1,095 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Experiences of aiding autobiographical memory Using the SenseCam

    Get PDF
    Human memory is a dynamic system that makes accessible certain memories of events based on a hierarchy of information, arguably driven by personal significance. Not