because it is ultimately influenced by the quality or representativeness of the typical inputs.
13Details of this energy model are in Table B.4, and the codes on the x-axis correspond to the last two digits of the

entries in the second column of that table (new codes). This simulation study is referred to as Case 1 in Chapter 4.
14We will occasionally draw analogies with quantum mechanics when talking about probabilities of future

weather. However, these are merely intended to be figurative, since quantum effects are nonsensical at anything
larger than the sub-atomic scale or smaller than a stellar scale, which is the comfortable in-between where we
study the built environment.
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Figure 1.1 – Renovations for a single-family home, options 01-24, simulated with recorded
weather data from Geneva. Case 00 is the base case, or the house as it is now. Each number on
the x-axis represents a possible refurbishment option, as detailed in Table B.4. The circle and
triangle represent values from simulations with typical weather files, while the box plots are
constructed from simulations with recorded weather data from 1988-2013. This graph is meant
to show the variations in (calculated) building energy usage due to weather, especially when
juxtaposed with variation due to refurbishment interventions.

In this thesis we show examples which give credence to our hypothesis that, depending
on the building in question, the spread of possible energy outcomes is so large as
to make the difference of means between two design choices misleading. A precise
answer (the difference of means) is inaccurate for the majority of possible outcomes
(the difference of spreads). The difference shown by simulation with a single typical
file often becomes irrelevant when the entire sample, based on several weather files,
is taken into account15. For example, the difference in mean values between the base
case and first renovation in Figure 1.1 is ~10 kWh/m2 (48-38), whereas the differences
caused by using two different typical weather files is already ~14 kWh/m2 (52-38). The

15Formally speaking, the variation around a group mean may be large relative to the variation of group means
around the overall mean (The MathWorks, Inc. 2015).
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range of consumption values over the recorded data is ~28 kWh/m2, for a period of
about 20 years.

1.5.2 Why Abandon Certainty?

... All hope abandon, ye who enter here.

Dante Alighieri (1265–1321),
The Divine Comedy (Inferno, Canto III)Harvard Classics, translated by Henry F. Cary

It has been previously proposed by us and colleagues (Chinazzo 2014; Chinazzo,
Rastogi et al. 2015a,b) that a ‘range’ of possible performance outcomes, i.e., the results
from simulation runs with different weather inputs, is a better characterisation of the
range of performance that a building will inevitably give. Simply summarised, the
argument is that if one does not know exactly what (weather) inputs one’s (building)
system will experience, then one is better off knowing the effect of a range of possible
inputs. A given weather file is, after all, a representation of one scenario out of an
immense number of possibilities. Therefore, by using only one weather file, we are
restricting ourselves unnecessarily to one “experimental result”. If a building is never
going to experience a narrow set of weather conditions exactly, e.g. the ones contained
in a typical weather file, then the quality or ‘averageness’ (or ability to represent best
the most typical weather) of said weather file is irrelevant.

Long simulation with measured data does seem, intuitively, to be a better depiction of
climate conditions than a single “typical” time series. However, it does not guarantee
coverage of future conditions. In other words, while the distribution of a weather
parameter’s values can be known from historical data, using historical data represents
an assumption about the future: that of a stable climate. On the other hand, despite
the unequivocal conclusion from the IPCC’s latest Synthesis Report (IPCC 2014a) that
the climate is changing, it is not knowable which of the possible scenarios they list will
eventually pan out. While a long record does enable a Sensitivity Analysis (SA), one
is still hostage to the vagaries of the weather when using it. That is to say that there
are several possible future conditions that may not have occurred in the recent past.
There are no guarantees about what conditions may prevail in the future based on
knowledge of past conditions. As far as we are aware, the temperatures of future years
do not have to follow some well-defined mathematical relationship with temperatures
from previous years, or even some well-defined periodic relation.

Assuming one has access to long-term hourly data from a weather station that is
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sufficiently close to the area of interest, in addition to a typical year file, one can
know how a building would have behaved. However, one has no tools for assessing
any arbitrary weather conditions. One might have a reasonable idea of the expected
range of average temperature rise in a climatic region, thanks to the IPCC’s publicly
available models, but one does not know the possible implications of this at an hourly
resolution for a given weather station. Our approach seeks to address this incertitude
by proposing a ‘what-if’ analysis of a building to variations in the climate. In other
words, we introduce stochastically-generated synthetic weather data without seeking
to forecast the ‘true’ future climate. Analysing the sensitivity of buildings has important
ramifications for planning, policy, and risk assessment (more on this in Sections 2.4
and 2.7). For example, it could be useful to know the distribution of total energy in
some applications, or the 95% confidence interval of the mean energy use. In other
applications, the extreme values and their estimated probability might be more useful.
For example, in studying overheating risk or the risk of exceeding some level of peak
demand.

PRÉCIS

• A building will almost certainly not experience the exact sequence of weather in a
typical file.

• Historical data, when available in a convenient form, only partially characterises
future weather conditions.

• Deterministic (exact) models of weather are useless beyond very short time hori-
zons.

� Working with an ensemble of plausible weather years is a better characterisation
of the (climatic) boundary conditions that will be seen in a building’s lifetime.

1.5.3 Numerical vs Analytical Approaches

If building simulation algorithms could be satisfactorily characterised by a simple
emulation, like a polynomial, then the calculation of sensitivity and the propagation
of uncertainty would be trivial plug and chug affairs. Similarly, analytical confidence
intervals could be used to quantify uncertainty if one were sure of the limiting distri-
bution of an output or input. Since neither of these is the case, we take a numerical
(read: computationally intensive) approach. The use of regression-based emulators
serves both to reduce the computational load of sensitivity analyses, and, in the case
of Gaussian Process regression, to chalk out explicit confidence intervals.
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Numerical approaches themselves introduce uncertainties and errors (more on the
difference between the two in Section 2.4). On a conceptual level, using an emulator
means the user is now measuring the sensitivity of the emulator or the propagation of
uncertainties through the emulator, and not the original computational system.

1.5.4 Uncertainty Analysis

Often called uncertainty quantification (UQ), this provides a framework to construct
“computational error bars” (Iaccarino 2008). It is useful for decision-making because
it quantifies what the user does not know, and in many cases can not know. When
we query an emulator constructed with the Gaussian Process regression technique
proposed in this thesis, we obtain an estimate of the mean and variance of a Normally-
distributed output variable, e.g., cooling energy, at that combination of inputs. The
confidence interval in this case is exact, conditional on the validity of the fit (surrogate).
If this fitting step is not used, then a user could collate the results of a set of simulations
based on an ensemble of synthetic weather files. The confidence intervals on the
output constructed in this manner would be approximate or empirical. In practical
terms, there will not be a large difference between the two kinds of confidence inter-
vals, though the justifications are quite different. This interval would be representative
of the confidence in the output based on an uncertain input – regression inputs or
predictors in the former and just the climate in the latter case.

Simulating every combination of weather file and building properties of interest could
also be used to estimate of the risk of some condition occurring, say overheating. Once
again, the output from a Gaussian Process (GP) emulator would be an exact confidence
interval, say the range of temperatures which could occur with 95% confidence. A
collation of the simulation results would give an empirical confidence interval with
approximately the same result. Thus, in our case, uncertainty quantification is a
method to overcome the fact that the weather inputs are inherently vague, or that a fair
amount of information has been lost in the creation of ‘typical’ weather data. The work
summarised in this thesis is explicitly quantifying the confidence in the output due
to a particular combination of inputs, i.e., building properties and aggregate climate
conditions, by constructing either exact intervals on an emulator, or approximate
(empirical) confidence intervals from the original simulation.
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PRÉCIS

• The system being simulated here – a building, its site, and its users – is incredibly
complex and analytically intractable.

• Many of the inputs, if not most, are uncertain and/or pseudo-random.

• Mean values can not be used to create confidence intervals because the true
distribution of the outputs is unknown.

� Numerical uncertainty analyses should be included in the simulation workflow.

1.5.5 Sensitivity Analysis

These kinds of analyses inform the user about the significance, or lack thereof, of
inputs. One must be conscious of the uncertainty in the inputs and the system, but a
sensitivity analysis of an output to some inputs can proceed just fine without it. Say
one simulates a building16 with the synthetic weather files proposed in this thesis.
Examining the variation of the output, e.g., cooling energy, against variation in some
appropriate weather-based input, e.g., Cooling Degree Day (CDD), quantifies how
sensitive the building is to temperature, represented by the aggregate metric Cooling
Degree Day (CDD). Using sensitivity analysis may help the user focus on important
parameters that should be addressed, because the user will know what impact the
variation of a certain input has on the output.

Using the synthetic weather inputs proposed in this thesis provides an estimate of the
distribution of some output, like energy, conditional on the range of these weather
input values. Based on the frequentist interpretation used in this thesis, approxim-
ate confidence intervals may be drawn around an output through simulation of the
building model with a set of related but varying weather inputs. Hence, a sensitivity
analysis also lets us assess the uncertainty of a certain output, based on the perturba-
tion or variation of input(s). In this case the Gaussian Process regression enables a
rapid estimation of the outputs, i.e., the range of energy use values possible when the
weather parameters are in some ranges of interest. It does not add anything to the
sensitivity analysis conceptually – it only lets the analysis be performed rapidly.

16Recall that we are talking about building performance simulation.
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PRÉCIS

• The system being simulated – a building, its site, and its users – is incredibly
complex, with many unknown and/or pseudo-random inputs.

• In a complex system, the relationship between inputs and outputs is often analyt-
ically intractable. That is, there is no simple way of knowing what effect an input
will have on the output.

• Yet, these inputs may affect the output in significant ways. Using only mean
inputs does not permit an analysis of these effects.

� Numerical sensitivity analyses should be included in the simulation workflow.

1.6 Simulation Inputs: Perspective and Interpretation

... there are known knowns. . . things we know we know.
We also know there are known unknowns . . .

we know there are some things we do not know.
But there are also unknown unknowns – the ones we don’t know we don’t know.

Donald Rumsfeld
United States Secretary of Defence. February 12, 2002

1.6.1 Weather Inputs

Every physically-reasonable value of a weather parameter is possible in a given location,
with some finite probability. However, the probability of getting a specific value in
the immediate future, say the next century, is the tricky bit. It provides part of the
justification of this thesis, and sustains the funding streams of entire departments.
Given this uncertainty, both recorded and synthetic weather should be treated as a
possible set of conditions that a building may experience. Has a temperature greater
than 40°C ever been recorded in Geneva? No. How long have reliable temperature
records existed, for anywhere? Since the beginning of the 19th century, more or
less17. With a changing climate and increasing length of record, are we likely to
record extremes and episodes that haven’t been seen in the past century or so? Yes,
almost certainly. This makes separating a ridiculous value from one that is merely

17The oldest temperature series we found are the Central England temperatures, which go back to 1659 (Manley
1974). The oldest climate ‘records’ are probably the Nile flooding records, although these are patchy (Bell 1970).
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uncommon, is an extremely difficult judgement call. Paleo-climatology offers an
interesting avenue for future work, since it opens up the possibility of comparing
climate over time scales that are longer than the geological blink of an eye that is the
Industrial Revolution. Another extension to our work is the use statistical techniques
to deliberately generate extreme values, even ones that would be currently considered
ridiculous. Existing work of this sort on the risk of flooding and other disasters offers
paths for collaboration.

We extract the essential characteristics of a climate (e.g., autocorrelation, means)
and build any number of synthetic files by modelling structures in the apparently
random components of the time series. This is possible because of the idea, developed
by several authors (summarised in Section 2.6.3), that weather time series can be
decomposed into characteristic seasonal components and apparent ‘innovations’,
though without any claim to know the source of these random changes or innova-
tions. This method borrows heavily from Boland (1984, 1995), Hansen and Driscoll
(1977) and Magnano, Boland et al. (2008). The major difference between the models
proposed by these authors and our model is twofold: we restrict ourselves to using
Typical Meteorological Year (TMY) or Design Reference Year (DRY) files, while they
used recorded data; and, we aim to demonstrate a generally applicable model for
creating synthetic weather data for simulation, whereas they were only working with a
sample of stations in a particular region. Other differences between our method and
theirs are mentioned in the text where relevant. Much of the work is also based on
the discussions and examples presented in Davison (2013) and Davison and Hinkley
(1997).

PRÉCIS

• Future weather cannot be predicted exactly, using current methods.

• A what-if analysis, based on an ensemble of possible future weather files, will
inform the designer of the consequences of certain decisions on the risk of some
parameter (e.g., indoor temperature) reaching a certain value (e.g., 35°C).

• The plain synthetic files proposed in this thesis provide a set of time-unspecific
variations on a stable climate.

• The future synthetic files use low-frequency forecasts of projected daily means
in conjunction with noise series based on historical data to create time-specific
future weather scenarios.

� The synthetic weather files help to determine the probable severity of indoor
conditions, and the likelihood of having them in this century (i.e., up to 2100).
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1.6. Simulation Inputs: Perspective and Interpretation

It is tempting to fit limiting distributions on physical values, and many authors do (see
Sections 2.4 and 2.6.3), but we almost completely avoid it. The trouble with choosing
a theoretical distribution is that one imposes a model on the data that may or may
not be correct. Instead, the non-parametric approach described in this thesis tries to
create variations on the small dataset it is given. This leaves less room for generating
extremes, and is somewhat hostage to the quality of the generating data. However,
we found that the approach is robust enough for our purposes, and generates several
episodes of interest.

1.6.2 Building Properties

Although this thesis focusses on the weather input to simulation, it is easy to extend
the approach to other inputs. Building properties are conventionally regarded as
fixed. That is, one assumes that the value of a (thermal) property is known because
it has been quantified through experimentation. We argue, however, that materials
properties should also be regarded as samples/estimates from a population input.
For example, the unit conductance [k W/m3K] of a piece of extruded polystyrene
may be regarded as known perfectly (if experimental error is ignored). However, the
conductance (U-value) of the actual insulation layer [W/K] in one’s building should
be understood as a single estimate of a true value. If enough buildings with the same
walls are modelled, the conductances of the wall insulation in all of those buildings
will be slightly different due to specification and installation errors, and over time
due to degradation. This means that the actually experienced value of insulation in
these buildings varies from that calculated by multiplying the unit conductance with
the volume of insulation used (even if we assume that the volume is known perfectly,
which it is not). Therefore it is reasonable, in our opinion, to consider the calculated
value as an estimate of the true population of wall insulation conductances that will
be seen by a building. This thesis does not go into how the details of interpreting a
property (Bayesian vs frequentist), limiting ourselves to a conventional sensitivity
analysis demonstrated in Chapter 4. More details about interpretation, and previous
work in this area, are in Chapter 2.

An obvious example of a ‘building’ property that can be thought of as random is user
input. User input is, in this thesis, aggregated into just one quantity: sum of internal
heat gain (SumIHG). This is the sum of heat contributed by building occupants to
the heat balance. This comes both from metabolic heat gains and from interactions
with appliances and lights. Internal Heat Gain is conventionally calculated from a
fixed occupancy profile which is based on the usage of a building, e.g., office or home.
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The quantity SumIHG is classified as a building property but it is also an estimate of a
population parameter, say SumIHG*, the sum of heat gain due to any profile chosen
from a population of possible occupancy profiles. Since the ‘true’ occupancy profile of
a building is un-knowable, except maybe in a forensic study, it is prudent to establish
the effect of an ensemble of likely usage profiles on the energy usage of the building.
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2 State of the Art

If I have seen further it is by standing on the sholders of Giants. [sic]

Isaac Newton (February 15, 1676),
in a letter to Robert Hooke

References to publications on which our work is built, or which seek to answer closely
related questions are scattered throughout the thesis. In this chapter we will devote
most of the text to summarising these publications. Other work that has informed
the general development of the thesis, including textbooks, are summarised in lists or
short précis, without reference to specific conclusions or proposals in their content.
Apologies are due to the authors whose work has been shoehorned thus. Well-known
mathematical concepts, like regression or time series models, are in the appendices
(Appendices A and B). The list of work familiar to us is limited, unfortunately, to
English-language publications.

Informal knowledge transfer between masters and apprentices has been at the core of
vernacular building traditions for millennia. New techniques and designs were created
through a painstaking process of trial-and-error, as lessons learnt by one generation
of master builders and craftsmen were passed on to another through apprenticeships.
With the formalisation and specialisation of various building-related professions,
publications by professional bodies and experienced practitioners now provide more
pointed guidance for their respective trades. Several catalogues and guides of ‘best-
practice’ for indoor environmental design have been published throughout the world.
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Chapter 2. State of the Art

2.1 Climate Classification and Characterisation

The air changes every day.
Every day, clouds move around, rain comes and goes, and winds change.

And every day, people all over the world try to figure out
what the air is doing and where the rain will go next.

Randall Munroe, Thing Explainer: Complicated Stuff in Simple Words

As we mentioned in the discussion on terminology in Section 1.2.3, climate is different
from weather. Broadly speaking, climate is the collection of descriptive statistical
properties that emerge from long term weather records. Weather, on the other hand,
is the instantaneous state of the atmosphere.

2.1.1 Historical Development

Classification of the climate is a grouping of atmospheric conditions for
locations which show similar climatic conditions (climate types) separated
by defined boundaries applied to one or more meteorological elements.

General Climatology 1C, Essenwanger (2001)

Like many scientific fields where measured quantities intersect with human experi-
ence, the study of climate and its effect on human beings has ranged from the insight-
ful to the wacky. The earliest known efforts to divide the earth into climatic zones are
from the sixth century BCE. The word ‘klimata’ appears in Greek texts around 500 BCE,
though it refers only to length of day (Essenwanger 2001; Ward 1905). In his Meteor-
ology (Book II, Chapter 5, c. 350 BCE), Aristotle describes five climatic zones based
solely on latitude (climes). The zone between the tropics of Cancer and Capricorn
was the Equatorial ‘Torrid’ zone, while the Arctic and (hypothetical) Antarctic Circles
were the ‘Frigid’ zones. Both were considered uninhabitable. The Northern Temper-
ate zone was taken to encompass most of the known world at the time, i.e., Europe
and Asia (excluding the Far East), and the only one deemed fit for human habitation.
Aristotle also observes, quite presciently in our opinion, that “... the greatest heat [in
the Northern Temperate zone] is developed not when the sun is nearest to the north
[summer solstice], but when its heat has been felt for a considerable period and it has
not yet receded far”. The presence and habitability of a Southern Temperate zone (the
Antipodes) was a matter of debate until the 17th century. The geographer Ptolemy
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(AD 100-170) used seven climes (latitudes) for his division of the Northern hemisphere
based on the length of the longest day(Oliver 2005; Ward 1905). In fact, the literature
is awash with speculative or outdated references to ‘habitable’ and ‘uninhabitable’
zones, isotherms, climate divisions, and sundry climate-specific recommendations,
including Sacrobosco’s De Sphaera Mundi, the Shilpa-Shastras (Acharya 1928), etc.

These were what we would call ‘macro’ classification systems and, in the reckoning
of the authors, global. The concept of ‘micro-climates’ shows up around the 13th
century AD, with Magnus’ distinction of coastal sub-areas and north and south sides
of a mountain, to supplement the seven-zone Ptolemaic system that lasted until 1500
AD (Essenwanger 2001). Essenwanger (2001) and Oliver (2005) trace the development
of climate zones from these early works, which were almost all based on the length
of the day, to modern systems based on temperature and rainfall values, and their
duration, through the work of Koeppen, Humboldt, Dove, Herbertson, Miller, and
others. It is interesting to see that the so-called “classical age” and “ Koeppen era” of
classification coincide with the broad scientific trend, from the Enlightenment onward,
to want to catalogue nature. Newer instruments and wider data-gathering propelled
ever-more reworking and remixing of older classification systems with bigger, more
multi-variable, formulations and datasets.

Despite being a “100 years old, the classification of climate originally formulated
by Wladimir Koeppen and modified by his collaborators and successors, is still in
widespread use... by researchers across a range of disciplines as a basis for climatic
regionalisation of variables and for assessing the output of global climate models”
(Kottek, Grieser et al. 2006; Peel, Finlayson et al. 2007). In its broadest sense, this
classification scheme uses natural vegetation as a benchmark of climate type. At first
glance, this method does not seem to be applicable to building design. However,
natural vegetation is usually representative of several climatic parameters important
to buildings, namely: temperature, precipitation, humidity, solar availability, and their
seasonality. Natural vegetation is also influenced by the surface energy balance of a
location (see Glossary). The surface energy balance is strongly correlated with the
energy flux potentials experienced by a building. Alkhalaf and Kraus (1993) found that
the surface energy balance characteristics of distinct Koeppen-Geiger climatic regions
are unique, regardless of location. This is an interesting result for thermal analyses of
buildings, since the surface energy balance is far more important for thermal loads
than just the natural vegetation of a location.

Miller (1961) says that while vegetation is broadly representative of climatic regions,
it is only the first step towards what should be a more refined system. Other factors
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Figure 2.1 – An updated map of Koeppen-Geiger zones from Peel, Finlayson et al. (2007).

such as soil conditions and groundwater supply influence the vegetation in addition
to climate, and these are not important to buildings. They review attempts by others
(including Supan, Koeppen, and others) to create climatic division systems based on
temperature, vegetation, etc., and propose a climatic division system of their own. It
consists of seven general types of climate, some of which are further subdivided into
two or more subtypes. Coming after the end of the classical and Koeppen eras, their
conclusions have a (probably unintentional) prescience vis-à-vis building design: that
any attempts to define climatic regions based on a single climatic element are seldom
satisfactory, and that they should be used carefully and interpreted liberally.

Olgyay and Olgyay (1992) discuss some early development of climate classification
and literature in the search for the ‘ideal’ conditions for human flourishing. There
seems to have been general agreement up to the modern era that the tropics and poles
are uninhabitable, or at best, stultifying. This is clearly not the case for the former, as
people have been living in the tropics since the dawn of humanity, and contemporary
tropical societies have super-charged, air-conditioned economies. From the Ancients
onward, there has been a persistent trend to characterise one’s home or preferred
climate as offering the best conditions for humans to thrive, not just physically but
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apparently even morally (for example, Ellsworth Huntington’s Principles of Human
Geography). Modern climate classifications can be called aggregative, in that they deal
with annual statistics such as the average temperature of the coldest month or the
amount of rainfall received. We discuss a few systems that are relevant to building
design or were derived specifically for it. These systems are distinguished chiefly by
their intended application and the factors they consider.

The almost unlimited combinations of climatic factors acting on an
almost infinite variety of topography produce a bewildering number of
geographical climates, and it is clear that any system of classification adop-
ted can recognise only the broadest types unless it is to become unwieldy.
But in spite of the seeming complexity it becomes clear on closer examin-
ation that certain combinations of climatic elements repeat themselves
with some degree of regularity in different parts of the world, and it is
convenient to recognise each type and to give it a name.

Climatology, Miller (1961)

2.1.2 Contemporary Work

2.1.2.1 ASHRAE Climate Zones

By far the most important classification system for our purposes is the American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) climate
zone system. ASHRAE assigns a single label to weather records from any station in
the world based on temperature (as expressed through Degree Day) and precipitation.
The Degree Days are used to assign the primary numerical identifier to a location
(numbers 1-8). This identifier is further refined by criteria based on precipitation,
giving subcategories A (moist), B (dry), and C (marine). The calculations that form
the basis of the ASHRAE system are open for public view and comment, and the
organisation itself publishes lists of cities in various zones in some of its standards.
The full set of climates explored in our work include at least one city from each ASHRAE
zone. The three primary examples presented are Geneva (4B), Chicago (5A), and Delhi
(1B). (ASHRAE, ANSI and IESNA 2010; Owen 2009, 2013)

ASHRAE climate zones are widely disseminated in the building community through
published design guidelines for building components and systems, e.g., ASHRAE
Advanced Energy Design Guide for Small Office Buildings; ASHRAE Advanced Energy
Design Guide for Small to Medium Office Buildings, and standards, e.g., ASHRAE
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Figure 2.2 – ASHRAE zones in the continental USA prepared for the International Energy Con-
servation Code, published by Pacific Northwest National Laboratory and Oak Ridge National
Laboratory (2010).

Standard 140-2011; ASHRAE Standard 90.1-2010. It is also used in the International
Energy Conservation Code to demarcate climate-appropriate minimum requirements.

2.1.2.2 Climate Severity Index

Clarke (2001), Markus, Clarke et al. (1984) and Markus (1982) proposed a system based
on simulating the reactions of buildings to climate conditions: a “Climate Severity
Index (CSI)”. The aim was to inform public policy on fuel subsidies and codes, help
make rational decisions on capital allocations for retrofits, and aid the selection of
housing sites. The index tries to synthesise the “stress placed upon a building’s energy
systems... by any given environment”. The authors rightly point out that a possibly
infinite combination of weather parameters would create the same reaction in a
building, i.e., the same energy demand. And that CSIs already exist, e.g., the indices of
thermal comfort, or various techniques based on Degree Days.
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The index is based on regression relationships created from simulation experiments
on common/standard house constructions. The climate parameters included are air
temperature, ‘useful’ radiation, and wind. The building characteristics considered are
“mass/insulation, solar ‘admittance’, and wind permeability characteristics of houses”.
Both groups of factors are very similar to the building and climate properties con-
sidered in this thesis. The regression relationships can be used to determine the effect
of a very large number of climate conditions on several types of houses (27), varying
in their construction. The authors construct the CSI in a 4-stage process: (1) Establish
the maximum and minimum loads due to each climate variable on each building
by inputting the respective extreme climate conditions in the regression equations.
(2) Compute the ratio of these individual differences to the overall difference, for each
house type. (3) Rescale the individual ratios from 1 (best climate conditions) to 10
(worst). (4) Produce a “family of curves... relating climatic severity to house energy
requirement for the 27 selected house types”.

The ideas underpinning the development of this index are similar to what we propose
in this thesis. The difference is in the intended application. Instead of making a set of
general regression relationships, our work focusses on providing the tools to create
emulators for each design case. If the application was the assessment of climatic
severity at a regional level, then Gaussian Process regression could still be used to
create an ensemble of regression relationships focussed on common housing types.
Together these would let the user explore the interaction of the local climate with
particular construction practices or retrofit measures to make informed decisions
about the portion of the building stock to be targeted for renovation or fuel subsidies.

2.1.2.3 Other Classification Systems

Olgyay and Olgyay (1992) present a simplified version of the Koeppen system with
four zones: hot and humid, hot and arid, temperate, and cool. They base their
simplification on the assumptions that the distribution of natural vegetation, while
very representative of the climate, is not directly applicable to housing. In their
view, a simplified system which considers only temperature, solar availability, and
humidity/precipitation should suffice. This is a prescient observation in the context
of this thesis, since the labels proposed here also deal with more or less the same
factors. Koenigsberger, Ingersoll et al. (1974) classifies tropical climates into a further
six categories: warm-humid, warm-humid island, hot-dry desert, hot-dry maritime,
composite or monsoon, and tropical upland.

Lam, Tsang et al. (2005, and references 2,4, and 5 therein) mention three systems
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that divide China into six, ten, and five major climatic types respectively. The first of
these systems, dating from 1958, used accumulated temperature or the “total sum
of the temperatures in the period during which the temperature is greater than or
equal to 10°C”, aggregating temperature and duration in a manner almost identical to
Degree Day. The second classification system used two additional indices – “mean
annual temperature of the coldest month and the annual extreme minimum”. Only
the last system, which dates from 1993, is specifically for the design of buildings. It
mainly uses the average temperatures in the coldest and hottest months of the year,
with the number of days of daily average temperatures less than 5oC or above 25oC
acting as complementary indices. Bansal, Hauser et al. (1994) and Bansal and Minke
(1995) grouped India into six climatic zones based on temperature, relative humidity,
precipitation, and number of clear days per month. In their system, the criteria they
defined must prevail for at least six months in order for a location to be classified in
a given zone. For locations that could not meet this cut-off, a catch-all category is
defined – “composite”.

Figure 2.3 – A map of climate zones for India, in Bansal and Minke (1995). Reproduced with
permission from the first author and publishers.

2.2 Future Climate, Climate Change, and Buildings

Current practice is to model the energy performance of buildings based on a repres-
entation of typical climate based on historical data, as discussed above. However,
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using historical data to predict future performance in the face of expected climate
change exposes buildings to significant risks. de Wilde and Coley (2012, and reference
2 therein) mention (possibly fatal) overheating, Heating, Ventilation, and Air Condi-
tioning (HVAC) capacity mismatch, increased wind loads, flooding, etc. In this section,
we discuss existing research on adaptation to climate change, since any work on
energy efficiency or high performance buildings may be classified as climate change
mitigation. Morton and Bretschneider (2011) carried out a survey of a large engin-
eering firm in the UK1 to gauge attitudes in industry toward climate change. They
state that, by and large, participants showed a high level of concern and awareness of
climate change. Current practices were perceived as inadequate, and most expressed
a need to develop new ways of tackling this issue. The most important finding, in our
view, is that the participants focussed almost exclusively on climate change mitiga-
tion rather than adaptation. The UKCIP02 and UKCP09 climate projection reports
spurred a number of impact studies in the UK. Some of these are discussed here. The
comprehensive COPSE2 project has examined the impacts of climate change on the
built environment through an extensive study for the UK. Issues looked at include the
creation and quality of future climate inputs and the interaction of climate change
and comfort, noise, Urban Heat Islands (UHIs), and energy.

2.2.1 Future Climate Inputs

Efforts to incorporate climate change into building design and simulation have fo-
cussed on two themes: how to generate future climate files and how to adapt buildings
to unknown future climates. Guan (2009) divides work on predicting future climate
data into two categories: one that relies on historical data and the other on funda-
mental physical models. The historical data category includes extrapolation, imposed
offset methods, and stochastic generation. Extrapolation is the straightforward exten-
sion of recent historical trends into the future, usually used with a simplified energy
calculation like the Degree Day method, e.g., Cox, Drews et al. (2015). Imposed off-
set methods include the ‘morphing’ procedure put forward by Belcher, Hacker et al.
(2005), and others that deal with two variables – temperature and humidity – by pos-
tulating some assumption on the future values of relative humidity, e.g., Guan, Yang
et al. (2005). Finally, stochastic generation would include the weather generators, like
Eames, Kershaw et al. (2011). The alternative to these data-based approaches is the
use of numerical climate models. For example, using Global Climate Models (GCMs)
to generate local weather files through computational simplifications like downscaling

1May refer either to the United Kingdom or the British Isles in various publications.
2Full name: Coincident probabilistic climate change weather data for a sustainable built environment.
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or Regional Climate Models (RCMs). Guan (2009) themselves suggest a schema for
generating future climate files that is a mixture of imposed offset (i.e., linear trans-
forms of current time series) and a more detailed ‘diurnal modelling method’ (using
current diurnal patterns with expected future distribution characteristics like daily
minimum and maximum). The method proposed in this thesis could be characterised
as a combination random-offset approach: we apply current diurnal patterns with
noise to future low-frequency series.

To simulate the future performance of a building, and thereby have an explicit estimate
of some performance parameter under estimated future conditions, a ‘future weather
file’ is needed. That is, a time series of projected, physically viable, values. Jones,
Harpham et al. (2010) list some conditions for a future time series to be useful:

• It must be internally consistent. For example temperatures are usually higher on
dry days than on wet days, in the summer.

• The statistics of the series must be consistent with a “range of observed and
projected statistics of the variables” from, say, RCMs of the area.

• They should adequately “represent extreme events such as prolonged rainfall,
droughts and heat waves”.

The most popular current approach is that of Belcher, Hacker et al. (2005), called
‘morphing’. It is a simple solution that can be easily implemented in the context of
building simulation, since it only requires one of three operations: addition (shifting),
multiplication (linear stretching), or a combination of the two (shift and stretch).
Shifting is applied to those variables for which an absolute change of mean is given in
the climate change forecasts. Stretching works when the change to mean or variance
is given as a fractional change. The combination is used when both the mean and
variance of a variable need to be changed, e.g., if the forecast includes a change of
minimum and maximum temperatures in addition to a change of mean temperatures.
Belcher, Hacker et al. (ibidem) demonstrated their method for three cities in the UK.
They succeeded in demonstrating the agreement of future Heating Degree Day (HDD)
values calculated using their ‘morphed’ Test Reference Year (TRY) and Design Summer
Year (DSY) files, and those from the UKCIP02 report (Hulme 2002) itself, which is the
source of the climate change predictions. Jentsch, Bahaj et al. (2008) demonstrate the
use of morphing to produce future ‘typical year’ files for the UK using morphing, while
Jentsch, James et al. (2013) demonstrate the same procedure for a selection of world
climates. Their work is incorporated into the CCWeatherGen and CCWorldWeatherGen
tools.
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Kershaw, Eames et al. (2011) report on the latest future weather generator from the UK,
the UKCP09 (Jones, Harpham et al. 2010). The baseline climate for the UKCP09, like
most generators and projections, is 1961-1990. Only five rainfall states are considered
in the generator: “dry today/dry yesterday, wet today/wet yesterday, dry today/wet yes-
terday, wet today/dry yesterday and dry today/dry yesterday/dry day before” (Eames,
Kershaw et al. 2012a). In addition, “the use of the three-day dry sequence allows for
the prediction of heat waves” (ibidem). Upon calibration, “change factors are applied
to [recorded data to] generate the future precipitation”. All “... other variables are
created using mathematical and statistical relationships with daily precipitation and
the previous day’s weather” (Eames, Kershaw et al. 2011), thereby preserving the ‘Inter-
Variable Relationships’ (Jones, Harpham et al. 2010). The UKCP09 generator outputs
100 runs of 30 years each, from which the authors constructed 100 reference years.
Eames, Kershaw et al. (2011) use the percentiles of monthly mean Dry Bulb Temper-
ature (TDB) to create reference years tied to certain percentiles from this set of 3000
years. “This means that the median... January is combined with the median February,
March, etc.”, the 90th percentile January with the 90th percentile February, and so on.
Eames, Kershaw et al. (2012a) compared morphed weather data with that obtained
from the UKCP09 (stochastic) generator using “reference weather files”. They found
that for “... each location the morphing procedure systematically produces warmer
minimum temperatures and cooler maximum temperatures”, though they clarify that
this is probably due to the fact that the UKCP09 generator produces a hundred times
more files than the morphing procedure. Naturally, morphing produces the “exact
same weather patterns” while the stochastic generator produces unique patterns for
every year. However, the stochastic generator may also produce unreasonable values.
They conclude their evaluation by saying that, while both types of data can be used
for climate change studies, the morphing procedure should be used with caution for
overheating studies because it does not reproduce extreme temperature well.

The reader is directed to Eames, Kershaw et al. (2011) for details of the generating
procedure for the random files (the PROMETHEUS project), to Jones, Harpham et al.
(2010) for details on the UKCP09 Weather Generator, and to Levermore, Courtney
et al. (2012) for future TRY and Design Reference Year (DRY) files for the UK. Finally,
see Mylona (2012) for a review of existing work on producing future weather files for
simulation in the UK. A comprehensive study by Levermore, Courtney et al. (2012,
chpt. 2) derived new future weather files for the UK, the DRYs, which are future
extreme years selected based on combination of temperature, solar radiation, and
humidity. Jentsch, Eames et al. (2015) also propose the creation of near-extreme
Summer Reference Year (SuRY) as an alternative to the DSY by adjusting the TRY of
a given site with change projections. This, they say, helps maintain a link to the TRY
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while incorporating climate change. An alternative to this is the DRY proposed by
Levermore, Courtney et al. (2012), which is based on extracting the closest months to a
particular percentile of mean monthly TDB from the 3000 years generated by UKCP09.
Twenty samples of each month are initially extracted and then one is selected based on
its ‘typicalness’ for that set of synthetic months, using the Finkelstein-Schafer statistic
(FS statistic) (Finkelstein and Schafer 1971; Wilcox and Marion 2008) familiar to users
of Typical Meteorological Year (TMY) files (see Section 2.6.1 for an explanation of the
FS statistic and its use to create typical years).

Crawley (2007) tested the loads generated by future typical and high-low years on
a test building in three locations – extreme cold, mid-latitude, and tropical – in the
Americas. The study is unique in that it considers both urbanisation and climate
change simultaneously. The high-low years were selected based on Degree Days,
which is usually assumed to be a good proxy for climate stress on a building. Echoing
Kershaw, Eames et al. (2010), they found that this was not particularly reliable. That
is, “... selecting weather data based on single, simple climate descriptors such as
degree days would not guarantee the lowest or highest energy for the period of record”
(Crawley 2007). An expanded study (Crawley 2008) involved 25 locations in 20 climate
regions. In this study, climate change predictions are applied to individual time series
from typical weather files. Each current temperature value is modified with a mean
change factor. In addition, the values are also adjusted to match the new predicted
diurnal temperature ranges. Two values of solar radiation were calculated from current
and future cloud cover values, and the current solar radiation values were multiplied
by the ratio of the future values to the current ones.

Zhu, Pan et al. (2016) propose a method to generate future climate files for China
based on morphing. However, the monthly-resolution climate signal is generated by
fitting a periodic term to historic climate trends in China. They find that the long-term
climate change has signal has a dual periodicity – century-scale (200-600 years), and
decade-scale (40-80 years). This is similar to our approach (Chapter 3), except at very
different time scales. The advantage of this strategy is that they are able to introduce
some randomness in the forecasts. Cox, Drews et al. (2015) propose ‘simple future
weather files’ created by applying a low-resolution climate change forecast (difference
of temperature) to an existing typical year file. They found that the prediction of
the heating degree days for a building in Copenhagen did not change significantly
between three modes of applying climate change predictions: a single value for the
whole year (low resolution), one value per month (medium), and one value per hour
(high). We find it difficult to see how their example would be applicable in a climate
that was not as strongly dominated by one season as Copenhagen, and with such a
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small expected change in temperature. The authors found that unsurprisingly, by and
large, cooling energy need rises while heating falls. “In cold climates, the net change
to annual energy use due to climate change will be positive – reducing energy use
on the order of 10% or more. For tropical climates, buildings will see an increase in
overall energy use ... with some months increasing by more than 20% ... Temperate,
mid-latitude climates will see the largest change but it will be a swapping from heating
to cooling, including a significant reduction of 25% or more in heating energy and
up to 15% increase in cooling energy” (Crawley 2008). In addition, a building built to
recent standards (ASHRAE 90.1-2004) performs worse than a “low-energy” buildings.
A “developing case”, i.e., a building without energy codes, performs worst, though it is
not discussed in full (ibidem).

2.2.2 Impact of Climate Change

Research opinion on adapting buildings to climate change is also divided into two
approaches: those favouring passive design and those favouring adaptive systems.
Several studies have attempted to analyse the expected impacts of climate change, e.g.,
references 35-42 in de Wilde and Coley (2012). There is some degree of disagreement
regarding the extent of this expected impact on different building types: a mix of
studies found passive buildings as being more resistant than high-tech adaptive ones,
and other studies reported the opposite. There is broad agreement however, that
energy use for heating will reduce in general (particularly in temperate climates), with
some of it shifting to cooling. The results of climate change impact studies and efforts
to predict future weather data are both bedevilled by an obvious problem – validation.
Essentially, there is no way to validate future environmental impacts without actually
observing their occurrence.

There have been a large number of case studies on the potential impact of climate
change on individual case studies. Presenting the results of each individual study
will be tedious, so we present the broad trends predicted. Most authors concur that
cold climates will see a slight to large decrease in heating need, warm climates will
see medium to large increases in cooling need, and temperate climates will see both.
The worst outcome will be the creation of cooling demand and overheating risks in
climates where this has not been an issue so far. The effect of urban heat islands
exacerbates overheating trends (Crawley 2008). Another theme that comes through is
the switching of energy sources to account for the changed needs. While the creation
of cooling demand in hitherto heating-only climates increases energy use, the possible
shift of some load from heating to cooling opens up the possibility of using passive
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measures and clean electricity.

A recent report by CIBSE (2005) highlighted several challenges to the built environment
in the UK from anticipated climate change3. These included failure of ventilative
cooling and the need for advanced passive cooling in future urban dwellings, the
need for mixed-mode cooling in offices and school, and other strategies such as
night flushing, reduction of internal gains, advanced solar shading, etc. They found
that overheating in already-warmer regions (southern England) is likely to be several
decades ahead of cooler regions (e.g., northern England and Scotland). Other impact
studies based on the UKCIP02 and UKCP09 projections include Collins, Natarajan et al.
(2010), de Wilde, Rafiq et al. (2008), de Wilde and Tian (2010), Jenkins, Patidar, Banfill
et al. (2011), Jenkins, Patidar and Simpson (2015), Jenkins, Gul et al. (2013), Kershaw,
Eames et al. (2011), Levermore, Courtney et al. (2012), Natarajan and Levermore
(2007), Patidar, Jenkins, Banfill et al. (2012), Patidar, Jenkins et al. (2011, 2012), Ren,
Shankland et al. (2012) and Tian and de Wilde (2011a,b). These are in addition to the
case studies included in nearly every proposal for new future climate files discussed
before, and the uncertainty discussions in Section 2.7. Tian and de Wilde (2011a)
tackle the problem of reducing computational load by picking specific files. They
compared three methods: using FS statistic statistics to pick typical files, simple linear
regression between Degree Days and loads, and more complicated regression models
composed of Degree Days, U-values, Solar Heat Gain Coefficient (SHGC), and Internal
Heat Gains.

Patidar, Jenkins, Banfill et al. (2012) propose a modified vector Auto-Regressive (AR)
model for future summer indoor temperatures based on seven weather parameters.
The authors don’t use this term though, preferring to call it a “simple linear model”.
The number of lags considered in the model is rather high at 72 hours (readers will see
that our models, described in Chapter 3, consider 4 or fewer lags). The prospect of
calculating 504 regression parameters (72×7) motivates the use Principal Component
Analysis (PCA) to reduce the dimensions down to 33. Different regression parameter
values are calculated for each Principal Component (PC) in May-June, July-August,
and September-October. A second level of regression model is proposed for two
‘adaptations’ – window opening and external shading. The model prediction results
presented are impressively accurate. However, the model does not consider and
internal heat gain factors, and it is only tested on the bedroom temperature of a
simple dwelling.

Studies from other regions and datasets include Switzerland (Frank 2005), USA (Craw-

3On the basis of a quantitative study for London using UKCIP02 forecasts.
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ley 2008; Scott, Wrench et al. 1994), China/Taiwan (Huang and Hwang 2015; Wan, Li
et al. 2012; Zhu, Pan et al. 2016), Singapore (Law 2013), Australia (Guan 2012), The
Netherlands (Albers, Bosch et al. 2015; van Hooff, Blocken et al. 2015), Germany (Ran-
now, Loibl et al. 2010), Portugal (Aguiar, Oliveira et al. 2002), etc. Pyke, McMahon et al.
(2012) developed two indices – a Climate Sensitivity Index and a Climate Adaptation
Opportunity Index – and applied them to “potentially sensitive and adaptive practices”
from LEED®-certified projects across the world. The first index highlights risks while
the second indicates plausible adaptation strategies. They are both based on assigning
values of strength/importance, duration of action, and reliability of control to each
existing LEED® credit. All of these used building simulation or characteristics in some
form. We have not included studies that drew on broad relationships between climatic
variables, usually temperature, and aggregate energy or electric consumption.

There has also been some criticism of the excessively energy-centric approach to
climate change adaptation (de Dear 2006; Humphreys, Nicol and Roaf 2016; Nicol,
Humphreys and Roaf 2012; Roaf, Crichton et al. 2009). McGilligan, Natarajan et al.
(2011) propose a new metric, the Adaptive Comfort Degree Days, that use the adapt-
ive standard of comfort to determine future cooling demand. This is an important
limitation in the case studies used in our work as well. We always use a dead-band
approach to thermal comfort – assuming simply that if the temperature is below 18°C
heating will be required, and if it is above 26°C, cooling will come on.

2.3 Simulation for Energy-Conscious Design

There are a number of publications that seek to offer general guidelines for energy-
conscious design. Many of these include instructions on calculation techniques for
specific tasks, e.g., Clarke (2001) for building physics calculations, McQuiston, Parker
et al. (2005) for analysis and design of HVAC systems, Hodge (2010) for alternative
energy systems, Grondzik, Kwok et al. (2011) for general building system analysis
and design, and Krarti (2000) for building energy audits. Publications supported
by professional organisations include ASHRAE Advanced Energy Design Guide for
Small Office Buildings; ASHRAE Advanced Energy Design Guide for Small to Medium
Office Buildings; ASHRAE Standard 140-2011; The ASHRAE Guide for Buildings in Hot
and Humid Climates; The MINERGIE Standard for Buildings; An Architect’s Guide to
integrating energy modeling in the design process; The RIBA Guide to Sustainability
in Practice. These tend to be a mixture of prescriptions, like recommended U-values
for windows, and standardised methods for calculations, e.g., the ASHRAE climate
classification system. Texts from individuals or groups of authors familiar to us include
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Athienitis and Santamouris (2002), Bansal, Hauser et al. (1994), Donn (2009), Fathy,
Shearer et al. (1986), Givoni (1976, 1989, 1992), Hausladen, de Saldanha et al. (2012),
Koenigsberger, Ingersoll et al. (1974) and Olgyay and Olgyay (1992). Publications
by professional bodies tend to be written in code-like language4, while books by
individual authors or groups tend to be written as narratives. Their style and content
often differ based on their audience (for example, architects vs. HVAC engineers). The
work contained in these publications is, by and large, meant to catalogue “shared
knowledge”.

2.3.1 Comfort Models for Simulation: A Brief Overview

... achieving thermal comfort pre-dates by thousands of years the
development of the theory of heat exchange.

Standards for Thermal Comfort,
Humphreys, Nicol, Sykes et al. (1995, chpt. 1)

As we have discussed previously (Chapter 1), this thesis treats comfort as the basis for
energy-conscious design. However, this thesis does not contribute anything to comfort
models or occupants’ concerns, so we will only briefly discuss the literature related
to comfort measurement, modelling, and quantification. We discuss only thermal
comfort, not related topics such as visual and acoustic comfort, or ventilation-related
issues.

Comfort models, based on heat exchange between the body and its surroundings,
have been developed over several decades. Readers interested in the development of
thermal comfort research are directed to Carlucci and Pagliano (2012), Hensen (1990),
Hoof (2010) and Nicol and Wilson (2010) for overviews. Broadly, thermal comfort
theory can be separated into static and adaptive models. The former assumes that
humans prefer temperature and humidity to stay within a relatively narrow band,
regardless of outdoor conditions or time of year. The latter expands the comfort bands
and allows them to vary based on the outdoor temperature, down and up to some
limit.

The work of Fanger (1970) laid the foundations of the static thermal comfort models.
Readers wishing to examine the details of this model are directed to ASHRAE Hand-
book: Fundamentals. The models are based on assuming some level of clothing (for

4Code as in laws, like those for structural safety, not instructions for computers.
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insulation) and activity (for metabolic heat production). They are intended to deliver
a “neutral” environment, where the occupants are neither too hot nor too cold, as
assessed by a Predicted Mean Vote (PMV) and Percentage People Dissatisfied (PPD).
The PPD cannot go below 5%, indicating that it almost impossible to satisfy every
occupant of a building.

Givoni (1992) and Olgyay and Olgyay (1992) represent a pre-Fanger perspective on
comfort, particularly in hot climates, and the development of the bioclimatic chart.
The development of the adaptive comfort model (e.g., the one used in ASHRAE Stand-
ard 55-2010) may be traced through the work of de Dear and Brager (1998, 2002),
Humphreys (1978), Nicol (2004) and Nicol and Humphreys (1973, 2002, 2010); and
reviews like Halawa and van Hoof (2012). For details on principles, practices, case
studies, and a philosophical justification for adaptive comfort see Humphreys, Nicol
and Roaf (2016) and Nicol, Humphreys and Roaf (2012). Some authors have worked
in specific contexts, e.g., Fathy, Shearer et al. (1986), Indraganti, Ooka et al. (2014),
Kwong, Adam et al. (2013) and Manu, Shukla et al. (2016) (hot and/or humid climates
like Egypt and India).

Newer work delves into the uncertainty of comfort calculations, and probabilistic
assessments (de Wit 2001; Sulaiman and Olsina 2014). One of our proposals for future
work (Section 5.3.3) includes the exploration of how comfort models interact with
climate to contribute to uncertainty. Finally, see Humphreys, Nicol, Sykes et al. (1995),
Law (2013) and Tuohy, Roaf et al. (2010) for future trends and standards.

2.3.2 Buildings as Systems to be Simulated

This section discusses simulation, particularly how it relates to the work presented in
this thesis, after Iaccarino (2008).

First, one defines the system of interest and performance measures. This is followed by
a geometrical characterization of the device, its operating conditions, and the physical
processes involved. In our application, the average user is not going to examine
the fundamental heat transfer processes for every simulation, but we expect that
they are at least know which physical processes they are modelling. The formal next
step is a “formulation of a mathematical representation of the system, ... governing
equations and the phenomenological models ...”, usually set in the building simulation
software. The relative importance of inputs must be quantified next, with reference to
the response. Iaccarino (ibidem) point out that the “system response of interest is a
fundamental aspect of this phase”. Simply put, if the user does not know what they
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are designing for, the use of simulation could create more confusion. Design does,
sometimes, work without a defined goal. In such a case, it is probably not advisable to
spend too much time coding simulation models.

Nominally speaking, one would input the “precise geometrical definition” of the
system (building) at this point. Practically, simplification is unavoidable (and, in fact,
desirable), because several geometrical features are of limited importance in a thermal
analysis. For example, the precise shape and arrangement of furniture is not important
unless one is concerned with glare from their surfaces, the details of the structural
or foundation system are not important unless one suspects the presence of thermal
bridges, and so on. In our experience, this is a remarkably difficult step, in teaching
and practice because it is highly context sensitive and requires ‘expert knowledge’.
How does one communicate what effect each simplification had or will have without
testing it? In which case, the element has been modelled and the effort put into doing
so will be wasted. The user also has to introduce “artificial boundaries” to keep the
scope of the analysis manageable. Once a “well defined mathematical representation”
is in place, the continuous, differential system must be discretised in space and time.
The spatial representation of the system is split up into discrete chunks to create an
interconnected grid of nodes (finite elements). These nodes, in thermal simulation,
represent temperatures. Since differential equations must be solved practically by
numerical methods, becoming difference equations, the evolution of the system over
time is also in discrete steps (finite difference).

2.3.3 Simulation: Usability Issues

Performance simulation is hardly the backbone of design, despite the ubiquitousness
of computers. In fact, it would not be unreasonable to say that simulation is still
regarded as something of a dark art, with dozens of fiddly knobs and fudge factors
that do not make sense to the non-specialist. Lam, Huang et al. (2004) state that most
dynamic simulation tools are used for “design verification and to meet building code
requirements at the end of the design phase”, instead of support and feedback during
the design process. While those findings were published more than a decade ago,
recent work, e.g., Attia, Hensen et al. (2012) and de Souza (2012, 2013), does not show
a significant improvement in attitudes toward performance simulation as a design
tool. The popularity of green-building or sustainability certification schemes5, and
the adoption of energy codes6, creates a significant demand for building simulation

5Leadership in Energy and Environmental Design (LEED®), Building Research Establishment Environmental
Assessment Methodology (BREEAM®), Green Rating for Integrated Habitat Assessment (GRIHA®), etc.

6ASHRAE Standard 90.1-2010; ASHRAE Standard 189.1-2011; International Energy Conservation Code, etc.
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because of the prevalence of energy-specific criteria in the rating/evaluation systems.
However, the evaluation criteria often only ask for late-stage energy analyses and do
not concern themselves with the appropriateness of the design. That is, they work
from a ‘baseline’ building usually defined on the same layout and massing, and then
work their way towards more efficient envelope and system choices.

Some of the unpopularity of dynamic simulation tools is due to inappropriate design
of the user interface or even the core software. Alsaadani and de Souza (2012), de Souza
(2012) and de Souza and Knight (2007) make some excellent points on the difference
in thinking between tool designers and users, which causes the tool design to diverge
from the requirements of the users. Papers on usability and acceptance have presented
a gamut of reasons both for and against the adoption of energy simulations in design,
based on surveys of practitioners and academics. We present the following non-
exhaustive list of pros and cons based on Attia, Hensen et al. (2012), de Souza (2012)
and Wong, Lam et al. (2000). Reasons in favour include enhanced understanding of the
impact of design choices on final performance, increased speed of iteration, and better
confidence in the design. Arguments against using simulation tools included extra
cost and effort with little resultant recognition from clients; tight project schedules
and budgets; lack of in-house skills, or local training and support from vendors;
steep learning curves; the very extensive data input necessary (especially because
of incompatibility with CAD software); and, lack of knowledge about the physical
principles. Finally, interpreting the results, especially in the light of uncertainty, is
mathematically challenging.

This problem is compounded by the fact that building performance simulation spe-
cialists cannot agree on standards of inputs, outputs, and performance. The BESTEST
procedure, codified in ASHRAE Standard 140-2011 (Judkoff and Neymark 1995, 2006),
is an important step in this direction. Attia, Hensen et al. (2012) identify a host of issues
with comparing and standardising Building Performance Simulation (BPS) tools. They
find that there are no uniform definitions of “tool requirements and specifications”, no
clear methods to compare different tools, and “... no common language to describe
what the tools could do” (Crawley, Hand et al. 2008). However, the authors find a
substantial amount of literature attempting to rank and compare BPS tools. For ex-
ample, Crawley, Hand et al. (2005, 2008) listed a series of studies comparing building
“energy programs”, and conducted a comparative survey themselves – though it was
based on vendor-supplied information with “... limited peer review”. Perhaps the
most interesting recommendation in their documents is that of a ‘living’ document
that catalogues the capabilities and performance of various software regularly. From
the literature, it seems that there is a lack of consensus among practitioners about
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the utility of these tools and among specialists about the standards. In a paradigm of
prescriptive design codes and “a fragmented building delivery process that does not
routinely include quantifiable assessments of design options”, it is understandable
that rigorous simulation falls by the wayside Wong, Lam et al. (2000).

There are so many tools available for energy modelling of buildings now that it is
quite reasonable to assume no professional can hope to be familiar with more than
a small subset, let alone have any degree of proficiency in them (a list online, BEST
Directory: Building Energy Software Tools, includes more than a hundred tools). Donn,
Selkowitz et al. (2012) suggest, quoting findings from a usability study conducted for
the tool COMFEN (Hitchcock, Lee et al. 2008), that any design guidance tool must
try to answer certain question about performance and the likelihood of getting this
performance. We summarise the questions here [with some of our own additions
in square brackets]. The themes raised by these questions show up throughout this
thesis.

• What are the expected [energy] costs of operation?

• What variations of comfort [or energy use] are expected? Both with the passage
of time and in the different parts of a building.

• What are the risks for comfort and cost [and what is their likelihood of occur-
rence]?

• What sort of interaction is expected between the building systems and users?

• What is the likely impact of future climate change [on building performance]?

PRÉCIS

• Building simulation is widely considered to be cumbersome or complicated.

• The use of simulation is not adequately rewarded or recognised.

• There are few standards to judge simulation software, and little agreement on
how to evaluate them.

• The precise results from numerical simulation are not well suited to a decision-
making process that is often qualitative.

� For a variety of reasons, the use of simulation in design is neither widespread nor
deeply integrated.
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2.3.4 Using Simulation for Early- and Late-Stage Design

The ‘early stage’ of design is a commonly used expression for a somewhat vague
concept. While it is not clear where this stage ends, it is generally accepted to refer to
that part of the design process when initial ideas are explored and project requirements
finalised in an adaptive-iterative process (Lam, Huang et al. 2004; Mahdavi and Lam
1993).

This thesis does not concern itself with the very earliest phases of design, when the
client’s brief is being translated into a design framework, site arrangement, and initial
concepts. The ‘system’, i.e., the building, is too vague, or ill-defined, at this point
to be usefully probed with simulation. In any case, the definition of what the early
and late stages are, is itself nebulous. There seems to be a consensus that the early
design phase is when decisions have most impact on energy use, which is intuitive.
From the perspective of dynamic thermal simulation, the distinction between early-
and late-stage design is an epistemic one. It is difficult to simulate a system with
vague descriptions, unless one is willing to accept that most of the inputs have huge
uncertainties, some of which may be quantified with prior knowledge. There are limits
to knowledge at each stage of the design: the level of detail required to accurately
model a building’s energy usage is simply not available from the start. For example,
when one is working on the initial massing of a building, one is not concerned with
the U-value and placement of the windows – though without any knowledge of the
impact these later decisions will have on the final energy design of the building. One
may have ideas about what values are likely, as a sort of Bayesian prior, but the value
is not fixed until a design decision is made, or even until construction. This means
that using simulation at all stages may not be practical but could be useful.

There is some recent work on assessing the impact of early design decisions using
simulation through simplification and the use of defaults, e.g., Asadi, Amiri et al. (2014),
Attia, Gratia et al. (2012), Augenbroe (1992), Carlos and Nepomuceno (2012), Gervásio,
Santos et al. (2014), Lam, Huang et al. (2004) and Pranovich, van Wijk et al. (2003). The
work of Granadeiro, Correia et al. (2013), Hygh, DeCarolis et al. (2012), Jin and Overend
(2014), Ochoa and Capeluto (2009) and Thalfeldt, Pikas et al. (2013) seeks to address
the design of envelopes in particular. Santos, Martins et al. (2014) and Schlueter
and Thesseling (2009) look at the prediction of operational energy use at the early
design phase. Of these, we will discuss the approaches of Asadi, Amiri et al. (2014) and
Hygh, DeCarolis et al. (2012) in more detail later, since they use regression/numerical
methods. We have also published some work with collaborators on the sensitivity of
predicted energy use to an early design parameter – the urban geometrical factors
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(Nault, Rastogi et al. 2015). We direct the reader to a colleague’s recent work (Nault
2016), where they review the development of tools for the early-design phase and the
concepts underlying them.

2.3.5 Optimising for Energy and Comfort

There is nothing like looking, if you want to find something.
You certainly usually find something, if you look,

but it is not always quite the something you were after.

J. R. R. Tolkien (Thorin II ‘Oakenshield’),
in The Hobbit

Optimisation is a promising, if elusive, tool for design. Optimisation, defined formally,
works only in a well-defined context of quantified inputs, outputs, and objectives.
It is telling that, in a survey of practitioners about the use of optimisation, Attia,
Hamdy et al. (2013) found that “all interviewees (28) chose energy as the most used
optimization objective, while 64% (18) chose cost” – probably two of the most easily
quantifiable aspects of design. In addition, “70% of all interviewees do multi-objective
optimization versus 30% who do single objective optimisations”. Evins (2013) found
that about half the publications used single-objective optimisation, while 40% used
“full Pareto multi-objective optimisation”.

The number of publications that seek to optimise a certain sub-system or particular
performance aspect is huge7. A cursory search through our archives gives several
examples: Gagne and Andersen (2010), Madeddu (2011) and Vartiainen, Peippo et al.
(2000), for daylight and associated systems; Ascione, Bianco et al. (2015), Caruso
and Kämpf (2015), Ellis, Griffith et al. (2006), Glassman and Reinhart (2013), Murray,
Walsh et al. (2014), Pont, Shayeganfar et al. (2013), Ramallo-González and Coley
(2014) and Yang, Li et al. (2014), for energy-based goals; Hoes, Trcka et al. (2011) and
Ramallo-González, Blight et al. (2015) for robustness considering user behaviour;
and, Coffey (2012), Lazos, Sproul et al. (2015), Lindelöf (2007) and Mahdavi and
Mahattanatawe (2003), for building controls. The work of Andersen, Kleindienst
et al. (2008), Gagne (2011) and Gagne, Andersen and Norford (2011) proposes an
expert system, a sort of hybrid approach involving a knowledge database, human
judgement, and optimisation. This is an optimisation-assisted approach in which
the user input changes the trajectory of the process at every interaction. In this

7To the best of our knowledge, the review of 165 publications by Attia, Hamdy et al. (2013) has not been trumped.
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case, the ‘human’ is not taken out of the ‘loop’. Several of these publications address
more than one aspect, of course, so this classification is somewhat loose. We did
not review the literature on optimisation of HVAC systems, which is extensive but
not intimately connected to building design. The interaction between systems and
building construction/occupancy is non-linear and complex, but in the case of this
thesis we are chiefly concerned with the building and its intrinsic responses. For
more thorough surveys of the use of optimisation techniques in sustainable building
design, we direct the user to the exhaustive reviews of Attia, Hamdy et al. (2013)
and Evins (2013). The former is a general review of the use of optimisation for any
building-related design problems, while the latter works in the context of integrating
optimisation tools for the design of Net Zero-Energy Buildings (NZEBs).

A common thread through much of the literature is that the so-called ‘direct search’
algorithms do not perform satisfactorily. “Direct search covers methods that compare
trial solutions with the best found so far, ... using results so far [to determine] the
next trial” (Evins 2013). Consequently, the development of optimisation in design has
tended toward heuristic (also called meta-heuristic) methods like genetic algorithms
and evolutionary algorithms, since these methods work well for design problems
that are “discontinuous, non-differentiable, stochastic, or highly non-linear”8 (The
MathWorks, Inc. 2015). Heuristic methods differ in one crucial aspect from classical
methods: “they do not guarantee to arrive at the true optimum, but offer an efficient
method that has a high probability of finding the optimum or of getting close to it”
(Evins 2013). Attia, Hamdy et al. (2013) find that this is not necessarily a bad thing for
design. Their survey of users (practitioners, etc.) finds that many regard the concept
of a ‘true optimum’ nonsensical, given that there are large uncertainties in the process
and that the objectives themselves may change over time. Optimisation is also seen
as an exploration rather than a strict search. Genetic/evolutionary algorithms mimic
natural selection and randomly permute a set of ‘genes’ or components to create
populations of solutions at each step, say a population with varying combinations of
Thermal Mass and U-value. They select the best performers at each step, allow the
individuals to mutate and cross-over for the creation of a new generation (e.g., new
combinations of Thermal Mass and U-value not tested before). The ‘unfit’ solutions
are discarded from each generation, and only the best performers become ‘parents’
for the next step. Attia, Hamdy et al. (ibidem) report that the use of evolutionary
algorithms is seen to be particularly promising in highly constrained problems related
to envelopes and systems.

8These are the qualities of the objective or cost function that is being evaluated. Incidentally, this is more or less
why classic linear models do not perform well in our own work on creating emulators (Chapter 4).
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Two classic problems that occur in the application of optimisation to building systems
are “uncertainties in simulation model input, and long computational times” (Ramallo-
González and Coley 2014). The issue of uncertain inputs in optimisation has been
been addressed in recent work on ‘robust optimisation’, e.g., Aïssani, Chateauneuf et al.
(2015), Marijt (2009), Ramallo-González, Blight et al. (2015) and Van Gelder, Janssen
et al. (2013). Robust optimisation involves the minimisation of an objective function
under a range of input conditions, as opposed to a deterministic values (like typical
weather). Some recent work, including by us, addresses robustness specifically to a
changing climate, e.g., Chinazzo (2014), Chinazzo, Rastogi et al. (2015a,b) and Nik,
Mata et al. (2015), though these publications do not use formal optimisation routines.
There are two ways to address the issue of computational time: simplified models or
emulators. These are discussed in more detail below (Section 2.5), under data-based
and physics-based methods (emulators vs approximate models).

Recent work proposes the use of “adaptive” algorithms. That is, algorithms that do
not waste time in sampling the whole design space to the same granularity/depth.
Much efficiency can be gained by the use of adaptive search if: not all variables are of
interest, and the user may employ domain knowledge to reduce dimensionality; not
all variables reveal interesting features upon increasing resolution, i.e., the response is
smooth against those variables; and not all variables have the same impact on the ob-
jective, i.e., the output shows differing sensitivity to inputs. This is a logically attractive
approach, and consonant with the interpretation of the meta-modelling approach
proposed in this paper for uncertainty/sensitivity analyses. For example, the use of
adaptive sampling would be efficient to train emulators from expensive simulations.
In this thesis, we already employ correlation and PCA to reduce the number of predict-
ors/inputs. The work of Eisenhower, O’Neill et al. (2012) and Ramallo-González and
Coley (2014) on emulator-assisted optimisation relates closely to a possible extension
of this work, discussed in Chapter 5.

2.4 Uncertainty and Sensitivity in Simulation

They say that a little knowledge is a dangerous thing,
but it is not one half so bad as a lot of ignorance.

Terry Pratchett, Equal Rites

We are aware that this section is about to summarise/mangle several treatises’ worth
of philosophical arguments in a few sentences. Fundamental questions of epistemo-
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logy, lit. study of knowledge9, have been asked through the ages and generate much
intelligent debate and journal papers. For more discussion on the nature of knowledge
and knowing, we direct the reader to the nearest professional philosopher. This thesis
is about the nature of inputs and outputs to building simulation, so we are more con-
cerned with uncertainty and sensitivity affecting the validity and veracity of computer
models, rather than the nature of knowing.

Uncertainty analysis is a term encompassing the set of methods that could be used in
to quantify and systematise a user’s lack of knowledge or assessment of the apparent
randomness of a physical quantity. Uncertainty is a little more esoteric than sensitivity,
mostly because there are several different interpretations on offer, none of which offer
much by way of certainty. Davison (2003) discusses the various interpretations of
Uncertainty Analysis (UA) and confidence intervals. In this thesis, we use a frequentist
interpretation, i.e., one based on repeated sampling of a computer simulation using
pseudo-random inputs to construct variability intervals. Sensitivity analysis is the
substantially different concept of examining the relationships between inputs and
outputs. However, sensitivity may also be expressed in terms of variability intervals,
as in the possible values of an output given a certain range of inputs. This is especially
useful when dealing with inputs whose relationship with outputs is not analytically
simple. Macdonald, Clarke et al. (1999) point out that while “the most widely used
methods for assessing uncertainty are borrowed from Sensitivity Analysis (SA)”, a
“distinction must be drawn between a sensitive parameter and an important para-
meter”. If a sensitive parameter, i.e., a parameter to which the system is sensitive, is
known to high degree of certainty, it “will not lead to significant uncertainty in the
predictions” (D. M. Hamby, 1994, cited in ibidem). An important parameter, on the
other hand, is generally so labelled because of its significant relative contribution
to the output uncertainty. A disadvantage of numerical models is that they do not
give explicit functional relationships between and among the output variables, input
variables, and sundry parameters. This is the case with most building performance
simulation, since analytically solvable relationships are hard to find among highly
complex equations governing the effect of certain variables (e.g., material properties,
environmental effects, etc.) on others (e.g., indoor temperature). This necessitates the
use of uncertainty and/or sensitivity analyses to understand the response of a system
to changes in the variable of interest.

Introducing UA into building simulation programs is, by and large, an ad hoc affair.
The modeller assumes some distribution of the populations of different inputs and
tries to sample the distributions without bias. Some literature on UA separates it

9“Defined narrowly, epistemology is the study of knowledge and justified belief” (Steup 2014).
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into two types based on the source of the “doubt”: epistemic and aleatory. The first
arises from a lack of knowledge about a physical phenomenon or object. The second
arises from the randomness inherent in the inputs or the system. While one could
object that the ‘randomness’ is an illusion created by epistemic uncertainty about the
inputs, system, or associated phenomena, for our purposes some phenomena are
taken as random. Weather, occupant interaction, and construction errors are obvious
examples. Hopfe and Hensen (2011) and Hopfe (2009) divide uncertainty into three
categories – physical, design, and scenario. de Wit (2001) use a different classification
– specification, modelling, numerical, and scenario. Specification uncertainty is said
to arise from the incomplete or simplified representation of a building; modelling
uncertainty from assumptions and simplified representation of physical processes; nu-
merical uncertainty from discretisation and simulation in finite-precision computer
systems; and scenario uncertainty from lack of knowledge about boundary or forcing
conditions like weather and occupancy. Macdonald, Clarke et al. (1999) use yet an-
other nomenclature, based on sources: abstraction, databases, modelled phenomena,
and solution methods. The first two categories are both specification uncertainties,
‘modelled phenomena’ includes modelling and numerical uncertainties, and ‘solution
methods’ overlaps with the numerical uncertainties group.

Macdonald, Clarke et al. (1999), Macdonald (2002) and Macdonald and Strachan
(2001) mention some uses to which UA can be put in building simulation:

• “[Building] Model realism: How well (and to what resolution) does the model
represent reality?” [epistemic, model uncertainty]

• “Input parameters: What values should be used in the absence of measured
data?” [epistemic, specification uncertainty]

• “Stochastic processes: To what extent do the assumptions made regarding future
weather, occupancy and operational factors affect the predictions?” [aleatory,
scenario uncertainty]

• “Simulation program capabilities: What uncertainties are associated with the
particular choice of algorithms for the various heat and mass transfer processes?”
[epistemic, numerical uncertainty]

• “Design variations: What will be the effect of changing one aspect of the design?”
[This we would classify as a Sensitivity Analysis (SA) rather than an UA, unless
there is some doubt about whether a design option will be chosen or not.]
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2.4.1 Errors vs Uncertainty

The difference between errors and uncertainty is that the former are “recognisable
deficiencies”, whereas the latter are “potential deficiencies due to lack of knowledge”.
Another useful way to think about this is that errors are a result of “the translation
of a mathematical formulation” into an algorithm/code, keeping in mind that the
mathematical formulation is itself an approximation of a natural phenomenon or
system. These errors could occur due to numerical approximation/representation,
or round-off errors, convergence issues in iterative algorithms, and even ‘clerical
error’, mistakes in implementation (bugs). Uncertainty, on the other hand, arises
from the choice of physical models and the “specification of their input parameters”
(Iaccarino 2008). We now discuss the two broad categories of uncertainty in simulation
(epistemic and aleatory).

2.4.2 Types of Uncertainty

2.4.2.1 Aleatory

Aleatory uncertainty is said to arise due to the inherently random or variable nature of
a quantity, or the (usually unknown) system underlying it. It is “irreducible”, because
better information or experiments cannot eliminate it. Instead, one achieves a better
understanding of the distribution of the quantity through acquisition of relevant
experimental data (ibidem). The uncertainty we assign to climate falls under this
category, as does user behaviour. Does that mean that we are claiming that the earth’s
climate system is inherently random? Not at all. However, there are no perfectly
accurate models of the climate, so, from the perspective of simulation, climate input is
largely random. Chapter 3 gives more details about how this randomness is modelled.
The same can be said of user behaviour, which will be the subject of future work
(Section 5.3.8).

It is useful to think of aleatory uncertainty in terms of possibility, i.e., what could be.
The designer has no way of knowing, for sure, whether there is going to be a heat wave
in the next decade. One can say, with finite confidence, that the temperature is likely
to be this or that, based entirely on computer models. So, we suggest that the designer
assume that the heat wave both will and will not occur, and plan accordingly.

Since there is no way of knowing the weather at a certain time in the future without
actually experiencing it10, robust design boils down to accepting this interpretation. A

10Aleatory uncertainty is irreducible.
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probability distribution on temperature does not imply that, for example, a 100-year
heat wave (say 37°C) returns exactly every one hundred years like clockwork. It just
means that it could happen every year, but there is only a one-in-hundred chance
of that. If the temperature touches 37°C every year for a decade, then clearly the
definition of a 100-year event needs to be changed. Recall that this is a frequentist
interpretation of probability, i.e., one based on acquired data, so it can only be formed
after the event has occurred (post-hoc). With climate models, we can assign Bayesian
priors to the probabilities of future events. In the case of the synthetic files in this
thesis, we use ‘knowledge’ about the climate system – the time series models and
climate change forecasts (IPCC 2014b) – but we do not formally update the randomly
generated series based on ‘new information‘, i.e., recently recorded data.

2.4.2.2 Epistemic

Epistemic uncertainty is the uncertainty “of or relating to knowledge”: how, how much,
and why do we know the things we know? It is literally the state of not knowing,
arising either because there is lack of information or the information is un-knowable.
It is easy to imagine a situation where the user does not know some parameters
of a system, e.g., material properties, energy policies, etc. Epistemic uncertainty
may be reduced in most cases through experimental investigation and calibration.
Probabilistic approaches are of limited use because there is no justification of a chosen
distribution if there is a nominal lack of knowledge. Bayesian interpretations may
be more useful in this case, because the user may use expert knowledge or other
inputs to justify a prior belief, like the skewed distributions of material properties
proposed by Jain, Ramallo-González et al. (2014). An interesting example of reducing
epistemic uncertainty using Bayesian methods in building simulation is in Lindelöf
(2007). They propose a lighting controller that “builds an internal representation
of the room... without user input”. It also learns user preferences by analysing the
overriding behaviour. Here, the controller is acquiring knowledge of two unknown
parameters: the physical make-up of the room and the user’s preferences.

While epistemic uncertainty is reducible with better information or calibration, it may
not always be practical or cost-effective to do so. Say the simulation user is modelling
a stock of city buildings, and does not know whether the designed wall assemblies
were degraded, installed incorrectly, or remained the same during construction. This
fact is theoretically verifiable with a good enough investigation but it is usually not
practical to test the installed U-values of every building in a city. What is the user to
assume in this case?
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One option is to assume no change, and work with the designed values. This is
common practice, and we will call this the status quo approach. Another is to survey a
small sample of buildings and extrapolate the results to the whole building population
by fitting a Probability Density Function (PDF). This we call the frequentist approach,
and its validity depends on the representativeness or quality of the sample11. A third
approach could be the creation of a Bayesian prior. A prior may be constructed purely
from expert knowledge, or from a limited experiment, or from some database like the
one proposed by Zhao, Plagge et al. (2015). One could conduct trials to determine the
conditions for degradation, like faulty installation practices or post-installation wiring.
A (probabilistic) physical model, that determines the probability of seeing degradation,
or the magnitude of degradation, based on the installation conditions, is a prior. The
model need not say that degradation will occur when certain installation conditions
exist, just that it can occur with some probability. The two approaches which assign
distributions to the U-values of walls – based on sample surveys or experiments –
allow the user to quantify the impact of their lack of knowledge on the outcome. In
the case of Bayesian priors, qualitative issues could be brought to bear. For example,
maybe the user is looking to do a worst-case analysis to determine potential failures
(fatal overheating).

2.4.3 Uncertainty Propagation

Not all those who wander are lost ...

J. R. R. Tolkien,
The Lord of the Rings: Fellowship of the Ring

A probabilistic approach to uncertainty would imply the defining of PDFs for inputs
of interest. This uncertainty in inputs is propagated through a system to obtain
uncertainty of outputs. There are several approaches available, “from sampling based
approaches, e.g., Monte Carlo (MC), to more sophisticated stochastic spectral Galerkin
approaches” (Iaccarino 2008). We will discuss two different kinds of approaches –
internal and external – after Macdonald (2002). Internal approaches solve the model
equations stochastically, while external approaches sample from the distribution of
inputs to re-simulate the model several times. For an overview of both, we refer the
reader to Helton, Johnson et al. (2006), Iaccarino (2008) and Macdonald (2002).

11Recall that using certain formulae for mean and variance assumes that the population follows the distribution
on which those formulae are based.
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In this thesis, we use a ‘sampling’ technique: Monte Carlo simulation. This method is
“simple, universally applicable, and does not require any modification to the available
(deterministic) computational tools”(Iaccarino 2008). With MC, low-order statistics,
like expected value (mean) and variance, may be well-estimated with a small number
of samples, but “... a prohibitively large number of realizations may be required to
accurately estimate responses that have a small probability of occurrence” (ibidem).
One can see that truly random sampling could easily lead to a situation where there
are a lot of inconvenient “clusters and holes in the samples” (ibidem). Systematic
sampling approaches exist to address this issue, e.g., stratified sampling and Latin
Hypercube Sampling (LHS). Stratified sampling is when samples are taken uniformly
across the entire input range, which has been divided into equally-spaced disjoint
sub-ranges. In LHS, the sampling range is divided into M intervals of “equal marginal
probabilities”, and one sample each is drawn from the sub-ranges (McKay, Beckman
et al. 1979).

Hopfe (2009) link Uncertainty Analysis (UA) to assessment of risk, which in the context
of building simulation amounts to acknowledging explicitly that a given design may
cause some performance metric to exceed its tolerated limits. They treat Sensitivity
Analysis (SA) as the process of identifying the “most sensitive parameters”. These are
common threads running through most of the literature on uncertainty and sensitivity
quantification in buildings. We feel that framing UA in terms of “risk” is a sound
approach to taking it out of the research framework into practice. Engineers and
designers will be on board with the idea of mitigating risk, or otherwise planning
for it, because of the potential to directly affect the comfort and well-being of users.
Ditto for sensitivity of outputs to different design parameters. It can potentially en-
hance the focussed targeting of retrofit measures and other interventions. In the work
summarised below, the reader will notice that there has been far more work using
‘external’ methods than ‘internal’ ones, although some work on quantifying model
uncertainty is hard to classify in either of these categories. For one, the former is easier.
Secondly, not all inputs can be easily rendered into the web of differential equations
that is a building simulation program. The reader is directed to Macdonald (2002,
chpt. 3) for an overview of Uncertainty Quantification (UQ) techniques, both internal
and external, and Macdonald (ibidem, chpt. 4) for an overview about uncertainty in
building simulation. See Hopfe (2009, chpt. 3) for a discussion of uncertainty and
SA for design support. The user is also invited to examine the Georgia Tech Uncer-
tainty and Risk Analysis Workbench (GURA-W), whose goal is to promote flexible
and automated exploration of uncertainties in building simulation inputs (Lee, Sun,
Augenbroe et al. 2013). It contains a database of “uncertainty distributions for a variety
of parameters and models” (ibidem), and can automatically identify and modify the
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relevant parameters in a simulation.

2.4.3.1 Internal Methods: Stochastic Models

The work of Macdonald (2002) and Macdonald and Strachan (2001) takes the ‘internal’
approach. However, they caution the user to the effect that the performance of the
stochastic simulations is not a given, mainly due to convergence issues. “For small
uncertainties the predictions made by the [internal] method agreed with those of a
differential and Monte Carlo analysis. However, for larger uncertainties the method
failed to produce useful bounds on the predictions” (Macdonald 2002). They suggest
continuing with a mix of internal and external methods until these “limitations are
overcome”. This work has been implemented in the ESP-r program, though we did not
test it in this thesis.

A possible line of future work from this thesis is the assessment of the suitability of
internal methods for analysing the uncertainty due to weather inputs, building on the
proposals of Haghighat, Chandrashekar et al. (1987) and Haghighat, Unny et al. (1985).
Interestingly, their work was looking at the calculation of a rigorous safety factor12 for
design based on treating weather inputs as random, and propagating this randomness
through the simulation, rather than a characterisation of the long-term behaviour of a
system. The approach involves partitioning the inputs into random and deterministic
components, the latter of which may or may not be time-dependent. Following this,
the state equation of every node13 is also split into a deterministic (mean) component,
and a stochastic term. The stochastic term is a product of a (white) “noise term”
and a “function denoting the sensitivity of the system to the noise term” (Haghighat,
Chandrashekar et al. 1987). White noise is selected both for its ability to “adequately
describe the random disturbance” and its analytical tractability. The latter is a crucial
point for internal approaches, since the existence and uniqueness of solutions is
guaranteed for white noise processes. An external procedure, like the one in this
thesis, need not work only with specific distributions. In recent work, Brohus, Frier
et al. (2012) proposed using stochastic differential equations to model uncertainty.
For their test cases (a mechanically ventilated room and a naturally ventilated atrium),
they found that the “computation time may be rather high”. They also found that the
impact of using stochastic methods was “modest for the dynamic thermal behaviour
of buildings”, but significant for air flow and energy consumption.

12When designing all sorts of engineering systems, the designer will typically compensate for uncertainties by
over-designing the components. For example, a building with an approximately 5 kWh peak cooling demand
might be serviced by the next largest available unit, say 7.5 kWh.

13In a finite difference network of nodes representing the building and its boundary conditions.
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Silva and Ghisi (2014b) and Sun, Su et al. (2015) examined the effect of so-called
“model” or “model form” uncertainties. The former looks at geometrical and material
simplifications while the latter looks at the anisotropic Perez sky model as an example
(Perez, Ineichen et al. 1990; Perez, Seals et al. 1987).

2.4.3.2 External Methods: Random Inputs

The literature on using external methods for uncertainty and sensitivity analyses in
building simulation is extensive. We present here a very brief overview of some of
the work, addressing different aspects of simulation. Weather inputs are dealt with in
Section 2.7.

Booth and Choudhary (2013), Jain, Ramallo-González et al. (2014) and Sandberg,
Sartori et al. (2014) assess the uncertainty surrounding the implementation of ‘green’
retrofit measures in the building stocks of the UK, India, and Norway, respectively.
In the UK study, the main risk assessed is financial, arising from an overestimation
of efficiency gains. In the India study, the risk assessed is that of the reliability of
predicted loads. In the Norway study, the authors looked at the effect of uncertainty
about renovation of the housing stock on long-term emissions/consumption tar-
gets. Booth, Choudhary and Spiegelhalter (2012) propose a framework for modelling
uncertainties in housing stock models14, including Bayesian calibration based on
measured consumption data. Silva and Ghisi (2014a) studied the effect of uncertainty
due to inputs on the energy consumption of a low-income house in Brazil. The inputs
studied included several building parameters, e.g., solar absorptances; a few climate
parameters, e.g., ground temperatures and albedo; and occupancy, through schedules
and number of occupants. They found a “relative deviation” of 19.5-43.5% on the
energy consumption for heating and cooling. Sun, Gu et al. (2014) present an uncer-
tainty and SA framework for HVAC system sizing, focusing on rigorous safety factors
like Haghighat, Chandrashekar et al. (1987). Burhenne, Tsvetkova et al. (2013) carry
out a combined analysis of the risks due to simulation inputs and economic factors
in predicting building energy consumption. Breesch and Janssens (2005) looked at
the uncertainty in predicting the performance of night ventilation using LHS, and
the sensitivity of ventilation performance to a range of building-related inputs using
Standardised Regression Coefficients (SRC). Mazo, El Badry et al. (2015) examined
the influence of uncertainty related to the measurements of the thermo-physical
properties of Phase-Change Material.

14i.e., models representing types or groups of buildings in a region.
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Hopfe, Augenbroe et al. (2013), Hopfe and Hensen (2011) and Hopfe (2009) present a
series of case studies demonstrating the use of uncertainty and sensitivity analyses for
design decision support. Their latest work proposes a framework for systematic multi-
criteria decision-making under uncertainty. They argue that including the uncertainty
of inputs can produce a more “well-informed analysis” but not necessarily the most
straightforward one. de Wit (2001) presents a framework for quantifying the epistemic
uncertainty in a range of factors considered important in determining indoor thermal
comfort. They consider factors for which a statistical prior is not viable, using instead
a prior obtained from expert judgement. They propose the integration of these priors
into design decision-making using Bayesian decision theory. To select important
parameters of study, they conducted a Sensitivity Analysis (SA) using a large set, and
eventually picked only the two most important sets: wind pressure coefficients, and
temperature distribution in the indoor air. See de Wit (2003) for an overview and
worked example of uncertainty and sensitivity analysis with external methods.

Kim and Augenbroe (2013) present the development of a framework for the man-
agement of uncertainty in demand-side controls. They also discuss the theoretical
framework for UQ in this context, leading from complete ignorance to complete cer-
tainty. Struck, Hensen et al. (2009) outfit a “conceptual design tool” with the capability
to carry out UAs and SAs, and compare its performance to a “detailed design tool”.
They hypothesised that if the conceptual design tool is propagating the uncertainties
faithfully, then the resulting uncertainty in outputs must be higher than the detailed
design tool, since the conceptual tool works at a “higher level of abstraction” (ibidem).
They conclude that if UA and SA are deemed useful to increase the uptake of tool
usage in the early design phase, then “detailed tools with simplified interfaces pose
the most promising way forward” (ibidem). Their work makes an important point in
that it is difficult to understand the influence of model and numerical uncertainties on
epistemic and aleatory uncertainties. This is the same problem raised by Macdonald
(2002) in their discussion on the appropriate mathematical techniques to propagate
uncertainties through a system of difference equations. The problem is especially
acute with commercial software, whose inner workings are not in the public domain.
Parys, Breesch et al. (2012) examined the feasibility/robustness of two passive cooling
systems using MC analyses for an office building in Belgium. There is a small element
of climatic uncertainty as well, with the inclusion of an “extreme weather data set”
(“probability of occurrence of 1-in-10 years in terms of high temperatures and high
amounts of solar radiation”).
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2.4.4 Sensitivity Analyses in Building Simulation

Lomas and Eppel (1992) discuss three ways of analysing the sensitivity of a building
simulation program: Differential Sensitivity Analysis (DSA), Monte Carlo Analysis
(MCA), and Stochastic Sensitivity Analysis (SSA). In a DSA individual parameters are
changed one by one. Along with collaborators, we previously undertook a study like
this in Chinazzo (2014) and Chinazzo, Rastogi et al. (2015a). DSA has the advantage of
revealing the sensitivity of a system’s response to individual inputs (Lomas and Eppel
1992). This is an advantage when only one kind of change is important. For example,
adding insulation to change the U-value (or R-value) of the envelope. Fürbringer and
Roulet (1995) also compare the performance of sensitivity analyses carried out using
the Monte-Carlo method and factorial experimental design separately and in combin-
ation. For their case study, they arrived at the conclusion that a combination of the
two is best: factorial design to get a broad overview of the domain, and Monte-Carlo
at each point selected by the factorial design for an in-depth analysis at that point.
Lomas and Eppel (1992) recommend a DSA for obtaining sensitivities to individual
input parameter uncertainties and MCA for total sensitivities. Their purpose though
was slightly different from the one envisioned in this thesis – “to assess the reliability
and resolution of simulation programs for the design of passive solar buildings in the
UK”. The SSA proposed in their work is slightly more complicated, but conceptually
appealing. It envisages the real time (i.e., during simulation) application of impulse
changes in inputs to calculate changes in outputs. The sensitivities are then calculated
by assuming that the input perturbations are independent white noise terms.

Tian (2013) divide sensitivity analysis methods into two categories: local and global.
Global is further divided into methods based on Regression, Screening, Variance, and
Meta-modelling. The authors go on to discuss each method type and its applications
in building simulation. To clarify, in this thesis, when we use the term ‘meta-modelling’,
we mean a regression-based emulator. On the other hand, Tian (ibidem) makes a dif-
ference between approaches that fit a regression equation to data from simulations, to
examine the coefficients for example, and approaches that use meta-models in place
of the original simulations to improve run-time. The crucial difference then, between
the meta-modelling approach and all others, is that the user is really probing the
sensitivity of the meta-model, not the original system. This is well-understood, which
is why meta-modelling approaches usually involve some calibration and verification.
The method proposed in this thesis is a global meta-modelling-based method, in this
classification. The authors end with a discussion of some issues on the extension and
improvement of sensitivity analysis, with experiments, confidence interval, better
software, and acknowledgement of correlation among inputs.
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Loonen and Hensen (2013) introduce the concept of ‘dynamic sensitivity analysis’,
arguing that the aggregated metrics used in most studies, like annual energy need or
peak demand, do not capture the dynamic sensitivity of a building to its constantly
varying environment and operational demands. The dynamic analysis proposed in
their work is relatively straightforward, though computationally intensive. Unlike in
conventional analyses, where only the final result of N simulations15 is examined, in
this approach the result at every time step is stored. This way, the ‘sensitivity profile’ at
every time step is available. The interpretation of these profiles is more complex than
that of a single aggregated profile, so the authors suggest using some post-processing
tasks like smoothing.

Blight and Coley (2013) looked at the sensitivity of predicted energy consumption
in Passivhaus® dwellings to natural variation in occupant behaviour and household
composition. Similarly Firth, Lomas et al. (2010) examined the sensitivity of predicted
household energy consumption to uncertainty in the inputs to the Community Do-
mestic Energy Model (CDEM), a stock model developed in the UK to explore household
efficiency measures. They found that the influence of under-performing household
energy efficiency measures on the national Green House Gas (GHG) emissions targets
could be very large, and good quality control in construction and refurbishment is
needed to ensure targets are met reliably. For the use of sensitivity analysis as a design
tool, or as part of the design phase with specific applications, see Garcia Sanchez,
Lacarrière et al. (2014), Hui (1996), Hygh, DeCarolis et al. (2012), Loonen and Hensen
(2013), Nault, Rastogi et al. (2015), Sandberg, Sartori et al. (2014), Shen and Tzempe-
likos (2012), Smith, Aguilar et al. (2012), Struck, Hensen et al. (2009) and Tian and
de Wilde (2011b). Athienitis (1989) present a ‘sensitivity analysis tool’ based on a
discrete frequency-domain model of a thermal network model. In their formulation,
the properties of components can be changed without the need to invert a matrix.

For a comprehensive overview of SA methods, the user is directed to Hamby (1994)
and Saltelli (2008). For a review of sensitivity analysis in building simulation, see Tian
(2013). See Kleijnen (2001) for a tutorial on experimental design of simulations for
what-if or sensitivity analyses.

2.4.5 Issues: Speed and Complexity

By and large, the methods for quantifying uncertainty and sensitivity discussed above
suffer from issues of complexity and computational load. Internal methods have not

15Using N unique input combinations.
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been implemented efficiently, as discussed in Macdonald (2002). External methods,
by definition, require far more simulations than a single-input run. Efficient exper-
imental designs can go some way to alleviating that, but have not, so far, reduced
computational load to the point where UQ and Sensitivity Quantification (SQ) are
included in real-time energy feedback during design. New approaches using cloud
computing, e.g., Naboni, Maccarini et al. (2013) and Naboni, Zhang et al. (2013), are a
step towards using offloading intensive parametric runs to paid servers. This approach
could also, naturally, be used in simulation with in-built sampling routines. As reader
may see from the discussions in Chapters 1 and 5, interpreting the outputs from a
simulation with multiple weather files is not as easy as the output of a single weather
file.

Issues of complexity and speed have been looked at since the 1970s, when the drivers
were the expense and paucity of computational power, and the challenge of intro-
ducing simulation to the architectural and building professions. While the original
advantages of reducing simulation time by incorporating smaller weather files should
now be irrelevant, the increasing complexity of building simulation codes has neg-
ated much of the gain in computational speed (Kershaw, Eames et al. 2011). These
issues have given rise to several approaches based on simplified physical models
and emulator-based approaches, which are discussed in Section 2.5. The approach
described in Chapter 4 is also data- or emulator-based, though the synthetic weather
series described in Chapter 3 may be used directly with a full BPS program.

2.5 Simplification and Emulation for Speed

The valuable capacity of the human mind to simplify a complex situation
in a compact characterization

becomes dangerous when not controlled in terms of definitely stated criteria . . .
[because] the effectiveness of an argument is often contingent upon oversimplification ...

Simon Kuznets, National Income, 1929-1932.
Cited by Sidin Vadukut (2014).

Simplified methods are generally used to make computationally-expensive analyses
tractable. In this capacity they can serve, in conjunction with statistical techniques, to
explicitly calculate uncertainty, sensitivity, or risk. They could also be used in cases
where doing a full building simulation is not worth the user’s time and effort because,
for example, not enough is known about the project to trust the simulation.
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Zhao and Magoulès (2012) classify developments in simplified building simulation
or prediction techniques into five categories: data-based techniques or “statistical”
methods; simplified energy modelling techniques or “engineering methods”; neural
networks; Support Vector Machines (SVMs); and “grey” methods (where some in-
formation about the system is available). In this thesis, we applied a technique called
Gaussian Process regression, which is in the same category of techniques as SVM.
Foucquier, Robert et al. (2013) also review methods in simulation, making a similar
classification of methods into ‘white’, ‘black’, and ‘grey’. The difference between these
three categories is in the ability of the user to ‘view’ the underlying equations. The
reader is directed to these two review papers for a review of approaches published so
far.

We view this work from the perspective of computational efficiency for UA and SA
studies. The issue is that the time required to simulate, say, representative samples
of uncertain quantities or a full factorial experiment, can sometimes get out of hand.
Emulators and simplified methods are both commonly used strategies in addressing
this. In our work, we too found that regression is a useful approach. However, we are
not convinced that classical regression models based on large pre-simulated sets are
the way forward. Thus, in Chapter 4, we propose an approach that is able to build
an emulator on-the-fly, and which can deliver explicit estimates of uncertainty using
Gaussian Process regression.

2.5.1 Simplified Physical Models

Heat penetrates,
like gravity,
all the substance of the universe,
its rays occupy
all the parts of space.

Translated by Parag Rastogi,

23 May 2016

Le chaleur pénètre,
comme la gravité,

toutes les substances de l’univers,
ses rayons occupent

toutes les parties de l’espace.

Joseph Fourier,
Théorie analytique de la chaleur

The simplest description of BPS is that it solves a series of heat transfer problems.
Of these, the central equation is the partial differential heat equation known as the
Fourier equation

∂2

∂x2
θ(x, t ) = 1

α

∂

∂t
θ(x, t ), (2.1)
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where θ(x, t) is temperature as a function of space (x) and time (t); and α is the
thermal diffusivity of a material (Clarke 2001). Analytic approaches to solving this
equation are based on some sort of domain transform, usually Laplace or Fourier. In
other words, they seek to solve the differential equations of heat and mass transfer
as algebraic equations. Haghighat and Athienitis (1988) compare the use of time and
frequency domain programs. Boland (1997) propose the use of Laplace transforms
and Duhamel’s theorem. Other work using Fourier domain or discrete frequency
transform-based solutions is presented and reviewed in Athienitis, Chandrashekar
et al. (1985), Athienitis, Sullivan et al. (1986), Athienitis, Sullivan et al. (1987) and
Athienitis and Santamouris (2002). Another popular approach is through the use
of a variety of admittance functions, e.g., Clarke (2001) and McQuiston, Parker et al.
(2005). See Sodha, Kaur et al. (1986) for a comparison of admittance and Fourier-based
methods. See Clarke (2001, chpt. 2) for an example using yet another approach: the
response factor method.

Donn, Selkowitz et al. (2012) propose an intriguing concept called the ‘Building Per-
formance Sketch’. Their idea is to provide building designers with a tool that allows
them to evaluate the energy/comfort performance of ‘sketches’, i.e., plans with less
details than would be required for a full-blown energy model. As the authors put
it, “the performance analysis sketch is a model that can be created when no-one
quite knows what the actual building will look like”. According to the authors, the
sheer amount of information required by Building Information Modelling (BIM) and
Computer-Aided Design (CAD) tools hampers interoperability and experimentation.
They mention recent efforts at translating between domain-specific ‘views’ of a build-
ing using high-level programmes or Graphical User Interfaces (GUI) that call separate
modules, noting that this still requires a heavy investment of time on the part of the
user managing the process. Schlueter and Thesseling (2009) developed an energy-
and exergy-based analysis tool integrated with a commercial Building Information
Modelling (BIM) software (as an add-on). The tool allows the designer to visualise
different possibilities with real-time performance feedback. Although their tool still
uses a large number of default values for parametric comparisons, it is a potential
avenue for early-stage design exploration integrated with BIM.

Marsh and Carruthers (1995) created the first early-stage (simplified) design and ana-
lysis tool for environmental design (which eventually became the Autodesk Ecotect®

software). They used object classes (backed by libraries of material properties) and
interconnected specialised modular programs behind a graphical user interface. This
allowed users to iterate designs without having to redraw the current design in each
module for different kinds of analyses. While this approach is informative and saves
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users a considerable amount of time, it does not provide any “guidance”, leaving the
user to understand the significance of the results.

Most of these approaches have since yielded to the major building simulation pro-
grams, since the original impetus for their development – computational efficiency –
is not a major issue any more. The numerical solution of a thermal network is fairly
efficient, and batch simulation permits the user to farm out jobs to servers, run simu-
lations in the background, among other workarounds. Some of these techniques live
on in the simulation programs as options, e.g., the use of the admittance method in
EnergyPlus NREL and USDOE (2015).

2.5.2 Databases and Regression

If you torture the data enough, it will confess.

R. H. Coase,
cited by Gordon Tullock (2001)

Regression Analysis is a much (mis-)used technique for the modelling of relationships
between quantities, or variables. In the context of BPS, regression techniques are
applied to two situations: to complement full-scale simulation or to supplant it.
Much of the work using regression-based emulators has been reviewed already in this
chapter, in the context of UA and SA (Sections 2.4 and 2.7). Attempts to incorporate
regression into the exploration of design options or simulation involving very abstract
concepts are also common. We direct the reader to a forthcoming thesis from our
colleague (Nault 2016) for a more thorough review of emulators.

Most approaches in this category focus on developing relationships between proper-
ties of interest to designers, e.g., insulation levels, and obtaining their relationships to
final energy use. Examples of this include Amiri, Mottahedi et al. (2015), Asadi, Amiri
et al. (2014), Coley and Kershaw (2010), de Wilde, Rafiq et al. (2008), Hygh, DeCarolis et
al. (2012), Nault, Rastogi et al. (2015), Patidar, Jenkins et al. (2012), Perera, Halstensen
et al. (2015), Tso and Yau (2007) and Wu and Sun (2012). Sensitivity analysis with
standardised regression coefficients is another common use for regression, reviewed
along with several other approaches in Tian (2013). See de Wit (2001) and Hopfe (2009)
for discussions and reviews of the use of regression in uncertainty analysis.

A representative data-driven approach is that of Hygh, DeCarolis et al. (2012), who
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propose a parametric exploration of design choices based on regression analysis. They
derive equations of relationships between factors and their outcomes from analysis
of 20,000 simulation runs for each of four different climates. They found a strong
linear fit between a composite equation of 51 factors/covariates (echoing Coley and
Kershaw (2010), de Wilde, Rafiq et al. (2008) and Tian and de Wilde (2011a)) and
the overall energy use for heating and cooling. The authors compared aggregated
annual values for these parameters rather than hourly simulations. While this is a
simplification, it is not unreasonable since annual values are handy metrics to guide
energy-conscious design. In addition, due to the effect of internal heat gains and
weather, hourly temperature profiles are sufficiently random and unpredictable that
it is perhaps more sensible to compare broad trends anyway. While this method is
hugely resource-intensive, it can conceivably be carried out for one’s locations of
interest to aid initial parameter exploration in those locations.

Burkhart, Heo et al. (2014) present a measurement and verification framework based
on Gaussian Process (GP) models, showing that a GP fit using a Monte Carlo Expectation-
Maximisation framework provides more robust predictions than one that does not
consider uncertainty. They frame this in the context of the effort required to get high
quality post-occupancy measurements from buildings. They propose that, with fur-
ther extensions, their framework would be an efficient way to incorporate crudely
estimated site data, whether uncorrelated or correlated, into emulators for building
simulation. Work by Heo and Zavala (2012) also looks at GP models for measurement
and verification. Yan, Kim et al. (2013) use GP emulators for optimal operation Wood,
Eames et al. (2015) compared optimisation with a Genetic Algorithm (GA) and with a
Gaussian Process regression-based emulator, and Kim, Ahn et al. (2013) also propose
GP emulator-assisted optimisation. Eames, Wood et al. (2015) used emulators to
simulate internal conditions due to climate change.

Ansuini, Giretti et al. (2012) proposed a probabilistic approach to decision-making
in the conceptual design phase using “Probabilistic Design Spaces” composed of
Bayesian Networks. The approach uses interconnected decision trees to model the
process of design, where the relationship between a parameter (like material property)
and its impact on an outcome (like indoor temperature) is assigned a probability
based on data from a simulation or experiment. This is an empirical method, where
the results of case studies are used to assign likelihood estimators to outcomes that
cannot be easily represented by a closed-form equation. This approach relies on
using data from case studies, which requires a significant investment in building those
databases.
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2.6 Weather input for Simulation

From the perspective of modelling and simulation, the “dynamic interaction between
building systems and external climate is extremely complex, involving a large number
of difficult-to-predict variables” (Guan 2009). Years of effort in this direction have
yielded several useful rules of thumb and handbooks, and these, especially when they
represent the synthesis of decades of painstaking research effort, form the bedrock of
building design. However, unless a proper appreciation of the uncertainty inherent in
characterising and predicting climate is included in design procedures (and measures
taken to account for it), buildings could end up using more far more energy than
planned for while periodically suffering overheating and other ‘climate shocks’.

In practice, building simulation tools do not explicitly include uncertainty of weather
inputs in a simulation run. In a typical building simulation work-flow, a single input
weather file is chosen to represent the climatic conditions that a building would be
expected to experience in its lifetime. In this thesis, for example, we use files the TMY
files (Wilcox and Marion 2008), and those generated by METEONORM (MN) (Remund,
Mueller et al. 2012a) for demonstration. We contend that this is an untenable state
of affairs, and the stochastic nature of weather/climate inputs must be incorporated
explicitly to gauge the sensitivity of a building to these inputs. Before we do that
though, we present here the development and current practices in weather input
for simulation. The nature of weather data used in building simulation has changed
significantly over the years, from the ‘typical weeks’ proposed by Degelman (1997) to
the most recent Typical Meteorological Year - Version 3 (TMY3) (Wilcox and Marion
2008). The list of data types and sources in Harriman, Colliver et al. (1999) has not
changed much, except that TMY-like files are now available for thousands of locations
worldwide.

This discussion is not about weather/climate data for the design of HVAC systems.
The procedures for designing HVAC systems rely on extreme conditions, rather than
typical ones, because the system has to be able to provide the necessary cooling,
heating, or ventilation needs almost all of the time. For example, using the 99% design
temperature implies that one’s system will meet the cooling needs for 99% of the
expected outdoor temperature values expected. Procedures for calculating these loads
may be found in textbooks, e.g., Grondzik, Kwok et al. (2011) and McQuiston, Parker
et al. (2005), or from professional manuals. Professional bodies like ASHRAE provide
climate data for HVAC design (e.g., ASHRAE Standard 169-2013).

69



Chapter 2. State of the Art

2.6.1 Typical or Reference Weather Years

The earliest efforts to create some sort of typical year data for simulation were the
reference years from The Chartered Institution of Building Services Engineers (CIBSE)
(Hitchin, Holmes et al. 1983; Holmes and Hitchin 1978), and those from the National
Climatic Data Center (NCDC)16. Since then there have been several revisions and
parallel efforts to define some sort of ‘example year’, ‘test year’, ‘test reference year’,
‘design year’, ‘standard year’, etc. These terms are equivalent, and we will use the
specific terms from each of the publications reviewed below. In this review, we focus on
algorithms of interest, instead of a chronological summary of development. The reader
is referred to Crawley and Huang (1997) and Clarke (2001, ch. 7) for the historical
development of reference or standard input data for building simulation.

Clarke (2001, ch. 7) defines a TRY as a “weather collection which, when judged against
some relevant criteria, is deemed to be representative”. Lund (1991, 1995) summarised
the characteristics of a DRY file as part of a report for IEA Solar Heating and Cooling
Programme Task 9 (Solar Radiation and Pyranometry). The basic requirement of a
DRY file is that it should correspond to an average year, “both regarding monthly
or seasonal mean values, and occurrence and persistence of warm, cold, sunny or
overcast periods”. The report reduces this to three fundamental requirements:

True frequencies Mean values should be as close as possible to the true mean, as
obtained from long term measurements17. There should also be ‘natural’ daily
patterns.

True sequences The duration and order of episodes must be representative of the
long term prevailing climate.

True correlation The relationships between different meteorological parameters
should be as accurate as possible.

The requirements we impose on the synthetic files proposed in this thesis are broadly
derived from these18. The older Weather Year for Energy Calculation (WYEC) of
Crow (1981) uses monthly means instead of Cumulative Density Functions (CDFs)
(summarised in Crawley and Huang 1997; Gazela and Mathioulakis 2001).

16NCDC reference manuals Test Reference Year (TD-9706, 1976), Typical Meteorological Year (TD-9734, 1981) and
Stamper (1977), cited in Clarke (2001, ch. 7)

17Which is still not the true population mean, but that is yet another question for our friendly neighbourhood
philosopher.

18Tenacious readers will find the results and discussion in Section 3.10.
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Ultimately, the quality of the resulting file is mostly determined by the quality of the
input data. This is why the authors recommend that the DRYs should only be created
for representative sites with high quality weather data available. The authors clearly
state that a DRY should not be considered a “climatological description”. It is not
intended for the sizing of HVAC systems either. It is meant to be used for predicting
the expected average performance of buildings and solar energy systems. In general,
the year-on-year variations in a climate are so great that the DRY generated for a fairly
large meteorological area using just one high quality station would still be acceptably
representative19 (Lund 1991, 1995). Particular geographical conditions like relief
and urbanisation must be taken into account, though, when choosing a station for
calculating DRY.

As the report (Lund 1991, 1995) implies, the development of a typical year requires a
significant investment in weather data gathering and processing. There are numerous
algorithms proposed to process long term data into DRY files. Most of them are based
on comparing frequency distributions, like the TMY algorithm (Wilcox and Marion
2008) described here and the one proposed by Festa and Ratto (1993). The procedures
of Festa and Ratto (1993) and Wilcox and Marion (2008) are both based on the method
proposed by Lund (1991) – they work with CDFs to identify a month that is ‘closest’
to the long-term probability distribution. One difference is that whereas Wilcox and
Marion (2008) use the FS statistic, Festa and Ratto (1993) use a weighted average of the
Kolmogorov-Smirnov statistic (KS statistic), the (absolute) difference between monthly
standard deviations, and the (absolute) difference between monthly averages. Also,
Festa and Ratto (ibidem) use standardised variables20 instead of the raw variables. The
literature is not clear on which algorithm is the ‘best’ for building energy simulations,
because choosing a definition of ‘typical-ness’ is like choosing the ultimate climate
classification: it will work some of the time, for some cases, but must be interpreted
liberally to not become a liability.

2.6.1.1 Finkelstein-Schafer Years

There is no literal typical year type called this, but a clutch of very important years are
based on the FS statistic: the TMY (Wilcox and Marion 2008) and its cousins based on
the Sandia method, the CIBSE TRY year (Levermore and Parkinson 2006), etc.

Now in its third iteration, the Typical Meteorological Year (TMY) weather file developed

19That is to say, the temporal variation is generally big enough that a small amount of geographical variation is
often unimportant.

20What we would call the z-scores.
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by National Renewable Energy Laboratory (NREL)21 is a widely accepted input for
building energy modelling, despite its original intended use for solar energy applic-
ations(Wilcox and Marion 2008). The TMY algorithm uses four main variables for
picking ‘typical’ months: maximum, minimum, and mean TDB; maximum, minimum,
and mean Dew Point Temperature (TDP), maximum and mean wind velocity; and dir-
ect and global solar radiation (Direct Normal Irradiation (DNI) and Global Horizontal
Irradiation (GHI)). These variables are disproportionally important in determining
a building’s energy performance and this makes a TMY-based simulation a fairly
good indicator of a building’s expected performance. The TRY algorithm from the UK
(Levermore and Parkinson 2006) uses almost the same algorithm, just with a reduced
set of only three inputs: mean TDB, mean GHI, and mean wind speed.

The procedure adopted for calculating ‘typical’ months is modified from an algorithm
originally developed by Sandia National Laboratories (Hall, Prairie et al. 1978; Wilcox
and Marion 2008, and reference 4 therein). Say the user has N years of recorded data.
The months of each year are candidates for the typical year, so there are N candidate
months for each typical month.

Steps 1 and 2 The algorithm begins by checking the closeness of each candidate
month’s CDF22 to the long-term CDF of the recorded data, for the same month.This
is done by calculating the FS statistic for each weather parameter of interest
(Wilcox and Marion 2008, and reference 3 therein). The FS statistic is a metric
that measures the ‘average’ deviation of a given CDF from the target CDF. A
weighted sum of the FS statistics for the four parameters of interest is used to
pick five candidate months (from the records) for each TMY month. The weight-
ing is necessary to assign differing importance to the various meteorological
parameters, and the scheme used in the latest TMY algorithm (v3) reflects its
intended use in solar energy applications. Half the total points are for DNI and
GHI, while the other half are distributed amongst the rest of the parameters.

Step 3 This step checks whether the candidate months had any persistent ‘spells’
of unusual mean dry bulb temperature and global horizontal radiation. For
temperature, it is runs of consecutive days above the 67th percentile (warm
spell) or below the 33rd (cold spell). For solar radiation, it is runs below the 33rd
percentile (darker days). This persistence criteria excludes the candidate month
with the longest run, most runs, and zero runs. Of the remaining candidate

21Golden (CO), USA
22That is to say, the empirical Cumulative Density Function (eCDF). In this thesis, CDF should be taken to mean

the empirical Cumulative Density Function (eCDF), unless explicitly stated otherwise.
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months, the highest ranked from the previous steps is selected as the TMY
month.

Step 4 The final step is to concatenate the 12 distinct TMY months into a pseudo year.
The discontinuities between the values at the boundaries of the concatenated
months are smoothed for six hours on each side.

The International Weather for Energy Calculations (IWEC) and Canadian Weather
for Energy Calculations (CWEC) data sets use the same procedure (Environment
Canada 2015; Huang 2012). TMY files may be freely downloaded from the EnergyPlus
website23 or a third-party website24.

2.6.1.2 ASHRAE Test Reference Years

The ASHRAE test reference year (TRY) uses a procedure based solely on dry bulb air
temperature (Wong, Wan et al. 2012, and reference 17 therein). The procedure involves
successively removing years from a long term record by using monthly mean tem-
peratures. ASHRAE has a list of 24 priorities starting with ‘Hottest July’ and finishing
with ‘Hottest April’. The list alternates between hot and cold months (e.g., number 2 is
‘coldest January’). If after removing years with each of these marked months, more
than one candidate year still remains, the procedure moves through the list again by
considering the next ‘Hottest July’, and so on (Stamper 1977). An intuitive criticism
of this approach is that it may represent just an unreasonably ‘mild’ year, which may
or may not have any relation to long-term averages. That is, a mild year in a record
would always be selected as the TRY for that location, regardless of how different it
is from the dominant climate of the area. Note that this procedure selects an entire
year, instead of individual months like the other procedures. The original ‘example
years’ proposed by CIBSE (Hitchin, Holmes et al. 1983; Holmes and Hitchin 1978) also
selected entire years.

2.6.1.3 Extreme Years

The DSYs available for the UK are a “single contiguous year representing a hot but
non-extreme summer” (Kershaw, Eames et al. 2010). Specifically, the third hottest
summer in the reference data set, based on the external average summertime (April-
September) Dry Bulb Temperature (TDB) (Levermore and Parkinson 2006). This is

23https://energyplus.net/weather
24http://climate.onebuilding.org/
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a slightly different flavour of reference year from the rest since it is an actual year,
like the ASHRAE TRY, rather than a year composed of months from different years.
Levermore, Courtney et al. (2012) state that the standard DSY has “a 12.5% probability
of being exceeded”.

Crawley and Lawrie (2015b) propose an eXtreme Meteorological Year (XMY). The
idea is to propose a set of files complementary to the TMYs, selected on the basis of
highest daily/hourly maximum and minimum values of a set of weather parameters.
These produce the daily/hourly minimum and maximum months. For example, the
January with the highest average hourly temperature in the record would become the
January of the hourly max TDB XMY. Instead of a weighted average of several weather
parameters, like in the typical year algorithms, the authors tested separate XMYs for
TDB, TDP, GHI, precipitation, and Relative Humidity (RH). Thus, 20 different files
were tested. The hourly min/max XMYs based on TDB produced the largest variation,
followed by the TDP- and precipitation-based years.

2.6.1.4 Typical Principal Component Years

Yang, Wan et al. (2011) have developed a different schema, called Typical Principal
Component Year (TPCY), for generating typical weather data using Principal Compon-
ent Analysis.Their schema is based on the finding that the climatic variance important
to building simulation can be captured by considering just three variables: TDB, Wet
Bulb Temperature (WBT25), and Global Solar Radiation (GSR, in MJ/m2) (ibidem, and
references 17 and 33 therein). They used the monthly averages of these three vari-
ables to construct a new monthly variable, called the Z-statistic26. They then selected
those months from a 30-year record whose Z-statistic matched best with the 30-year
long-term average Z-statistic27.

This study found that the new TPCY gave similar results for building energy use when
compared with TMY and long-term means. The TPCY performed marginally better
than the TMY “in terms of the ability to follow the long-term monthly and annual
building energy use estimation”. The added value from using TPCY is not obvious
from the results obtained from this paper for five cities in China. The authors go
on to create TPCY for the next century using climate models, suggesting that the
consideration of only 3 variables (compared to the 10 for TMY) could confer valuable

25We use Dew Point Temperature (TDP).
26The Z-statistic in their definition is the first PC, Z = α1DBT+α2WBT+α3GSR, where α1, α2, and α3 are

coefficients.
27Not to be confused with the z-scores used in this thesis, which are a standardised version of a single variable.

74



2.6. Weather input for Simulation

computational advantages in pulling data from climate models. This could be an
advantage if hourly datasets for, say, the next century are available. Downloading and
processing 3 x 876,000 data points is faster than 10 x 876,000 points, but the magnitude
of this advantage may not be enough to justify abandoning the TMY algorithm, with
its simpler and more intuitive mathematics.

The one aspect of the TPCY algorithm that the authors did not highlight is that it is not
sensitive to the a priori weights assigned to different parameters in the TMY algorithm.
The TPCY algorithm assigns weights to the different weather parameters based on
their contribution to the variance when calculating each principal component. This
could be yield better typical years for some climates, particularly those where solar
radiation is less important than the other parameters in determining a building’s
energy consumption (since solar radiation has a disproportionately large weight in
the TMY algorithm).

2.6.1.5 Others

A method proposed by Chan (2016) proposes using a genetic algorithm to determine
the weights assigned to different meteorological quantities. They make a good point
in that favouring representativeness of TDB and/or GHI only makes sense if one’s
system is sensitive to that. So instead of fixed weights, they use a genetic algorithm
to determine the ideal weights on a set of meteorological parameters that minimise
the FS statistic between the long-term CDF of each month and the CDF of the same
month from each year. The method is computationally intensive, since it involves
simulating the energy system/building with the entire recorded data set available (e.g.,
35 years). In addition, the genetic algorithm operates on the energy simulation results
from a set of twenty typical year files made by using a generation of candidate weights
for the different parameters. It is difficult to see the generalisability of so much effort,
given that the weights are specific to the simulation which has been used at each
step. Chakraborty, Elzarka et al. (2016) demonstrate the use of SVM to forecast hourly
solar radiation values over long time periods. Their method uses about 40-45 years for
training, and was found to work well on 8-11 years of testing data.

There are many publications demonstrating the creation, or analysing the appropri-
ateness, of different algorithms for typical year files in specific locations, mostly based
on the TMY procedure described above. For example, Environment Canada (2015)
created ‘Engineered Weather Data’ sets for Canada; Chow, Chan et al. (2006) reviewed
typical years for Hong Kong and Macau, comparing TMYs and TRYs; Yang and Lu
(2004) compared TMYs and Example Weather Years (EWYs) in Hong Kong; Oko and
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Ogoloma (2011) created a TMY for Port Harcourt in Nigeria; Bulut (2010) created a
typical solar year for the Aegean region of Turkey; Lund (2001) created typical years
for Europe, Turkey, and Israel; Yang, Lam et al. (2007) examined the typical years for
60 cities in China; Kalogirou (2003) created TMY-2 files for Nicosia, Cyprus; Üner and
İleri (2000) created typical weather data for 23 provinces in Turkey; and the German
Weather Service (DWD) (2010) provides updated typical and extreme TRY for Germany
which consider both recent climate change and urban heat island effects. Note that
even the TMY, the ASHRAE TRY, and the CIBSE reference years were initially proposed
for their respective jurisdictions (North America and Britain, respectively).

Degelman (1997) proposed that significant time savings could be achieved by sim-
ulating “typical weeks” for every month rather than the whole month. The speed
gain they found was, firstly, not four times. Secondly, it was undercut by the need to
reprogram the existing simulation software, which assumes contiguous data. We do
not think this approach would help much with computation time even if the software
was reprogrammed to accept only one week per month. The algorithms generally
require a few days of “warm-up” before outputting valid simulation results. Hallgreen
(1983) proposed a Short Reference Year (ShRY): “four climate sequences” of 14 days
each. Once again, this is a useful short-cut to using the full 365 days, but less useful
today. Interestingly, the authors used all synthetic data for these years. For example,
temperature is generated additively using an annual mean term; a “yearly temper-
ature variation” composed of four sine terms; a “daily mean temperature variation”,
generated by a second-order AR model with the noise term being the current cloud
cover; and an “hourly temperature variation”, which is modelled as a first order Moving
Average (MA) process whose noise term is also the cloud cover, and which is damped
by a sinusoidal term to account for the sun’s passage. The cloud cover term is a Markov
process.

Westphal and Lamberts (2004) present “simplified weather data” for Brazilian locations.
This data consists of monthly averages for maximum/minimum TDB, atmospheric
pressure, cloud cover, and RH; and two “typical days” to estimate heating and cooling
loads. Predictably, the high mass cases did worse than low mass ones, since the
influence of thermal inertia on load needs a larger warm-up period. Murdoch and
Penman (1991) also presents a similar approach, by simulating a “reduced sample” of
the annual weather.

The TMY approach was initially proposed for solar energy applications, but we did
not include it in this grouping because it is probably the most widely-used algorithm
to produce weather data for building simulation now. We discuss two interesting
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approaches to designed specifically for simulation of solar energy devices. Cebecauer
and Suri (2015) proposed a method to generate typical years for solar energy applic-
ations, especially relevant for calculating risk in power production. They focus on
reproducing months/years that represent statistically significant quantiles (e.g., 10th,
90th, etc.) of solar radiation quantities (GHI and DNI). Their procedure uses the CDF
with the combined uncertainty from the model estimate and inter-annual variability
to select specific months, like the TMY algorithm. The result is months/years that
represent the various percentiles, or the chance of some aggregate solar radiation stat-
istic exceeding a given threshold. Gazela and Mathioulakis (2001) propose a method
based on minimising the “error in the monthly solar gain prediction” of a solar hot
water system. This is similar to the proposal of Chan (2016) summarised below, in that
it uses simulations from a system (in this case a solar hot water system instead of a
building) to select typical months.

2.6.2 The Problem with Typical Data

All that is gold does not glitter ...

J. R. R. Tolkien,
The Lord of the Rings: Fellowship of the Ring

Clarke (2001, ch. 7) point out that most of the methods use “simple synoptic data”28 to
construct the typical years. The problem then, is that the user is not sure if the typical
file has captured those aspects of the climate that are important to the system being
studied. That is to say, are we certain that all weather parameters matter equally to all
buildings?

Aguiar, Camelo et al. (1999) argue that “classic TMY are often built as general purpose
tools”, so may not be appropriate to the system being studied. We have no doubt
that any one algorithm to select typical weather time series will fail to come out on
top consistently for all systems in all regions. For example, Skeiker (2009) found the
Sandia method to be the most representative for their case study using 10 years of
data from Damascus, Syria, and a “typical Syrian building’s thermal system”. Argiriou,
Lykoudis et al. (1999) found the Festa-Ratto method most appropriate for solar energy
applications in Athens, Greece. ‘Simulation of building energy and indoor environ-
mental quality - some weather data issues’ (1999) points out some of these issues,

28“Pertaining to or forming a synopsis; furnishing a general view of some subject; spec. depicting or dealing with
weather conditions over a large area at the same point in time.” (Oxford English Dictionary 2016)
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suggesting that if the priorities for each building are different, then the ‘typical year’
for each building is different. Another recommendation is to create a three-year file:
typical/average, cold/cloudy, and hot/sunny. Some authors, like Chan (2016) and
Gazela and Mathioulakis (2001), address this issue by customising the weights for
each system. However, the findings of Su, Huang et al. (2009) indicate that the weights
may not be as much of a problem as previously thought. In an investigation of 3600
typical years for Beijing and New York, they found that the typical months selected
using different weights for the key weather parameters29 did not vary much. They
also found a high probability of “significant overlap” between typical months selected
using the “TMY/TMY2 weighting” and an ensemble selected from variable weights.
The weights for each weather parameter were varied considerably, e.g., 0.06-0.5 for
TDB. The use of synthetic files addresses this issue because there are no weights to
be considered. Through simulation with the entire set of synthetic files, one gets a
picture of the range of responses to be expected from any system. The method is
computationally expensive, but this can be partially addressed with the use of an
emulator like the one we propose in Chapter 4 during an exploratory phase, when
the possible number of simulations is truly intractable. The issue that underpinned
the development of typical data – computational time – should not be an issue now.
We have come a long way in computing power since Hui and Cheung (1997) asked:
‘Multi-year (MY) building simulation: is it useful and practical?’

Using a single typical or reference file is conceptually and computationally far simpler
than working with several files from a random generator, each of which have some
probability of occurring. However, using typical files, of any sort, cannot be used
to assess risk. Using TMY files in building simulation for “what-if” analyses tells us
only about the response of a building to typical conditions, which are representative
only for the period of record of the file. Kershaw, Eames et al. (2010) further argue
that “there is a tendency for the external statistic to be confused with the internal”.
Simulating the third hottest month (selected using the monthly mean temperatures)
does not mean that the full range of weather conditions that will produce the third
hottest month inside the building are present. In addition, using reference files does
not allow the calculation of complex questions related to risk. They tested the results
from using TRY and DSY files against long-term measured data used to create those
reference years, from Plymouth and Edinburgh. They found that while the “... TRY
allows rapid thermal modelling of building designs it is not always representative of the
average energy use (compared to the average of the [reference data set]) and gives no
indication of the expected range of energy usage for a particular form of architecture”

29TDB, TDP, wind speed, and GHI.
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(ibidem). The DSY also “... consistently underestimates the levels of overheating
and thermal discomfort within the building” (ibidem). Aguiar, Camelo et al. (1999)
observed that the misrepresentation of climate by a reference year is exaggerated
by the tendency of even “small variations in the mean level of the meteorological
forcing ... to reflect non-linearly on the thermal behaviour of the simulated cells”.
They found that the “classic” TMY for Lisbon overestimated discomfort below 18°C
by 19-38%, while underestimating discomfort above 24°C by 6-20%, when compared
to recorded data. However,they found that both the “classic” TMY and “stochastic”
TMY30 “reasonably substitute for the real long term weather” (ibidem).

A typical year can not, or should not, be constructed from a short period of record.
Using TMY files in building simulation for “what-if” analyses tells us only about
the response of a building to typical conditions, which are representative only for
the period of record of the file. Several studies have pointed out the sensitivity of
simulation output to weather data, including but not limited to Bhandari, Shrestha et
al. (2012), Chinazzo (2014), Crawley and Huang (1997), Hong, Chang et al. (2013) and
Kershaw, Eames et al. (2010). The studies usually propose using measured weather
data from the vicinity of the building to best characterise the climate in all its states,
as it were.

It has been previously proposed (e.g., Chinazzo 2014) that a ‘range’ of possible perform-
ance outcomes, i.e., results from simulation runs with different weather inputs, is a
better characterisation of the range of performance that a building will inevitably give.
Simply summarised, the argument is that if one does not know exactly what (weather)
inputs one’s (building) system will experience, then one is better off knowing the effect
of a range of possible inputs on it. A given weather file is, after all, a representation of
one scenario out of an immense number of possibilities. Therefore, by using only one
weather file, we are restricting ourselves unnecessarily to one ‘experimental result’. If
a building is never going to experience a narrow set of weather conditions exactly, i.e.,
the ones contained in a typical year file, then the quality, ‘averageness’, or ability to
represent best the most typical weather, of said weather file is irrelevant. This is the
reasoning behind the sensitivity analyses recommended in this thesis.

2.6.3 Weather Generators and Synthetic Data

We summarise proposals from various authors, mostly intended directly for building
simulation. Weather generators for climate change inputs are in Section 2.2. The

30A TMY chosen from synthetic data generated for this station.
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weather generators discussed in this section do not explicitly include climate change
forecasts, with the exception of the MN software, which offers the option of creating
‘future’ typical files. For a survey of weather generators, see Richardson (1981). The
IPCC (2013) classifies weather generator into two types: the rainfall-based generators
(“Richardson-type”), or the serial generators. The Richardson-type generators model
wet or dry days as a Markov process, and then use another distribution to predict the
amount of rainfall (e.g., a gamma distribution). The UKCP09 generator is a Richardson-
type generator, though the authors argue that “it is now widely recognised... that the
clustered nature of rainfall occurrence is better modelled by more complex clustered
point process rainfall models”(Jones, Harpham et al. 2010). The current model used
is the Neyman-Scott Rectangular Processes model. The UKCP09 generator yields
3000 files for a location, until the 2080s. See Levermore, Courtney et al. (2012) for a
discussion of the anomalies and subsequent correction in sunshine predictions from
the generator.

A criticism of the Richardson-type approach is its inability to model long spells of
persistent wet or dry weather. That, presumably, would be a serious issue in those parts
of the world where there isn’t a constant threat of getting one’s head wet all throughout
the year. For example, sub-tropical climates with clear wet and dry seasons. So, the
alternative type, serial generators, models a sequence of wet or dry days. The serial
generator presented in Racsko, Szeidl et al. (1991), for example, describes the length
of a wet series as a geometric distribution. The length of dry series is modelled a
mixture of two geometric distributions, with “probability 1−p for the short series and
probability p for the long series (longer then eight days)”. The parameters λ of these
geometric distributions are approximated as Fourier series with period 365 days. See
Jones, Harpham et al. (2010) for a fuller description of the development of a weather
generator. Normally, generators are calibrated using historical data, like 1961-1990
in the case of UKCP09. Weather generators may be useful in any of the following
situations IPCC (2013) :

• records are too short for the task at hand,

• data availability is sparse,

• gridded data is needed for a spatial analysis,

• one wishes to check the effect of both mean climate and fine-grained variability.

METEONORM Handbook Part II : Theory gives an overview of the algorithms used
to generate solar, temperature, and other weather parameters’ profiles in the MN
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software. Many of the models come from the SoDa project31. The solar radiation
generation starts from monthly values, and proceeds based on a modified version
of the model originally proposed by Aguiar, Collares-Pereira and Conde (1988). The
procedure uses Markov Transition Matrices (MTM) to “calculate a daily sequence of
clear sky daily clearness indices (K Td )”32(Remund, Mueller et al. 2012b). It provides an
upper bound to the value of solar radiation at a location, since it is the amount of solar
radiation that would be received on the surface of the earth when the sky is perfectly
clear. The MTMs are hard-coded into the software, and were calculated with data
from 121 stations. The relevant MTM is selected based on the monthly mean clearness
indices (K Tm) and determines the state of the clearness every day. The hourly values
are calculated using the TAG (Time dependent, Autoregressive, Gaussian) model
of Aguiar and Collares-Pereira (1992). The model works by separating the hourly
clearness index prediction in to an “hourly clearness index of the average daily profile”
and a first-order AR function (Remund, Mueller et al. 2012b). The software also offers
the ability to generate minute-to-minute radiation values.

The generation of temperature values is “based on the assumption that the amplitude
of the temperature variation during daytime is approximately proportional to the
amplitude of the daily global radiation profile” (ibidem). We made a similar observa-
tion in our work, and used the relationship to generate hourly solar radiation profiles.
The generation of the daily temperature profile is based on a factor kx, “the ground to
extra-terrestrial irradiation ratio”. It is a ratio of the cumulative “radiation received on
the ground since sunrise, to the amount of solar radiation that a surface perpendicular
to the... [sun’s rays]... would have received during the same period”. The temperature
is positively correlated to kx. The temperature profiles are influenced by the clearness
of the sky, characterised by a “nebulosity index”, originally proposed by Perraudeau
(referenced in ibidem). The statistics of the generated data were checked against meas-
ured data from 10 stations, and were found to be well-reproduced. The procedure,
however, does not reproduce the variance and extremes seen in the recorded data.
The software generates a host of other parameters (e.g., cloud cover), though these
were not validated to the same extent as solar radiation and temperature. The proced-
ures in MN check that the statistics of the results of each random number simulation
(e.g., the AR models), match those of the recorded data, where available. The MN
software also does geographical interpolation, since the project was only able to use
recorded data from about 5000 stations across the world. The jury is out on whether
geographical interpolation is better than using files from nearby stations, though the

31http://www.soda-pro.com
32The clearness index, usually Kt , is the “ratio of the total radiation on a horizontal surface to the extraterrestrial

global solar radiation on a horizontal surface at the same time” (Solar Energy Laboratory 2009).
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authors’ self-checks found the “errors are mostly within variations of climate from one
year to the next” (Remund, Mueller et al. 2012b).

Degelman (1976, 1991) proposed a weather data generator for a whole host of weather
variables. It relies on hard-coded “long-term statistical averages and standard devi-
ations”, and a model with a “deterministic portion” and a “probabilistic portion”. The
deterministic portions are the “general shape of a dry-bulb temperature [TDB] curve”
and earth-sun geometrical variables. The probabilistic portions include a cloudiness
model based on persistence; a TDB generator which daily maximum, average, and
minimum temperature; a daily dew point depression (for TDP); pressure curves adjus-
ted experimentally to mean periods of about 3 days; and wind speed that is roughly
negatively correlated with solar radiation. Effort was made to preserve the influence
of solar radiation on TDB. See Degelman (2003) for details and worked examples of
these concepts.

Adelard, Boyer et al. (2000) and Adelard, Mara et al. (1999) describe the development
of a synthetic data generator – RUNEOLE – that is able to generate synthetic sequences
of interest on demand. The work is focussed on the island of Reunion, in the Indian
Ocean. The authors use a library of empirical models from several authors (Table 3 in
Adelard, Boyer et al. (2000)) and stochastic models. The software picks the appropriate
set of models based on climatic quantity and region. They account for the cross-
correlations using neural network models. All of this is implemented in a GUI, where
the user is able to select the variables and days they wish to obtain weather data for.
After those initial papers, the next mention of this generator that we found was in
David, Adelard, Garde et al. (2005) and David, Adelard, Lauret et al. (2010), where
the authors have used RUNEOLE to generate typical weather data for simulation.
Incidentally, these authors find that the “autocorrelation of each climatic variable may
be described by a first order linear autoregressive model”. In Chapter 3, we show that
our example climates have significant auto-correlation in TDB residuals up to 3 or 4
lags. Then again, we did not include a tropical maritime climate like Reunion in our
database.

The weather data generator (Type 54) included in TRNSYS (Solar Energy Laboratory
2009) also begins with monthly average radiation, humidity, and temperature. The
radiation model is based on the familiar clearness index Kt . There is a choice of
two temperature models: a stochastic one based on a second-order AR process, or a
deterministic one. The coefficients of the AR model are hard-coded, based on data
from three stations in the US. The AR process models the “hourly deviations” from the
monthly average of the TDB. The deterministic model interpolates a cosine between
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the minimum and maximum daily temperatures. In this case, the daily average and
maximum values “are obtained from normal distributions where the means and stand-
ard deviations are either Input or estimated from correlations” (ibidem). In comparing
the two, the authors leave the choice to the user, since “the stochastic model ... better
represents the hourly autocorrelation structure of the dry bulb temperatures ...[but]
does not always generate temperature data with the correct daily autocorrelation and
daily distribution. The deterministic model ... consistently reproduces the daily struc-
ture but neglects the variation and autocorrelation of the hourly sequence” (ibidem).
The humidity model is a model of the “dew-point depressions”. The daily average TDP
is sampled from a normal distribution “with the mean equal to the monthly-average
dewpoint temperature and the standard deviation equal to the standard deviation of
the daily maximum dry bulb temperature” (ibidem). The biggest shortcoming of this
generator is that it does not preserve cross-correlation. The methods are based on refs.
1-6, 10-12 in the manual.

The work of Scartezzini, Bottazzi et al. (1987, 1989) proposes the use of two ‘stochastic’
weather methods: simplified stochastic simulation (SSS) or Repetitive Meteorological
Day (RMD). In both methods, the user simulates a certain number of day profiles
per month (say, 4) and then uses their historical probability of occurrence to ‘assign’
each of these profiles to the month, creating a month-long simulation. The difference
lies in how they generate their typical days. In Scartezzini, Nygard Ferguson et al.
(1990), the authors propose Markov and Auto-Regressive Moving Average (ARMA)
processes to model hourly GHI and TDB. They use 10 years of data to calculate the
parameters. Solar radiation is modelled using two Markov chains – one for ‘daily
insolation ratio’ (daily clearness index) and one for ‘hourly atmospheric transmittance’
(hourly clearness index) – and five probability matrices to characterise the transition
between different types of day and hours. The hourly temperature profile is additively
composed of a daily profile (the daily ‘shape’ of Degelman (1976)) , a slope, and a
residual. The temperature profile depends on the ‘type of day’, through ‘average
temperature profiles’ for specific days calculated from historical data. A ‘slope’ of daily
temperature profiles is selected for every day from a Gaussian distribution. Finally, the
residual is a first-order AR process. Various shifting operations keep the day-to-day
profiles aligned.

One question that arises in the creation of any synthetic data is its advantages over
recorded data. If long-term, high-quality, data is available for some location, is there
any point in using synthetic data? As Kershaw, Eames et al. (2011) point out, the utility
of recent records in predicting future return periods (i.e., probabilities of weather
events of interest) is limited by the length of the record. For example, if a 100-year
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event (i.e., over a long enough record, this event will occur roughly 1% of the time)
happened thrice in the last 10 years, that does not make it a 3-year event. While the
return period obtained from any weather generator is speculative, it does at least
provide bounds on a system’s response. Then, it is the decision-makers who must
choose the probability for which they would like to design. For example, HVAC system
failure may be acceptable after some value of outdoor temperature or episode of some
intensity, which has a very low probability of occurrence. Kershaw, Eames et al. (2011)
warn that using the UKCP09 weather generator to assign return periods should be
done with “extreme care”, and “... return periods longer than 5-years should be used
with caution”.

Hong and Jiang (1995) and Lee, Sun, Hu et al. (2012) proposed a variance process for
creating stochastic weather variables. This approach is very similar to ours, except that
our models are based on temperature, they work with residuals, and we consider both
AR and MA effects. A variance process is theoretically cleaner, since one is able to code
in both auto- and cross-correlations explicitly. However, we found them cumbersome
to work with and difficult to train reliably. Note that Hong and Jiang (1995) use the
variance for daily values, and the ‘shape’ approach of Degelman (1976) for hourly
values. The approach of Lee, Sun, Hu et al. (2012) involves transforming the data, and
final recalibration of the CDFs to match the training data. van Paassen and Luo (2002)
also propose a weather generator for future climate based on AR relationships. In their
application, for The Netherlands, the driving parameter is the “type of day”, one of 11
types ranging from very cloudy to bright.

The approaches discussed here all generate high-resolution data from low-resolution
historical records. This puts them in the same category as several proposals, like
those of Aguiar, Collares-Pereira and Conde (1988), Boland (1984, 1995), Hansen and
Driscoll (1977), Magnano, Boland et al. (2008) and Magnano (2007), whose results
have been useful to our work. Our approach builds on the results of these studies by
for example, using Fourier series. However, we are working in a different framework,
one where computational burdens are less relevant, typical data is widely available
(often using these authors’ work), and the goal is the demarcations of confidence
intervals for uncertainty and sensitivity analysis. See de Livera, Hyndman et al. (2011)
for a general overview of the analysis of time series with seasonal components.
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PRÉCIS

• The interaction of weather and building properties is complex and non-linear.

• Weather cannot be parametrised for conventional sensitivity analyses like those
with factorial experiments.

� The sensitivity of simulation results may only be examined via a Monte Carlo sim-
ulation, using synthetic weather. This would also establish empirical confidence
bounds on the outcomes.

2.7 Uncertainty in and due to Weather Inputs

The difficulty of fully characterising a system that depends on the climate is that we
cannot fully characterise the climate itself, especially future climate.

Fürbringer and Roulet (1995) state that building simulation needs a sensitivity (or
uncertainty) analysis because the input “data used in simulation have large confidence
intervals”33. We have already discussed that future weather data has large, irreducible,
uncertainties. As we have summarised above, the bulk of uncertainty and sensitivity
studies have focused on analysing the effect of uncertainty in material inputs, model
assumptions, and variations due to occupant behaviour. Uncertainties in the weather
input arise due to several factors, including:

Modelling assumptions like simplifications of physical phenomena, and skipping
phenomena that are not well understood;

Incomplete records used to feed and calibrate climate models;
‘Downscaling’ of global circulation models to a region of interest, which creates

biases and inhomogeneities;
Microclimate effects due to the intervening natural and built environment and topo-

graphy between a building and the weather station used to represent its location.

Arguably, the first attempt to formally analyse the sensitivity of buildings to climate
with simulations could be the Climate Severity Index (CSI) developed by Clarke (2001),
Markus, Clarke et al. (1984) and Markus (1982). Of course, the idea of controlling
sensitivity to climate is nothing new. The uncertainty introduced by using different
statistical methods to obtain average, typical, or representative data for a location
is the focus of this section. Some studies summarised here also try to quantify the

33Technically, the authors were talking about variability intervals.
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effects that arise from the difference in precision between different parameters in the
same dataset. Some weather parameters in these datasets are less precise than others
since they are not directly measured, but instead modelled from other parameters
measured on site, e.g., solar radiation. We divide the uncertainty in weather/climate
inputs into two categories: spatial and temporal. As must be clear to the reader, it is
the latter that is the focus of this thesis. After that, we will discuss various studies that
have examined the different sources of variation in weather inputs.

2.7.1 Temporal Uncertainty: Climatic Volatility and Climate Change

The complexity and uncertainty of climate data seriously hampers the reliability of
predictive simulation. The inherent year-on-year unpredictability of meteorological
parameters are not captured by long term means of that parameter (a commonly
reported and recorded statistic). Temporal uncertainty has traditionally been the
raison de l’emploi for whole castes of soothsayers, diviners, and more recently, met-
eorologists and statisticians. It arises because deterministic forecasts are precise but
inaccurate beyond a few days ahead, while stochastic forecasts could be accurate
but are deliberately imprecise. The standard approach to temporal uncertainty in
building simulation is to ignore it with the use of a historical or synthetic typical
weather file. This is acceptable if the climate is stable and the quality of the typical file
is assured. As we have discussed earlier, neither of these are tenable assumptions. A
major component of temporal uncertainty is climate change, or the lack of climatic
stability. Naturally, the uncertainty in climate predictions is directly proportional to
the distance from the present. This is not strongly reflected in our work since the
year-on-year uncertainty is far greater than the slight change in prediction uncertainty
over the years. Nevertheless, it is prudent to weigh far-future predictions less than
near-future ones. We reviewed some of the literature addressing temporal uncertainty
in the discussion of weather inputs in Section 2.6.

There are few studies which explicitly include uncertainty by working with probabilit-
ies rather than fixed points. As de Wilde, Rafiq et al. (2008) point out, “...the majority
of R&D efforts in building [are] still performing deterministic rather than probabilistic
work, working with fixed input parameter values across the board and representing
results as single values rather than probability ranges. Yet such approaches do not
seem sufficient when dealing with long-term prediction of the thermal behaviour of
buildings under climate change”. They found that the interaction of uncertainties in
building construction and operation, while large by itself, was further magnified by
uncertainties in the climate. de Wilde and Tian (2010) examined the performance
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metrics, modelling assumptions, key design parameters, and zone resolution of study-
ing the impact of climate change on an office building in the UK. They found a slight
decrease in annual carbon emissions, uneven overheating risk, and a small effect of
zoning resolution on results. Tian and de Wilde (2011b) examined the propagation of
uncertainties in climate predictions. They found that the “uncertainty in predicted
annual cooling energy is significantly higher than the uncertainty in predicted heating
energy”, and that the uncertainty due to climate becomes increasingly dominant
from the present to the 2050s. Coley and Kershaw (2010) found a linear relationship
between changes in mean and max external and internal temperatures. The strongly
linear character of the relationships is indeed striking. The authors term the slopes of
the lines climate change amplification coefficients. If this is the case for most buildings,
then it would make the investigation of uncertainty far easier. While we did not use
the exact same test, we do agree that the response of buildings to changes in aggregate
weather quantities tends to be smooth.

One style of speculative studies involves the use of weather files from different cities
to model climate change. That is to say, speculating the effect on buildings if the
climate of, say, Geneva becomes like Rome, Italy, or Nice, France. We have published
one such study ourselves, in which we examined the effects of climate ‘shifting’ on
dwellings located in three climates – two in Europe and one in India (Rastogi, Horn
et al. 2013). We picked nearby locations based on temperature contours and tested
the effect on overheating hours and enthalpic distance to a fixed comfort zone. We
noticed no strong trends for comfortable hours in any of the locations/buildings
(figs. 5-7 in publication), though the Alpine European location did show a discernible
linear trend with average annual outdoor temperature difference. The graphs we
presented (figs. 2, 5-7) provide an easy way to estimate the climatic robustness of a
building. If a building’s performance changes sharply when moving away from its
‘home’ climate, the building is sensitive to outdoor conditions, and vice-versa. Using
only temperature, however, gives uncertain results since temperature alone does not
determine the climate. The work of Eames, Wood et al. (2015) and Gaterell and McEvoy
(2005) takes the same approach. An advantage of this type of study is that the “future”
weather data is real, so it preserves correlations and other hard-to-reproduce features.
On the other hand, topography and relief play such an important role in climate that
it is hard to imagine the wholesale (neat) shifting of climates northward (southward in
the southern hemisphere).

Among non-climate change studies, most compare the simulation of typical or design
data with actual years. Hong, Chang et al. (2013) found that TMY files for a variety
of climates over- or under-estimated building Energy Use Intensities (EUIs) by 4-6%,
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HVAC EUI by approx. 5-10%, and peak electric demand by 5-20%. More worryingly,
the predicted percentage reductions in peak electricity demand from energy efficiency
measures was off by 10-30%. These are a little less than the figures we have found in
studies with collaborators (Chinazzo 2014; Chinazzo, Rastogi et al. 2015a,b). Some of
those results are discussed in Chapter 3. The aforementioned studies usually propose
using measured weather data from the vicinity of the building to best characterise the
climate.

A strain of research, usually sponsored by standard-setting bodies like ASHRAE and
CIBSE, has looked into the length and completeness of records that are necessary to
assess the climate of a location. Vignola and McDaniels (1993) state that 5 years of data
is enough for estimating long-term monthly average solar radiation, while 15 years
demonstrates the “variations experienced from year to year”. In addition, they found
that it would be possible to discern changes in climate to a high level of statistical
confidence from a 30-year data set. Hubbard, Kunkel et al. (2005) analysed a host of
issues in weather data collection to extract “minimum criteria with respect to record
length and completeness that will allow reliable estimation of the Design Weather
Conditions (DWC)”. Using 33 years of data from 17 special ‘baseline’ stations (see their
paper for selection criteria), they compared the effect that different inhomogeneities
(such as instrument problems, measurement errors, and outliers and trends owing to
the observation system) in the weather data have on the accuracy of the DWC values.
The authors found, for example, that the most significant amount of error is seen in
psychrometric measurements, usually due to measurement errors in the hygrometers
themselves and in the associated dry bulb temperature sensors. The authors conclude
with the recommendation that at least ten years of data is required from a station
in order to include it in the ASHRAE Handbook: Fundamentals. While this is not an
explicit discussion of uncertainty, it is an effort to quantify what constitutes a reliable
weather input.

2.7.2 Spatial Uncertainty: Natural and Human Factors

We have by and large ignored this aspect of weather uncertainty in this thesis, mostly
because it is a very different sort of problem from temporal uncertainty. At its most
basic, spatial uncertainty can be said to arise because we do not have weather records
for every conceivable building site in the world. Moving away from a weather station
entails a loss of certainty because geography gets in the way: terrain, changes in
elevation, the presence of water bodies, etc. The point is then, that even having long
high-quality records for a location means that the idiosyncratic weather of a particular
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site cannot be well accounted for. This problem is most acute in regions with sharp
changes of relief, like Chile, or those with sparse station coverage, like parts of Africa.
All of this before we even consider human factors. Some software and consultants
offer geographically interpolated data, e.g., Remund, Mueller et al. (2012b).

Eames, Kershaw et al. (2012b) examined the appropriateness of a 5x5 km grid for
generating future climate files based on the UKCP09 projections. They found that
the “spatial variability of the weather is the dominating factor”, i.e., the “current
spatial variation... is greater than the predicted future climate change”. While it
is not particularly surprising that the variation in climate over about 12 degrees of
latitude and 7 degrees of longitude (the rough geographical extent of the UK) is more
than that predicted by climate change, this position could be reversed in the future.
The authors find that the predictions “exaggerate the differences in temperatures
between the north and the south of the UK”. Echoing the concepts of Kriging, they
recommend that spatial interpolation cannot be applied uniformly across the UK,
because the differences between adjacent grid cells are not uniform. The paper ends
on a cautionary note by saying that it is “prudent” to use the high resolution future
grid, to within the limits of computational capacity available.

According to Bhandari, Shrestha et al. (2012), there are four methods used by vendors
to provide weather data sets for locations not sufficiently close to a measurement
station: satellite data with a geospatial resolution of 15-40 km2; measured data from
the nearest weather station; statistical interpolation from several nearby stations; or,
a gridded Mesoscale climate simulation model seeded by nearby sensor data. They
tested weather data for their Oak Ridge34 campus obtained from commercial sources
with a weather station on site. Their purpose was to compare the discrepancy in
results from energy simulations that may arise from differences in how weather data
is interpolated for sites that are not sufficiently close to a weather station. They found
that peak differences in weather data from different sources are higher for daily or
hourly data than monthly averages. This makes intuitive sense, since it is expected
that the systematic error introduced by choosing one interpolation methodology over
another would cancel out over a month, but still produce large discrepancies for indi-
vidual data points and short averaging periods. This study found that different weather
parameters had different levels of discrepancy between measured data and individual
data sets. We found a similar result in our examination of typical weather files from
two different sources – the Energy Plus website and MN software – and nearby stations,
e.g., the airports around Milan, Italy (Chinazzo 2014; Chinazzo, Rastogi et al. 2015a,b).
For energy usage, the authors found that whereas overall energy consumption shows

34Tennessee, USA
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a discrepancy of only 7%, “the heating and cooling loads differ by ± 40%”. The authors
used TMY3 data from a nearby airport for the energy comparison. Upon replacing
one weather parameter at a time in the TMY data set with one of the commercial data
sets, no clear pattern emerged, except that changes in each parameter influence the
simulation results differently.

Considering human factors, a major topic of concern, and research, is the effect of
urbanisation. Broadly described as the ‘urban heat island’ or urban micro-climate,
it has proved to be fiendishly complicated and difficult to model. It is by and large
expected to exacerbate the effects of climate change. As the name suggests, urban
heat islands entail an elevation of temperature, reduction in wind speed, and increase
of pollutant concentration. In heat waves or even regular hot weather, the conditions
in cities is much worse without the possibility of ventilation, and with the oppressive,
polluted inner city air. In cities with widespread air conditioning, the proximity of
several heat pumps working to dump ever more heat into restricted urban canyons
is not a pleasant prospect. By and large, urban infrastructure has been found to act
like thermal storage for the urban micro-climate. McKitrick and Michaels (2007) call
attention to the direct impact of urbanisation on weather stations in their discussion
of “local land surface modifications and variation in data quality”. These include
urbanisation and other changes in land use around a weather station, the general
socio-economic development of the area surrounding a measuring station, among
others.

The work of Crawley (2008) and Levermore, Courtney et al. (2012) are two examples
of perhaps a handful of studies that have formally looked at the combined effect of
both temporal and spatial uncertainty in weather inputs, for simulating future cities.
The UK case studies often cite the amplification effect of urban heat islands, e.g., Ren,
Shankland et al. (2012). We have recently completed, with colleagues, a qualitative
study into the interaction of urban and climate change effects on the uncertainty of
predicting future overheating for inner-city residences in Geneva (Agarwal, Rastogi et
al. 2016). Another co-authored publication looks into the change of indoor conditions
in a historical building due to extreme urban transformation in Sao Paolo, Brazil
(Pastore, Rastogi et al. 2016). Most authors do, however, show a familiarity with the
broad outlines of the interaction between urban micro-climate and climate change.
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2.8 Summary

In this chapter, we have discussed the state of the art in the use of building per-
formance simulation, especially as it relates to the analysis and quantification of
uncertainty and sensitivity. The main argument presented in this review of literature
is summarised below. These first two chapters focussed on two arguments: first, for
incorporating Uncertainty Analysis (UA) and Sensitivity Analysis (SA) into the building
simulation workflow, i.e., working in a stochastic paradigm; and second, the issues
in the procedures and algorithms currently available for this. These issues include
generalisability of algorithms/procedures, ease-of-use, complexity, and computa-
tional load. We will return to these issues throughout the thesis. Several choices in
subsequent chapters were motivated by the need to address the issues raised in this
chapter including, but not limited to, using only typical year files, using probabilistic
regression fits, among others.

PRÉCIS

• Energy-conscious building design is desirable, though with an acknowledgement
of the variety and vagueness of thermal criteria for comfort.

• Building simulation permits the exploration of what-if scenarios in the design
phase.

• The climate is a dominant boundary condition for the thermal performance of
buildings, in conjunction with user behaviour.

• The uncertainty due to climate can be reduced to some extent with better inform-
ation, but it cannot be eliminated. Especially uncertainty about future weather.

� Energy-conscious building design could benefit significantly from uncertainty
and sensitivity quantification of the weather/climate input.
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3 Synthetic Weather Inputs for Building
Simulation

The Moving Finger writes; and, having writ,
Moves on: nor all your Piety nor Wit

Shall lure it back to cancel half a Line,
Nor all your Tears wash out a Word of it.

Omar Khayyam (ca. 1048-1122),

The Rubaiyat of Omar Khayyam, ruba’i 71.

[translator F. Scott Fitzgerald, Fifth Ed. (1889)]

3.1 General Approach

So far in this thesis (Chapters 1 and 2), we have built up a case for why random
weather inputs should be used in simulation to account for an uncertain climate. An
energy simulation that accounts for uncertainty in the weather input, or alternatively,
assesses the sensitivity of a design to weather variation, may lead to more robust
design solutions than a process that uses deterministic weather inputs only. A method
to generate these random weather inputs efficiently and simply is presented in this
chapter. Before we expound the details of the procedures, we would like to remind the
reader that these synthetic weather time series are not predictions. They are meant
to be understood as tools for what-if analyses. The inclusion of the climate change
forecasts is an extension of the analysis to include probable future mean changes in
climate.

We only create synthetic generators for three time series: Dry Bulb Temperature
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Chapter 3. Synthetic Weather Inputs for Building Simulation

(TDB), Global Horizontal Irradiation (GHI), and Relative Humidity (RH). A further
four time series are affected: Direct Normal Irradiation (DNI), Diffuse Horizontal
Irradiation (DHI), Humidity Ratio (W), and Dew Point Temperature (TDP). Future
work could extend this approach to other parameters like cloud cover. However, the
cross-correlation or dependence structures become progressively more complicated
as more and more time series are considered, and several time series will need to
be modelled as non-normal variables. After reviewing the relevant literature (Sec-
tion 2.6.3), we find that our generator is unique in two respects: we use a very short
weather record (a typical year), and the primary generator series is Dry Bulb Temper-
ature (TDB). In addition, an important finding in this thesis is that the underlying
structure of the models used is the same in all the tested climates, which has not been
demonstrated before. The fitting of robust models to only one year of data has also
not been demonstrated before.

We demonstrate our method with Typical Meteorological Year (TMY) files from Geneva,
Switzerland; New York, USA; and Delhi, India (details in Table A.1). New York has
three stations – John F Kennedy Airport (JFK), LaGuardia Airport (LAG), and Central
Park (CPR) – while the other two have one station each at their respective airports.
In addition to the plots presented in this chapter, results are also presented in Ap-
pendix A. Due to time and space limitations, we limited ourselves to exploring climate
change scenarios for Europe (Geneva). Results from sample simulations1 using the
generated synthetic time series are presented in Section 3.11. We begin by describing
the ‘splitting’ procedure, separating the weather time series into random and determ-
inistic components. Then, we describe the simulation of the residuals to produce
variations on the source time series, and examine the results. Additional concepts and
discussion, especially for time series models, are in Appendix A.

3.2 The Synthetic Generation Procedure

The schematic presented in Figure 3.1 details the procedure for generating synthetic
weather files. Later, Figure 3.5 shows a variation that incorporates forecasts of daily
values using different climate models and Representative Concentration Pathways2.
Details about each step of the procedure are in the rest of the chapter, and some key
underlying concepts are discussed in Appendix A. The symbols used in Figure 3.1 are
used consistently throughout the thesis.

The most important restrictions placed on the synthetic weather data generator is to

1In this thesis, the word ‘simulation’ generally refers to Building Performance Simulation (BPS). In this chapter,
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Figure 3.1 – Generating synthetic weather time series from typical data, without incorporating
climate change forecasts.

preserve the autocorrelation of a time series, i.e., the correlation of a time series with
itself; and its cross-correlations with other time series, e.g., the correlations between
temperature and solar radiation. The generator produces time series with descriptive
statistics that are similar to the historical record, though not necessarily the same.
For those synthetic data that incorporate climate change models, verification with
recorded data is not so helpful. However, the example typical files used in this thesis
provide a validation through historical data. The TMY files used in this thesis tend
to be composed of months from the 1970s-1990s (see Section 2.6.1 for details of the
generating procedure). When we examine the statistics of the series generated with
climate change input, they match those of recorded data from recent decades. That
is to say that the variance generating procedure is able to ‘update’ the older data to
match recent decades. This is also the case for the plain synthetic/random files. In this
case, they reproduce extremes but do not change the mean. The generation procedure
is as follows:

1. Fit a Fourier series to the original time series (yt ). Subtract the fitted terms
(μt +ζt ) and continue with the residuals (εt ).

2. Fit a Seasonal Auto-Regressive Moving Average (SARMA) model to the Fourier
residuals (εt ). Pick the model based on parsimony (Akaike Information Criteria
(AIC), Bayesian Information Criteria (BIC), Log Likelihood) and residual analysis.
Continue with the SARMA residuals (rt ), which are considered to be ‘noise’.

3. Shuffle the second-level residuals (rt ) in 3-day blocks, to obtain some desired
number of synthetic noise series r̂ t (block bootstrap).

4. Simulate the SARMA model with the shuffled noise to obtain synthetic analogues
to the Fourier residuals from step 2 (ε̂t ).

it is also used to indicate the use of a stationary time series model to generate synthetic series.
2See the glossary for a description of the Representative Concentration Pathways (RCPs). In this thesis, we will

occasionally refer to RCP 8.5 as the “high emissions” scenario, and RCP 4.5 as the “medium emissions” scenario.
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5. Add the synthetic residuals (ε̂t ) to the Fourier fits to obtain synthetic temperature
or relative humidity values (ŷt )

3.3 Splitting the Time Series into Deterministic and Random Com-

ponents

A time series can broadly be defined as any data collected or observed sequentially over
time, such as the Dry Bulb Temperature (TDB) values taken from a typical year file for
Geneva shown in Figure 3.2. The procedure used in this thesis breaks up time series
into quasi-deterministic (periodic) and random (non-periodic) components. We say
quasi-deterministic because, while the periodic components are treated as fixed in
this procedure, they are obviously not fixed in nature (e.g., the diurnal temperature
cycle). Once a periodic series is fitted to the original time series, it remains unchanged
until it is added back to the random noise component. A time series with obvious
seasonality may be decomposed into periodic and aperiodic components

yt = (μt +ζt )+εt , (3.1)

where t is hour of the year, yt is the original time series, μt the low-frequency periodic
component, ζt the high-frequency periodic component, and εt the aperiodic compon-
ent. The aperiodic or (apparently) random component is the residual from removing
the periodic components. In subsequent sections, we will further split the random
component into a stationary time series model and a nearly-white noise residual

εt =μ+ψ(L)rt , (3.2)

where μ is the mean of the series, ψ is a polynomial representing a stationary time
series model (Section 3.5), and rt is the residual.

A convenient method for splitting each series into periodic and aperiodic components
is frequency domain analysis with the use of Fourier series to represent the periodic
or ‘deterministic’ part. In general, the aperiodic component is expected to be station-
ary. A handy working definition of a stationary time series is one that has a constant
mean, variance, and autocorrelation3. Imagine a climate with an annual mean TDB
of T a . If the time series of TDB in this climate was stationary, then the mean of each

3That is, a function that does not vary with time, so-called second-order stationarity.
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Figure 3.2 – Dry Bulb Temperature (TDB) time series for Geneva.

month would be exactly the same as the annual mean and that of every other month,
T m,1 ≈ T m,2 ≈ ·· · ≈ T a . The variances of each month would also be approximately
equal. Climate series are often assumed to be stationary over decadal or centennial
time spans. For example, in the UKCP09 generator discussed before (Section 2.6.3), sta-
tionarity is assumed for each user-defined future 30-year time period (Jones, Harpham
et al. 2010). In this thesis, we are only concerned with time series sampled every hour
(hourly series), which is the resolution at which building simulation programs typically
work. However, sub-hourly time series would also be useful in some cases, like model
predictive control or solar power production. This is an interesting line of enquiry for
future work.
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3.4 Fourier Fitting To Remove Seasonal Trends

We rewrite Equation (3.1) in a Fourier series representation4

yt =α0 +
m∑

i=1

[
αi cos(2πωi t )+βi si n(2πωi t )

]+εt , (3.3)

where t = 1, . . . ,n is the time vector, i = 1, . . . ,m is the index of the sine-cosine pairs,
εt is white noise, or normally distributed residuals, ωi is the (unknown) frequency of
the periodic terms, and α,β are unknown coefficients or parameters. A small number
of pairs (i.e., sine-cosine pairs at one to three frequencies) constitute a good enough
Fourier or spectrum representation of the time series, since we accept that there will
be a residual term εt . The residual is supposed to be near-white noise, i.e., a sequence
with all frequencies, analogous to white light.

Examining the periodogram of the year-long series of hourly TDB values (shown in
Figure 3.2), we see the presence of definite peaks at wavelengths 8760 hours and 24
hours, corresponding to 1 and 365 waves a year, respectively. We combine visual
observation of the raw data and periodograms with knowledge about the underlying
physical processes to choose the least number of periodic components that result in
stationary residuals. Thus, the Fourier fit used for Dry Bulb Temperature (TDB) is

μt +ζt = a0 +a1 ·cos(Nt )+b1 · sin(Nt )

+a2 ·cos(Nt/2)+b2 · sin(Nt/2)

+a3 ·cos(Dt )+b3 · sin(Dt );

(3.4)

and for Relative Humidity (RH) it is

μt = a0 +a1 ·cos(Nt )+b1 · sin(Nt ), (3.5)

where t is time, Nt = 2πt
8760 , and Dt = 2πt

24 . The RH equation has only one term on the
left hand side, to denote a low-frequency fit, as opposed to the two terms seen in the
equation for TDB.

4A brief introduction to Fourier series is in Section A.2.
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Figure 3.3 – Periodogram of the Dry Bulb Temperature (TDB) time series for Geneva. Power
Spectral Density (PSD) values are on the y-axis and the x-axis is labelled with the wavelengths
rather than the frequencies.

3.4.1 Modifications for Climate Change Forecasts

An innovation in this thesis is the incorporation of climate change forecasts for the
creation of an ensemble of possible future weather years. Climate change forecasts are
available as time series of projected future daily mean values from the Intergovern-
mental Panel on Climate Change (IPCC) (see Section A.5 for details). The forecasts
are distinguished by the future expected concentration of Green House Gases (GHGs)
due to policy decisions and technological progress. Thus, for example, RCP8.5 rep-
resents business-as-usual while RCP4.5 represents a scenario where emissions peak
before 2050 (see Fig. SPM.5a in IPCC (2014b)). The temperature trend depends on the
Representative Concentration Pathway (RCP) selected, i.e., the future concentration
of GHGs one wishes to test. In addition, there are several combinations of Global
Climate Models (GCMs) and Regional Climate Models (RCMs) to choose from.

The future time series of daily means are used as replacements for the low-frequency
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Figure 3.4 – Raw TDB values (black dots) plotted against the Fourier series (grey lines) for
Geneva.
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Figure 3.5 – Using future forecasts of daily mean values with random noise series. The low-
frequency periodic component of the original series is replaced with the Fourier fit to future daily
values obtained from climate change models.

Fourier term μt in the recombination step described in Section 3.7 and fig. 3.5. Recall,
from Equation (3.4), that the ‘deterministic’ fit contains two or three trigonometric
pairs, but we are only replacing the annual-wavelength pair of sine-cosine terms.
We assume that the daily fluctuation components will not change in the future. By
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Figure 3.6 – Raw future daily mean TDB values and the annual Fourier fit. Data from Geneva.

this we are implicitly assuming that the amount of cloudiness will not change in the
future, since that is the primary driver of the diurnal temperature swing. The future
daily mean values are shown in Figure 3.6, along with the low-frequency Fourier fit.
Examining the modelled future daily mean Humidity Ratio (W) values downloaded
from the CORDEX website, we found that its characteristics are not different from
recorded or typical data. That is to say that the predictions for Geneva do not forecast
an appreciable change in the wet bulb characteristics of the climate. Therefore, while
the climate change forecasts are applied both to the TDB and RH time series, the effect
is only noticeable in the TDB series.

3.4.2 Characteristics of the Residuals

This relatively parsimonious Fourier fitting successfully removes the annual and daily
harmonics, where they exist in the original meteorological data, leaving stationary
time series with zero means. Figure 3.4 shows the raw values and the periodic series.
Figure 3.7 shows descriptive plots and Figure 3.8 a periodogram of the residual from
fitting Equation (3.4) to the TDB data. These plots show that the daily and annual har-
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monics have been stripped out completely by subtracting the Fourier terms. Slightly
raised Power Spectral Density (PSD) values around (but not at) ω= 0.0417, or approx.
24 hours, correspond to leakage around the daily fluctuation. High PSD values at
12 hours correspond to unknown waves of sub-daily length, and are probably due
to leakage as well. The rest of the periodogram is relatively flat, which means it is
closer to the white noise spectrum than the previous periodogram (Figure 3.3). The
sub-plots of Figure 3.7 also tell us that the residuals sufficiently resemble a station-
ary “white noise” series5. The plot of raw values over time (top-left) shows a roughly
constant mean and variance, while the qqplot suggests that the data belongs to a
normal distribution. In the correlograms, the horizontal lines around zero represent
the cut-offs for significance. If the (P)ACF value at a given lag falls between these
lines, it is insignificant. The correlograms (bottom) show that, while the series might
be weakly stationary, there is structure that can be exploited. To do that, we need
stochastic models for stationary time series.

The picture is slightly different for the RH series residuals presented in Figures 3.9
and 3.10. The periodogram shows a relatively high amount of power at and around
24 hours, and around 720 hours (about 1 month). The apparently strong signal at
24 hours, i.e., a sine-cosine pair with a period of one day, is misleading; adding a
second Fourier term in this step did not improve the residuals. We know of no physical
reason why humidity should vary as a diurnal sine wave, except that the quantity
RH is somewhat correlated to temperature (Table 3.3)6. The descriptive plots are
similar to those for TDB, i.e., they point towards a sufficiently stationary residual with
auto-correlation structure.

5If the residuals from a fit are close to white noise, then the fit is good.
6Recall that the relative humidity is a function both of the moisture content of the air and its temperature.
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Figure 3.7 – TDB, Geneva. Clockwise from top left: raw residuals; qqplot of residuals; correlo-
grams of residuals.
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Figure 3.8 – TDB, Geneva. Raw and cumulative Power Spectral Density (PSD) of the residuals
from the Fourier fit.
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Figure 3.9 – RH, Geneva. Clockwise from top left: raw residuals; qqplot of residuals; correlo-
grams of residuals.
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Figure 3.10 – RH, Geneva. Raw and cumulative PSD of the residuals from the Fourier fit.
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3.5 Stationary Time Series Models for Random Components

Details of various model types can be found in Appendix A, time series analysis
textbooks like Box, Jenkins et al. (2008), Christensen (1991) and Cryer and Chan (2008),
and the documentation of software like the ones we used: the �����, ��������, and
��	�� functions in MATLAB®(The MathWorks, Inc. 2015); and the 	
������ package
in R (Rob J. Hyndman and R Core Team 2015). We now explain the use of these models
for stationary time series. The model selection process used in this work is based on
the Box-Jenkins methodology (Box, Jenkins et al. 2008). A brief introduction to Auto-
Regressive Moving Average (ARMA) and other time series models is in Section A.3.

One of the chief concerns in choosing various models for this procedure has been
their interpretation. We have tried to choose only those methods/models that can be
interpreted physically. For example, an auto-correlation term for temperature at time
lag 24 hours is intuitive, but one at lag 23 is not. In a purely data-driven procedure,
lag 23 is as good a candidate as lags 24 or 25. If we use automatic fitting procedures,
the ‘optimal’ Auto-Regressive (AR) terms are sometimes at lags 23 or 25. The use of
seasonal and non-seasonal terms in combination ensures that, for example, a model
with 24-hour seasonal lags and 1- to 3-hour non-seasonal lags accounts for the terms
at lags 24, 25, 26, and 27 hours. We generally use simple models that reflect our
biases in interpreting them7. Also for ease of interpretability, we eschewed the use of
differencing for stationarity. In any case, it does not confer much advantage in our
application. The series tend to be close enough to stationarity just by removing a
Fourier fit (Figures 3.7 to 3.10). The use of differencing complicates the interpretation
of the residual and its simulation. Hence, the differencing factor in the time series
models we use should always be zero8.

To choose the best model for a climate, we used information criteria (AIC and BIC)
and log-likelihood values. In this case, we knew something about the physics of the
underlying time series and were able to exploit that knowledge to pick the relevant
class or type of models. It is only the estimated coefficients, or model parameters, that
change between climates. Since the coefficients are empirical, i.e., they describe the
influence of model lags based on the data from that specific climate, they are easily
calculated from a typical file. The decision to include/exclude certain lags, for example,
may be made by an expert to suit their case. The stationary time series models and
Fourier fits used in this thesis are time-invariant. That is to say that the coefficients

7The length of the actual solar day varies slightly, with a quarter day going ‘missing’ every year. Precise
timekeeping is not a worry in building simulation, so we will leave considerations of leap years and seconds aside
and use a 24 hour day. The influence of a leap day on the annual weather pattern is not detectable.

8An ARMA model with differencing is called an Auto-Regressive Integrated Moving Average (ARIMA) model.
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and terms are fixed for a time series, or that the coefficients and terms themselves are
not functions of time. The model coefficients are calculated with the entire year-long
time series used in this procedure (8760 hours).

3.5.1 Correlation Estimation

The correlograms shown in Figures 3.7 and 3.9 give empirical estimates of the Auto-
Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) of the time
series. “Empirical” because they are calculated from the data at hand, rather than
from knowledge about the underlying function. The values are plotted against time
lags of 0-168 hours. The ACF is a measure of the influence of the values at a particular
lag on values at the current time step. The PACF is the auto-correlation left over after
adjusting for any effects of underlying linear structure. Software usually calculates
the PACF by successively fitting AR models of order p = 1,2, . . . . If the ACF cuts-off
abruptly, while the PACF decays gradually, then we should expect a Moving Average
(MA) model. Conversely, if the ACF decays gradually and the PACF cuts off abruptly,
an AR model is probably appropriate. If both decay gradually, then an ARMA model
may be called for. A SARMA model is an extension of this concept to account for
significance at periodic lags. For example, the ACFs in Figures 3.7 and 3.9 [bottom left]
show significant correlations at multiples of 24.

3.5.2 Selecting a Model

A stationary time series model is selected by estimating the significant lags and corres-
ponding coefficients. In our implementation, the lags tested in the models are within
very narrow ranges (0-4), and the actual coefficient for each lag is calculated for the
climate at hand using maximum likelihood estimation, details about which may be
found in textbooks like Christensen (1991) and Davison (2003).

The overarching principle of model selection is parsimony. That is, given two models
that explain the same amount of the underlying structure, pick the one that has less
parameters. Log likelihood values, characteristics of the residuals, expert knowledge,
robustness of the model, and generalisability serve to pick a model in a reasonably
automated manner. To reduce the amount of expert intervention we used three
quantitative measures, the log likelihood and two information criteria
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AIC =−2 ·�(θ)+2 ·np ,BIC =−2 ·�(θ)+np · log(no), (3.6)

where �(θ) is the log likelihood, np is the number of parameters in the model, and
no is the number of observations. The information criteria should be as small as
possible, because they penalise extra parameters while rewarding likelihood. However,
the automated selection of models based on these quantities is not foolproof. When
comparing several models, the largest maximum likelihood values will probably be
from models that are over-fitted, i.e., have unnecessary terms (based on a visual
inspection of the correlograms). For example, the correlograms in Figure 3.11 (for New
York LaGuardia airport) indicate an AR model, with perhaps an additional seasonal
component. However, the log likelihood values were consistently higher for models
with additional MA components. AIC and BIC are better for selecting models because
they penalise overfitting.

3.5.3 The Selected SARMA Model

A (multiplicative) SARMA model is a parsimonious extension of ARMA models to
include the concept of seasonal dependence. Note that the idea of seasonality should
not be confused with the seasons (like spring or summer), which are a cultural con-
struct. A SARMA model consists of a combination of seasonal and non-seasonal AR
and MA terms. The seasonal terms include every Qth or P th past value, e.g., every
24 hours back from the present, and the non-seasonal terms refer to the last q or p
terms from every periodic lag, e.g., 1-4 hours before the present and every 24 hour
step back. In this application, the seasonal terms ensure that values from the same
hour on previous days have an influence on the current value, in addition to values
from immediately preceding hours.

The SARMA models we use are

SARMA (p, q) × (P,Q)s , or, φ(L)Φ(L)εt = c +θ(L)Θ(L)rt , (3.7)

where s is the seasonality or periodicity; the upper-case versions of φ(L) and θ(L)
represent the seasonal terms, εt is the residual after removing the Fourier terms
(Equations (3.4) and (3.5)), and rt is the residual after fitting a SARMA model to
that residual series. For details about the notation and background on the model
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Figure 3.11 – Residuals from de-seasonalised TDB from New York LAG. The correlograms indic-
ate an AR model, with weak to no Seasonal Moving Average (SMA) coefficients.

components, see Section A.3. The seasonal and non-seasonal differencing factors are
both zero. For example, the model for the data shown in Figure 3.2 is

SARMA (4,2) × (1,1)24,

where the coefficients to be estimated are {p1, p2, p3, p4, q1, q2} and {P24,Q24}. In our
work, we will use the Box-Jenkins notation, where the P and Q of Equation (3.7) are
specified as multiples of the seasonality s9.

9This is how the package in R also specifies models. The and related packages in MATLAB,
however, use a notation where the seasonal lags are specified as absolute numbers, e.g., 12, 24, rather than as
multiples of the seasonality.
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3.5.4 Characteristics of the Residuals

After selecting a model for a given climate, e.g. SARMA (4,2) × (1,1)24 from Geneva
TDB, we examine the residuals (Figure 3.12). Using the same plots as Figure 3.7, we ex-
amine the data for stationarity, homoscedasticity, Normality, and a lack of discernible
correlations. The top-left sub-plots in Figures 3.12 and 3.13 show that the residuals
are probably stationary and homoscedastic. The qqplots at the top-right do not show
a favourable comparison with a Normal Probability Density Function (PDF). The
correlograms on the bottom show that there is a trace amount of structure left over, at
k ≤ 72 hours. This suggests the use of 72-hour blocks during the resampling procedure
(R1,R2, . . . ,RN in Section 3.6.1). Significant lags were usually seen below 72 hours in
the climates tested, while the probability distribution tended to depart from Normality
sometimes, as here.

Cryer and Chan (2008) argue that in an ARMA model, there is always some dependence
of the variance of the residual on the values of the residual itself, i.e., hetero-scedasticity.
In addition to the SARMA model, we tested Auto-Regressive Conditional Heterosce-
dasticity (ARCH) and Generalised Auto-Regressive Conditional Heteroscedasticity
(GARCH) models for the variance – combining conditional mean models with condi-
tional variance models. However, the fit did not improve for either of the time series
under consideration, TDB or RH, so we abandoned this line of inquiry.

The final step in the process of generating some desired number of ‘synthetic variants’
is to simulate this SARMA model. That is, generate new samples of the r1,r2, . . . ,rn

series to plug back in to Equation (3.2). Normally, the noise or innovation series
used to simulate the conditional mean models are Gaussian white noise or a Stu-
dent’s t-distribution10. This thesis uses a customised distribution of innovations –
bootstrapped residuals11. That means that our statistical analysis is non-parametric,
whereas sampling from a distribution would imply that we know the distribution of
the underlying random variables R1,R2, . . . ,Rn (a parametric approach).

10The weather generators described in Section 2.6.3 all add Gaussian noise.
11See Davison and Hinkley (1997) for details.
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Figure 3.12 – Residuals (rt ) from fitting a SARMA model to the ‘de-seasonalised’ hourly TDB
time series for Geneva (εt ).
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Figure 3.13 – Residuals (rt ) from fitting a SARMA model to the ‘de-seasonalised’ hourly RH time
series for Geneva (εt ).
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3.6 Introducing Noise for Variation

3.6.1 Resampling and Subsampling

Resampling and subsampling are methods to improve estimates of statistical meas-
ures like the mean and confidence intervals for small samples. Well-known resampling
and sub-sampling methods include the bootstrap and the jackknife. Essentially, “the
bootstrap method amounts to treating your observed sample as if it exactly repres-
ented the whole population” (Politis 1998). These methods do not rely on knowing
particular parameters describing the shape or distribution of the population or sample
(e.g., mean, standard deviation, etc.). They also avoid the restrictions imposed on
a parametric random model by a small sample size (the TMY in our case) and long
sample runs. Politis (ibidem) contends that resampling methods are more useful in
non-parametric situations where a model is not available, and the data has to “do
all the talking”. See Davison and Hinkley (1997) and Politis (1998) for a discussion
of how bootstrap, jackknife, and similar methods can be used for valid Monte Carlo
estimation of population parameters like the mean and variance.

Resampling/subsampling methods cannot be used directly on time series that show
a high degree of seasonality or correlation, since they do not account for underlying
structure. For example, temperature on a July night is highly correlated to a July day,
but not necessarily to a January night. A sampling run cannot distinguish between day
and night temperatures or summer and winter – a fatal problem for weather data. We
avoided this problem by using the series of model fits, described before, to ensure that
the series to be bootstrapped contains as little underlying structure as possible. See
Politis, Romano et al. (1999) for a discussion of other options for subsampling from
time series.

Bootstrapping and jackknifing are often used to get an estimate of the bias (systematic
error) and variance (random error) of some estimator T (e.g., sample mean) of a
population parameter θ (e.g., population mean). In our application, we are not
interested in the parameters as such, just in creating variance (in the innovations
for a SARMA filter) without changing the underlying (unknown) distribution of the
innovations. In a non-parametric bootstrap, the simulated samples R∗

1 ,R∗
2 , . . . ,R∗

N may
be taken with or without replacement from the original time series. In the flavour of
bootstrap/resampling that we use, the residuals are resampled per month and without
replacement. This amounts to a shuffling of the data, effecting as little a change in
the underlying structure remaining in the residuals as possible. This is an unusual
implementation of the jackknife, or subsampling, as opposed to the bootstrap, or
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Figure 3.14 – A randomly selected series of r̂t values from the bootstrapping step – TDB, Geneva.

resampling. Tukey’s original jack-knife involves the use of sub-samples of size b, b < N
(Politis 1998), whereas the size of sub-sampled series in this application is b = N . Here
b is the size of the sub-sample, while N is the size of the sample.

We decided against bootstrapping individual rt values because the structure at lags
k ≤ 72 hours is still present in the candidate series (Figures 3.12 and 3.13). It is ne-
cessary to maintain this ACF not only to remain faithful to the original series but
also to return a physically valid time series of temperatures at the end of the process.
Using a ‘block bootstrap’ instead of shuffling individual points has a better chance
of preserving short-term auto-correlations (Davison and Hinkley 1997; Politis, Ro-
mano et al. 1999; Politis 1998). The bootstrap is done using 3-day blocks, which is
a compromise between introducing enough variance without introducing bias. It is
also the block length suggested by Magnano, Boland et al. (2008). We chose a 3-day
block after exploring different options (1-7 days) to see which block length reproduces
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Figure 3.15 – A randomly selected series of r̂t values from the bootstrapping step – RH, Geneva.

the auto-correlograms and partial auto-correlograms best. The results from different
block lengths are not substantially different upon visual inspection. Unsurprisingly,
any block length preserves the intra-block ACF. The behaviour up to 7 days is not
consistent, but the differences between the correlograms of the original residuals and
shuffled series are very small. We went with the smallest valid block size, based on
preserving the ACF and PACF plots, to get as much variability among the synthetic
series as possible. This choice is the classical one between variance and bias – the
former usually cannot be increased without also increasing the latter. Plots of one
synthetic noise series for TDB and RH each are presented in Figures 3.14 and 3.15,
respectively. Individual series will usually reproduce the statistical characteristics of
the original series slightly worse than the ensemble, but calculating/plotting the ACF
and PACF of an 8760×100 series was too much for the computer we used.

Another restriction imposed on the bootstrap was to subdivide the blocks by month
and limit the shuffling to blocks within a month. For example, new series of noise
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blocks for January were sampled only from January noise and not, say, July. This helped
to preserve any residual sub-yearly correlation. Despite all of these restrictions, the
bootstrapped/simulated residuals produce enough variation. Let the set of residual
blocks

B = B1,B2, . . . ,BN ,where

{
n = 10 for months with 30 days or less

n = 11 for months with 31 days,

and each Bi contains 72 hours of residuals. Then, each new series of simulated
residuals is B∗

j = B j ,i∗ , where j is the index of a residual set, and i∗ is the index of
element blocks in that residual set. Since the index i∗ is any permutation of the
original index i = 1,2, ...,n, the number of variations possible is

N ! =
{

3628800 for N = 10

39916800 for N = 11.

3.6.2 Simulating the SARMA model

We simulated the SARMA model using the �������� function in R (Rob J. Hyndman
and R Core Team 2015). A sample R script is given below, generated from a function
we wrote in MATLAB, 	
���
��
��12. The script takes the resampled residuals and
simulates the SARMA model that has been passed to it with these resampled values
serving as the noise input. Usually, the noise input are samples from a Normal distri-
bution. There are sometimes differences in the model coefficients calculated by the
fitting functions in MATLAB and in R, but these are minor. This is due to the different
optimisation algorithms used in the Maximum Likelihood Estimation (MLE) step.

12Available with the archive copy of this thesis on infoscience.epfl.ch. Comments have been added for presenta-
tion, and the script reformatted slightly from the one actually used in the calculations.
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1 # This R s c r i p t i s written automatically by a function written

2 # in MATLAB ( see infoscience . e p f l . ch ) .

3

4 # Load forecast

5 l i b r a r y ( forecast )

6

7 # Read in the custom innovations .

8 CustomInn = read . csv ( f i l e . path ( " Inn . csv " ) )

9 # And the raw values .

10 IncomingX = read . csv ( f i l e . path ( "Raw. csv " ) )

11

12 # These values have been written in by MATLAB.

13 p e r i o d i c i t y = 24; ARp = 3 ; MAq = 4 ; SARp = 1 ; SMAq = 1

14

15 # Try f i t t i n g an ARIMA model . Sometimes the MLE does not

16 # converge with the CSS−ML option .

17 t r y ( PsiModel <− Arima ( IncomingX , order=c (ARp, 0 ,MAq) ,

18 seasonal= l i s t ( order=c (SARp, 0 ,SMAq) , period= p e r i o d i c i t y ) ,

19 method = ’CSS−ML’ , n . cond=0) )

20

21 # I f the MLE did not converge , then t r y the CSS option .

22 i f ( ! ( e x i s t s ( ’ PsiModel ’ ) ) ) {

23 t r y ( PsiModel <− Arima ( IncomingX , order=c (ARp, 0 ,MAq) ,

24 seasonal= l i s t ( order=c (SARp, 0 ,SMAq) , period= p e r i o d i c i t y ) ,

25 method = ’CSS ’ , n . cond=0) ) }

26

27 # Each s e r i e s i s 8760 values long , and there are a 100 s e r i e s .

28 N = 8760; npaths = 100;

29

30 # Simulate each s e r i e s .

31 tsOut <− array ( 0 , c (N, npaths ) )

32 for ( s in 1 : ncol ( tsOut ) ) {

33 tsOut [ , s ] <− simulate . Arima ( PsiModel , nsim=N, innov=CustomInn [ , s ] )

34 }

35

36 # Write out the data in a data frame .

37 DataOut = data . frame ( tsOut )

38 write . table ( DataOut , f i l e ="Sim . csv " , col . names = F ,

39 row . names = F , sep = " , " )
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3.7 Recombining Random and Deterministic Components

Figure 3.16 – Synthetic values for TDB, Geneva, plotted with typical values in the foreground.
The time series seem to cut-off at about ~35°C. This is a result of the post-processing described in
Section 3.8. The maximum temperature in any year can occur between May and September, but
does not exceed ~35°C.

The original decomposition, Equation (3.1), is restated as

yt = (μ̂t +ζt )+ ε̂t , (3.8)

where the quantities with hats are synthetic replacements, so μ̂t is the low-frequency
Fourier fit, and ε̂t is the simulated SARMA noise. Plotting the synthetic temperature
series against the typical values forms an estimate of variation of temperature at every
hour (Figure 3.16). Note that the individual series are all plotted together to achieve
this effect. These are not intervals, and intervals cannot be used in current building
simulation programs, which only work with a single value per hour. By and large, the
expected ranges seem to be slightly larger on ‘top’. That is, the mass of the temperature
values is shifted slightly towards higher temperatures. The fortuitous outcome of
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this asymmetry, however, is that the synthetic weather based on an old file (usually
1970s-1990s) mimics temperature trends from the last two decades very well.

3.8 Post-Processing the Synthetic Series

The generation procedure almost always produces unacceptable values (e.g., 100°C),
which may be removed with expert input. The difficulty here lies in assessing what an
‘acceptable’ extreme is: if 40°C has not been recorded in Geneva in the past 60-odd
years, does that mean it will never occur in the future? Not necessarily. As such, we
do not take a position on the matter and let the user decide on what they consider to
be possible, but highly improbable, or ridiculous. We recommend cleaning not just
outlandish values (e.g., 50°C in Geneva), but also unrealistic changes in values (first
difference of time series). Once again, whether a change is realistic or not is subjective
and context-dependent.

To remove unrealistically large values of the first derivative, we use smoothing (local
polynomial fits like moving averages). As the name implies, the result would be a
‘smoother’ signal. Magnano, Boland et al. (2008) smooth the edges of the bootstrapped
blocks to ensure that the edges of the blocks do not have an unacceptably large differ-
ence between consecutive values. We used the maximum/minimum first difference
seen in the recorded data as the limits of what is an ‘acceptable’ hourly change of tem-
perature. First differences outside these bounds set by the typical file are considered
outliers. The actual temperatures corresponding to these outliers were then replaced
with interpolated values. We chose not to use a ‘global’ smoothing, since that removed
a significant amount of variance. While some users may wish to implement a global
smoothing filter for a generated time series, we do not recommend it.

We also censored the synthetic time series using z-scores, described by Equation (4.2).
This procedure is loosely based on one recommended in NIST/SEMATECH e-Handbook
of Statistical Methods. There are two censoring steps: one for simulated residuals
(Section 3.6.1), and one for final synthetic values after recombination (Section 3.7).
Censoring was necessary since the innovations and actual values can at times exceed
100°C. By itself, the z-score does not indicate that a particular data point is an outlier.
Rather, an arbitrary cut-off point must be decided. The advantage of using z-scores
is that instead of imposing arbitrary limits on the raw values of a parameter, which
are highly climate or context dependent, it is possible to use standardised values
and cut-offs. This helps to maintain consistency across climates and parameters. In
our case, we found that choosing the larger of the 99.9 and 0.1 percentile values is
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sufficiently conservative to remove outrageous values (like 100°C or -100°C) but not
so conservative as to remove extremes. The point of using both ends of the range of
a time series is to prevent the high extremes causing the censoring of low extremes,
or vice versa. When we use the maximum of the 99.9 and 0.1 percentiles (compared
using absolute values), we allow for a larger range. A notable exception to this were
the simulated TDB values for New York, for which we used the 99th and 1st percent-
iles. Censoring too, is an arbitrary choice, and the generation of weather files is only
moderately affected if this cleaning is not carried out. We looked at various cut-off
values, and could not arrive at a conclusively universal one, because we do not take a
position on which extreme is too extreme. We expect that visual inspection or expert
opinion is as good as hard-coded checks in the generator. Most building simulation
programs have their own cut-offs for valid values13.

3.9 Special Treatment for Solar Quantities

... and you run to catch up with the sun but it’s sinking
Racing around to come up behind you again

The sun is the same in a relative way, but you’re older
Shorter of breath and one day closer to death.

Pink Floyd, Time
(The Dark Side of the Moon)

Initially, we attempted to fit Fourier series and stationary models to the GHI series,
and a derivative series called the clearness index, Kt

14. However, we found that the
solar time series are both difficult to work with and of dubious quality in many TMY
files. As a result, we adopt an approach that exploits the close relationship between
the average daily temperature and daily sum of GHI (Figure 3.17), similar to a nearest-
neighbour bootstrap. Nearest-neighbour bootstrap has previously been explored for
meteorological series, for example by Lall and Sharma (1996) to predict hydrologic
data.

Once the synthetic TDB series have been created, the data is separated by month.
Then knn days are selected from a month in the TMY file based on the ‘closeness’ of
their mean TDB values to the mean TDB of each synthetic day in that month (i.e., for

13Since we use daily mean TDB in the generation of synthetic future GHI, censored values are easier to work
with.

14An approach adopted by many of the weather generators presented in Section 2.6.3.
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Figure 3.17 – Daily means of TDB and daily sums of GHI for Geneva. The correlation coefficients
are quite high, with Pearson’s ρp = 0.74 and Spearman’s ρs = 0.75.

each synthetic year). The distance is calculated based on the Mahalanobis distance
because it is meant to be unaffected by correlation, though this choice is not fixed
and another distance metric could be used. In our implementation, knn = 10, so 10
nearest neighbours from a TMY month are selected for each synthetic day in a month.
In the next step, 9 out of 10 neighbours are discarded randomly, and the index of the
neighbour selected is stored. Once a TMY day is assigned to every synthetic day, we
have pairs of days whose daily mean TDB are similar and which come from the same
month. The hourly GHI profile of the TMY day in a pair becomes the hourly GHI
profile of the corresponding synthetic day. The corresponding hourly DHI and DNI
profiles are selected with the same indices.
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Figure 3.18 – Synthetic GHI time series for Geneva. Neither the distribution nor the extents of
the synthetic series are very different from the TMY or recorded data.

3.10 Examining the Synthetic Weather Series

For I have known them all already, known them all –
Have known the evenings, mornings, afternoons,

I have measured out my life with coffee spoons;

T.S. Eliot,
The Love Song of J. Alfred Prufrock (1917).

Recall that the purpose of creating the time series is to obtain probable future weather
time series, simulation with which would give estimates of the likely ranges of outputs,
e.g., energy usage or indoor temperature. We found that the generated data sets
are broadly representative of recorded data, despite the fact that long term records
are not used in the generation process. We now proceed to assess the results of the
synthetic weather data generation using criteria from Boland (1995), Hansen and
Driscoll (1977), Lund (1995) and Magnano, Boland et al. (2008). The comparisons
were all made using recorded/measured and TMY data. The recorded/measured data
used in all the comparisons is from the period 1955-2014 for Geneva (MeteoSwiss
2014; NCDC/NOAA 2014), though with significant gaps (about 25% of the TDB data
is missing). The gaps do not appear to have a bias, like one particular season that is
consistently missing. Pending further investigation, we assume that the measurement
errors are uniformly distributed and do not colour the statistical characteristics of the
time series. When the data gaps were too large (e.g., a whole month from one year),
we removed that entire year. When the gap was of a few hours, we used interpolation
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Table 3.1 – ASHRAE design temperature percentiles for Geneva. All TMY values are taken from
the header of the TMY file, except for the 98th percentile. This was calculated, and so represents
the 98th percentile of the ‘mean’ signal.

Percentile Geneva (°C)
(%) Recorded TMY Synthetic RCP4.5 RCP8.5

99.6 31.13 30.05 30.80 32.56 34.43
99.0 29.21 28.33 29.00 30.24 31.93
98.0 27.35 26.80 27.20 28.00 29.56
50.0 10.10 10.00 10.41 9.66 10.53
2.0 -2.77 -3.70 -1.90 -4.85 -4.09
1.0 -4.04 -5.00 -4.80 -6.53 -5.80
0.4 -5.63 -7.20 -6.90 -8.56 -7.82

based on discrete solutions to a boundary value problem15.

3.10.1 Probability Distributions and Dispersion

Tables 3.1 and 3.2 show values corresponding to the various American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) design temperatures.
In searching for suitable “important” extremes, we settled on the widely-used ASHRAE
design temperatures. The point of showing these values is to verify that the synthetic
weather files effectively reproduce the (design) extremes. Figures 3.19a and 3.19b
compare the range (maximum, minimum) and means of synthetic, recorded, and
typical time series. The maximum values are represented by the 99th percentile for
each month, and the minima by the 1st percentiles. Figures 3.19c and 3.19d show the
empirical Cumulative Density Functions (eCDFs) and Figures 3.19e and 3.19f show
the PDFs respectively.

Figure 3.19a suggests that the probability distributions of the synthetic series should
have truncated left tails compared to the original data, and that is exactly what we
see in Figures 3.19c and 3.19e. That is to say, the winter extremes are truncated.
Figure 3.19e shows that the resampling procedure tends to smooth the unexpected
peaks that exist in the PDF of the TMY data (e.g., between about 5°C and 15°C)16. On
the whole, the approximation is acceptably close to the measured data.

15A user-supplied MATLAB function, ������������, solves discrete approximations to one of several partial
differential equations, analogous to ‘filling holes’ in a flat plate. Code downloaded from MathWorks FileExchange.
Copyright (c) 2009, John D’Errico.

16Unexpected in the sense that said peak is not present in the PDF of the recorded data.

121



Chapter 3. Synthetic Weather Inputs for Building Simulation

Table 3.2 – ASHRAE design temperatures for Delhi [left] and New York JFK [right], calculated in
the same manner as Table 3.1.

Perc.
(%)

Delhi (°C) New York (°C)
Recorded TMY Synthetic Recorded TMY Synthetic

99.6 42.55 45.00 42.00 33.61 31.00 32.10
99.0 41.17 43.50 40.60 32.02 29.00 30.30
98.0 39.81 42.00 39.30 30.51 27.50 28.70
50.0 26.73 27.00 24.69 13.12 8.00 12.55
2.0 9.60 8.67 9.00 -3.40 -5.00 -5.60
1.0 8.58 7.00 7.30 -5.04 -7.00 -8.20
0.4 7.52 6.00 6.30 -6.92 -10.00 -10.70

In general, the approach characterises measures of central tendency (mean and me-
dian), dispersion (standard deviation and inter-quartile range), and high extremes
very well, but is not able to reproduce low extremes (cold temperatures, see the dif-
ference in the lowermost lines of Figure 3.19a). That is, the synthetic files contain
more extremes in summer than in winter. The cause of this is probably asymmetry
in the residuals from fitting models (e.g., Figure 3.12) – if the residuals are skewed,
the final generated series will likely be skewed in the same direction. Bootstrapping
by itself cannot produce extreme values, since it is merely ‘shuffling’ what already
exists. While the values in the TMY source files are recorded values, and may contain
extreme values, they are meant to include months whose distribution matches the
overall distribution over several decades. This means that the extremes we are looking
at are created by a combined effect of bootstrapping and simulation of the SARMA
model.
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(a) Extents - TDB (b) Extents - RH
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Figure 3.19 – Monthly extents, eCDFs, and PDFs of measured, typical, and synthetic hourly
values of the TDB and RH time series for Geneva. The solid blue line represents measured data,
dashed orange represents synthetic, and dotted grey is for TMY data.
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Figure 3.20 – Monthly extents, eCDFs, and PDFs of measured, typical, and synthetic hourly
values of the TDB and RH time series for Geneva. The solid blue line represents measured data,
dashed orange represents RCP 4.5, dashed red is for RCP 8.5, and dotted grey is for TMY data.
The variation in the generated data almost washes out the difference between the two RCPs.

124



3.10. Examining the Synthetic Weather Series

3.10.2 Sequences

The idea behind checking the presence of sequences above and below some value
in the synthetic data is that synthetic series should represent episode intensity and
duration (i.e., spell length and magnitude of some temperature) accurately, in addition
to the basic descriptive statistics examined above. This is one of the criteria put
forward by Lund (1995) to judge the quality of a typical year for building simulation
or solar energy studies (Section 2.6.1), though it is highly unlikely that a typical year
contains any episodes like heat waves. Hansen and Driscoll (1977) and Magnano,
Boland et al. (2008) use thresholds specific to their case studies. Wilcox and Marion
(2008), in the creation of TMY files, use the 67th and 33rd percentiles for persistence of
warm and cold spells respectively17. In search of a sufficiently general set of thresholds,
we decided to use the ASHRAE design temperatures that are part of TMY files in
addition to the 67th and 33rd percentiles. Looking at the eCDF in Figure 3.22, we
see that the synthetic data does include periods of extreme temperature (spells) with
roughly the same frequency as recorded data for Geneva. The frequency of occurrence
of high temperature episodes, i.e., heat waves, is a little less common. The spell
recreation for Delhi (Figure 3.23) shows that the frequency of episodes of all lengths
increases slightly, while New York JFK (Figure A.7) shows either slightly higher or
slightly lower frequencies. We discuss the recreation of episodes again in Sections 3.12
and 5.3.7, since an issue of concern with the current method is its inefficiency in
generating long-duration departures from the mean, like heat waves.
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Figure 3.21 – ECDFs of the low-temperature spell durations in recorded and synthetic data
(without climate change forecasts), Geneva. The thresholds are the ASHRAE design temperatures
for Geneva, as percentiles: [left] 1.0 and [right] 0.4.

17Note that the most widely-used typical year procedure, the TMY algorithm, deliberately excludes episodes of
unusual temperature, i.e., it uses the presence of spells to disqualify candidate months(Section 2.6.1).
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3.10.3 Cross-Correlation

We are interested in the cross-correlations of temperature with solar radiation and
humidity. Unlike vector approaches (e.g., Hong and Jiang 1995; Lee, Sun, Hu et al.
2012), our procedure does not explicitly calculate, or take steps to maintain, cross-
correlations. Instead, the resampling procedure for the RH and nearest-neighbour
bootstrap for the solar quantities (Section 3.9) preserves the cross-correlations18.

Table 3.3 – Correlation coefficients for dry bulb temperature (TDB) with RH and GHI.

Series
RH GHI

ρp ρs ρp ρs

Original -0.54 -0.5 0.52 0.47
TMY -0.5 -0.45 0.52 0.44

Synthetic -0.44 -0.38 0.43 0.36
RCP4.5 -0.3 -0.25 0.35 0.3
RCP8.5 -0.26 -0.22 0.34 0.3

We examine correlations with Pearson’s ρp and Spearman’s ρs correlation coefficients.
The quantity ρp measures the linear correlation between two variables, and ρs as-
sesses how well the relationship between two variables can be represented as a mono-
tonic function (Dodge 2008). The temperature shows a somewhat linear (negative)
correlation with humidity. Mild (positive) correlation is also evident between TDB and
GHI. However, this might be a function of the relative sunniness of the example cli-
mate. Pending verifications for very cloudy climates, this particular relationship must
be treated with caution. The correlations with both RH and GHI are not appreciably
different for the synthetic time series.

18RH blocks are moved in tandem with the TDB blocks.
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Figure 3.22 – ECDFs of the high-temperature spell durations in recorded and synthetic data,
Geneva. On the left are synthetic files with climate change forecasts, on the right without. The
thresholds are the ASHRAE design temperatures for Geneva, as percentiles: [from top] 99.6, 99,
and 98.
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Figure 3.23 – ECDFs of the spell durations in recorded and synthetic data for Delhi: [from top
left] 99.6, 99, 98, 2.0, 1.0, and 0.4 percentiles. Climate change forecasts for Delhi were not used
in this thesis.
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3.10.4 Measures of Shape

Skewness and kurtosis are the third and fourth moments of a data set, respectively.
Skewness is a measure of the asymmetry of the data. For a distribution to have skew is
to imply that it is ‘heavier’ either to the left or right of the mean. Negative values indic-
ate a leftward skew and positive ones a rightward skew. A convenient interpretation of
kurtosis is whether a distribution is outlier-prone or not. “Distributions that are more
outlier-prone [i.e., sensitive to outliers] than the normal distribution have kurtosis
greater than 3; distributions that are less outlier-prone have kurtosis less than 3” (The
MathWorks, Inc. 2015). This is in addition to the interpretation of kurtosis as ‘peaki-
ness’, where large values above 3 indicate that the distribution is much more ‘peaky’
than the standard normal. Figure 3.24 shows that there are very small differences
(<0.6) between the shape parameters of recorded, synthetic, and TMY series.
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Figure 3.24 – Recorded data is represented by the dotted line, synthetic by the solid line, and
TMY by the dashed line. The thick straight lines in both sub-plots represent the skewness and
kurtosis of a normal distribution.
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3.10.5 Random Files with Climate Change

The files generated with an added climate change signal are not necessarily compar-
able with recorded data. In fact, the point of including the climate change forecast is
to say that the weather in the future is going to be different. For most of the world, that
implies slightly warmer means (1-4°C, depending on which model or RCP one exam-
ines). We are not comfortable with a straightforward morphing of current weather by
adding a ‘mean signal’, as discussed in Section 2.2. This means that the weather files
we present extend both high and low extremes, implying that we do not necessarily
know how the underlying regional climatic systems will change in response to a global
rise in temperature. More extreme or unseasonal cold snaps are also possible in the
future, like heat waves. Generally, buildings designed for heating-dominated climates
will handle colder weather better than a heat wave. A combined plot of ‘future’ random
files for Geneva, compared to the TMY, is given in Figure 3.25. The potential values
clearly show larger variation throughout the year than those plotted in Figure 3.16.
The time series seem to cut-off at about 35°C. This is a result of the post-processing
described in Section 3.8. The maximum temperature in any year can occur between
May and September, but does not exceed 35°C.

Figure 3.25 – Synthetic values (RCP 8.5) for TDB, Geneva, plotted with typical values in the
foreground.
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3.11 Simulations with Synthetic Files: An Example

Simulations with the plain and future synthetic files described in this chapter are
presented in Figures 3.26 and 3.27. In each figure, there are two sub-figures: the top
figure (a) shows the simulations separated by date, while the bottom one (b) clubs
them by decade to show the distribution (eCDF). In the top figures (a), dots to the left
of the line are simulations with recorded data, dots to the right are simulations with
future synthetic files using the RCP8.5 projections, and the vertical line is composed of
simulations from the plain synthetic files. In the bottom figures (b), the distributions
are plotted for each decade, and the darker, thicker, line is the distribution of values
from 1981-2013. The year labels in the legend are the starting year of decades19. In
general, these plots should be treated as what-if or sensitivity analyses. If the user
has some way of quantifying confidence in a climate forecast, then these may also
be interpreted as uncertainty analyses. Confidence could be quantified by assuming,
for example, that the random future climate files generated by our method follow an
approximately Normal distribution every year, and that the forecast describes the slow
change of mean. The mean also has its own distribution, based on one of the forecasts
given by the IPCC (IPCC 2014a) and the CORDEX website (World Climate Research
Programme 2015).

In Figure 3.27, the spread of energy use is significant for each individual year, with
larger extents for the dominant load – heating. The future values show clear downward
(heating) and upward (cooling) trends, respectively. This implies that, while the
individual refurbishments will affect the heating load, they will collectively show
an upward/downward trend with a warming climate. The trend is less obvious in
Figure 3.26, where only the simulations from the base case are plotted (i.e., the home
without any refurbishments.). However, the extents of the values noticeably decrease
and increase for heating and cooling. This is the effect of climate alone, overruling
the deliberate variation that we introduced with the refurbishments (Figure 3.27).
In Chinazzo, Rastogi et al. (2015b, fig. 12), we showed that the spreads of values
for each case increase into the future because the estimates of future temperature
diverged. In the simulations presented here, the general warming trend is bigger than
the uncertainty surrounding future predictions. In previous work (ibidem, fig. 4),
we have suggested weighing future results based on their distance from the present.
The method presented in this thesis does not weigh uncertainty differently based on
distance from the present. Looking at the procedure in Section 3.7, the same ‘variation’
is added to every year, regardless of our confidence in the values, because we have

19Compare these plots to figures 8-12 in Chinazzo, Rastogi et al. (2015b).
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no way of quantifying it based on how far in the future it is. This is a possible future
expansion of the generating procedure. The eCDFs in Figures 3.26 and 3.27 show that
the general shape of the distribution by decade does not alter perceptibly. The upper
plots (a) indicate that there should be fewer outliers, which is not noticeable in the
eCDFs. The distribution of the past 32 years indicate a mean climate that is somewhat
cooler (i.e., lower cooling and higher heating) than future decades.
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Figure 3.26 – Simulated heating [a] and cooling [b] energy values for the single-family home in
Geneva, without all refurbishment options. The grey dots indicate simulations with recorded
data, as do the grey lines in the eCDF plots. The grey lines in the plots on top indicate simulations
with the plain synthetic files, which are time-unspecific. The orange dots to the right of the grey
line are simulations with synthetic files in which a climate change forecast was included. The
synthetic files with climate change always refer to a specific future year.
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Figure 3.27 – Simulated heating [a] and cooling [b] energy values for the single-family home in
Geneva, with refurbishment options. See explanation of plot details in Figure 3.26.
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3.12 Limitations

3.12.1 Episodes and Extremes on Demand

In our implementation of stationary time series models, the generated time series
are not meant to allow long excursions from the mean. Since the models are time-
invariant, special conditions (or different models) are not automatically invoked
to cause a heat wave to persist. Thus any sequences of extreme temperatures are
generated purely randomly, and this generator is not efficient for generating heat
waves. Extreme temperatures are reproduced well (e.g., Figures 3.19a and 3.20a),
they just do not persist for very long. Compare, for example, the length of spells
(or persistence) shown in Figures A.7, 3.22 and 3.23. A large number of draws and
post-processing might be necessary to obtain synthetic time series with episodes of
interest. As we discuss in Section 3.12.4, while the number of runs is independent of
the number of weather parameters, a large draw (100-500) may be needed to recreate
extremes. It is not necessary to store every synthetic year, of course, and a large pool
of files could be built up using years of interest from a set of separate draws.

A possible addition to the weather generator would be the ability to generate episodes,
e.g., heat waves, ‘on demand’. This could, for example, be done with the use of time-
varying models, as opposed to the time-invariant models used here, or long-range
dependence models. The reason we eschewed the use of these models so far is that
the time-invariant models demonstrated are simpler and have fewer parameters to
calculate. Since the simpler answered the needs set out for this project well, parsimony
prevailed. The general incapacity of the time-invariant models to produce, on demand,
heat waves and cold snaps, i.e., long-duration extreme episodes, necessitates a re-
think, if such episodes must be modelled well. The idea behind using time-varying
models would be to model two or more ‘regimes’, defined by the differing number
of lags and their coefficients. These regimes could be thought of as representing
‘pressure systems’20 and other influential weather phenomena that cause a particular
combination of weather conditions to persist. These systems may occur only a few
times a year and therefore have no importance in an annual appraisal of the data,
especially one based on a typical year. Recall that the general models by and large
include low-order ARMA terms (0-4 lags) and either Seasonal Auto-Regressive (SAR)
or SMA terms, or both. Since these coefficients do not change with the seasons, the
differences in the stability of summer and winter weather systems (say, a depression) is
not modelled explicitly. Yet this persistence may cause a heat wave or similar episode.

20“An individual cyclonic-scale feature of atmospheric circulation, commonly used to denote either a high or a
low, less frequently a ridge or a trough” (AMS 2015). A low-pressure system is also called a depression.
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A low-order ARMA process with high coefficient values, and without seasonal terms,
would favour a long departure from the (zero) mean. In future work, we propose to test
the use of specialised ARMA models for producing noise series which are able to make
a persistent excursion from the mean. This would be a ‘heat wave’ or ‘persistent system’
that is applicable only for short periods and not throughout the year. If localised to a
specific time, the process could produce an episode without affecting the suitability
of the overall fit of the all-season SARMA model. The possibility of transitioning to
a persistent regime could be modelled by, for example, a seasonally-varying Markov
transition matrix. That is, we strongly suspect that persistent systems tend to cluster
seasonally, so the probability of getting one should not be uniform throughout the
year. For example, low-pressure systems are far more common during summer in
monsoon climates. While this knowledge cannot be acquired from a TMY file, one
does not necessarily need to know exactly when such systems occur in a climate, if all
one is looking for is to test a heat wave in the summer.

Another class of models are the so-called long-memory models or models incorporat-
ing long-range dependence, e.g., those involving fractional differencing (d ∈R). Since
we dropped integer differencing because it complicated the physical interpretation
of the model, fractional differencing did not make the cut either. See Shumway and
Stoffer (2011) for a brief introduction to fractional differencing. After some initial tests,
we dropped this type of model, but will consider it in future work if it helps to recreate
episodes ‘on demand’.

3.12.2 Expert Input

A limitation of any method based on fitting conditional mean and variance models
to observed data is that the models are temporary constructs. These models are
based on the characteristics of a sample, not physical equations, so their parameters
are recalculated for each new case21. We do not claim that these models are better
representations of climate than global- and regional-level simulations of physical
phenomena. It is incumbent upon the energy modeller who would like to use this
strategy to check and recheck the model fits to ensure that crucial assumptions are
not violated, and the synthetic time series are physically valid. As we showed in
Section 3.5.2, even quantitative selection criteria can sometimes point in the wrong
direction.

The choice of re-/sub-sampling for creating synthetic series was motivated by the

21Recall the difference between parameters and variables from Section 1.2.3.
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general applicability of the method and its relative insensitivity to underlying distribu-
tions. A notable set of cases for which the bootstrap is expected to fail is if the data
come from a distribution which is in “the domain of attraction of a (non-normal)
stable law” (Politis 1998). Since we work with raw material that has a nearly Normal
distribution (Figures 3.12 and 3.13), this is not a problem.

3.12.3 Choice of Source File

We do not address the question of data quality separately, folding it instead into the
larger discussion of uncertain inputs. The method described in this chapter only
partially makes up for the quality of the input/source file. It is up to the user to check
the quality and representativeness of the input files being used for a particular design
problem. If a file was composed with high-quality data from a long period of record,
then the synthetic data based on it is more reliable, and vice-versa. The years that
make up the TMY file also make a difference. For example, the years included in the
TMY file for Geneva are older (1980s-90s), while the New York stations have newer
years (1980s-2000s). In both cases, the recorded data is considerably longer (1950s-
60s to 2000s), and the TMY/synthetic files tend to be warmer, especially in summer.
The effect is also seen in other stations from North America (like Chicago). While
we focussed on working with small weather data sets (the typical year files), using
more data, particularly recent records, is not detrimental to the generating procedure
described here. For example, the approach described in Magnano, Boland et al. (2008)
uses eight years of data. We did not focus on this application since we wanted to
specifically address the issue of patchy data availability (see section 2.7). In specific
applications, we encourage the user to obtain as much recorded data as is feasible for
a given site – especially to compare the synthetic data with.

As discussed in Section 2.7, this procedure does not account for spatial uncertainty.
If a file is used from a station that is very far from the site of the building, then the
difference due to urban and natural factors cannot be compensated by the input
modifications proposed in this chapter. The occurrence of extremes and the general
shape of the data may be very similar for nearby stations, but persistent micro-climatic
effects (e.g., Urban Heat Islands (UHIs)) cannot be accounted for. To examine the
stability of the procedure when using different stations in the same city, we looked at
New York. The shape and extents of temperature and humidity for the three stations
in New York are similar (Figure 3.28). In both cases, the synthetic weather files are
warmer than the recorded data, but they are different by about the same amount.
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Figure 3.28 – New York JFK [top], LAG [middle], and CPR [bottom]. The synthetic files follow
the distributions of the TMY file closely. The recorded data have a different distribution from the
(newer) TMY files, showing a significant ‘bump’ between 0-10°C. This also pulls the means lower,
which is particularly visible in the summer statistics (right).

3.12.4 Number of Runs

Throughout this procedure, we have worked with either 50 or 100 resampling runs,
meaning 50 or 100 SARMA simulations. This was a convenient number of simulations
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Table 3.4 – ASHRAE design temperature percentiles for Geneva using 50 and 100 runs.

Percentile Geneva (°C)
(%) 50 runs 100 runs

Synthetic RCP4.5 RCP8.5 Synthetic RCP4.5 RCP8.5

99.6 30.80 31.43 33.00 30.80 32.57 33.16
99.0 29.00 29.20 30.64 29.00 30.08 30.63
98.0 27.20 27.11 28.42 27.20 27.71 28.24
50.0 10.41 9.62 10.43 10.41 8.97 9.59
2.0 -1.90 -5.27 -4.39 -1.90 -6.05 -5.19
1.0 -4.80 -6.99 -6.14 -4.80 -8.02 -7.17
0.4 -6.90 -8.97 -8.23 -6.90 -10.36 -9.57

in terms of computational time and variation. As with any random number or Monte
Carlo (MC) simulations, the number of runs is independent of the number of variables
being modified. However, the desire to produce extremes may force the user to
run more simulations. Table 3.4 and fig. 3.30 compare results from two run sizes.
Predictably, the 50-sample run tended to produce less extreme values than the 100-
sample run, and was less consistent in producing these extremes. Since the generating
procedure is relatively cheap, we the user may run the generator until some desired
extremes or heat waves are reproduced. It could be possible, for example, to run
several 50-sample runs and then combine the result. This selective retention of
synthetic years will, however, influence the final distributions (i.e., the output will be
biased). If one keeps all of the generated files from many repetitions, the probability
distribution should be stable. However, if one discards similar, moderate, files from
each run, then the probability distribution will tend to become heavy-tailed (increased
kurtosis). Ultimately, the use of synthetic weather data is a ‘brute force’ approach to
the characterisation of uncertainty due to weather in buildings. That is, the only way to
improve one’s estimate of bias in some statistical measure of model output is to create
more paths (nsi m and nboot ) and simulate each resulting time series separately. We
expect that the time required to improve one’s coverage would scale, at best, linearly
with the number of simulations, i.e., O(n). That is, 200 simulations should take twice
as long as 100 simulations, up to some limit where post-processing the data becomes
time-consuming in itself.

The representativeness of the source file influences the representativeness of the
synthetic series, and the user may not be comfortable with assuming underlying
distributions for future values. If the user is not bound to preserving the probability
distribution, then not using the entire set of 100 files from one generation run (or
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Chapter 3. Synthetic Weather Inputs for Building Simulation

many hundreds of files from several runs) is feasible. It is quite reasonable that several
hundred files may be generated until a desired set of characteristics is achieved (say,
extreme summers). Then, the user may discard files that are too similar since they will
likely produce very similar outcomes. This choice naturally depends on the quantity of
interest, and may be made with the regression-based emulator proposed in Chapter 4.
As we discussed in Chapter 1, we suggest that using the posterior, i.e., the results of
an emulator, is better for selecting weather years of interest than a prior, i.e., the raw
files themselves. In most cases, the point of this selective exercise would be a what-if
analysis, e.g., the effect of an extreme heat wave. The selection of weather files will
necessarily introduce bias.
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Figure 3.29 – TDB values for Geneva generated with 50 [left] and 100 [right] runs. The extremes
are not visibly different, but they are slightly smaller in the 50-run dataset.

Figure 3.30 – RH time series for Geneva, using 50 [left] and 100 [right] re-sampling runs.
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3.13 Synthetic Generation: Summary

We have demonstrated the use of Fourier fitting, conditional mean models, and
resampling to create synthetic weather data. This synthetic weather ‘data’, while based
on a typical year file, turns out to be more representative of the range of values seen in
our example climate over the last sixty or so years than the typical file on which the
procedure is based. The descriptive statistics, correlations, and dependence structures
of the synthetic time series greatly resemble those of the original source material, the
TMY. In addition, the synthetic series also reproduce or exceed extremes in measured
data. The innovation of including time series models at multiple scales, i.e., separate
models for annual and daily variability, based upon the work of Boland (1995) and
Magnano, Boland et al. (2008), is partly responsible for this performance. The mixing
of persistence effects at different time scales (e.g., daily and seasonal moving average
or auto-regressive structures) is better represented by a model composed of separate
parts explicitly representing these diverse time-scales.

The user cannot outsource all judgement to the statistical techniques. Even something
as well-understood and pervasive as the Fourier transform still requires expert verific-
ation for appropriate usage. Errors and inconsistencies are bound to occur, because
the generation procedure does not ‘know’ which values are unreasonable. Checks for
which extreme is too extreme are much more difficult to hard-code into a procedure
than physical checks, like removing RH values above 100%. In any case, aggregate
quantities like annual sum of energy are less influenced by the occasional ‘unrealistic’
value, however that is defined, than instantaneous quantities like peak load. In an
assessment of a noise-sensitive quantity like peak load, the user is well advised to use
censoring of the kind described in Section 3.8.
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4 Emulators for Uncertainty and Sensit-
ivity Analyses

With four parameters I can fit an elephant,
and with five,

I can make him wiggle his trunk.

John von Neumann

(Mayer, Khairy et al. 2010)

Image redrawn using a Python script

from Piotr A. Zolnierczuk

4.1 General Approach

In practice, building simulations are deterministic simulations: a simulation always
gives the same output for a particular combination of inputs, if numerical errors
are neglected1. The work presented in this thesis is a first step toward changing
this practice, i.e., by conducting and interpreting building simulation in a stochastic
paradigm. In this paradigm, uncertainty or sensitivity would be quantified explicitly,
through variability intervals2, either constructed empirically with Monte Carlo (MC)
simulations, such as by using the synthetic inputs from Chapter 3, or through fre-
quentist interpretations of regression predictions, such as in this chapter. With the
synthetic weather data, we presented (pseudo-) random inputs that might be used to
carry out stochastic building simulation. To enable a practical application of those

1Errors arising in finite precision calculations, especially in the solution and approximation of thermal networks
and shading calculations.

2The extents of variation in outputs like energy use.
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computationally-intensive analyses, this chapter presents a choice of rapid-response
regression models. These models may also be used for numerical Sensitivity Ana-
lysis (SA)3. The input variables used in the regression models presented here may be
extended or amended to suit the situation (design problem) that a user is working
with.

These regression-based emulators or meta-models are meant to be rapid-response ap-
proximations of a building simulation, or building system. As explained in Chapters 1
and 2, sensitivity and uncertainty analyses do not themselves need emulators. In fact,
since these are ‘simplifications’ or ‘surrogates’ for full-scale simulation, one ends up
measuring the sensitivity of the emulator, or the propagation of uncertainty through it,
and not the characteristics of the original system. It is the large number of simulations
required by sampling-based methods (see Section 2.4) that force the use of emulat-
ors. In Section 2.5, we gave examples of simplified methods and emulators from the
literature. Unlike previous efforts, though, and consonant with the philosophy of
the chapter on time series models (Chapter 3), we will not propose a unified model
that works across all climates and buildings. Instead, we propose a structure to build
reliable models cheaply and on-the-fly, customised to a design problem. We will try to
convince the reader in subsequent sections that trying to make a unified or general
regression model (for all buildings in all climates, or one climate) is both complex
and counter-productive, whereas training an emulator for each design problem, i.e.,
a particular building defined by its geometry and usage in a particular climate, is far
more robust.

Since the application of Gaussian Process regression is novel in building simulation,
we compare it with classical models. Gaussian Process regression either relaxes or
modifies many of the conditions presented in the discussion for classical models
(Section 4.3.1). Conditions on the inputs and outputs are most restrictive for the
classical Normal model, and the goal of using the other classical models presented
here, Generalised Linear Models (GLMs) and Generalised Linear Mixed-Effects Models
(GLMMs), is to progressively relax these conditions. We show why the considerably
freer Gaussian Process (GP) models are, in the experience of the author, best suited to
the problem at hand.

Regression is a key field of interest in statistical or numerical studies because it gives a
user the ability to predict the effect of one or more explanatory variables on one or
more response variables, i.e., “what happens to [some response] y as [some input(s)] x

3That is, quantifying the sensitivity of output(s) to input(s) through repeated simulation. See Sections 1.5.5
and 2.4 for more details.
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varies” (Davison 2003, chpt. 8). Essentially then, regression analysis is the search for
some function

y = f (x), (4.1)

where x is a non-random input (which can be continuous, discrete, etc., and is either
controlled by the experimenter or not), y is a random output, and f (x) is some func-
tion. The aim of a linear regression exercise “is to disentangle systematic changes in
y due to variation in x from the haphazard scatter added by the errors ε” (ibidem,
chpts. 8). We will build up the case for our choice of model, Gaussian Process re-
gression, by starting from the simplest possible models – the classical Normal Linear
Models (NLMs).

In our application, the response is either annual heating need or annual cooling
need, per floor area, also known as the Energy Use Intensities (EUIs) for heating and
cooling. In this thesis, the annual heating/cooling need or intensity is defined as the
annual sum of energy used for space heating or cooling divided by the floor area. We
will generally use the terms ‘energy need’ or ‘energy use’ with units kWh/m2. This
quantity is equivalent to stating the energy used in kWh, i.e., not divided by floor
area, but the normalizing step makes the energy figures comparable across different
buildings. Other quantities of interest in simulation include the (instantaneous)
demand, in W (Watts). The building ‘loads’ discussed in this thesis do not account for
the inefficiencies of Heating, Ventilation, and Air Conditioning (HVAC) systems, or the
electric/gas grid.

This chapter deals first with the inputs, then with models, and finally diagnostics. The
results from fitting different types of models are of two types: a ‘first’ model, trained
only on typical year files; and a ‘best’ model, trained on typical, recorded, and in
some cases synthetic, weather data. The best fits for each kind of model are presented
alongside the description of that model, and the reasoning behind selecting them is
discussed in Section 4.2.6.

4.2 Inputs and Outputs

4.2.1 Case Studies

This chapter discusses the procedures for developing a classical regression model
for two kinds of sensitivity analyses explored through two case studies – a restric-
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ted analysis and a comparatively general one. In this exercise, we have access to
a large amount of simulated data for training and testing. The restricted analysis
(Case 1) examines the sensitivity of one building, a single-family home, to changing
weather conditions in one climate (Geneva). Additional variation is introduced by
refurbishments to the envelope (Table B.4). The general sensitivity analysis (Case
2) also examines the effect of changing weather conditions, but this time for several
different building types together, with some variability in their material properties
(expressed through their ‘age’ or ‘era’, details in Table B.3). These variabilities may also
be interpreted as uncertainty in the envelope or building properties, which interact in
complex ways with weather variability. The building types differ in their usage as well
as in their geometry. Comparing the results of the restricted and general sensitivity
analysis contrasts the decision to use a unified model (i.e., a single regression model for
any building type) against a model specific to a particular building (geometry/usage).
The examples discussed in this chapter are theoretical, since they are not presented as
a particular design problem, where one would be dealing with only one building in a
particular climate.

An overview of the case studies is presented in Figure 4.1, and details of the simula-
tions are in Section B.4. The general, cross-building, sensitivity study is carried out on
the DOE Commercial Buildings Reference Database (Deru, Field et al. 2011), hereafter
referred to as the United States Department of Energy (USDOE) buildings. The USDOE
database has sixteen distinct sub-types/sub-blocks of buildings, grouped into eight
overall categories based on usage (Block/Type in Figure 4.1 and table B.3). Each sub-
type in turn has three variations for envelope construction, which are representative
of an ‘era’: pre-1980, post-1980, and new construction. Since these are all commercial
buildings (except for one mid-rise apartment block), we added a typical single-family
European house to the mix (the first case study). The base case construction of the
home in Geneva corresponds to typical practice from the Italian residential sector
in the 1970s, before the advent of energy or thermal regulations. This example is
an extension of the case study analysed in Chinazzo (2014), Chinazzo, Rastogi et al.
(2015a,b) and Rastogi, Horn et al. (2013). The USDOE buildings are abstract repres-
entations of a handful of commercially significant usage types from the United States,
not actual buildings. Each individual USDOE building (and the home) represents
an experimental unit, but we simplified the experiment by considering only distinct
usage types as units. So, for example, the three sizes of offices are combined into one
category – office (Figure 4.1).
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Figure 4.1 – The case studies drawn from the United States Department of Energy (USDOE)
Commercial Reference Buildings Database (Deru, Field et al. 2011). Details are in Table B.3.

4.2.2 Choosing Inputs: Orthogonality and Dependence

Using an emulator for building simulation entails a loss of information (assuming
that the simulation is the ground truth), so we aim to use the least number of pre-
dictors or independent variables without losing too much information. Throwing out
some candidate predictors is known as dimensionality reduction, helping to create
parsimonious emulators. The inputs, predictor variables, or explanatory variables
for this regression exercise are an assortment of climate and building properties4. A

4‘Predictors’ are often called ‘explanatory variables’, ‘independent variables’, or ‘covariates’.
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Figure 4.2 – Refurbishments for the home in Geneva. Details are in Table B.4.

large number of related initial candidate predictors were considered5, classified by
their source: building-related, climate-related, and mixed. A procedure based on
correlation estimates and Principal Component Analysis (PCA) was used to whittle

5See Tables B.1 and B.2 for the full list.
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the number of inputs down to an approximately orthogonal set of predictors drawn
from the larger pool of candidates6. The strength of correlation (Pearson’s correlation
coefficient) between the inputs is shown in Figure 4.3, labelled using the input codes
presented in Table 4.17. The choice of regression predictors is governed by the variable
building design parameters which are of interest in a particular simulation experiment.
For example, if we examine the sensitivity of one building with a fixed geometry, then
predictors related to the building geometry (which is a building design parameter that
can, theoretically, be varied) will be constant. Therefore, these factors will be taken
out of the regression model. That is, if the range of variation of some input, rpi , is less
than some appropriately small cut-off for that variable, ε, then that particular input
is no longer considered (pi �∈ P ), and the dimension of the regression space is now
d −1. This cut-off value depends on the units of the predictors, though in this chapter
we convert all inputs to z-scores, making them dimensionless and of comparable
magnitude.

Neither the use of correlation nor PCA should be treated as hard rules. Rather, the
results of the tests have to be examined in the light of physical knowledge about the
system. For example, while Window-to-Floor Ratio and Window-to-Wall Ratio show
a significant correlation in our case studies, we know that they describe sufficiently
different aspects of a building to merit individual attention. In PCA, the coefficient of
each original variable in composing a Principal Component (PC) is indicative of the
contribution of the original variable to the variance in the initial basis space of inputs.
A coefficient close to zero indicates a small contribution, while one approaching ±1 in-
dicates a large positive/negative contribution. If two variables are correlated/collinear,
then their coefficients will be similar enough to merit discarding one of the initial vari-
ables. PCA also offers the possibility of creating a new basis space where the PCs are
the basis vectors. However, this would certainly complicate the interpretation of the
regression models, since it is difficult to grasp what a basis vector composed of distinct
physical quantities, say, Dry Bulb Temperature (TDB) and Dew Point Temperature
(TDP), would mean.

The list of inputs should be treated as incomplete. In fact, the concept of a complete
list of predictors is essentially meaningless, for two reasons. Firstly, the number of
inputs to building simulation is vast, and a regression model could conceivably include
any of them. A model that includes all of them would lose its competitive advantage

6See Section B.3.2 for a discussion of the orthogonality of predictors, Principal Component Analysis, and why it
is better to use as few predictors as possible. Parsimony is generally preferable to avoid unnecessarily complicated
models, as discussed in Chapter 3.

7The correlation plots of the initial groups are in Section B.3, Figures B.17 to B.19, with a full list of candidate
inputs in Tables B.1 and B.2.
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over simulation in terms of computational effort. Secondly, the list should reflect
inputs of interest in a sensitivity analysis, rather than a large list of predictors that may
not all be relevant or orthogonal in the given context.
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Figure 4.3 – Correlation coefficients for the final selection of predictor variables, using data from
Case 2. See Table 4.1 for the list of codes. Orange dots indicate positive correlation, while blue
denotes negative correlation. The size of each dot indicates the strength of correlation (larger dot
equals stronger correlation). The black dots on the diagonal are to indicate correlation of 1. The
numbers below the diagonal indicate the correlation coefficient (Pearson’s) for those predictor
pairs where the value was greater than 0.5. Results were similar for Case 1 data.

The climate-based inputs are calculated from an arbitrary weather file for a given cli-
mate region or city of interest. They have nothing to do with the building that is being
simulated in that climate. These variables are estimates of population parameters, like
the average annual TDB of a climate, calculated from a small sample, e.g., a typical
year of data, short records, or synthetic weather years. The representativeness of a
descriptive statistic calculated from a single year of data is a matter of contention (see
Section 2.6), but this is not an issue in this regression exercise. That is, any simulation
may be used as a data point to train a regression model. If the training data set is not
typical or representative of the full range of conditions that is of interest to the user,
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then the regression model will extrapolate badly. Appropriate sampling is discussed
more broadly in, for example, Fürbringer and Roulet (1995) and Kleijnen (2008).

The building-based inputs are physical properties, generally of the building envelope,
that were selected based on their expected influence on space heating and cooling
demand. Building variables are calculated from the building’s geometry, material prop-
erties, and other inputs without any consideration of a given climate. The building
properties are all envelope properties except Thermal Mass, which can be placed both
in the envelope and inside the building. See Sections 1.5 and 2.4 for a discussion about
why calculated physical properties should also be treated as sample-based estimators
of some population parameter of interest from an unknown underlying quantity or its
distribution8. The building-based inputs may be obtained either from simulation or
calculated separately. In the data presented here, for example in Figure 4.3, the values
of the input (independent) variables were extracted from EnergyPlus outputs. When
considering a new design, these inputs are speculative. In this case, we recommend
using ranges of possible values for all inputs, even if variation due to that particular
input is not of interest. This will ensure that future changes in that property, either
deliberately or through mistakes, are accounted for. In the case of renovations or
studies with existing buildings (like the assessment of overheating risk), the user will
have to undertake the same forensic effort that is required to create a representative
energy model – correct construction details, material properties, etc.

The mixed variables are functions of the interaction between climate and buildings.
Though Internal Heat Gain is not a function of the building construction, climate, or
their interaction, the sum of internal heat gain is included in the regression exercise
because it is essential in characterising thermal simulation (see Section 5.3.8 for how
better occupancy and equipment modelling can be incorporated later).

4.2.3 Outputs: Distributions and Smoothness

The first case study is a home in Geneva with twenty-four variants based on retrofit
options for the envelope and infiltration, and the second case study consists of forty-
eight commercial buildings, simulated in a variety of world climates (see Tables B.5
to B.8 and figs. B.22 to B.24). The empirical distributions of simulation outputs9

from the two simulated case studies are given in Figures 4.4a and 4.4b. The different
refurbishment/design options and weather file types have been amalgamated to show

8That is, the calculated property is nominal, and the value for a constructed building may be different due to
calculation simplifications, construction errors, etc.

9Energy use obtained from simulation, the dependent variable.

149



Chapter 4. Emulators for Uncertainty and Sensitivity Analyses

Table 4.1 – Final list of predictors for regression. IQR stands for Inter-Quartile Range (IQR). All
descriptive statistics are annual, e.g., annual sum. See Tables B.1 and B.2 for details.

Group Quantity Statistic Code Units

CLIMATE

Degree Days
Cooling cdd

°C-dayHeating hdd

Dry Bulb Temperature
Median medtdb

°C
IQR iqrtdb

Dew Point Temperature
Median medtdb

°C
IQR iqrtdb

Global Horizontal Irradiation
Median sumghi

MWh/m2

IQR iqrghi

Direct Normal Irradiation

Average avgdni
MWh/m2

Sum sumdni

IQR iqrdni

Humidity Median medrh %

BUILDING U-value Average uval W/m2K

Thermal Mass Sum tmass MWh/K

Envelope Ratios
Win-to-Wall WWR

—
Win-to-Floor WFR

Massing
Form Factor ff

—
Roof Ratio rr

MIXED

Shading Average avgsunperc %

Infiltration Sum
suminfgain

GWh
suminfloss

OTHER Sum sumIHG GWh

the distribution of all simulation results. In the first case study, of a house in Geneva
(Figure 4.4a), the distribution of heating values looks closer to a Normal distribution
than the cooling values, which seem to follow an exponential distribution. The cooling
distribution is easily explained: in a mild heating-dominated central European climate,
the number of years with lower values of cooling loads should be much higher than
years with high cooling loads. In Figure 4.4b, neither heating nor cooling values
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approximate a Normal distribution. The preponderance of small heating and cooling
energy use values is likely due to a tendency on our part to pick relatively mild climates,
and not because building simulation inherently produces exponentially-distributed
output. Individual climates, like in Figure 4.4a, tend to produce distributions that are
easier to interpret. In this case, we expect that Geneva will have more years with mild
cooling needs, and several years with nearly zero cooling. Heating is dominant in this
climate, and will always stay above a certain value, even in the mildest winters.
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Figure 4.4 – Histograms of the response variables (y) for the home – Case 1 [a], and USDOE
buildings – Case 2 [b]. In each sub-figure, yheat is on the left and ycool on the right. The plots
include simulations using several hundred weather files and all refurbishments (Case 1), or all
building types (Case 2).

The data generating process we are looking at, building simulation, is highly non-
linear and non-smooth for most dimensions/predictors. There is no guarantee, for
example, that a building with twice as much insulation as another will use about half
as much energy, even in the same climate. Using an aggregate quantity like the annual
sum of energy need smooths the response somewhat, since a summation is not a
point estimate of a time series (e.g., peak demand) but its integrated value (i.e., energy
used over a year). If substantially different geometries and usage types of buildings
(say, the USDOE buildings) are considered together as a super-set, new sources of
variation make the response non-smooth again. In simulated building performance
data, there is no guarantee of smoothness of response along any ‘building’ dimension,
i.e., by variation of any building property. We found that the response along a ‘climate’
dimension is reasonably smooth, for a given combination of building properties.
Smoothness is an issue in building simulation data since a building’s responses follow
different underlying models, or ‘regimes’, in ‘regions’ defined by the physical properties
of the building. These underlying responses need not be so different that they cannot
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be described by the same class of models, but are unlikely to conform well to a global
model. The predictions from classical models (e.g., NLM) were reasonable for the
restricted case study, because the building properties did not change much and the
sensitivity was explored along dimensions/variables we expect to be smooth, i.e.,
climatic variables like temperature and solar radiation.

4.2.4 Transformation and Scaling of Data

A common technique to achieve Normality and other desirable properties (ortho-
gonality, matching magnitudes, etc.) of inputs and outputs is transformation and/or
scaling. See Section B.3.3 for a brief discussion of scaling/transformation techniques.
Given that we are dealing with a space of about twenty predictor variables (covari-
ates), it is more confusing to talk about ‘distances’ between points if the data has
been transformed. We prefer to keep the original basis as far as possible to enable an
examination of the data with physical intuition. For example, the ‘distance’ between
points with U-values U1 = 1 W

m2K
and U2 = 2 W

m2K
is half that of the ‘distance’ between

U1 and U3 = 5 W
m2K

. However, this preference for the original units is untenable for two
reasons: the vastly different magnitudes of the predictors (often caused by differing
units), and the strong collinearity of the building-related predictors, which cannot
be thrown out for the reasons mentioned in Section 4.2.2. In addition, a scaling and
shifting of inputs to have roughly equal magnitudes improves the assessment of the
relative impact of each predictor10. To avoid a global transform of the data, we use the
familiar z-scores

zi = xi − x̄

s
, (4.2)

where x̄ is the sample mean and s is the sample standard deviation. The z-scores
are calculated for each covariate separately, and the resulting transformed covariates
approximate the distributions of the original (parent) covariate with zero mean and
unit standard deviation, i.e., y ∼ f (x̄, s2) → z ∼ f (0,1). This transformation is often
called ‘standardisation’, and is an ‘affine transform’ (the quantities are merely shifted,
not stretched). The z-scores are unitless.

10Which is the reasoning behind the Standardised Regression Coefficient method of sensitivity analysis discussed
in Section 2.4.
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4.2.5 The Fitting Procedure

The fitting procedure is divided into three steps: first the available data is split into
training and testing data sets, then the model is fitted to the training data, and finally
the model predictions (of the independent variable) are examined for the testing data
(against ‘true’ independent variable). In the case of Gaussian Process regression, the
optimal hyper-parameters of the models are selected using k-fold cross-validation
(see Section 4.4.1.2). This was found to be a better estimating method than Maximum
Likelihood Estimation (MLE), since the latter tended to overfit the GP model to the
training data.

For any exercise in regression, it is good practice to split one’s data into training and
testing sets. Conventionally, one runs an experiment a certain number of times (say, a
factorial experiment) and fits a model to it. Then, one could repeat the experiment to
check the validity of the fit that has just been carried out. Predicting on input values
within the range of training data is interpolation, while predicting outside the training
range is extrapolation. Since this thesis demonstrates the use of regression to supple-
ment building simulation, the split of training and testing data is generally on the basis
of what information may be easily available to a designer. For example, we expect that
the designer has some typical weather files to simulate (e.g., International Weather
for Energy Calculations (IWEC), Typical Meteorological Year (TMY), METEONORM
(MN)), along with ideas about the different kinds of renovations they might consider.
This would be the typical ‘training’ data of choice (labelled ‘Typical Fit’). In turn, the
testing data could come from simulations with recorded and synthetic weather data
years.

For the thesis we simulated far more data than would normally be available in a
design work-flow (in excess of 40000 simulations per case study), so the ‘testing’ data
set is usually much larger than the ‘training’ data. Three types of regression models
are presented, distinguished by the type of weather data files used for training (i.e.,
the sampling strategy to obtain training data): (1) only typical weather data (Typical
Fit); (2) typical and recorded/measured weather data (Second Fit); and (3) random
selection of weather data (Best Fit). The first sampling strategy represents a scenario
where only the typical files are available for training, which is ‘business-as-usual’ for
energy-based design exercises. The second sampling strategy represents a case where
the synthetic files described in this thesis are not used. The third describes a case
where all three types of weather files (typical, recorded, and synthetic) are used. In the
final strategy, training data is increased progressively in 200 steps. The ‘best’ emulator
of the 200 is chosen based on minimising the Root Mean Square Error (RMSE) between
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regression predictions and corresponding ‘true’ values from simulation11

In the results shown in Sections 4.3.1 and 4.4.1, the reader will notice that using just
typical weather data by itself is nearly useless for predictions of building response to a
range of weather phenomena. While we have argued that typical data is not a good
enough representation of a significant proportion of possible weather scenarios, even
in a restricted sensitivity exercise, the strength of this formal demonstration is still
surprising. In this chapter, we show the improvement (or lack thereof) of models fit
with progressively more training data via error plots like Figure 4.26 (performance
compared to the testing data set). In each sampling strategy, the data points to be
added to the training set in each iteration are chosen randomly (from the type of
weather data applicable). In the ‘typical’ strategy, there are very few typical year
weather files available for most climates so the sampling is severely limited12. So
much so that in Case 1, where several building factors are constant (because the
building itself is the same), there is not enough variation in the typical files to allow
the GLMM to converge13. In the second and third routines, the choice is large and the
results are consequently better. The completely unstructured sampling strategy of
the third step may produce inconsistent results, so could be improved with a k-fold
cross-validation or similar internal validation step. However, training with recorded
and typical data is also a ‘random selection’ from the full ensemble of possible weather
conditions. As we have argued before (Section 2.6), the typical weather file should
represent the ‘mean’ weather, though whether a file based on historical data represents
the future mean climate is doubtful. In addition, the recorded data is a restricted,
unsystematic, sample. The inputs and outputs used in the GP models are the same as
those in the classical regression models. A selection of results is presented next.

4.2.6 Prediction Error Analysis and Model Selection

The idea of emulator selection, like in Chapter 3, should not be taken as a well-posed
optimisation problem. Even if we assume that there is some theoretical optimal model
for a given physical system, no model can realistically be optimal for all conditions on
all data sets. In practice, it is quite likely that there will be a cluster of models which
perform well for a given data set and are statistically indistinguishable. These should

11That is, the root mean square error of a regression model fit, on the corresponding testing data. See, e.g.,
Figures 4.25a and 4.25b.

12This varies between 2 files for Geneva and 6-9 for locations like New York City, because of a multiplicity of
stations and sources. See Section 3.12.3 and our previous work (Chinazzo 2014; Chinazzo, Rastogi et al. 2015a,b;
Rastogi, Horn et al. 2013) for a discussion of weather sources and differences between stations in the same area.

13There was no advantage to assuming non-Normal distributions for outputs at a given set of predictors, so the
GLMM is fitted with a normal distribution and identity link function.
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be clustered around this mythical optimal model. Prediction error analysis is generally
carried out to verify the fit of a model. It is more qualitative than quantitative, since
we inspect the shapes and spreads of errors rather than some arbitrary cut-offs for
‘good’ or ‘bad’ values. The errors are given by

ε= y − ŷ , (4.3)

where ŷ is the n ×1 vector of predictions and y are the test sample values. These may
be thought of as ‘raw’ errors. Another type of errors commonly used in prediction
error analysis are the standardised errors

εst ,i = yi − ŷi√
var(yi − ŷi )

, (4.4)

where y and ŷ are the predicted and test values respectively (bold case letters indicate
a vector and plain letters indicate a scalar), the denominator is the standard deviation
of the raw errors from Equation (4.3) (the numerator). Like in the time series models
of Chapter 3, linear models assume that the variance of the errors is constant and the
errors are uncorrelated. So, we are looking for whether the errors are homoscedastic,
uncorrelated, and unrelated to all the covariates and fitted values14. In practice,
some amount of heteroscedasticity always exists. For example, a situation where the
homoscedasticity assumption could be violated is the volatility of annual heating load
with changing envelope conductance (U-value) levels. It is to be expected that the
variation of load in highly insulated buildings (due to weather) would be less than
in those with low insulation levels. So, the response, and therefore the errors, could
undergo a sudden shift at some critical level of insulation (U-value).

14For NLM, the errors should be approximately normal as well. See Davison (2003, chpt. 8) and Davison and Tsai
(1992) for more details.
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4.3 Step One: Classical Emulators

first... all models are wrong,
some, though, are better than others...;

and, second...
[do not] fall in love with one model,

to the exclusion of alternatives.

McCullagh and Nelder (1983), Generalized Linear Models

Linear models are simple, well-understood, beautiful models. In a situation where
the ‘data’ are simulated, and where achieving an exact fit is not as important as under-
standing what drives the system (sensitivity, uncertainty), linear models are strong
contenders. Compared to Gaussian Process regression, assessing trends comparing
the relative impacts or sensitivity to different inputs is easier with classical emulat-
ors/models (both linear and non-linear). We tested three variants of linear models,
discussed in this section. A short introduction to the model form is followed by the
‘typical’ and ‘best’ models for the simplest model type (Normal). Recall (from Sec-
tion 4.2.5) that the ‘typical’ model is trained from the typical year files only, whereas
the ‘best’ model is trained from a larger number of typical, recorded, and synthetic
files. Only the NLM converged to a result with just the typical weather data for Case 1.
For GLMM, only the ‘best’ model fits are presented.

4.3.1 Classical Linear Models

4.3.1.1 Normal Linear Models

Originally proposed by Gauss and Legendre in the early-1800s (ibidem), the simplest
regression model is a linear model with Normal errors

y = Xβ+ε, (4.5)

where y = (y1, y2, . . . , yn)T is an n×1 vector of responses, β= (β1,β2, . . . ,βp )T is a p ×1

matrix of unknown parameters, X =
( x1,1 ... x1,p

...
. . .

...
x j ,1 ... xn,p

)
is an n×p matrix of coefficients, and

ε is the n ×1 vector of Gaussian errors with constant variance and zero mean.
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4.3.1.2 Generalised Linear Models and Linear Mixed Models

Linear Mixed-Effects Models (LMMs) are extensions of NLMs to include both fixed
and random effects. The normal linear mixed model is

y = Xβ+Zγ+ε, (4.6)

where y is the n×1 response vector, n is the number of observations or data points, X
is the n×p design matrix of (fixed-effects) variables, β is the p×1 vector of fixed-effects
parameters, and ε is the n ×1 error term. The new terms Z and γ represent the n ×q
random-effects design matrix and q ×1 random-effects vector respectively. In this
thesis we tested LMM by including two random factors (separately and together): the
building type, e.g., office, apartments, and the climate/location, e.g., Geneva (This
only applies to Case 2, see Table B.3.). The first is supposed to represent those aspects
of a building (like compactness, exposure to wind, etc.) that are not captured by the
other variables already included in the NLM (e.g., building envelope properties). The
building type may be considered a random factor in a study where a stock of buildings
is being modelled and the exact building type is speculative, like Case 2 here. The
types used in this study are one of a very large number of possible building types
(depending on the level of detail the user would like). Likewise, the climate/location is
meant to represent those aspects of a climate, like proximity to water, the influence
of topography, etc., that are not captured by the three variables we considered (tem-
perature, humidity, solar radiation). Several climates could have similar values of,
e.g., mean annual TDB, but not similar seasonal characteristics (a climate with hot
summer and cold winter would have a similar annual mean to a climate with mild
seasons). We will see later that this did not confer a significant advantage.

The Generalised Linear Model (GLM) is an extension to NLM that allows the relaxation
of several assumptions, chiefly that the probability density of the response does not
have to be normal, and the mean response may be related to the linear predictor (Xβ)
by a monotonic function. The results from fitting GLMs (or GLMM) are not presented,
since they do not provide an improvement over NLMs (or LMM). Candidate output
distributions such as the Gamma and Inverse Gaussian were considered and rejected.
We did not find a reason to justify using a different distribution for the output, either
in the literature or in our own analysis.
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4.3.2 Analysis of Variance (ANOVA)

A simple Analysis of Variance (ANOVA) with Gaussian errors is way of representing
outputs from a classical linear model (Section 4.3.1.1). An ANOVA with fixed and
random effects is the same for the LMM (Section 4.3.1.2). We initially examined the
different inputs by using n-way ANOVA15. ANOVA is a robust tool for exploratory
analysis, though it is not expected to do well for highly non-linear systems, or when
the outputs are non-normal. However, it can offer useful pointers on which factors
bear examination. Given that this preliminary ANOVA-based analysis did not play
a significant role in the development of the regression models, we do not present
results.

In the analysis, all factors, except those representing building envelope properties,
were treated as being continuous. The envelope factors were discretised into bins
for analysis to avoid making a distinction between, for example, U = 3.25W /m2K
and U = 3.26W /m2K . The envelope factors were tested under two conditions: once
treated as ‘random’ and otherwise as ‘fixed’. Depending on the kind of analysis being
undertaken, they can be treated as both. In a design exercise, the envelope properties
are fixed because they represent specific values that the user would like to test. If the
user is modelling existing buildings for forensic analysis, then the envelope properties
observed (from experiments or survey) are random. Being treated as random factors
put a stronger condition on factors to be significant, which (in this example) meant
they usually were not significant. A test in which these factors are treated as fixed
effects, that is to say they are not random samples of an infinite population but actual
fixed levels of interest, changes the p-value to almost zero (i.e., high significance in
determining the variance of the output).

4.3.3 Results and Discussion: Linear Models

4.3.3.1 Guide to Linear Regression Plots

Two types of plots are used to present the regression results: ‘prediction’ plots (e.g.,
Figure 4.7a), and ‘transversal’ error plots. The transversal plots show the evolution of
error with increasing training samples (e.g., Figure 4.26). The graphs have all been
calculated using the data presented in Figure 4.4, and may be reproduced using the
scripts posted with the archive copy of this thesis (infoscience.epfl.ch).

In the prediction plots, ‘predicted’ values are plotted against ‘known’ or ‘simulated’

15MATLAB function ������.
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values. Known/simulated values are plotted on the x-axes for all regression figures.
These values are ‘known’ in the sense that they were the obtained from a full Energy
Plus simulation. Values ‘predicted’ by the regression model are plotted on the y-axis.
Results from the training and testing data sets are plotted side-by-side, with heating
above and cooling below. Plotting the training data is a self-validation to see the
goodness-of-fit, while the plot against testing data is a test on nominally ‘unseen’
data. Additional plots examine the errors from the regression fits for Normality and
homoscedasticity (e.g., Figure 4.8).

Generally, the plots are presented in terms of the z-scores. The reverse transformation,
i.e., recalculation from z-scores back to the original quantities, created no perceptible
distortions for any of the models. Consequently the results are presented solely in
terms of the z-scores. This section presents NLM fits for Case 1 (Geneva home) and
Case 2 (USDOE buildings), and a LMM to Case 2 only. All fit types (typical, second, and
best) are included, except where a fit could not be calculated because of insufficient
variation in the training data (e.g., LMM for Case 1).

4.3.3.2 Prediction and Error Plots

Examining the plots presented in Section 4.3.1, the performance of the linear models
is less robust than expected, given their ubiquity in building simulation literature
(Section 2.5). The model based on typical data only is clearly unable to explain the
data obtained from other weather files (Figure 4.5) – at the minimum at least additional
simulations with recorded files are needed. One can see from the right-hand side
sub-plots of Figure 4.5, where the model is attempting to predict unseen (testing)
data, that the predictions are nearly flat lines. The prediction intervals were so wide
as to be useless, so are not plotted here. Results with more training data are better
(second and best fits), and this behaviour is common to the other model types. For the
restricted sensitivity analysis, Case 1, the NLM performs acceptably with random data
(Figure 4.7), achieving its best fit with about 200 training data points (Figure 4.25a).
Both the typical and second models considerably over-fit to the training data, resulting
in wayward performance and errors (Figures 4.5 and 4.6). The picture is similar with
NLMs for Case 2 (Figure 4.7b). Introducing a random factor (building type) for Case 2,
i.e., a LMM model, does not improve the fit significantly either (Figure 4.10). Some
additional plots examine the properties of errors (Figures 4.8 and 4.9). We are looking
for the errors to be nearly Normal (with a Quantile-Quantile plot, or qqplot) and
homoscedastic, i.e., that they have nearly equal variation when plotted against the
corresponding prediction. The latter is to check that the errors are not somehow being
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affected by, or showing correlation with, the predictions.

The transversal error plots in Figure 4.26 show that, regardless of the quality of the fit
achieved, the error tends to plateau after the training data set exceeds approximately
200 points. The errors for the NLMs stabilise with 200 or 500 training points (cases 1
and 2 respectively), which are very small compared to the testing set (approx. 0.5 %
and 0.6% respectively). The GLM and GLMM errors show similar behaviour for Case 2,
though the GLM for Case 1 does not converge until about 600 training points. Case
1 always needs less training data than Case 2, since it is trying to model a far more
limited situation (one building – one climate).

As we have argued before, the underlying data generating process that is being mod-
elled – building simulation, or measured building data16 – has a non-linear response
to changes in most independent variables (design inputs). Linear models seem to
work acceptably for restricted sensitivity analyses of simple buildings (e.g., a single-
family home) to climate variation in a limited range (Figure 4.7a). It is not particularly
surprising that the random sampling iterations find the ‘best’ model (even if the best
model is not particularly good at prediction) with a relatively small number of training
data points, compared to the size of the unseen/testing data. This is because we are
dealing with annual aggregate descriptors of the climate like median (Table 4.1), so
the complete range of possibilities is sampled relatively early on. If one were dealing
with an emulator of building simulation or operation trying to predict at the hourly
time scale, like those proposed in Sections 5.3.4 and 5.3.7, the number of training
data points would presumably be much higher because of the far higher number of
possible combinations of temperature and other parameters over time.

16Since, presumably, the ultimate goal is to model the functioning of actual buildings, random occupancy,
construction errors, atypical weather, etc.

160



4.3. Step One: Classical Emulators

(a) Case 1 – Geneva home (b) Case 2 – USDOE buildings

Figure 4.5 – Typical fits, Normal Linear Model (NLM), Cases 1 & 2. Clockwise from top-left for
each case: training data for heating, testing data for heating, testing data for cooling, training
data for cooling. These are z-scores, not the original data.

(a) Case 1 – Geneva home (b) Case 2 – (USDOE) buildings

Figure 4.6 – Second Fits (typical and recorded data), NLM, Cases 1 & 2. Training data is plotted
on the left, testing on the right, heating on top, and cooling on the bottom. These are (unit-less)
z-scores, not the original data.
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(a) Case 1 – Geneva home (b) Case 2 – (USDOE) buildings

Figure 4.7 – Best Fits (random training data selection), NLM. Clockwise from top-left: training
data for heating, testing data for heating, testing data for cooling, training data for cooling.
These are z-scores, not the original data.

(a) (b)

Figure 4.8 – Prediction errors from the Best Fit, Case 1, NLM – heating [left] and cooling [right].
The subscript ‘c’ indicates cooling, and ‘h’ is for heating. The ε is calculated as shown in
Equation (4.3). The errors are neither Normal (see the qqplot), nor homoscedastic (the errors
‘fan out’ for higher values of predictions). These are z-scores, not the original data.
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(a) (b)

Figure 4.9 – Errors from the Best Fit, Case 2, NLM – heating [left] and cooling [right]. The errors
are neither Normal (see the curve in the qqplot), nor homoscedastic (the errors ‘fan out’ for
higher values of predictions). These are z-scores, not the original data.

(a)

(b)

Figure 4.10 – Predictions from LMM model for Case 2 only – Second Fit [left], Best Fit [right].
Setting the building type to be a random factor, in addition to the same fixed factors used in the
NLM before, did not improve the fit. Training data on the left and testing on the right of each
sub-plot. These are z-scores, not the original data.
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(a) (b)

Figure 4.11 – Predictions from NLM model for subsets of Cases 1 & 2 only, Best Fit. The left
sub-plot is for the ‘office’ building type from the Case 2 dataset (see Table B.3). The right sub-plot
is for the single-family home (Case 1) in all climates (Section B.4). These are (unit-less) z-scores,
not the original data.
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4.3.4 What about Non-Linear Fits?

We attempted to fit non-linear modifications of the input parameters like higher-
degree polynomials and exponentials. Given the complex shape of the underlying
data along individual dimensions in a multi-dimensional space, it is very difficult to
select the functions. It is possible, with many software packages, to apply a brute force
method where a very large set of possible linear and non-linear terms are combined
to see which blend works on the given data set. We do not prefer this method for
several reasons: it is difficult to generalise, since the form of the function will inevit-
ably vary based on the training data set; and because non-linear models in multiple
dimensions tend to obscure the effect of individual factors. In both the time series
models of Chapter 3 and the regression models here, we are aiming for a stable form
of the model, where the coefficients of the model parameters may change with each
problem but not the structure. Naturally, the nature of the problem dictates which
parameters stay in or are thrown out, but in a non-linear model, they may be used in
a polynomial or exponential of any degree, thereby changing their influence on the
outcome substantially. The preferred solution, Gaussian Process regression, is not
as simple to interpret as a linear model, but the hyper-parameters (length scale and
noise standard deviation) and the form of the kernel function are indicative of the
nature of the output data.

4.4 Step Two: Probabilistic Emulators

After discussing the performance of classical parametric methods (linear models) in
Section 4.3.1 and considering (but discarding) classical non-parametric approaches,
we proceed to test a relatively novel non-parametric regression technique: Gaussian
Process regression17. The advantages of this technique for our application include:
relatively small training data sets for equivalent performance, explicit statement of
prediction intervals, and an inclusion of the influence of each variable in the model
(through the length scales discussed below). See Rasmussen and Williams (2006,
chpt. 1) for a discussion of why probabilistic fitting approaches, like Gaussian Process
regression, are better than those based on a restricted class of functions like linear
models.

17Novel for building simulation, that is (see Section 2.5).
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4.4.1 Gaussian Processes and Regression

4.4.1.1 A Very Brief Introduction

Gaussian Process regression is the indirect search for an underlying latent function
to describe non-linear data Rasmussen and Williams (2006) describe it as supervised
learning of “input-output mappings from empirical [continuous] data (the training
dataset)”18. It involves the fitting of two functions to the data: a mean function
[μ(x)], assumed to be zero in this application, and a covariance function [k(xi , x j )].
This (covariance) function does not, by itself, predict the outcome at unseen points.
Instead, it defines the change of the parameters of a GP over a basis space defined by
the inputs. This implies that, at any new/unseen query point, the Gaussian Process
regression fit will give the parameters of a univariate Gaussian distribution (mean and
variance), where these parameters are related by a covariance function. The mean
of the univariate Gaussian distribution at a particular query point is not the same as
the mean function describing the entire data. Rather, it is the mean of the output, a
random variable, at a given combination of inputs. Hence, the regression prediction
or output at any given combination of independent variables is a Gaussian random
variable.

“A Gaussian Process (GP) is a generalisation of the Gaussian probability distribution”
(ibidem)19. The difference is that while a probability distribution describes “random
variables which are scalars or vectors”, a probabilistic process “governs the properties
of functions” (ibidem). In practice, we do not work with functions, treating them in-
stead as “very long vectors” (ibidem). This makes the process far simpler to implement
in finite-precision arithmetic because we can sample the functions discretely and still
get their correct properties. In other words, at every point, or finite collection of points,
the function responds as if the entire (infinite) population of points described by that
function had been considered (ibidem). And these properties are consistent with quer-
ies from any other sample. So, every data set y = {y1, y2, . . . , yn} may be thought of as a
“single point sampled from some multivariate [d-dimensional] Gaussian distribution”
(Ebden 2008). A GP is completely specified by its mean function

E( f (x)) =μ(x), (4.7)

18The same process for discrete outputs would be called classification.
19Alternatively, a “Gaussian process generates data located throughout some domain such that any finite subset

of the range follows a multivariate Gaussian distribution” (Ebden 2008; The MathWorks, Inc. 2015).
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and its covariance function

Cov( f (xi ), f (x j )) = k(xi , x j ), (4.8)

where f (x) is called the latent function. The covariance function is usually modelled
as a function of some parameter vector θ, known as the vector of hyper-parameters.
Practically speaking, it is very useful to assume that the underlying GP has zero mean
everywhere20. Once the mean is accounted for, the observations are related only by a
covariance function k(xi , x j ). The underlying structure of the data should be reflected
in the choice of a covariance function or kernel: is it smooth, periodic, linear, some
combination of these, etc.? If classical regression is the direct search for some function
f (x)21, Gaussian Process regression is the search for this covariance function.

Gaussian Process regression is almost identical to Kriging, and some foundational
formulations and assumptions of both are presented in Section B.2. There are some
differences between how Kriging or Gaussian Process regression is used in practice,
so only the latter term in used in this thesis. The references we used22 tend to use
varying terminology and interpretations to introduce the concept of GPs, and Gaussian
Process regression in particular. We will try to be self-consistent, which means we
will not manage to follow any of the sources consistently. Only some of the fitting
results and a discussion of the model performance are presented in this chapter. For
additional issues and discussion, see Section B.2.

4.4.1.2 K-fold Cross-Validation

K-fold cross-validation is a simple intermediate step to train robust regression models,
by looking for the best hyper-parameters (length scale and noise standard deviation)
for a GP fit23. Essentially, k-fold cross validation yields a pre-selection of the best
hyper-parameters, based on subsets of training data, that are expected to deliver the
best performance over the whole training data set. Recall that the simulated data
set was already split into training and testing sets to test the predictive accuracy of
the model at the outset. K-fold cross-validation is only implemented on this ‘master’

20Analogous to simple kriging.
21Which is thought to underlie the observations y , such that y = f (x)+ε and ε∼N (0,σ2)
22Christensen (1991), Duvenaud (2014), Ebden (2008), Kleijnen (2009), Mackay (1998), Rasmussen and Williams

(2006) and The MathWorks, Inc. (2015)
23Hyper-parameters describe the covariance function, not the function modelling the output directly, so this

is not the same as the step where we find model coefficients in classical regression or time series models (Sec-
tion 3.5.2).
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training set.

In k-fold cross validation, the training data is further split into k subsets. Then, a
specific model (i.e., a model based on specific hyper-parameters) is fitted to k −1
subsets (mixed together) and tested for its predictive accuracy on the kth subset
(using RMSE, for example). In our implementation, we use two nested k-fold loops,
with k = 10 (for both outer and inner loops). The number of folds is an arbitrary
choice, so the calculations would finish in time. Future work could optimise this based
on computing capacity. The outer loop is to select the ‘best’ model, i.e., one with
the minimum RMSE. The inner loop is to estimate the average RMSE over different
combinations of training and testing k subsets, to enable this comparison of RMSE
values.

In each iteration of the inner loop, the RMSE is calculated and stored separately for
each kth subset, using the same hyper-parameters (we are testing only one combina-
tion of hyper-parameters over one iteration of the outer loop). This gives an average
RMSE (calculated over the iterations of the inner loop) for each iteration of the outer
loop, i.e., k different outer-loop averages for k different hyper-parameter combina-
tions. These inner-loop averages are compared at the conclusion of the outer loop,
and the hyper-parameters with the minimum average RMSE are selected to fit the
overall model. For each iteration of the outer loop, the hyper-parameter for length-
scale is one element of a k-dimensional vector of fractions of the mean Euclidean
distance between all input points24. The second hyper-parameter is also one element
of a k-dimensional set of fractions, this time of the standard deviation of the training
output data points (regressands). The procedure is summarised below.

1. Working with the master training data, calculate the mean Euclidean distance
between all inputs and the standard deviation of outputs.

2. Split the data into k subsets. Select hyper-parameters to test on this subset.
Length scale comes from the mean Euclidean distance of inputs, and the vari-
ance parameter is a fraction of the standard deviation of the outputs.

3. Fixing the hyper-parameters, fit a model to each group of k −1 subsets and test
on the kth subset (i.e., leave out a different subset each time, repeating for all
subsets to get k = 10 different fits). Calculate the averageRMSE for each fit.

4. Compare the average RMSE from each model, i.e., hyper-parameter choices.
Select the hyper-parameters that give the lowest average RMSE.

24For the automatic relevance determination (ARD) kernels, multiple random selections are made from this set
of fractions.
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4.4.1.3 Choice of Kernels

We tested the performance of two kernel functions, from the very large variety available
(see Section B.2.1). The choice of kernels in Gaussian Process regression is like the
choice of model structure in classical regression. Except, instead of trying to estimate
the shape of the actual response variables, we are now trying to model the form of the
variance due to each input and their covariance. The covariance function specifies
the covariance between the values of the latent function at two different points, say
f (xi ) and f (x j ). The kernel is also an estimate of roughness, like a classical regression
function, but of the covariance instead of the independent variables. It can only be a
positive semi-definite function25. The literature, as we understand it, never explicitly
recommends a ‘default’ or ‘best’ kernel. This would be as meaningless as specifying
a default linear model for any data set in any problem. The kernel has to reflect the
underlying distribution and one’s knowledge of it. Hence, it is the toughest decision
to make in the whole process. The examples of kernels shown here are limited, and
as simple as possible, prioritising simplicity (under-fitting) over over-fitting with a
complicated kernel.

The squared exponential function (SqE) is probably the default choice for most ap-
plications, because it works reasonably well for “interpolating smooth functions”
(Duvenaud 2014). It assumes that the underlying function ( f (x)) of the response
variable is infinitely differentiable, and that there are no “kinks” in the function. If the
function or one of its derivatives has a discontinuity, or even sharp roughness, then
the length scale ends up being determined by the shortest “wiggles” in the function.
That is to say, the GP tries to fit to the finest features, and ends up performing badly on
the broadly smooth parts. In multidimensional data, it is not obvious whether such
features exist, so we applied a test advocated by Duvenaud (ibidem): checking the
evolution of the length scale (Figure 4.12).

Duvenaud (ibidem) recommend that if the length scale keeps getting smaller with
more data, then such roughness features likely exist and the kernel is inappropriate.
This is unclear in Figure 4.12, where the length scales are neither increasing nor
decreasing consistently. The cooling model is less stable than the heating model for
Case 1, but more stable for Case 2. Based on this, and the fact that we expect the
different types of inputs to cause different types of non-smoothness in the output,
we tested the ARD kernel26, which over-fits to the training data and predicts badly on
unseen data (Section B.2.4). We did not attempt to use other kernels in this thesis,

25See Rasmussen and Williams (2006, chpt. 4) for an explanation of what that means.
26See Section B.2.1 for how the ARD kernel is different from the SqE.
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though that would be an avenue for future exploration. The work of Duvenaud (2014)
and Duvenaud, Lloyd et al. (2013) could be a useful basis for an exploratory kernel-
selection step in developing Gaussian Process regression models. Fits using the SqE
kernel are presented in this chapter and in Section B.2.3, while fits using the ARD
kernel are presented in Section B.2.4 only.

0  90 180 270 360
5

10

15

44408 44318 44228 44138 44048
5

10

15
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(b) Case 2 - USDOE buildings.

Figure 4.12 – The length scale, σl [top], and variance, σ f [bottom], plotted against sizes of
training (nm) and testing (n̂m) data sets, respectively. The dashed blue line is for cooling models,
and the solid orange line is for heating. The length scale is not consistently decreasing with more
data, especially in the first case. Results are from using the SqE kernel.

4.4.2 Results and Discussions: Gaussian Process Models

4.4.2.1 Guide to GP Plots

Two kinds of plots are presented for the Gaussian Process regression examples: prediction-
error plots (e.g., Figures 4.13, 4.14, 4.17 and 4.18) and prediction interval-relative error
plots (e.g., Figures 4.15, 4.16, 4.19 and 4.20). The prediction from Gaussian Process
regression is the same as that from linear models, and consists of mean response at a
specific combination of independent variables. The error is once again the difference
between the regression prediction and ‘true’ value for the testing set, like in Equa-
tion (4.3). In the prediction interval-relative error plots, the intervals plotted around
each prediction value are prediction intervals on the regression prediction, since the
prediction is a Gaussian random variable. The relative error is the ratio of the error at
a specific combination of independent variables to the predicted mean value at that
point. Note that the z-scores are unitless, and ε always represents a prediction error.
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First, examine the prediction-error plots. The left-hand sub-plots of this group show
simulated against predicted values27. The 1:1 line is plotted as a guide. The number
in the top-left indicates the number of training data points. The right-hand sub-
plots show the distribution of errors. In the prediction interval-error plots, the lines
in the left-hand series of sub-plots represent a prediction interval (±σ, where σ is
the variance given by the Gaussian Process regression fit). The simulated values are
represented by black dots. Only a hundred predicted-simulated pairs are plotted to
avoid overcrowding, along with their prediction intervals. In most plots, it looks like
too few black dots are outside the prediction interval (roughly 32% should be out and
68% in, since we are plotting the extent of one standard deviation). Only 100 testing
points were randomly selected to be plotted, whereas the 68% figure arises when
the whole sample of testing points are considered. The right-hand sub-plots show
histograms of the ratio of each error to its corresponding prediction, the relative error.
The relative error was censored, since the ratio of one error-prediction combination
where the denominator is small enough would produce a very large number with a
very small probability, making a visual appraisal of the histogram very difficult. The
cut-off values were the 97.5th and 2.5th percentiles. Note that the frequencies (y-axis)
of histograms are always stated as probability densities.

4.4.2.2 Plots: Squared Exponential Kernel

Like for the linear models(Section 4.3.3), the Gaussian Process regression models
trained on randomly selected data set do better than those trained on typical or typical
and recorded weather files. This is seen in the first iteration already (with only 24
randomly selected files), improving slowly thereafter. Looking at the plots presented
in Section 4.5, one case see that the quality of prediction that was achieved by the
linear models with about 200 training points is achieved with less than 48-120 points
for heating and cooling in Case 1. For Case 2, the corresponding training set sizes drop
from more than 500 to 200-250. As expected, typical data alone did not predict results
for other weather conditions satisfactorily, and a random selection of weather files
(inputs) for training performs best. This result reinforces the finding, first presented
in Section 4.3.3, that there are is not enough information contained in a typical file to
train the model for the complete range of weather conditions. The quality or type of
regression technique is irrelevant if the training data is not representative enough of
the testing data. The same number of random training data points do better than the
typical data alone for all model types. The graphs have all been calculated using the

27Recall that ‘predicted’ refers to values predicted by the regression equation, while ‘simulated’ refers to values
from a full simulation in EnergyPlus.
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data presented in Figure 4.4, and may be reproduced using the scripts posted with the
archive copy of this thesis (infoscience.epfl.ch).

The results from Case 1 are better than those from Case 2, as expected. The plots of
Case 2, Figures 4.17 and 4.18, show a significant amount of spread in the predictions.
However, the number of off-diagonal points, i.e., predictions with high errors, is
small. This is evidenced by the shapes of the error histograms with each simulated-
prediction plot: the errors cluster around zero, with some outliers. A similar picture is
evidenced by Figures 4.19 and 4.20, where the majority of simulated values fall within
the prediction interval of the predicted values. The results from Case 1 are also easier
to interpret. Note the noticeable decrease in the range spanned by the prediction
interval in the left-hand sub-plots of Figures 4.15 and 4.16, for example. Essentially,
the model is more ‘sure’ about the predictions with increasing data. The ratio of the
errors to their corresponding predictions has a similar shape to the raw errors, but a
small number of the ratios seem to be very high. This is a common problem when
dealing with small-magnitude quantities – if the denominator is close to zero, then
the fraction is going to become large, regardless of the size of the numerator.

Generally, across all cases, cooling load does worse than heating load. This is most
obvious in the plots for Case 1 – Geneva home. We expect that this behaviour occurs
due to two reasons: the cooling load values tend to be small, and a majority of them
are zero; and the distribution of the cooling load in this climate (heating dominated
with mild summers) is strongly non-normal (exponential, see Figure 4.4a). Essentially,
if the model is trained on a large number of zero values, it is not going to give high non-
zero values for other query points. In Case 1, some future weather files and renovation
cases do produce high cooling load values, but the majority of the combinations show
none. Cooling predictions are a little better for Case 2 due to the presence of hot
climates (e.g., Delhi, Mumbai, and Phoenix, see Tables B.5 to B.8). Conversely, the
presence of these climates, where heating loads are either zero or very small, ‘misleads’
the heating model (Figure 4.17). Comparing cases 1 and 2, we see that the inclusion
of a multitude of buildings and climates creates a worse model. In addition, these
general models require more data to train. This is why we do not suggest the use of
one-size-fits-all, or unified, regression models.

Variations or subsets of Cases 1 and 2 are presented in Figures 4.11 and 4.21 to 4.24:
the single-family home in Case 1 and the office building in Case 2 in all of the climates
in the test set (Tables A.1 and B.5 to B.8). The regression plots of the modified cases
show differences of predictive performance that are comparable to the original cases.
That is, Gaussian Process regression predicts better, with fewer training data points.
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Figure 4.13 – Case 1, Best Fit – heating. Predictions [left] and histograms of errors [right]. See
plot descriptions in Section 4.4.2.1. These are (unit-less) z-scores, not the original data.
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Figure 4.14 – Case 1, Best Fit – cooling. Predictions [left] and histograms of errors [right]. See
plot descriptions in Section 4.4.2.1. These are z-scores, not the original data.
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Figure 4.15 – Case 1, Best Fit – heating. Prediction interval (68%) of predicted values enclosing
simulated values (black dots) [left]. Ratio of errors to predictions [right]. These are z-scores, not
the original data.
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Figure 4.16 – Case 1, Best Fit – cooling. Prediction interval (68%) of predicted values enclosing
simulated values (black dots) [left]. Ratio of errors to predictions [right]. These are z-scores, not
the original data.
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Figure 4.17 – Case 2, Best Fit – heating. Predictions [left] and histograms of errors [right]. See
plot descriptions in Section 4.4.2.1. These are z-scores, not the original data.
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Figure 4.18 – Case 2, Best Fit – cooling. Predictions [left] and histograms of errors [right]. See
plot descriptions in Section 4.4.2.1. These are z-scores, not the original data.
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Figure 4.19 – Case 2, Best Fit – heating. Prediction interval (68%) of predicted values enclosing
simulated values (black dots) [left]. Ratio of errors to predictions [right]. These are z-scores, not
the original data.
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Figure 4.20 – Case 2, Best Fit – cooling. Prediction interval (68%) of predicted values enclosing
simulated values (black dots) [left]. Ratio of errors to predictions [right]. These are z-scores, not
the original data.
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Figure 4.21 – Case 1 (all climates), Best Fit – heating. Predictions [left] and histograms of errors
[right]. See plot descriptions in Section 4.4.2.1. Compare this plot to Figure 4.11b. These are
z-scores, not the original data.
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Figure 4.22 – Case 1 (all climates), Best Fit – cooling. Predictions [left] and histograms of errors
[right]. Compare this plot to Figure 4.11b, especially the number of training points used (<20).
These are z-scores, not the original data.
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Figure 4.23 – Case 2 (office only), Best Fit – heating. Predictions [left] and histograms of errors
[right]. See plot descriptions in Section 4.4.2.1. Compare this plot to Figure 4.11a. These are
z-scores, not the original data.
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Figure 4.24 – Case 2 (office only), Best Fit – cooling. Predictions [left] and histograms of errors
[right]. See plot descriptions in Section 4.4.2.1. Compare this plot to Figure 4.11a. These are
z-scores, not the original data.
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4.5 Evolution of Error: Transversal Plots

Figure 4.26 shows the error trends for the three classical model types (NLM and LMM),
while Figure 4.27 shows the same for Gaussian Process regression. The RMSE is
calculated using the predictions on the testing data set. As such, this is only possible
in a theoretical exercise, since access to a simulated data set of the size that we have
(more than forty thousand for the home, more than 78,000 for the USDOE buildings) is
impractical. Presumably, in a situation where so much data is available, the simulation
itself is cheap enough to not need an emulator. In this case the user is better advised
to sample the original simulation wherever they please, instead of going through the
trouble of fitting a meta-model. Plotted along with the RMSE is another error metric,
the Median Relative Error (MRE),

MRE = median
(ε j

z j

)
, (4.9)

where j = 1, . . . ,n is an index to indicate the training data set, ε j is a error, and z j is
an estimate. This is an estimate of the relative sizes of the errors compared to the
predictions, analogous to a percentage error. The error metrics are plotted against the
sizes of training data set nm (top, RMSE plot), and testing data set n̂m (bottom, MRE
plot). The dotted line represents cooling, while the solid line is for heating. Subscript
(·)m is the index of models and (·) j is for observations. The errors from the training
sets may also interpreted as a “goodness-of-fit” measure. In each iteration (number of
testing/training data points shown on the x-axis) the model is retrained with more data,
with the same sampling scheme in both classical and Gaussian Process regression
models (Section 4.2.5).

The general tendency of the error is a sharp drop in the first few iterations, followed
by a gentle or no decline in error with more training data. Comparing Figures 4.26
and 4.27, the linear models achieve a best RMSE of about 0.2 for Case 1 and 0.5 for
Case 2 (the stable RMSE value is the same for all three classical model types). In
contrast, the Gaussian Process regression achieves 0.05-0.1 and 0.5 for Cases 1 and 2
respectively. The Gaussian Process regression models achieve the same errors with
far fewer training data points (x-axis). The MRE sometimes starts at a very high value
(close to -0.8, or -80%), but quickly reduces (as in, gets close to zero). This seems to
be general tendency of the relative error – high values at the start, followed by a fast
decrease. Once again, the error for Gaussian Process regression reduces much faster.
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(c) NLM, Second Fit, single-family home (Case 1).
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(d) LMM, Best Fit, USDOE buildings (Case 2).

Figure 4.26 – RMSE and MRE plots from linear models. Solid lines for heating data, dashed
lines for cooling data. n̂m is the size of the testing data set at each iteration, while nm is the size
of the training set. No plots are presented for LMM fit to Case 1, because the random factors
(building type and climate) do not apply to that case.
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Figure 4.27 – RMSE and MRE plots from Gaussian Process regression models. Solid line is for
heating models, dashed line is for cooling models.
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4.6 Emulators: Summary

Faced with a choice between a theory which predicts well, but
gives us little insight into how the system works, and

one which gives us this insight, but
predicts badly,

I would choose the latter ...

R. H. Coase,
How should economists choose?

(Warren Nutter Lecture, 1981)

In this chapter, we have demonstrated the advantages of Gaussian Process regression
over classical linear models in building an emulator for sensitivity and uncertainty
analyses of buildings. The prediction plots of Section 4.4.2.2 are better than those
of Section 4.3.3.2, with fewer training data. This means that the Gaussian Process
regression models can be trained faster, i.e., with fewer simulations. In addition to
better prediction on training data, Gaussian Process regression allows the performance
output (energy, in this case) to be interpreted as an uncertain quantity. The downside
of using this relatively novel approach, however, is that the relations between inputs
and outputs are less clear than in the straightforward framework of linear models.

We are not saying, through the examples shown in this thesis, that the non-linear
Gaussian Process regression approach is always a better choice than simpler linear
approaches. In fact, a priori, we would always recommend trying linear models
first. However, the expected non-linear nature of the response (comfort, energy,
etc.) to most input variables (building and climate properties), makes non-linear
approaches more useful. Upon comparing the results of fitting models to two different
problems (Case 1 and Case 2), and modifications of the same (Figures 4.23 and 4.24
vs Figure 4.11a, Figures 4.21 and 4.22 vs Figure 4.11b), we find that the relatively
more complex approach proposed in this chapter outperforms linear approaches.
Gaussian Process regression trains models with less simulation points, which means
that it will be easier to use for a design problem, without resorting to large scale
simulation or databases. Predictions from Gaussian Process regression are also more
reliable, which means that this type of regression may be used with more confidence
for decision-making with uncertainty.

Textbooks on modelling and regression, e.g., Christensen (1991), Davison (2003) and
McCullagh and Nelder (1983), argue that over-fitting and over-specifying a model
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by including a large number of predictor variables is both inefficient and does not
generalise well. A model that specifies the relationship between input and output data
too closely may be capturing features of the training sample that are not representative
of the population. These features may be measurement errors or natural variation that
should not change the mean response. The best option, and one we have repeatedly
emphasised in this thesis, is to be parsimonious: making do with the smallest number
of predictors, while explaining the training data as best as possible. The idea of
parsimony is not specific to Gaussian Process regression, and is also used for the
classical linear models as well as the stationary time series models in Chapter 328.
Parsimony does entail a loss of information, but there are neither perfect emulators nor
emulators with perfect fidelity. The choice of emulators and their inputs is made using
a set of principles and guidelines, many of whom are qualitative (like in Chapter 3),
and have been discussed in this chapter (Section 4.2.2).

In any data-driven approach, it should generally be assumed, as is the case in this
thesis, that the regression model is incomplete. That is, the set of inputs (covariates,
independent variables) chosen are a subset of the theoretical set of all possible input
variables (say xd×1 ∈ xD×1 |d ≤ D). This choice is based on expert knowledge and the
(empirical) results of significance tests applied to the data at hand (e.g., Section 4.2.2).
Choosing a small number of covariates is better than over-complicating the model
by using a large number of inputs which collectively explain the data only as well
as a simpler model. It is quite possible that different data sets, i.e., those generated
using different buildings or groups of buildings, may indicate that different subsets of
variables are important.

The models proposed in this thesis should, thus, be used flexibly. They are designed
for a specific application in mind: sensitivity and uncertainty analyses of buildings to
climate, and the role of envelope properties in determining the same. By definition,
the regression model can only yield information about the sensitivity of an output to
the inputs that are included, and varied sufficiently, in the training data. Extending
the proposed model to include other inputs of interest to a user is very feasible. It will
involve training data acquired using a sampling scheme that prioritises the inputs
of interest, as opposed to the ones we prioritise here (envelope-related properties).
Future work, discussed in Section 5.3, mentions possible immediate extensions to
include occupancy profiles, local shading, etc.

28Those models are also regression models, of a time series on itself, an Auto-Regressive (AR) model, or on noise,
a Moving Average (MA) model.
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5 Conclusion

When You and I behind the Veil are past,
Oh, but the long, long while the World shall last,

Which of our Coming and Departure heeds
As the Sea’s self should heed a pebble-cast.

Omar Khayyam (ca. 1048-1122),

The Rubaiyat of Omar Khayyam, ruba’i 47.

[translator F. Scott Fitzgerald, Fifth Ed. (1889)]

5.1 Contribution

In this thesis, we have argued for the usefulness of quantifying uncertainty and sensit-
ivity in simulation. Simulating a building with explicitly uncertain inputs specified,
for example, by their probability distributions, is a practical strategy for risk-conscious
design. Interpreted differently, it also implies that the design could be examined on
the basis of its robustness to variation or ambiguity in an input. This work promotes
the view that properly accounting for the uncertainties inherent in the inputs, only
some of which are reducible with better data, is more informative than the purely
deterministic procedures that are the state of the art today. At the same time, knowing
the sensitivity of a design to some of its parameters allows a user to devote their re-
sources to addressing those inputs. Thus, the most important argument of this thesis
is that the paradigm within which building simulation is interpreted progress from a
deterministic one that ignores uncertainty to one that explicitly quantifies doubt, and
so allows the user to take decisions in the context of this doubt.
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We have proposed procedures and algorithms for the generation of synthetic weather
time series of Dry Bulb Temperature (TDB), Relative Humidity (RH), and Global Ho-
rizontal Irradiation (GHI); and, emulators based on Gaussian Process regression to
make computationally-intensive uncertainty and sensitivity analyses tractable. The
use of the synthetic weather time series and emulators may be interpreted as an
assessment of the sensitivity a building design to changing outdoor conditions, or
it may be interpreted as a quantification of the lack of knowledge about a boundary
condition. While this thesis focussed on the weather input to building simulation
and design, the approach of using simulation-trained emulators is easily extensible
to any inputs of interest. We included, for example, envelope properties, building
morphology, and internal heat gains in the emulator demonstrated in this thesis.

We interpret simulation with random inputs, or stochastic simulation, as a way to
estimate confidence intervals on outputs, based either on deliberate variation of
inputs (sensitivity analysis), or an estimate of the range within which an input is
known with some certainty (uncertainty analysis). It is not necessary that simulation
with random inputs will give a better prediction. In fact, strictly speaking, building
simulation is not meant to be a prediction of future performance at all. If, for example,
the prior distribution of an input is wrong, then the confidence intervals or variability
intervals of the outputs will also be wrong. Random simulation is best interpreted, in
our opinion, as an explicit quantification of what could be (i.e., how a building will
react to a certain boundary condition). For example, it is possible that the next year
has a very warm and long summer, so cooling loads (or overheating) could be several
times what was seen in a typical year. Alternatively, a mild winter could be followed by
a cold spring, stretching and damping fuel usage in the northern hemisphere. As we
have argued before, both of these are simultaneously possible in the present, but a
user has no way of knowing which scenario will eventually happen.

The ideas on which this work is based – synthetic weather and emulators for quantify-
ing uncertainty and sensitivity – have certainly not been discussed here for the first
time. We show examples of uncertainty and sensitivity analyses using external and in-
ternal methods (section 2.4), and the use of emulators for computationally-intractable
simulation (section 2.5). We also discussed the state of the art and history of the
generation of synthetic weather series (section 2.6.3), and climate classification (sec-
tion 2.1). The novelty of this thesis, thus, is in the two separate but related ensembles
of methods that enable rapid, practical, and reliable sensitivity and uncertainty ana-
lyses of building simulation outputs. We address the challenges of computational load,
complexity, feasibility, and generalisability identified in chapter 2, which shave been
significant barriers to the widespread adoption of uncertainty and sensitivity analysis,
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especially vis-à-vis weather. The use of time series models to create variations on such
small source data sets (only one ‘year’) has been demonstrated for the first time in this
thesis. The use of Gaussian Process regression to create emulators with such a small
number of initial ‘training’ simulations, such that a custom emulator can be created
for every design problem, has been demonstrated here for the first time.

The procedures proposed in this thesis are meant to be used in tandem with building
simulation. In the following section (Section 5.2), we lay out a schematic of how the
procedures may be implemented (following Figure 5.1). As mentioned in Chapters 3
and 4, the computer code/scripts implementing our work may be found with the
archive copy of this thesis on infoscience.epfl.ch. Section 5.3 discuss the applications
and limits of the methods proposed in this thesis, the work necessary to realise these
methods as tools for widespread use, and applications in contexts not discussed in this
thesis. Limitations and improvements for the modelling procedures described in this
thesis have been discussed throughout the main text chapters 3 and 4. In this section,
we focus on the uptake of the methods and their envisioned impact on practitioners
and clients. These are given special mention here because they affect the relationships
this work will have with the larger field of Building Performance Simulation (BPS).

PRÉCIS

• All inputs to building simulation are uncertain, and different inputs may be known
with differing levels of confidence, for a variety of reasons.

• Not all of this uncertainty can be eliminated, though some of it can be reduced.

• A solution/design focussed on just the mean or deterministic inputs only answers
the requirements under these mean conditions.

• The actual conditions experienced by the building, and its as-built properties,
may vary substantially from the mean.

� Explicitly including the uncertainty of inputs through, for example, approximate
confidence intervals constructed through random simulation, may improve the
robustness of design by calculating, and designing for, the variations in boundary
conditions. However, this does not imply an improved prediction, since even a
stochastic input (to create a variability interval through Monte Carlo Analysis
(MCA)) could be wrong.
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5.2 Workflow Summary

Referring to Figure 5.1, the workflow is described below. This is a summary of the
mechanics of using this work, while Section 5.3 describes where and when it may be
used.

Figure 5.1 – A schematic of the envisioned workflow.

1. Use the procedure described in Chapter 3 to generate synthetic files, with or
without climate change forecasts included, from a typical weather file (N weather
files, usually 100-200). The output of this step is a number of synthetic weather
time series (e.g., Figures 3.16 and 3.25).

2. Model the building being studied in any energy modelling software. Simulate
the building model with a few weather files (10-20, n1 << N in Figure 5.1). If
some design options or renovation strategies are known (Bi ), model those and
include them in the simulation. The outputs of these simulations may be plotted
as in Figure 5.2 or Figure 4.4.

3. Extract the building properties mentioned in Table 4.1 from the simulation res-
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ults (e.g., U-value), or any other properties of interest. The building properties
used in this thesis mostly relate to the building envelope, but the user can work
with other design parameters according to their interest (e.g., building compact-
ness, ventilation levels). These properties serve as independent variables for the
regression model (emulator). The properties are either calculated by the user
(e.g., Window-to-Wall Ratio) or may be obtained from simulation (e.g., annual
average self-shaded fraction of the facade).

4. Calculate the climate-related properties for each weather file input (e.g., median
TDB), as described in Chapter 4 and appendix B. These are also independent vari-
ables for the regression model and involve only simple arithmetic (e.g., median,
sum).

5. Train a regression model using the procedures described in Chapter 4, where the
building- and climate-related properties extracted from the initial simulations
are the independent variables. The dependent variable of this regression model
is either heating or cooling energy need/usage (or other quantities of interest
like peak demand). This regression model is now an ‘emulation’ of building
simulation, and may be used in its stead.

6. If the objective is to explore various refurbishment/design options, they should
be expressed as changes in the building properties which have been used as
inputs to the regression model (e.g., change in U-value to test a high insulation
scenario). The climate-based inputs (independent variables) should not be
changed in this use case, since the climate is a ‘boundary conditions’. Rather, at
each combination of building-based independent variables, i.e., one design/re-
furbishment option, the emulator should be evaluated with a wide range of
climate-based inputs. This gives a range of possible future energy outcomes for
a given building configuration (or design, or combination of properties). This
would enable to user to make a comparison such as that given in Figure 5.2. If
Gaussian Process regression is used, then the output (e.g., heating energy usage)
at each query point (combination of building- and climate-based inputs) is a
random variable with some mean value and variability.

7. If the objective is to explore the impact of the uncertainty due to climate, or the
sensitivity of a building design to climate, or the expected interior conditions
under some specific external conditions (e.g., heat wave), use only specific
levels of the climate-based inputs (i.e., climate-based properties calculated from
specific files) for any design/refurbishment option.
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5.3 Scope and Applications

. . . this too is my instruction:
proceed along paths which wagons do not traverse,

and do not drive along the same tracks as others nor on the broad highway,
but along [fresh] ways, even if your course will be narrower . . .

Callimachus, fr. I, vv. 1— 7, 17— 281

5.3.1 Random Simulation as Design-Assistance

The point of building simulation, ultimately, is to assist planners and designers to
improve designs (from the perspective of comfort and energy), allocate resources, and
anticipate demands. Therefore, the extra effort of uncertainty or sensitivity quantifica-
tion is only justified if it enables planners and designers to make better decisions. We
envision that with improving computational access and familiarity of designers and
clients with quantitative decision-making, the use of confidence intervals, variability
intervals, and other measures of variability and uncertainty will become ubiquitous.

In the scope of this thesis, we did not explicitly test the proposed methods in a design
setting. That is, we did not test whether designers make a ‘better’ decision if they are
aware of the uncertainty of their calculations. This is not exclusively a question about
this thesis, but rather about whether professionals make better decisions if estimates
of uncertainty or dispersion are available. It is not clear that providing designers with
these estimates of variability will necessarily change the decision they would make
based on mean values. It is often difficult, in any case, to arrive at a consensus on what
a better decision is. In some cases forensic analysis (e.g., through post-occupancy
evaluation) may help. In this thesis, we define ‘better’ as being more robust to climate
volatility. In other contexts, it could also be defined as, for example, a decision that
minimises the risk of failure, at the cost of higher initial capital expenditure for more
larger mechanical systems; or a decision that aims for the lowest operating energy in
the majority of anticipated climate conditions, but allows for failure; etc.

1Cited in the Introduction to Jason and the Golden Fleece (The Argonautica), from Apollonius of Rhodes,
translated by Richard Hunter (Oxford World’s Classics, pg. xvii).
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Table 5.1 – The renovation cases of a single-family home. This
table is a reduced version of Table B.4.

Old Code New Code U-value Description

BC00 G000C00 1.70
Base Case– G000C01a 2.65

– G000C02b 2.85

RC01 G000C03 1.09
External wall insulationRC02 G000C04 1.04

RC03 G000C05 0.98

RC22 G000C24 1.70 Envelope airtightness
a Masonry-only wall
b Brick-only wall

5.3.2 Renovation Strategies and the Performance Gap

In addition to the potential of random simulation to impact design decision-making,
we expect that sensitivity and uncertainty analysis may help to address the so-called
‘performance gap’ in energy-conscious design and refurbishment2. This is not to
say that the predictions will be more ‘correct’, because random simulation cannot
by itself reveal future conditions. Rather, it will allow the designer and client to
discuss performance in terms of confidence and risk, bringing expectations closer to
delivery. This thesis proposes, for the first time, the ability to quantify this risk due to
climate, and lays the groundwork for similar studies for other uncertain inputs (such
as occupancy, or construction variation), through the use of probabilistic emulators.

As discussed before, we propose that building simulation always be carried out in
a stochastic paradigm, where design options or interventions are always assessed
keeping in mind their robustness (expressed through a spread of energy use) to a
volatile climate. The argument for why this kind of analysis is important is included
in Chapters 1 and 2. An example of how different design options may be evaluated
through a comparison of their energy use spread is in our previous work (Agarwal,
Rastogi et al. 2016; Chinazzo 2014; Chinazzo, Rastogi et al. 2015a,b).

2Energy-conscious buildings often consume far more, and occasionally less, energy than calculated from
simulation. This gap is understandable from the point of view of the expert simulator, and is generally attributable
to usage, construction errors, and unplanned changes (Gupta and Dantsiou 2013). It may, however, cause ‘sticker-
shock’ for the client if the building uses, say, twice as much energy as planned, and undermine the credibility of
the energy consultants and designers.
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Examine the comparison of refurbishment options shown in Figure 5.2 and table 5.1.
In this case, the decision to install wall insulation (options 03-05), for example, is
significantly better than doing nothing (option 00). The improvement of infiltration
(option 24) is by far the best option, both in terms of robustness (spread of box plot)
and median energy use. However, if the user is deciding between the three levels of
insulation, the choice is less clear. While it is true that more insulation results in lower
heating energy usage for each weather file, all the files are equally probable, so the
future predicted savings will be very different from what would be predicted by using
just a single typical file. The point is not that more insulation will ever result in more
energy use, rather it is to say that the payback from adding more insulation is not the
same as that would be predicted by using a single simulation (typical file), and then
assuming that number to be representative of all future years.
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Figure 5.2 – Heating energy use by twenty four design options/renovations for a single-family
home, including the current construction (option 00). On the left are the same simulations
presented in Figure 1.1, the plot on the right includes synthetic weather data as well. While these
boxplots have been produced using EnergyPlus simulations, they may also be produced with an
emulator.

5.3.3 Comfort Assessment

An important application of this work is in the assessment of future indoor conditions
without mechanical systems. We envision the calculation of both risk, e.g., summer
overheating, prolonged high temperatures, etc., and the change of ‘normal’ indoor
conditions, e.g., due to a change in summer median temperatures over the next cen-
tury. This is most often examined in the context of summer overheating in buildings
without cooling systems (e.g., Agarwal, Rastogi et al. (2016)). Testing buildings’ re-
sponse to extreme events like heat waves and/or a slowly shifting climate has hitherto
been limited to a few specialised case studies (see Chapter 2 for a discussion of the
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state of the art). In addition, the literature offers only single files for future studies,
the potential pitfalls of which we have discussed in Chapters 1 and 2. The methods
developed in this thesis offer multiple pathways to assessing risk – whether through
the simulation of a large number of synthetic weather years to obtain distributions, or
the use of extreme files to obtain limits.

A limitation of the work presented in this thesis is that comfort is treated as a rigid
concept: we use fixed set-points for heating and cooling. Since comfort was not a focus
of this thesis, we focussed on ideal loads derived from fixed set-points to demonstrate
the emulators. An ideal load calculation does not consider a system, so the indoor
conditions are examined in view of their (energy) ‘distance’ from some arbitrary
comfort threshold for indoor temperature and humidity3. This is a choice that we
leave open to the user, since it depends on choices such as whether the building is
conditioned or free-running. Future work to implement the proposals of this thesis
should include the testing of the emulator’s utility with adaptive models (usually
applied to free-running buildings). Given the data-driven nature of regression-based
emulators, this change is unlikely to affect their ability to explain the data. However,
adaptive comfort does introduce an additional, potentially non-linear, factor which
demands detailed examination. That is, it would be yet another reason why the
uncertainty of inputs will not propagate linearly/additively. Introducing adaptive
comfort would entail a significant reduction in loads for moderate climates, i.e., there
will be far more hours in a year without a need for heating or cooling. In the simplest
scenario, this would merely shift the distributions presented in figs. 4.4a and 4.4b,
reducing their mean but not changing their shape. In a more complicated scenario,
the shape of the distributions would change entirely. Combining the concept of
comfort with hourly emulators of building response, the loads could be modelled as a
combination of a Markov chain (load vs no load) and a magnitude function (how much
load), akin to the weather generators described in section 2.6.3. This would involve
the crossing of time series models with emulators, similar to the work described in
section 5.3.7.

5.3.4 Model Predictive Controls

Predictive building automation systems are based on modelling the state of the build-
ing a few time steps in the future. This is particularly important for buildings with high
thermal mass, and therefore a slow thermal reaction, since actions taken at a particular

3We discussed the idea of an enthalpic ‘distance’ on a psychrometric chart that must be ‘traversed’ for a certain
indoor condition, created passively by the building, to reach some comfort limits in Rastogi, Horn et al. (2013).
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time will have consequences well into subsequent time steps. The synthetic weather
data proposed in this thesis could be used to train these models before they are de-
ployed, and for testing the suitability of different control algorithms. The advantage
of using synthetic weather files is the same as that of using them for uncertainty and
sensitivity analyses: much larger quantities of plausible data for a particular location
than would be available from records alone. Several control algorithms available today
‘learn’ user behaviour or preference, e.g., Lindelöf (2007), and the learning algorithm
could be trained on the large quantities of synthetic data that is readily available
from the use of our generator. Another perspective on this would be to design model
predictive controls to explicitly account for the uncertainty in weather/occupancy
predictions, and plan to maintain indoor conditions within some boundaries, even
when the weather/usage comes close to some arbitrary value (e.g., twice as much
occupancy as planned).

5.3.5 Modelling Stocks, Grids, and Renewables

We have alluded to the idea of extending the use of emulators for rapid sensitivity ana-
lyses, what-if studies, and climate risk assessment of groups of buildings, or building
stock (section 2.1). The problem of simulation time is more acute when modelling
large groups of buildings, or neighbourhoods. We have included some factors that
may be useful when modelling groups, like form factor and roof ratio, building on the
work of Nault (2016), Nault, Peronato et al. (2015) and Nault, Rastogi et al. (2015). We
are certain that more factors will have to incorporated, perhaps including site-specific
factors such as shading among buildings4, or access (to the sun). A straightforward
application of the emulator and synthetic weather would be the simulation of random,
weather-driven, electricity or gas demand from groups of buildings.

This thesis addresses the ‘demand’ side of the energy balance, i.e., buildings, and
may be easily extended into the ‘supply’ side, electrical grids. This could be done for
two applications: simulating operations based on random weather, and assessing
risk in future production values. The sensitivity of renewable energy production,
especially solar power, to climate could easily be carried out with the stochastic
weather generator proposed in this thesis because weather is the primary driver
of (potential) renewable production. In ongoing work, we are collaborating with
economists to assess the risks in solar investments based on climatic uncertainties.
Similar to the training of model predictive controls for buildings (section 5.3.4), the
control or operation of electric grids could also be simulated with a combination of

4In addition to the self-shading parameter, average sunlit percentage, already used in this thesis
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random weather and random occupancy feeding a rapid-response building emulator.

5.3.6 Stochastic or Robust Optimisation with Uncertain Inputs

Stochastic or robust optimisation would, in this context, imply optimisation that
explicitly includes the uncertainty of inputs (in the form of a distribution) during the
calculation of a cost function. One way of doing this, which we provisionally label
‘static optimisation’, would be to run an optimisation routine using several different
weather files one after the other. Then, one would have a distribution of the optimal
values of, say, insulation level. This approach has been used by, for example, Ramallo-
González, Blight et al. (2015).

This could be carried out using an emulator based on Gaussian Process regression by
fitting the regression function to uncertain inputs. Recall that, unlike kriging, Gaussian
Process regression does not need to assume that the training data points are exact
(see section 4.4.1). The advantage of this approach would be a robust design solution,
that is ‘optimal’ for a range of operating conditions (weather, occupancy, construction
errors, etc.)

5.3.7 Regression of Internal Temperatures

For a brief introduction to regression-based time series models, see Cryer and Chan
(2008). Regression is a technique that pervades most of this thesis, since the time
series models are also regressions of a time series on itself. In this future application,
however, we propose the use of a different flavour of regression with time series.

The results of our simulations for this thesis point to the influence of external weather
parameters on the internal temperature. So far we have been using an ideal loads
system with infinite capacity. A more realistic case for a large proportion of dwellings
in Geneva, for example, is a heating-only system. This means that in the summer,
these buildings would have a ‘free-floating’ internal temperature, creating significant
overheating risk. Oraiopoulos, Kane et al. (2015a,b) model internal temperature as
a time series to predict overheating risk. In their case, the application is to short
term forecasts (2-4 days) to create an early-warning system for at-risk dwellings in
the UK. Their approach is to use Auto-Regressive Moving Average (ARMA) models
as well, but it is based entirely on external weather conditions. We propose a future
study that is very similar, but with additional parameters to account for the building
construction, particularly its envelope. We feel that this is a crucial component for
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the prediction of internal temperature since the response of a building is a function
of its construction, an argument we have also made in chapter 4. The exploration of
time series models that account for building construction in their lags and coefficients
could be a useful tool for modelling overheating risk in buildings, both for annual
figures and short-term forecasts.

5.3.8 Random Occupancy Modelling

Occupancy modelling has been previously examined in terms of both uncertainty and
sensitivity analyses. See, for example, Ramallo-González, Blight et al. (2015) for robust
optimisation considering building behaviour; Haldi (2010, 2013) for a Markov chain
model of adaptive actions for thermal comfort; Mavrogianni, Davies et al. (2014) for
the interaction of occupancy patterns with the risk of overheating in London dwellings;
among others. In the emulator demonstrated in this thesis, occupancy profiles have
not been examined in detail, having been represented merely as fixed Internal Heat
Gain values. A study of the interaction of random or varying occupancy and random
weather is planned. This study is envisioned at two levels: one where the interaction
of the two kinds of random profiles is purely coincidental, and one where occupancy
responds to weather. In the first type of study, the occupants’ schedule and actions
may be thought of as independent of the weather. In the second type, we would use
previous research, e.g., Haldi (2010), to model the adaptive actions of occupants based
on the weather and indoor conditions. The interaction of weather and occupancy
is, we feel, crucial to future predictions of overheating risk and the robust design of
buildings in a changing climate.

5.4 Outlook

... the future’s uncertain and the end is always near.

Jim Morrison, The Doors
Roadhouse Blues (Morrison Hotel)

Upon reading this thesis, it is not unreasonable to conclude that predicting exact
building energy consumption at a specific time in the future is futile. Even if the
software representation of a building is completely reconciled to the design, or as-
built conditions, neither future weather conditions nor occupancy and usage are
exactly predictable. These two inputs substantially affect the reliability of simulation
results, even if the effect of an unsuitable value for any of a number of parameters and
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settings is ignored. Essentially, the calculations, inputs, and parameters in simulation
are all approximations of natural and human factors about which we cannot have
complete knowledge. This conclusion, though, is far from fatalistic, since we are
calling for a reinterpretation and reformulation of existing practice with new tools, not
the abandonment of simulation in design. Discussing building simulation in terms of
uncertainty, confidence, and risk does not make it less useful; on the contrary, these
considerations make the exercise more informative. The proposals contained in this
thesis are not intended as ironclad rules, and our approach implicitly counsels against
rigid interpretations in favour of flexible, risk-aware decision making.

We are not in favour of the so-called ‘look-up table’ approach, where a database of sim-
ulations is used to approximate the energy performance of any new case being studied.
Databases of measured energy and other metrics do have a role in improving build-
ing energy estimation (through the use of benchmarking, for example). However, a
method that deliberately blurs the uniqueness of each design problem by shoehorning
projects into pre-defined types and scenarios seems unnecessarily simplistic. Regres-
sion is also a simplification, and is conceptually very close to a look-up table, but these
tables are deterministic whereas the regression-based approaches we propose are not.
If the boundary conditions of a problem are inherently random and uncertain, then it
is more appropriate to work with methods that allow this randomness to be explicitly
stated.

A persistent concern with the ideas and procedures described in this thesis is their
obvious complexity when compared with the current practice of working with single
weather files and fixed building inputs. As we have expressed elsewhere in this thesis,
while using stochastic approaches is indeed more time-consuming, we question
the appropriateness of using deterministic inputs to represent random phenomena.
We anticipate that the use of uncertainty-based approaches requires a change of
mindset, where consultants/designers do not deliver precise performance figures (e.g.,
future annual energy use), and clients do not expect it. While we have not, in this
thesis, examined the understanding of uncertainty by designers and users, we expect
that the concepts are not necessarily simple to integrate into the everyday workflow;
particularly since simulation is taught in the “deterministic paradigm” we describe
in this work. Our work, then, both relies on a change of mindset and proposes new
techniques that will facilitate this change.

A common concern with incorporating any new technique in the simulation workflow
is its benefits compared to the costs and complexity. We feel two particular issues
should be answered: firstly, given that systems are usually over-designed, will the

203



Chapter 5. Conclusion

inclusion of random inputs necessarily change the calculations; and secondly, given
the complexity of both conducting and interpreting simulation inputs and outputs,
will it not be necessary to completely rethink the standards and rules that have been
codified to regulate its use in design? We offer broadly optimistic responses to both
concerns. System over-design is understandable from both liability and robustness
perspectives, and in fact passive buildings with smaller systems will demand more
adjustment from occupants. We do not take a position on how much adaptation
should be taken for granted and in which situations. Rather, our work offers the tools
to calculate this and other climate-based risks systematically and easily. While we
have not explicitly addressed the impact of uncertainty analysis on regulations, the
experience of other professions offers a guide. The financial and actuarial industries
have a long record of using risk assessments. Most professional bodies anyway update
regulations and codes regularly. We contend that explicitly requiring the systematic
consideration of the uncertainty in inputs is both feasible and necessary. Ultimately,
however, neither regulations nor theses can bring about the change of mindset that is
required to adopt random simulation. It is more likely that the adoption of statistical
training and an appreciation of robust simulation practices in university curricula will
bring about lasting change in practice.

The arguments and proposals of this thesis are a first step in bridging the gap between
the benefits of so-called “big data” and the human ability to process it or use it for
decision-making. We offer some specific proposals in this chapter, and this would
be one of the natural extensions of this work. The influence of large datasets on
building design and operation has has been curiously muted. Not all of the blame
for this lies necessarily with the building-related trades, since the industry is both
conservative and fragmented, for natural reasons, and new trends and techniques may
take a generation to be accepted. However, the uptake of computer-aided tools is now
nearly universal, and designers and engineers are increasingly comfortable interacting
with intelligent programs in their day-to-day work. Eschewing hard optimisation,
we have argued for an expert-system style approach, updated and informed both by
random simulation and measured data (if available). The inclusion of large-scale data
processing, whether based on simulation like the proposals of this thesis or the use
of measured data, have a good case for changing the way we think about designing
buildings for evolving expectations in a changing climate.

We end with a prophetic observation from Pliny the Elder:
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. . . this alone is certain,

that there is nothing certain . . .

Pliny the Elder, The Natural History

Book II, Section 7/Chapter 5.

Translated by John Bostock, perseus.tufts.edu
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A Additional Results and Concepts: Syn-
thetic Weather

Filling flowers with colour
comes the breeze of new Spring

O! Do come [dear Spring],
so the gardens may bloom again.

Faiz Ahmed Faiz,
Filling Flowers With Colour

A.1 Notes on Implementation

We tested the synthetic values against recorded data obtained from the National
Climatic Data Center (NCDC)1 and various national meteorological agencies, the
full list of which is in Section A.5. The synthetic data are created entirely from the
commonly-used typical year files. These files may be obtained from the web site of
the Energy Plus software2, the Climate.OneBuilding.Org website or from commercial
suppliers such as METEONORM (MN)3 or White Box Technologies4. The output from
climate change models is introduced as a replacement to low frequency Fourier fits in
this chapter (Figure 3.5). The climate change model outputs were obtained from the
WCRP CORDEX website 5.

1http://www7.ncdc.noaa.gov/CDO/cdo
2https://energyplus.net/weather
3http://meteonorm.com/download/software/mn70/
4http://weather.whiteboxtechnologies.com/home
5http://www.cordex.org/
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The procedures/data are based on several other climates besides the three presented
here (full list in Tables B.5 to B.8). For additional climates and results, as well as ori-
ginal code, the reader is directed to the supplementary documents provided with the
archival copy of this thesis on the EPFL6 repository (infoscience.epfl.ch). The text of
this part of the thesis builds upon work previously published in Rastogi and Andersen
(2013, 2015, 2016). Figures 3.1 and 3.5 were created with Siobhan Rockcastle. The
climate change forecasts from the CORDEX website were downloaded and processed
by Georgios Mavromatidis.

A.2 Fourier Series and Fitting

A generalised Fourier series is a series expansion that uses a complete orthogonal
system of functions to represent any arbitrary function. We will be using the discrete
analogue of a generalised Fourier series using the common trigonometric functions of
sine and cosine, which are orthogonal over [−π,π]. In this application we are not fitting
the Fourier series directly to a function f (x), but instead to a finite data set yt which is
generated by some unknown underlying function. A Fourier series representation with
infinite sine-cosine pairs does not need an error term. If the number of trigonometric
pairs m is equal to half the number of data points, n−1

2 , the number of independent
variables is n, the same as the number of time steps or data points. This implies a
perfect fit to the data because such a model is saturated (Christensen 1991, sec IV.2).

Fitting a Fourier series to a sequence of observed values begins with the identification
of the principal harmonics, or the frequencies of the dominant waves. A handy way
of doing this is through a periodogram, shown in Figure A.2. A periodogram is a plot
of the estimated Power Spectral Density (PSD), at frequencies of interest, of a “wide-
sense stationary process” (The MathWorks, Inc. 2015). The quantity plotted is the
amplitude of each trigonometric pair, i.e., the mean sum of squares at any frequency.
It can be obtained by taking a Discrete Fourier Transform (DFT) of the time series, and
it gives an indication of the ‘importance’ of a particular frequency. Periodograms are
of limited value if the data in question is not a stationary time series, since the PSD
at the 0th frequency or the mean will practically drown out any other harmonics of
interest. In Figure A.2, we have deliberately not plotted the power at the 0th frequency.

6École polytechnique fédérale de Lausanne, Switzerland.
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Figure A.2 – Periodogram of the Dry Bulb Temperature (TDB) time series for Geneva. Note that
the y-axes use log values. The x-axis is labelled with the wavelengths rather than the frequencies.

A.3 Stationary Time Series Models

Christensen (1991) describes “time domain models” as “linear filters of the white noise
process”. The most general form of a stationary time series is a general linear process

yt = εt +ψ1εt−1 +ψ2εt−2 + ..., (A.1)

or,

yt =
∞∑

i=0
ψiεt−i , (A.2)
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where, εi are white noise samples7, and ψi are weights. It is essential that ψ0 = 1 and∑∞
i=0 |ψi | <∞. Equation (A.1) is a “weighted linear combination of present and past

white noise terms” (Cryer and Chan 2008). Modifying Equation (A.2) gives Wold’s
decomposition (Wold 1938)

yt =
∞∑

i=0
ψiεt−i +Ht , (A.3)

where, εt−i is an (uncorrelated) white noise sequence that is the input innovation
process to yt via the linear filter ψi , and Ht is a deterministic term, which is perfectly
predictable based on past values of yt . The historical information (past values) could
be on one or more of the following types: past values of the process itself, uncorrelated
white noise or innovations, and past values of some exogenous variables. Exogenous
variables are those that are considered to be unaffected by the process yt . Innovations
and past values of a process are used in this thesis, while the use of exogenous models
for time series regression is proposed in future work. The models we use are causal,
i.e., they predict the value at time t based on past values up to that point. One can see
that Equation (A.3) contains the seeds of an Auto-Regressive Moving Average (ARMA)
model (see Section 3.5), as it permits the modelling of a variable yt based on a linear
combination of its own past values and an independent noise sequence.

Changing the deterministic term to be the history of a variable up to the preceding
time-step, Ht−1, and taking expected values, gives a conditional mean model

E(yt |Ht−1) =
∞∑

i=0
(ψi ), (A.4)

where E (yt |Ht−1) is the expected value of yt conditional on the preceding history of the
process Ht−1. The unconditional mean of the stationary process, E (yt ) =μ= 0, so it is
not mentioned here. In other words, Equation (A.4) is a calculation of the conditional
expected values of the series in Equation (A.2). The two models we use in this thesis,
Moving Average (MA) and Auto-Regressive (AR) models, are specialised forms of
conditional mean models, fitted to linear processes with Gaussian innovations. An
ARMA model is simply a combination of these two.

7A random signal with a constant PSD.
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A.3.1 Auto-Regressive (AR) Models

In models where the historical information Ht−1 consists solely of the past p values of
a variable, we get an AR(p) model

yt = c +φ1 yt−1 +·· ·+φp yt−p +εt , (A.5)

or, in lag operator polynomial notation,

φ(L)yt = c +εt , (A.6)

where, φ(L) is the lag operator polynomial representing the linear combination of
previous values of yt−1, . . . , yt−p multiplied by their respective coefficients φ1, . . . ,φp,
εt is the “innovation” at time t that encompasses everything not explained by the rest
of the model, and c is a constant. Cryer and Chan (2008, sec. 4.3, pg. 70) show that an
Auto-Regressive (AR) process can be represented as a general linear process. The lag
operator L, Liεt = εt−i , is also known as the backshift operator. As the name implies,
an AR process is a regression of a variable on itself.

We will restrict the discussion to the stationary AR process, where the roots of the
characteristic AR equation

1−φ1x −φ2x2 −·· ·−φp xp = 0, (A.7)

are outside the unit disk in the complex plane.

A.3.2 Moving Average (MA) Models

In models where only past q white noise terms are considered, we get a Moving
Average (MA) process

yt = εt +θ1εt−1 +·· ·+θqεt−q , (A.8)

or, in lag operator polynomial notation,

y(t ) =μ+θ(L)εt , (A.9)
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where, θ(L) is the lag operator polynomial representing the linear combination of past
white noise terms εt−1, . . . ,εt−q multiplied by their respective coefficients θ1, . . . ,θq ,
εt is a series of past ‘innovations’ or noise, and μ(= 0) is the unconditional mean
of y . Another way of stating this is that only a finite number q of weights ψi , from
Equation (A.2), are non-zero. We will restrict the discussion to invertible Moving
Average (MA) processes, where the roots of the characteristic MA equation

1−θ1x +θ2x2 +·· ·+θq xq = 0, (A.10)

are outside the unit circle in the complex plane. This gives the useful result that
there is only one set of coefficients that “yield an invertible MA process with a given
autocorrelation function” (Cryer and Chan 2008).

A.3.3 Auto-Regressive Moving Average (ARMA) Models

In an ARM A (p, q) model, the value of a time series at a certain point in time is
predicted by a polynomial composed of two parts

yt = c + [
φ1 yt−1 +·· ·+φp yt−p

]+ [
εt +θ1εt−1 +·· ·+θqεt−q

]
, (A.11)

or, in lag operator polynomial notation,

φ(L)y(t ) = c +θ(L)εt . (A.12)

The same stationarity and invertibility conditions apply to an ARMA model as to its
constituent AR and MA models. We are only concerned in this work with causal and
invertible models, i.e., ones that predict a present value based only on past values.
Since differencing is not used in this thesis, we do not consider Auto-Regressive
Integrated Moving Average (ARIMA) models.

A.3.4 Homoscedasticity and Conditional Variance Models

Keeping in mind that we are only considering conditional mean models, it is essen-
tial that the time series be homoscedastic. If the variance of the residuals changes,
the residuals are not homoscedastic (they are instead heteroscedastic). For a time
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series yt , Cryer and Chan (ibidem) define the conditional variance of yt given past
values yt−1, yt−2, . . . as the variance of the deviation of yt from its conditional mean
E(yt |yt−1, yt−2, . . . ). Models for heteroscedastic time series exist, of which common
types are the Auto-Regressive Conditional Heteroscedasticity (ARCH) and Generalised
Auto-Regressive Conditional Heteroscedasticity (GARCH) models, proposed by Engle
(1982), and Bollerslev (1986) and Taylor (1986), respectively (Box, Jenkins et al. 2008;
Cryer and Chan 2008; Shumway and Stoffer 2011).

A.3.5 Script Snippet for Solar Series Bootstrap

1 % S t a r t by t a k i n g t h e d a i l y mean o f t h e raw s y n t h e t i c t d b v a l u e s .
2 ���������	
����������� 
 ��������������	
�����������

3
4 % R e s h a p e t h e s y n t h e t i c and tmy months t o s e p a r a t e t h e means by month
5 ������������� 
 ����������������� ��� �����

6 ������������� 
 �������������� ������  �

7 !�"���������� 
 ��������������
������� ��� �����

8 !�"���������� 
 �!�"���������� ������  �

9
10 % I t i s n e c e s s a r y t o do a n e a r e s t n e i g h b o u r b o o t s t r a p month−by−month s i n c e i t i s
11 % p o s s i b l e t h a t , f o r a g i v e n s y n t h e t i c day , t h e c l o s e s t d a i l y mean i n t h e TMY
12 % i s i n a d i f f e r e n t month . T h i s means t h a t t h e s u n s h i n e h o u r s w i l l be c o n s i d e r a b l y
13 % d i f f e r e n t b e t w e e n t h e s y n t h e t i c da y and t h e s e l e c t e d ‘ n e i g h b o u r i n g ’ TMY da y .
14
15 % F i n d t h e ’ k ’ n e a r e s t n e i g h b o u r s i n t h e TMY d a i l y means f o r e a c h s y n t h e t i c d a i l y

mean .
16 #�� 
 �$�

17 �%&' 
 (�(��	)������������������

18
19 % C y c l e t h r o u g h e v e r y month
20
21 *�� � 
 �� 
��+������

22
23 % G e t t h e s y n t h e t i c means f o r t h i s month
24 �������� 
 ���������	
������������������������� 

��  �

25
26 % G e t t h e tmy means f o r t h i s month
27 �������� 
 ��������������������!�"���������� 

���

28
29 % G e t t h e e n d i n g da y o f t h e c u r r e n t month − t h i s i s t o make s u r e t h a t when e a c h
30 % month i s sampled , t h e i n d i c e s s t o r e d a r e f o r t h e YEAR , n o t j u s t t h e month .
31
32 	* � 

 �

33 % J a n u a r y s t a r t s f ro m i d x = 1 , s o IDXadd = 0 .
34 %&'��� 
 $�

35 �
��

36 % G e t t h e end−o f −month d a y s f o r a l l months p r e c e d i n g t h e c u r r e n t month .
37 ,-��./����� 
 ������������������0����������������0�����

38 % Sum them t o g e t t h e number o f d a y s t h a t h a v e p a s s e d ( sum end−o f −month d a y s ) .
39 %&'��� 
 �-��,-��./�������

40 ���

41
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42 % G e t t h e knn n e a r e s t n e i g h b o u r s i n t h e TMY r e c o r d f o r e a c h d a i l y mean
43 % i n t h e s y n t h e t i c t i m e s e r i e s .
44 ������ � �	 
 ���
�������������
 �
������
 � ���� ��� � ���
����� �������������
 ���

45 % The m a h a l a n o b i s d i s t a n c e i s u s e d s i n c e i t i s r e a s o n a b l y r o b u s t
46 % a g a i n s t t h e s h a p e o f t h e u n d e r l y i n g d i s t r i b u t i o n .
47
48 % P i c k one n e a r e s t n e i g h b o u r a t random
49 �������� ����
!��
 

�� 
 ������"����#� ��� �$	���

50
51 % Add t h e p r e c e d i n g d a y s o f t h e y e a r
52 �������� ����
!��
 

�� 
 �������� ����
!��
 

�� % ����##�

53
54 ��#

55
56 ����� � �������
 
������
 ����� ����&

57
58 % nIDX i s t h e i n d e x o f a da y i n t h e TMY r e c o r d whose d a i l y mean
59 % m a t c h e s some d ay i n t h e S y n t h e t i c s e r i e s .
60
61 % P i c k t h e c o r r e s p o n d i n g d a i l y sums
62 '��
��(#����(
)�
 
 #����
(���('��(
)��������

63 % R e c o r d t h e d a i l y means a s w e l l
64 '��
��(#����(����
 
 #����
(���('��(�����������

65 % R e s h a p e t h e h o u r l y g h i t o be s e p a r a t e d by d a y s
66 '��!��
 
 ��
�������������(*+� �&, ��	��

67 % P i c k t h e d a y s c o r r e s p o n d i n g t o e a c h n e a r e s t n e i g h b o u r
68 '��
��(#����(��- 
 '��!��
�"�������

A.4 Additional Results

Additional results are presented here for the three cities used as examples in this thesis
– Geneva, New York, and Delhi (details in Table A.1). There are three stations in New
York, and their results are compared side-by-side. As we discussed in Chapter 3, the
quality of the weather file influences the quality of the generated data. In the case
of Delhi, for example, the low values of Relative Humidity (RH) per month are not as
low as the recorded values. The thresholds in the spell plots (Figures A.7 and 3.23)
correspond to the American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) design temperatures. Temperatures corresponding to the 99.6,
99, 98, 2.0, 1.0, and 0.4 percentiles are presented here.
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Table A.1 – Details of the climates/stations described in the main chapter.

City Name GENEVA NEW YORK NEW YORK DELHI

Station Cointrin John F Kennedy LaGuardia Indira Gandhi
Code GEN NYC_JFK NYC_LAG DEL
Longitude 6.10 -73.80 -73.88 77.10
Latitude 46.23 40.65 40.78 28.57
ASHRAE 4B 5A 5A 1B
Koeppen-
Geiger
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Figure A.3 – TDB [top] and RH [bottom] ranges for Delhi. Unusually for the results presented,
recorded highs in spring are higher than the synthetic ones.
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Figure A.4 – TDB [top] and RH [bottom] empirical Cumulative Density Functions (eCDFs) for
Delhi.
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Figure A.5 – Dry Bulb Temperature (TDB) [left] and Relative Humidity (RH) [right] extents for
New York JFK [top], LAG [middle], and CPR [bottom].
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Figure A.6 – TDB [left] and RH [right] eCDFs for New York.
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Figure A.7 – eCDFs of the spell durations in recorded and synthetic data for New York JFK: [from
top left] 99.6, 99, 98, 2.0, 1.0, and 0.4 percentiles.
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A.5 Weather Data Sources

Recorded/historical weather data was downloaded from multiple national and in-
ternational agencies. An example MATLAB®script for reading the raw data file from
MeteoSwiss, the Swiss meteorological service, is included below. In many cases, the
data overlapped. For example, temperature data for Swiss locations was available with
both the NCDC and MeteoSwiss. In these cases, the average of the two sources was
used. The relevant MATLAB and R code is available with the archive copy of this thesis
on the EPFL repository (infoscience.epfl.ch). The link to a GIT repository will also be
found there.

• (Swiss) Federal Office of Meteorological and Climatology (MeteoSwiss 2014) – all
data for locations in Switzerland.

• [United States] National Solar Radiation Database (NSRDB) (Wilcox 2012) – solar
and temperature data for the United States.

• NREL India Solar Resource Data (Sengupta 2014) – solar data for India.

• Canadian Meteorological Service (Meteorological Service of Canada and Na-
tional Research Council of Canada 2008) – solar and temperature data for Canada.

• NASA Remote Sensing Validation Data (al-Abbadi 2002) – solar, temperature,
humidity data for Saudi Arabia.

• NCDC (NCDC/NOAA 2014) – temperature, humidity, and atmospheric pressure
for all locations.

Typical weather year data was obtained from three sources:

• EnergyPlus Weather Data (NREL and USDOE 2015)8;

• METEONORM (MN) (Remund, Mueller et al. 2012b);

• and, TMY3 (Wilcox and Marion 2008).

8The website has moved since we last accessed the data in 2012. This reference is to the new link. EnergyPlus
format data can also be found at http://climate.onebuilding.org.
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Details

For results from other climates and buildings, besides the three presented here, as well
as original code, the reader is directed to the supplementary documents provided with
the archival copy of this thesis on the EPFL repository (infoscience.epfl.ch). The text
of this part of the thesis builds upon extensive discussions with Emilie Nault, and the
work previously published in Nault (2016) and Nault, Rastogi et al. (2015). Figure 4.2
(Chapter 4, case 1) is adapted from Chinazzo (2014). The original energy model for
the home (case 1) was made with Soenke F. Horn, and first published in Rastogi, Horn
et al. (2013).

B.1 Confidence Intervals

Since the ideas of confidence intervals, prediction intervals, and variability intervals
are crucial to the understanding and use of uncertainty and sensitivity analysis, a
brief explanation of their use and interpretation is called for. In this section, we
give a general conceptual explanation of these intervals, including details of the
prediction intervals plotted in the regression plots (e.g., Figure 4.7) when appropriate.
In the context of regression models (Chapter 4), we use prediction intervals, and all of
these intervals are constructed for specific confidence levels, e.g., α= 0.5 gives 95%
confidence intervals or prediction intervals.

Say we fit a curve to data as follows

y = f (x)+ε, (B.1)
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where y is the dependent variable, x is a vector of predictors (independent variables,
regressors), f (x) is the unknown underlying function from which the data supposedly
arises (and which a fitted curve should approximate), and ε is random error. Since the
true underlying curve is unknown in our application, Equation (B.1) is replaced with
that of a fitted curve

ŷ = f̂ (x)+ ε̂, (B.2)

The model is queried at an unknown point

ŷn+1 = f̂ (xn+1)+ ε̂n+1, (B.3)

where, the model was fit using n training points (i.e., ŷ1, ŷ2, . . . , ŷn , x1, x2, . . . , xn), xn+1

is the vector of predictors at a new query point, and ε̂n+1 is the associated error (which
is independent of errors at all other points, ε̂1, ε̂2, . . . , ε̂n). It is possible to construct
prediction intervals on both the fitted function/curve, f̂ (·), and new predicted outputs,
ŷ . MATLAB® lists these two options to determine whether the prediction intervals
should be for the fitted function (����� or fitted mean values) or the predicted value
(������	
����). ‘Observation’ prediction intervals, which we use in this thesis for
linear model plots, give wider bounds because “the error in a new observation is
equal to the error in the estimated mean value, plus the variability in the observation
from the true mean” (The MathWorks, Inc. 2015). In the formulations, the difference
between the two types of confidence intervals is the presence of an extra term in the
confidence intervals for observations.

A second option is for whether the prediction intervals should hold true for all pre-
dictor values “simultaneously”, or not. The simultaneous option, which is what is used
in this thesis, gives wider bounds, because it is a more stringent requirement that the
specific bounds enclose the “entire curve” or all predicted values rather than just at a
single predictor value (ibidem). In this case, the prediction is

ŷn+1 = f̂ (xn+1)+ ε̂, (B.4)

where ε̂ is now the error over all the values (contrasted with the error for a specific set
of predictors in Equation (B.2)). In Gaussian linear models, the critical statistic for the
simultaneous values comes from an inverse F cumulative distribution, while that for

222



B.2. More Gaussian Processes

the non-simultaneous comes from an inverse of Student’s t cumulative distribution
(ibidem).

In the context of the classical regression examples discussed in this thesis, the plotted
intervals imply that at any given ‘regression-predicted’ value of the output (ŷ), the
given bounds contain the ‘true’ value (y) in about 0.95 or 95% of experiments or model
fits. So, we are plotting prediction intervals. If the bounds are far apart, then the model
prediction is less useful even if it has, technically, the same accuracy. For the Gaussian
Process regression models, the fixed bounds of the prediction intervals contain a
Gaussian random variable (with a mean and variance determined by the Gaussian
Process). That is, the probability that y lies within the given bounds is 95%, with a
Gaussian distribution.

B.2 More Gaussian Processes

B.2.1 GP Kernels: Additional Details

A popular kernel is the squared exponential function (SqE) function

kse (xi , x j ) =σ2
f exp

[−(xi −x j )2

2σ2
l

]
, (B.5)

where xi and x j are two sample points, σ f is roughly representative of the intrinsic
variance of the response variable, and σl is the characteristic length scale. The charac-
teristic length scale is broadly representative of the roughness in the latent function
due to each predictor. Drawing a parallel with Principal Component Analysis (PCA),
we could say that the characteristic length scale is broadly indicative of the amount of
variance that would be explained by a particular predictor. The maximum covariance
is σ2

f , since as xi approaches x j , or xi −x j ≈ 0, then k(xi , x j ) ≈σ2
f . A high value for σ2

f
implies that the output shows more variability.

The SqE, also called the radial basis function (RBF) is popular because it is infinitely
differentiable, flexibly integrable, and broadly applicable (Duvenaud 2014). A natural
extension of the squared exponential function is to use different characteristic length
scales for each independent variable – the automatic relevance determination (ARD)
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squared exponential function,

kse,ar d (xi , x j ) =σ2
f exp

(
− 1

2

d∑
m=1

(xi ,m −x j ,m)2

σ2
m

)
, (B.6)

where σm is an element of a d ×1 vector of characteristic length scales, one for each
independent variable. Given our discussion so far about the heterogeneous responses
of building simulation outputs to different variables, the ARD function is attractive.
However, we will see later that it does not, in fact, increase the predictive power
sufficiently to merit the additional d − 1 parameters. The ARD SqE kernel can be
thought of as a product of several SqE kernels. Using the conditions discussed in
Duvenaud (2014), we examine the suitability of the squared exponential functions as
covariance functions. The functions are weakly stationary, or “invariant to translations
in the input space”, since they are functions of only the distance between two query
points, h = xi −x j . Similarly, they are isotropic because of the square around the (xi −
x j ) term (Rasmussen and Williams 2006, chpt. 4). There are several other functions
that meet these requirements, including the Matern kernels

km32(xi , x j ) =σ2
(
1+



3r

σl

)
exp

(
−



3r

σl

)
, (B.7)

km52(xi , x j ) =σ2
(
1+



5r

σl
+



5r 2

σ2
l

)
exp

(
−



5r

σl

)
, (B.8)

which may be called the 3
2 and 5

2 kernels respectively, and where r = |xi −x j |. Kernels
can be periodic,

kper (xi , x j ) =σ2 exp

(
− 2sin2(π|xi −x j |/p)

σ2
l

)
, (B.9)

where p is the period and σl is the same length scale parameter as before; or even
linear

kli n(xi , x j ) =σ2
b +σ2

v (xi −c)(x j −c), (B.10)
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where c is the ‘horizontal offset’ of the posterior distribution of the response surface
and σ2

b is the ‘vertical offset’ of the response surface. The linear kernel is different
for one important reason: it is non-stationary. Recall that a “stationary covariance
function is one that only depends on the relative position of its two inputs, and not on
their absolute location” (Duvenaud 2014). Each kernel has an ARD version. Finally,
kernels may even be combined by multiplication and addition.

B.2.2 Implementation

The implementation of Gaussian Process regression used in this thesis is the function
������ and its associated routines in MATLAB®. We present some important aspects
of the implementation for this thesis.

The function offers a choice of the squared exponential and Matern kernels, and their
ARD versions, though a custom kernel is also permitted. Given that the focus of this
thesis is the application of Gaussian Process regression, we will by and large stick to the
inbuilt options. Sections B.2.1 and 4.4.1.3 discuss the differences between the different
kernel choices. In this thesis we assume that each known data point (i.e., simulation
result) is exact, though that is not necessary for Gaussian Process regression. In fact,
assuming that each data point comes with some uncertainty could form the basis for
alternative future implementations (Section 5.3).

B.2.2.1 Fit Method

The ‘fit method’ option governs how the hyper-parameters of a fit are selected. The
software offers five choices for fit method: no estimation, using the input parameter
values as the final values; exact fitting, the slowest option, using all predictors and
data points; using a subset of the data points or regressands; using a subset of pre-
dictors/regressors; and, fully independent conditional approximation, which is an
improvement on the subset of regressors approximation. Initially, we tried the exact
method, which relies on Maximum Likelihood Estimation (MLE). That is, the function
selects the optimal kernel parameters by maximizing a likelihood function given the
input hyper-parameter vector θ, like in the classical regression techniques discussed
previously (Section 4.3.1). For the optimisation routines, the starting value we usually
assigned to σ f was the standard deviation of the response variable. For the SqE kernel,
the starting characteristic length scale was one of the elements of a d ×1 vector of the
standard deviations of the inputs. This choice severely over-fit the functions to the
training data, and slowed down considerably when the training data set exceeded a
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few hundred points. The subset options sped up the calculations but the gain was not
justified by the significant loss of fit quality, even compared to the over-fitting of the
Maximum Likelihood Estimate (MLE)-based estimation. An interesting analogue to
these issues of over-fitting and unrepresentative sampling is in the choice of the mas-
ter training data set: using just typical weather data for training is severely insufficient
(Sections 4.3.3.2 and 4.4.2).

Using k-fold cross-validation with the ‘no estimate’ option achieved the best predictive
performance over the master testing set (see Section 4.4.1.2). This option makes the
������ function use the hyper-parameters input by the user.

B.2.2.2 Predict Method

This input has five options, more or less aligned with the fit method: exact, block
coordinate descent, subset of data points, subset of predictors, and fully independent
conditional approximation. We picked the ‘exact’ option, which is the most flexible
but also the slowest of the methods.

B.2.2.3 Basis Function

This is an option for on-the-fly basis transformation. If a transformation is requested,
the Gaussian Process (GP) is fitted to transformed data in a new basis space Rp . The
basis function can range from a constant to any custom function. In the software
documentation, the response is described as a linear combination of the basis function
and the latent function

h(x)Tβ+ f (x), (B.11)

where β is a vector of unknown coefficients and f (x) is the zero-mean Gaussian
Process. This equation is equivalent to the universal Kriging model (Christensen
1991). Through trial-and-error, we found that a constant basis transform was enough
(subtracting β), which is equivalent to the simple Kriging model (ibidem).

B.2.2.4 Standardization and Regularization

Together, these two options replicate the z-score step. ‘Standardize’ asks the software
to centre and scale the data, and regularization divides by the given standard deviation.
These are not strictly necessary, but we used the ‘standardize’ step anyway to maintain
robustness to input errors (like not using the z-score of one input).
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B.2.3 Results: SQE Kernel

In this section, we present some additional results from Gaussian Process regression
using the SqE kernel. These results are from the second fitting routine, i.e., using
only typical and recorded weather files for training,. Compare these results to those
presented in Section 4.4.2.2 for the third routine, i.e., Best Fit, where the training
weather files are selected randomly (e.g., Figures 4.13, 4.14, 4.17 and 4.18). We can
see that the approach of using only typical and recorded weather data for training
performs worse than using synthetic data as well. The residuals in the graphs in
this section are higher (e.g., Figure B.5), and the predicted-simulated plots also look
worse (e.g., Figure B.1). Note that the plots in this section are all presented in terms of
z-scores, like Section 4.4.2.2, which is why the quantities are all dimensionless. See
Section 4.4.2.1 for an explanation of the plots presented here.
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Figure B.1 – Case 1, Second Fit – heating. Predictions [left] and residuals [right]. These are
(unit-less) z-scores, not the original data.
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Figure B.2 – Case 1, Second Fit – cooling. Predictions [left] and residuals [right]. These are
z-scores, not the original data.
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Figure B.3 – Case 2, Second Fit – heating. Predictions [left] and residuals [right]. These are
z-scores, not the original data.
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Figure B.4 – Case 2, Second Fit – cooling. Predictions [left] and residuals [right]. These are
z-scores, not the original data.
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Figure B.5 – Case 1, Second Fit – cooling. Prediction interval enclosing simulated values (black
dots) [left]. Ratio of residuals to predictions [right]. These are z-scores, not the original data.
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Figure B.6 – Case 1, Second Fit – cooling. Prediction interval enclosing simulated values (black
dots) [left]. Ratio of residuals to predictions [right]. These are z-scores, not the original data.
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Figure B.7 – Case 2, Second Fit – heating. Prediction interval enclosing simulated values (black
dots) [left]. Ratio of residuals to predictions [right]. These are z-scores, not the original data.
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Figure B.8 – Case 2, Second Fit – cooling. Prediction interval enclosing simulated values (black
dots) [left]. Ratio of residuals to predictions [right]. These are z-scores, not the original data.
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B.2.4 Results: ARD Kernel

Compare the plots presented here to those presented in Sections B.2.3 and 4.4.2.2.
The plots presented here are only for the third routine (Best Fit). The ARD kernel
assigns a different length scale (σl , see Section 4.4.1) for each covariate or input/inde-
pendent variable. The promise of this approach, in assigning differing covariance
characteristics to each independent input variable, is not borne out in our example.
The primary issue is over-fitting: the Gaussian Process regression model is too finely
tuned to the training data. The predicted-simulated plots either show a tendency to
predict the mean (e.g., Figure B.9) or a large spread for the same value on the x-axis
(e.g., Figure B.10).
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Figure B.9 – Case 1, Best Fit, ARD kernel – heating. Neither model performs acceptably. These
are z-scores, not the original data.
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Figure B.10 – Case 1, Best Fit, ARD kernel – cooling. Neither model performs acceptably. These
are z-scores, not the original data.
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Figure B.11 – Case 2, Best Fit, ARD kernel – heating. These are z-scores, not the original data.
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Figure B.12 – Case 2, Best Fit, ARD kernel – cooling. These are z-scores, not the original data.
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Figure B.13 – Case 1, Best Fit, ARD kernel – heating. The prediction intervals do not seem to
become narrower with more data. These are z-scores, not the original data.
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Figure B.14 – Case 1, Best Fit, ARD kernel – cooling. The prediction intervals do not seem to
become narrower with more data. These are z-scores, not the original data.
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Figure B.15 – Case 2, Best Fit, ARD kernel – heating. These are z-scores, not the original data.
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Figure B.16 – Case 2, Best Fit, ARD kernel – cooling. These are z-scores, not the original data.
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B.3. Regression Inputs: Additional Discussion and Concepts

B.3.2 Dependence and Orthogonality

B.3.2.1 Checking Correlation

While most of the correlations seem to correspond to the physical properties of the
input variables, there are a few surprises. For example, it is unsurprising that the
means and medians of most variables are highly correlated. We expect that most of
the physical quantities under consideration come from populations that, while not
necessarily Normal, are at least symmetric about their mean. The solar variables do
not conform to this rule, but in their case we find a strong correlation between the
sum and means of the quantities. The average sunlit percentage of the facade, which
is a reflection both of sunlit hours and self-shading, shows virtually no correlation
with any other solar variable. This makes it a strong candidate for inclusion. There
is correlation across categories as well, for example, that between average TDB and
sum of Global Horizontal Irradiation (GHI). This is understandable from a physical
perspective (sunnier climates are likely to be warmer) , and has been exploited in the
time series methods (Chapter 3) for reconstructing daily solar profiles using only the
daily means of GHI and TDB.
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Figure B.17 – Correlation coefficients for Case 2. The behaviour is similar to that from Case 1
(Figure 4.3). Lighter grey dots indicate positive correlation, while the darker grey denote negative.
The black dots on the diagonal indicate an auto-correlation of 1.
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Figure B.18 – Correlation coefficients for temperature-based inputs, TDB and Dew Point Tem-
perature (TDP). See Table 4.1 for the list of codes. Orange dots indicate positive correlation,
while the blue denote negative. The size of each dot indicates the strength of correlation (larger
dot equals stronger correlation). The black dots on the diagonal indicate correlation of 1.
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B.3.2.2 Principal Component Analysis

Originally proposed by Pearson (1901) but developed in its modern form by Hotelling
(1933), Principal Component Analysis (PCA) is a technique where dimensionality
reduction is achieved by estimating a new orthogonal basis space – the space defined
by the Principal Components (PCs) – where the new basis vectors explain as much of
the variance in the original data as possible. Christensen (1991) prefers to explain PCA
using predictive terminology, i.e., that the Principal Components (PCs) are the Best
Linear Unbiased Predictors (BLUPs) of the original variables. He further describes PCA
in terms of the original problem framed by Hotelling (1933). For PCA to be properly
useful, the number of PCs should be less than the number of original predictor vari-
ables. However, the orthogonality of the PCs is also useful. A completely orthogonal
set of basis vectors is the most efficient way of representing a space.

The PCs are defined sequentially, in decreasing order of variance, and progressively
individually explain less and less of the original variance. See Christensen (1991) for a
derivation of why the first r linear PCs “have the maximum capability to predict [an
original set x] among all sets of r linear combinations of [x] .” Say we are using two
Principal Components (PCs) (R2) to define a subset of the original predictors Rq . Then
the first PC is

t1, j = a1 · x1, j +a2 · x2, j +·· ·+aq, j · xq, j =
q∑

i=1
ai · xi , (B.12)

where t j is the value of the new PCs at some point j = 1, . . . ,n, and a1, a2, . . . , aq are
coefficients of the linear combination of the original variables (also called weights or
loadings).

The second PC is

t2, j = b1 · x1, j +b2 · x2, j +·· ·+bq, j · xq, j =
q∑

i=1
bi · xi , (B.13)

where b1,b2, . . . ,bq is a different set of coefficients from a1, a2, . . . , aq . Subsequent PCs
follow the same general idea. The coefficients of the second PC maximise the variance
explained in the data matrix after the first PC has been subtracted from it.

Christensen (ibidem) warns that the Principal Components (PCs) are subject to the
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vagaries of scale, for two reasons. First, the variance of any individual component
can be changed by multiplying the variable with a constant, e.g., Var(aY ) = a2Var(Y ),
where Y is the variable and a is a constant. Quantities that happen to not have large
absolute variance in the sample will be ignored. The author suggests standardising
the variables, which we do in our analyses by taking z-scores.

Christensen (ibidem) ends his explanation of PCA with two warnings. For one, since
Principal Components (PCs) are based on linear combinations and predictors, they
might miss non-linear structures in the model entirely. In our case we suspect that the
responses are, at best, piecewise linear. Secondly, PCs are calculated from a specific
sample. Depending on the sampling scheme, the variances of different variables
may change from sample to sample. The optimal data reduction, then, relies on a
representative sample. We contend that, mathematical considerations aside, dimen-
sionality should only be reduced if it makes physical sense, so we do not advise using
PCs when their physical meaning is not clear. For example, what would a PC made up
of Window-to-Wall Ratio and Thermal Mass mean?

B.3.3 Scaling Options for Inputs and Outputs

McCullagh and Nelder (1983) say that a good scale or scaling parameter has to “com-
bine constant variance and approximate Normality of errors with additivity of sys-
tematic effects”. In theory any transformation of the form x̂ = f (x) could be carried
out on the original data, where f (·) is some function. Common transforms include a
Probability Density Function (PDF) mapping the original data to some distribution;
domain transforms like Fourier and Laplace; and the power transforms family. A
widely used sub-family of power transforms is the one-parameter Box-Cox family

ŷi =

⎧⎪⎨
⎪⎩

yλ
i −1

λ
if λ �= 0,

ln(yi ) if λ= 0,
(B.14)

where λ is a scaling parameter. Transforms invariably complicate physical interpret-
ation of the model, even if a good enough transformation parameter λ is found, i.e.,
one that gives a Normal distribution.
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B.4 Simulation Details

For the original Energy Plus input files (IDF) used in the thesis, the user is directed to
the EPFL archive : infoscience.epfl.ch1. The IDF files are included as ‘supplementary
documents’ in the archive, like the MATLAB and R code used throughout this thesis.
The link to a GIT repository for the code will also be found there. The Energy Plus files
for the United States Department of Energy (USDOE) buildings are available freely
online.

Table B.3 – The commercial reference buildings from Deru, Field et al. (2011). The codes reflect
the era (first digit) and the building (next two digits). The ‘Codes’ and ‘U-value’ columns are
split according to era: 1 – pre-1980s, 2 – Post-1980s, 3 – New Construction.

Codes
Building Type Name

U-value [W /m2K ]

1 2 3 1 2 3

D101 D201 D301
Office

Large 2.28 2.46 3.5
D102 D202 D302 Medium 2.46 1.76 1.44
D103 D203 D303 Small 1.57 3.45 3.44

D104 D204 D304 Warehouse 1.13 1.95 6.06

D105 D205 D305
Retail

Stand-Alone 1.48 1.69 1.65
D106 D206 D306 Strip-Mall 2.23 2.56 2.01
D109 D209 D309 Supermarket 0.934 1.11 1.07

D107 D207 D307
School

Primary 1.61 1.81 1.43
D108 D208 D308 Secondary 1.66 1.96 1.48

D110 D210 D310
Restaurant

Quick-Service 1.19 4.35 3.32
D111 D211 D311 Full-Service 1.12 4.52 1.12

D112 D212 D312
Health

Hospital 1.55 2.03 1.55
D113 D213 D313 Outpatient 1.53 2.17 1.23

D114 D214 D314
Hotel

Small 2.76 3.51 1.24
D115 D215 D315 Large 1.99 2.51 1.87

D116 D216 D316 Home Apartment 1.66 2.46 3.56

1Search by author name or thesis title.
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Table B.4 – The renovation cases of a single-family home analysed
in this thesis. The ‘old’ codes correspond to the nomenclature in
Chinazzo (2014), while the ‘new’ codes are used in this thesis. We
added two extra variations of the base case, changing the external
walls to get worse U-values than the base case.

Old Code New Code U-value Description

BC00 G000C00 1.70
Base Case– G000C01a 2.65

– G000C02b 2.85

RC01 G000C03 1.09
External wall insulationRC02 G000C04 1.04

RC03 G000C05 0.98

RC04 G000C06 1.08
Internal wall insulationRC05 G000C07 1.04

RC06 G000C08 0.98

RC07 G000C09 1.44
External roof insulationRC08 G000C10 1.41

RC09 G000C11 1.39

RC10 G000C12 1.44
Internal roof insulationRC11 G000C13 1.41

RC12 G000C14 1.39

RC13 G000C15 1.70
Floor insulationRC14 G000C16 1.70

RC15 G000C17 1.70

RC16 G000C18 1.41
Window substitutionRC17 G000C19 1.39

RC18 G000C20 1.32

RC19 G000C21 1.70
Shading Systems

RC20 G000C22 1.70

RC21 G000C23 – Phase-Change Materialc

RC22 G000C24 1.70 Envelope airtightness
a Masonry-only wall
b Brick-only wall
c Phase-Change Materials are not considered in our analyses.
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Appendix B. Regression: Additional Concepts and Details

Figure B.20 – Screenshot of the home in Geneva (case 1), taken from DesignBuilder®.

Figure B.21 – Legend for the Koeppen-Geiger colour scheme, from Peel, Finlayson et al. (2007).
This scheme is used in Figures B.22 to B.24.
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BLR

BOM

DEL

Figure B.22 – Stations in the Indian subcontinent. Each colour represents a Koeppen-Geiger
climate zone, with the scheme corresponding to that of Peel, Finlayson et al. (2007), reproduced
in Figures 2.1 and B.21.
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Appendix B. Regression: Additional Concepts and Details
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B.4. Simulation Details
Ta

b
le

B
.8

–
D

et
ai

ls
of

th
e

cl
im

at
es

/s
ta

ti
on

s
u

se
d

in
th

e
re

gr
es

si
on

ex
am

p
le

s
fr

om
C

h
ap

te
r

4
(c

on
ti

n
u

ed
fr

om
Ta

bl
es

B
.5

to
B

.7
).

C
it

y
N

am
e

St
at

io
n

C
o

d
e

W
M

O
N

o.
L

o
n

gi
tu

d
e

(°
)

L
at

it
u

d
e

(°
)

A
SH

R
A

E
Z

o
n

e
K

o
ep

p
en

-
G

ei
ge

r

S
E

A
T

T
L

E
B

o
ei

n
g

Fi
el

d
A

rp
t.

SE
A

_B
O

E
72

79
35

-1
21

.8
1

37
.3

3
4C

C
sb

Ta
co

m
a

A
rp

t.
SE

A
_T

A
C

72
79

30
-1

22
.4

37
.6

2

In
tl

.A
rp

t.
SF

O
_A

IR
72

49
40

-1
22

.1
2

37
.6

7

3C
C

sb
H

ay
w

ar
d

A
ir

Te
rm

in
al

SF
O

_H
AY

72
49

35
-1

22
.2

2
37

.7
2

S
A

N
O

ak
la

n
d

M
et

ro
.A

rp
t.

SF
O

_O
A

K
72

49
30

-1
47

.8
5

64
.8

2
F

R
A

N
C

IS
C

O
Sa

n
Jo

se
In

tl
.

SF
O

_S
JO

72
49

45
-1

47
.1

64
.6

5
Sa

n
Jo

se
/R

ei
d

/H
il

lv
SF

O
_S

JR
72

49
46

-9
2.

22
46

.8
3

S
A

L
E

M
M

cn
ar

y
F

ie
ld

SL
M

72
69

40
-9

2.
08

46
.7

6
4C

C
sb

T
O

R
O

N
T

O
Pe

ar
so

n
In

tl
.A

rp
t.

T
O

R
71

62
40

-1
11

.9
7

46
.6

6A
D

fb

V
A

N
C

O
U

V
E

R
V

A
N

71
89

20
-8

9.
98

35
.0

7
4C

/6
A

C
fb

W
A

S
H

IN
G

T
O

N
D

u
lle

s
A

rp
t.

W
A

S_
D

U
L

72
40

30
-1

12
.0

8
33

.6
8

3A
/4

A
C

fa
D

C
R

ea
ga

n
A

rp
t.

W
A

S_
R

G
N

72
40

50
-1

11
.9

8
33

.4
5

Z
U

R
IC

H
K

lo
te

n
Z

U
R

_K
LO

06
67

00
-1

06
.5

31
.7

7
4/

5
A

/B
D

fb
A

ff
o

lt
er

n
Z

U
R

_R
E

H
06

66
00

-1
16

.2
1

43
.6

2

261





Bibliography

3TIER (2011). The Risks of Using TMY Data.

al-Abbadi, N (2002). NASA Remote Sensing Validation Data: Saudi Arabia.

Abdi, H and LJ Williams (2010). ‘Principal Component Analysis’. In: Wiley Interdisciplinary

Reviews: Computational Statistics 2.4, pages 433–459.

Acharya, PK (1928). Indian Architecture According to Mānasāra-śilpaśāstra. en. Patna : Indian
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Symbols

nboot Number of bootstrap samples. 265

nsi m Number of simulations of the Seasonal Auto-Regressive Moving Average (SARMA)
model. 265

A

ACF Auto-Correlation Function 108, 114, 115, 265

AIA American Institute of Architects 265

AIC Akaike Information Criteria 97, 107, 109, 265

ANOVA Analysis of Variance 159, 160, 265, 272

AR Auto-Regressive 44, 78, 83–86, 107–110, 213, 214, 265

ARCH Auto-Regressive Conditional Heteroscedasticity 111, 215, 265

ARD automatic relevance determination 170, 172, 225–227, 238, 265

ARIMA Auto-Regressive Integrated Moving Average 107, 214, 265

ARMA Auto-Regressive Moving Average 85, 107–109, 111, 135, 136, 203, 212, 214, 265

ASCE American Society of Civil Engineers 265

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
17, 35, 36, 43, 45, 72, 75, 78, 90, 123, 124, 127, 129, 139, 216, 265

atmospheric pressure Atmospheric pressure at a given station is usually stated in
Pascals (Pa) or hPa (hecto-Pascals) in this document. The atmospheric pressure
is less important for building energy simulation and more for reducing the loss
of information in converting from Relative Humidity (RH) to Humidity Ratio (W)
and vice-versa. If the actual value of pressure at a given location and time was
unavailable, the U.S. Standard Atmosphere was used in the calculations, which
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Glossary

is not ideal. The equations for these conversions come from ASHRAE Handbook:
Fundamentals. 78, 265

ATMPR Atmospheric Pressure 265, see atmospheric pressure

B

BEE Bureau of Energy Efficiency [Govt. of India] 265

BIC Bayesian Information Criteria 97, 107, 109, 265

BIM Building Information Modelling 68, 265

BLUP Best Linear Unbiased Predictor 252, 265

Bootstrap The term bootstrap (sometimes used as a verb bootstrapping) refers to
a range of techniques “used to estimate the standard error, the bias and the
confidence interval of a parameter (or more than one parameter)” (Dodge 2008).
More details can be found in Davison and Hinkley (1997), NIST (2013) and Politis
(1998). 265

BPS Building Performance Simulation 6–8, 19, 49, 66, 67, 69, 96, 265, see building
performance simulation

BREEAM® Building Research Establishment Environmental Assessment Methodo-
logy 48, 265

building envelope Used interchangeably with ‘facade’, it refers to those elements of a
building that form an interface between a building and its environment. This
usually is taken to include the walls, roof, and floor. In our analyses, we often
ignore the floor, not including it, for example, in the factorial experiment of
U-values. 265, 271, see facade

building performance simulation Building Performance Simulation (BPS), or build-
ing simulation for short, is a phrase used to describe a set of tools and methods
to model the flow of heat and mass in and around buildings. The term BPS is
generally taken to encompass thermal, daylight, fluid (air and pollutants), and
acoustics simulation. In the context of this document, BPS will refer to thermal
simulation unless otherwise specified. 25, 49, 93, 265

C

CAD Computer-Aided Design 68, 265

CDD Cooling Degree Day 25, 265

CDF Cumulative Density Function 73, 74, 77, 79, 86, 265, 279

CI Confidence Interval 265, see confidence interval & confidence level
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CIBSE The Chartered Institution of Building Services Engineers 72, 75, 78, 90, 265

confidence interval “A confidence interval [abbreviated as CI] is any interval con-
structed around an estimator that has some probability of containing the true
value of the corresponding parameter of a population” (Davison 2003). The ex-
tents of a confidence interval are governed by the confidence level. For example,
a confidence level of 0.05 corresponds to a CI of 95%. If, from a given sample,
we calculate that the upper and lower limits of a CI for the sample mean x̄ are
k1 and k2 respectively, then it does not follow that the there is a 95% chance
of finding the mean of the population in the given interval. Once a sample
is taken, the true parameter may or may not fall in the given interval. Rather,
if the experiment were repeated several times, and a CI calculated from each
sample ({k3,k4}, . . . {kN−1,kN }), then 95% of the confidence intervals so obtained
will contain the true value of μ. Or, on average, 19/20 confidence intervals with
coverage 0.95 or 95% will contain the true value of the parameter in question. In
practice, confidence intervals are approximate, since they are calculated from
the data at hand. They can be calculated exactly if the underlying distribution is
known or assumed (e.g., Normal). (Davison 2003; Dodge 2008) 7, 8, 23–25, 65, 86,
194, 195, 198, 223, 224, 265, 269, 280, see confidence level, confidence interval,
prediction interval & credible interval

confidence level Analogous to a confidence interval, a confidence level is the prob-
ability of finding the true value of a population parameter in the corresponding
confidence intervals constructed around an estimator from several samples
(Dodge 2008). Commonly used confidence levels include α

2 = 0.025, α
2 = 0.05,

corresponding to confidence intervals of (1−α)×100% = 95% and 90% respect-
ively. 223, 265, see confidence interval

correlation coefficient The correlation coefficient is a measure of the strength of the
relation between two random variables. The dependence can be linear, in which
case it may be evaluated using, e.g. Pearson’s correlation coefficient (Pearson
1901). Pearson’s correlation coefficient is the ratio between the covariance of
two vectors and the product of their individual variances. 149, 265

credible interval The Bayesian analogue to a confidence or prediction interval, it
demarcates a belief about the true value of a quantity. Credible intervals are also
stated in terms of confidence levels. 265, see confidence interval & confidence
level

CSI Climate Severity Index 36, 37, 265

CSV Comma-Separated Values (file) 265

CWEC Canadian Weather for Energy Calculations 75, 265
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D

Degree Day A Degree Day is a calculated quantity that aggregates the variation of
temperature from a given ‘balance point’ with the amount of time for which the
variation occurred. For example, assume that a given building does not need
heating or cooling when the outside temperature is 15oC, i.e. its balance point.
If the outside temperature is 20oC for 6 hours continuously, then the number
of cooling degree days accumulated is ΔT ∗ td ay s = (20−15)∗0.25 = 1.25. Then
if the temperature drops to 10oC for a further 12 hours, the number of heating
degree days accumulated is ΔT ∗ td ay s = (15−10)∗0.5 = 2.50. It is important
to note that, since the effect of thermal storage is ignored, heating and cooling
degree days do not cancel each other out. That is, one would need cooling above
the balance point and heating below it for distinct time steps. 35, 36, 38, 39, 42,
44, 265

DFT Discrete Fourier Transform 210, 265

DHI Diffuse Horizontal Irradiation 96, 121, 265

DNI Direct Normal Irradiation 74, 79, 96, 121, 265

DoE Design of Experiments 265

DRY Design Reference Year 27, 41, 42, 72, 73, 265, 279

DSA Differential Sensitivity Analysis 64, 265

DSY Design Summer Year 40, 41, 76, 80, 81, 265

DWC Design Weather Conditions 90, 265

E

eCDF empirical Cumulative Density Function 74, 123, 125–127, 129, 130, 133, 134,
217, 219, 220, 265

Energy Plus A whole building energy simulation program that engineers, architects,
and researchers use to model energy and water use in buildings (NREL and
USDOE 2015). 17, 91, 160, 209, 254, 265

ESP-r A modelling tool for building performance simulation developed by the Energy
Systems Research Unit at University of Strathclyde, Glasgow (ESRU 2015). 61,
265

ESRU Energy Systems Research Unit 265

EUI Energy Use Intensity 10, 89, 90, 145, 265

F
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facade Spelt as both facade and façade, this term is used interchangeably with the
word building envelope in this work. 265, see building envelope

FFT Fast Fourier Transform 265

Form Factor The ratio between the volume of the building and the area of the (ver-
tical) envelope. 265

FS statistic Finkelstein-Schafer statistic 42, 44, 73, 74, 77, 265

Full Factorial Experiment A full, or complete, factorial experiment is one in which
all the possible levels of a given parameter (factor) are investigated in such a way
as to reveal the main effects and interactions. This is done by combining the
different levels of each factor in every possible way. For our purposes, we use
an additive linear model/relationship between the independent and dependent
variables. Dodge (2008) 265

G

G-value Roughly, the amount of solar radiation that enters through a window glass
(transmittance). G-value is used primarily in Europe, and is analogous to the
Solar Heat Gain Coefficient (SHGC) from the US. SHGC commonly includes the
window frame, sash, etc. 265, see SHGC

GA Genetic Algorithm 70, 265

GARCH Generalised Auto-Regressive Conditional Heteroscedasticity 111, 215, 265

Gaussian Process regression Gaussian Process regression is a supervised kernel-based
machine-learning method. Ebden (2008) states that it is a method where the
“data has to do the talking”, though it is not completely free-form, assuming as it
does that the data is generated “...throughout some domain such that any finite
subset of the range follows a multivariate Gaussian distribution.” Rasmussen
and Williams (2006) define a Gaussian Process as “a collection of random vari-
ables, any finite number of which have a joint Gaussian distribution”. 9, 23–25,
37, 67, 70, 144, 145, 155, 158, 167–169, 171–173, 175, 188, 190–192, 194, 195, 197,
203, 225, 227, 229, 238, 265

GCM Global Climate Model 39, 101, 265

GEV Generalised Extreme Value [distribution] 265

GHG Green House Gas 3, 65, 101, 265, 276

GHI Global Horizontal Irradiation 74, 76, 77, 79, 80, 85, 96, 120–122, 128, 194, 249, 265

GLM Generalised Linear Model 144, 159, 162, 265

GLMM Generalised Linear Mixed-Effects Model 144, 156, 158, 159, 162, 265
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GP Gaussian Process 24, 70, 144, 155, 156, 168, 169, 171, 225, 228, 265, 272, 278, see
Gaussian Process regression

GRIHA® Green Rating for Integrated Habitat Assessment 48, 265

GUI Graphical User Interfaces 68, 84, 265

H

HDD Heating Degree Day 40, 265

HVAC Heating, Ventilation, and Air Conditioning 3, 39, 45, 46, 52, 62, 71–73, 86, 89,
145, 265

I

IBPSA International Building Performance Simulation Association 265

IEA International Energy Agency 265

IGBC Indian Green Building Council 265

Internal Heat Gain Defined in this work as the sum of (usually sensible) heat gains
from people, equipment, and lights. Technically, internal heat gains should
include latent gains, but we do not consider them in the context of this work. 29,
44, 151, 204, 265

IPCC Intergovernmental Panel on Climate Change 101, 265, 276

IQR Inter-Quartile Range 247, 265

ISHRAE Indian Society of Heating, Refrigerating and Air-Conditioning Engineers 265

IWEC International Weather for Energy Calculations 75, 155, 265

K

Kriging Kriging is a technique borrowed from geostatistics, originally developed by G.
Matheron based on the work of D. G. Krige (Kleijnen 2009). In this thesis, we use
the term GP instead of Kriging since that is the exact technique we are working
with. 91, 169, 265

Kruskal-Wallis test This is a non-parametric test which tests if all k samples in a
given set of samples come from the same population (Dodge 2008). The null
hypothesis is that the k treatment medians are identical, against the alternative
that at least one of them is different. This test is a non-parametric version of the
classical one-way Analysis of Variance (ANOVA), since it uses ranks rather than
the numeric data for comparison. 265

KS statistic Kolmogorov-Smirnov statistic 73, 265
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L

LBNL Lawrence Berkeley National Laboratory 265

leakage In the context of the discrete Fourier transforms used in this thesis, leakage
is “the appearance of a non-zero value in the transform at a frequency f because
of the presence of a sinusoid at a different frequency f0 ...” (Bloomfield 2000)
103, 104, 265

LEED® Leadership in Energy and Environmental Design 45, 48, 265

LHS Latin Hypercube Sampling 60, 62, 265

LMM Linear Mixed-Effects Model 159, 161, 165, 188, 189, 265

M

MA Moving Average 78, 86, 108, 109, 214, 265

MAD Median Absolute Deviation 265

Mahalanobis distance The Mahalanobis distance is a multidimensional generalisa-
tion of how many standard deviations away Xi is from the mean of a (empirical)
distribution D. That is, the distance of a given data point Xi from the expec-
ted value of the distribution E(D) =μ, in units of variance σ2

D . The distance is
calculated, in squared units, as

d 2
M (X ,μ) = (X −μ)t ·Σ−1 · (X −μ) , (B.15)

where d 2
M (X ,μ) is the distance of the given data point from a data set, (·)t denotes

transposition, and Σ is the p ×p covariance matrix⎡
⎢⎢⎢⎢⎣

σ2
1 cov(X1, X2) · · · cov(X1, Xp )

σ2
2 · · · cov(X2, Xp )

...
. . .

...
cov(Xp , X1) σ2

p

⎤
⎥⎥⎥⎥⎦ .

The Mahalanobis distance is unitless, scale-invariant, and takes into account
the correlations of a data set. (Dodge 2008; Orlov 2011) 120, 265

MC Monte Carlo 6, 59, 63, 139, 143, 265

MCA Monte Carlo Analysis 8, 64, 195, 265

Mesoscale Meso-scale is a commonly used scale in meteorology implying phenomenon
whose range is more than 2 km but less than 2000 km. Building sites are anywhere
between a few dozen to hundreds of kilometres from an actual measurement
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station, so climatic variations can already arise without even considering the
effects of the urban fabric. Spatial variance in weather data between stations is a
bigger problem in countries where weather data availability is sparse. 91, 265

MLE Maximum Likelihood Estimation 116, 155, 227, 265

MLE Maximum Likelihood Estimate 228, 265

MN METEONORM 71, 82, 83, 91, 155, 265

Monte Carlo simulation Monte Carlo simulation is a well-established method of
accounting for the effects of an input whose exact future values are unknown,
i.e. a (pseudo-) random input. Dodge (2008) defines Monte Carlo simulation
as a “numerical technique for solving mathematical problems... that do not
have analytical solutions... [using] random or pseudo-random numbers”. This is
precisely what we accomplish by creating the synthetic weather files described
in this thesis. 11, 59, 265

MRE Median Relative Error 188–190, 265

MSPE Mean Squared Prediction Error 265

MTM Markov Transition Matrices 83, 265

Multivariate Gaussian Distribution Another term for the Multivariate Normal Dis-
tribution. 265, see Multivariate Normal Distribution

Multivariate Normal Distribution A multivariate Normal distribution, as the name
implies, is a generalisation of the Normal distribution to many dimension, say
n ∈ Rd |n ≤ d . Santner, Williams et al. (2003) define a multivariate Normal or
Gaussian Distribution in terms of an “affine combination of independent and
identically distributed standard normal random variables”. An affine combina-
tion is simply a linear combination in which the coefficients sum to 1. Suppose
Z = {Z1, Z2, . . . , Zr } is a set of independent, identically distributed random vari-
ables, such that Zi ∼ N (0,1). Let L be some m × r real matrix and μ an m ×1
real vector. Then the m ×1 vector of vectors

W = LZ +μ= {W1,W2, . . . ,Wm} (B.16)

is said to have a multivariate normal distribution. The first and second moments
of W are

μ= EW ,Cov(W ) = E
(
(W −μ)(W −μ)T )= LLT . (B.17)

265, 274, see Multivariate Gaussian Distribution

N
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NCDC National Climatic Data Center 72, 209, 221, 265

NLM Normal Linear Model 145, 154, 157–159, 161, 163–166, 188, 189, 265

NREL National Renewable Energy Laboratory 74, 265

NSRDB [United States] National Solar Radiation Database 221, 265

NZEB Net Zero-Energy Building 53, 265

P

PACF Partial Auto-Correlation Function 108, 115, 265

PC Principal Component 44, 76, 149, 252, 253, 265, see Principal Component Analysis

PCA Principal Component Analysis 44, 54, 148, 149, 225, 252, 253, 265, see Principal
Component Analysis

PDF Probability Density Function 58, 59, 111, 123, 125, 126, 253, 265

Phase-Change Material All materials undergo phase transitions at some combina-
tion of temperature and pressure. In the context of building physics though,
phase-changing materials refers to specific materials which have a high heat
of fusion, transition from liquid to solid (and vice-versa) at some specific tem-
perature near room temperature, and preferably do not undergo great changes
of volume. They are usually used to give a building Thermal Mass, and include
water, paraffins, inorganic salt hydrates. 62, 255, 265, 279

PI Prediction Interval 265

PMV Predicted Mean Vote 46, 265

PPD Percentage People Dissatisfied 46, 265

prediction interval An interval analogous to the variability interval, but this time on
a predicted observation (i.e., at some new query point). Prediction intervals are
also stated in terms of confidence levels. 161, 167, 172–174, 178, 179, 182, 183,
223–225, 234–237, 243, 244, 265, see confidence interval & confidence level

Principal Component Analysis Principal Component Analysis is a mathematical trans-
formation of a multidimensional data space which allows the reduction of vari-
ables needed to describe a space. The original variables are combined linearly
into new variables called Principal Components. “The first principal component
is required to have the largest possible variance... The second component is
computed under the constraint of being orthogonal to the first component and
to have the next largest possible variance” (Abdi and Williams 2010), and so on.
So long as the data set is joint normally distributed, each of these components
is orthogonal to the others. The outcome of this transformation is a new set
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of variables which are linear combinations of the old ones. Each of these new
variables has a corresponding eigenvalue and ‘cumulative explained variance’,
which are used to pick the principal components that should be retained. Not
all of the principal components need to be kept so a low-dimensional picture of
the original dataset can be obtained. The concept was first proposed by Pearson
(1901). In this work, we use the MATLAB implementation ��� (The MathWorks,
Inc. 2015). 76, 149, 265

PSD Power Spectral Density 103, 106, 210, 212, 265

PV PhotoVoltaic 8, 265

R

R-value The R-value of a building component, or thermal resistance, is the reciprocal
of U-value. Usually expressed in m2 −K /W . 64, 265, 280, see U-value

RBF radial basis function 225, 265

RCM Regional Climate Model 39, 40, 101, 265

RCP Representative Concentration Pathway 97, 126, 132, 265, 276, see Representative
Concentration Pathway

RE Relative Error 265

Regression Analysis Regression analysis is a method used to obtain a mathematical
relationship between two or more quantities. The aim is to be able to estimate
one (dependent) variable as a function of another (independent) variable, or
several others (Dodge 2008). Regression involves fitting a curve“through a set of
points using some goodness-of-fit criteria" (Weisstein 2015). 69, 265

Representative Concentration Pathway According to the synthesis of the Intergov-
ernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report (IPCC
2014b), “...anthropogenic GHG emissions are mainly driven by population size,
economic activity, lifestyle, energy use, land use patterns, technology and cli-
mate policy. The Representative Concentration Pathways (RCPs), which are
used for making projections based on these factors, describe four different 21st
century pathways of Green House Gas (GHG) emissions and atmospheric con-
centrations, air pollutant emissions and land use. The RCPs include a stringent
mitigation scenario (RCP2.6), two intermediate scenarios (RCP4.5 and RCP6.0)
and one scenario with very high GHG emissions (RCP8.5). Scenarios without
additional efforts to constrain emissions (‘baseline scenarios’) lead to pathways
ranging between RCP 6.0 and RCP 8.5 (Figure SPM.5a [in the text]). RCP2.6 is
representative of a scenario that aims to keep global warming likely below 2°C
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above pre-industrial temperatures. The RCPs are consistent with the wide range
of scenarios in the literature as assessed by WG III [Working Group 3].” 15, 96,
265

RH Relative Humidity 76, 78, 96, 100, 103, 104, 106, 111, 112, 115, 125, 126, 128, 140,
141, 194, 216, 217, 219, 251, 265

RMSE Root Mean Square Error 155, 170, 171, 188–190, 265

Roof Ratio The ratio between the area of the roof and the area of the (vertical) envel-
ope. 265

S

SA Sensitivity Analysis 60, 62, 63, 65, 67, 69, 144, 265

SAR Seasonal Auto-Regressive 135, 265

SARMA Seasonal Auto-Regressive Moving Average 97, 108, 109, 111–113, 116, 118,
124, 136, 139, 265, 267

SD Standard Deviation 265

SE Standard Error 265

Self-shading For our purposes, self-shading is defined as the shading of the trans-
parent elements of a building’s envelope (glazing) by elements of the envelope
itself. So, for example, shading from neighbouring buildings is not counted as
‘self’-shading. 265

SHGC Solar Heat Gain Coefficient 44, 265, 271, see G-value

ShRY Short Reference Year 78, 265

SIA Swiss Society of Engineers and Architects 6, 265

SMA Seasonal Moving Average 110, 135, 265

SQ Sensitivity Quantification 66, 265, see SA

SqE squared exponential function 171, 172, 225–227, 229, 265

SRC Standardised Regression Coefficients 62, 265

SSA Stochastic Sensitivity Analysis 64, 265

standard deviation A measure of dispersion, it is the positive square root of the vari-
ance. The standard deviation of a parameter estimated from several sample is
known as its standard error (Dodge 2008). Unless otherwise specified, standard
deviation implies the dispersion of a raw value in this thesis. We almost always
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talk about sample standard deviations, and the question of knowing the popula-
tion standard deviation is somewhat theoretical. The sample standard deviation
is

S =
√∑N

i=1(xi − x̄)2

n −1
, (B.18)

where n is the number of observations, x̄ is the sample mean, and i is the
index of observations. The denominator could also be n, used when estimating
the standard deviation from large samples. By default, the standard deviation
calculations in this thesis will use n −1. 73, 157, 167, 169, 170, 173, 265, 280, see
standard error & variance

standard error The standard error is the estimated standard deviation of some para-
meter estimated from a sample. From each sample, we can calculate some
statistic like the mean. If more samples are taken from the same population,
then the mean calculated from each sample will be different. An estimate of
the standard deviation of the population of these means would be the standard
error of the mean. 265, see standard deviation

stationarity The simplest definition of a stationary process, say a time series gt or a
process g (t), is one that has a constant mean E(gt ) = μ, and a stable variance
Var(gt ) =σ. A stable variance implies that Cov(gt , gt+k ) =σ(k), i.e., the covari-
ance (function) σ(k) depends only on time lag k and not on absolute time t .
This is a weak, or second-order, definition of stationarity, but sufficient for most
applications. An interesting aside is that if g (t) is generated by an underlying
GP, then fulfilment of the weak stationarity conditions implies strict stationarity
(Christensen 1991). We will use these processes in chapter 4, assuming that the
energy consumption of a building is well modelled by a GP. 98, 210, 265

surface energy balance The surface energy balance consists of three terms and a
residual: Q −H −E −B = 0. Q is the net radiation, dependent on latitude and
cloudiness; E is the turbulent flux of latent heat, i.e. the energy used for changing
the phase of moisture present at the location; H is the turbulent flux of sensible
heat, i.e. the energy used to increase the temperature of the surrounding air;
and, B is the flux that is absorbed by the ground in addition to the errors in the
other three terms, i.e. the residual. 33, 265

SuRY Summer Reference Year 41, 265

SVM Support Vector Machine algorithms are a type of supervised kernel-based machine-
learning algorithms, similar to GP. They are also used for machine learning tasks
such as classification and regression. 67, 77, 265
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SVM Support Vector Machine 67, 265, see SVM

synoptic “Pertaining to or forming a synopsis; furnishing a general view of some
subject; spec. depicting or dealing with weather conditions over a large area at
the same point in time.” (Oxford English Dictionary 2016) 79, 265

T

TDB Dry Bulb Temperature 41, 42, 74, 76–78, 80, 84, 85, 95, 98, 100, 102–105, 110–112,
114, 115, 118, 120–122, 125, 126, 128, 132, 140, 149, 150, 159, 194, 197, 211, 217,
219, 249, 250, 265

TDP Dew Point Temperature 74, 76, 80, 84, 85, 96, 149, 250, 265

Thermal Mass The thermal mass, or thermal density, of a material refers to its ability
to store heat. In the context of buildings, this provides a thermal “inertia” that
dampens the fluctuations of temperature that would be otherwise induced by
changing weather conditions. Most materials have some thermal mass, though
the ones that are ordinarily considered in building simulation include concrete,
wood (especially furniture), earth, and Phase-Change Materials. See Schröder
and Gawron (1981) for a discussion of latent heat storage, including Phase-
Change Materials. 53, 151, 253, 265, 275

TMY Typical Meteorological Year 27, 42, 71, 73–81, 89, 92, 96, 97, 113, 120–127, 131,
132, 136–138, 141, 155, 265, 279

TMY2 Typical Meteorological Year - Version 2 265

TMY3 Typical Meteorological Year - Version 3 71, 92, 265

TPCY Typical Principal Component Year 76, 77, 265

TRY Test Reference Year 40, 41, 72, 74, 76, 78, 80, 265, 279

TXT Text (file) 265

typical year Typical year files exist in various avatars, known variously as Test Refer-
ence Year (TRY), Typical Meteorological Year (TMY), standard years, example
years, Design Reference Year (DRY), etc. A typical year is a whole year of hourly
(or finer) weather data compiled for simulating building performance or re-
newable energy production. Typical year datasets are not designed to contain
extremes, but instead to capture seasonal variability and the characteristics of
the local climate (3TIER 2011). Common algorithms to select typical years in-
clude the TMY algorithm from Marion and Urban (1995) and the TRY algorithm
from Levermore and Parkinson (2006). The former selects months based on the
closeness of their Cumulative Density Function (CDF) to the CDF of the overall
data. The latter selects months based on the closeness of their mean to the mean
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for that month throughout the period of record. 23, 40, 42, 72, 74, 80, 81, 93, 96,
127, 135, 137, 141, 145, 150, 156, 158, 209, 265

U

U-value The U-value of a building component, or overall thermal transmittance, is a
simplified material thermal property that is considered to be fixed and isotropic
in building simulation. It is composed of the conductivity and thickness of each
solid material, and the combined radiative and convective thermal resistance
of the innermost surface, outermost surface, and any cavities. U-value is the
reciprocal of R-value or resistance. Both U- and R-Values are used in lumped-
heat-capacity models, where the internal temperature gradient, brought about
by the ‘internal’ resistance, is neglected (Holman 1972). Usually expressed in
W /m2 −K . 28, 44, 45, 51, 53, 58, 59, 64, 154, 157, 197, 265, 276, see R-value

U.S. Standard Atmosphere Owen (2013) defines the U.S. standard atmosphere, at
sea level, as having a temperature of 15°C and barometric pressure of 101.325
kPa. 265, 267

UA Uncertainty Analysis 55, 56, 60, 63, 67, 69, 265

UHI Urban Heat Island 39, 137, 265

UQ Uncertainty Quantification 60, 63, 66, 265, see UA

USDOE United States Department of Energy 146, 153, 161, 163, 164, 172, 188–190,
254, 265

USGBC United States Green Building Council 265

V

variability interval An interval over which the raw values of a sample vary. We dis-
tinguish between confidence intervals, which are constructed for a statistical
quantity, and variability intervals, which indicate the range of values of a raw
quantity. 55, 143, 194, 195, 198, 223, 265

variance Variance is the square of standard deviation. 86, 99, 265, see standard
deviation

W

W Humidity Ratio 96, 265

Window-to-Floor Ratio The ratio between the area of windows (transparent ele-
ments) and the area of the floor or footprint of the building. 149, 265

Window-to-Wall Ratio The ratio between the area of windows (transparent elements)
and the area of the wall. 149, 197, 253, 265
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WMO World Meteorological Organization 9, 265

X

XMY eXtreme Meteorological Year 76, 265
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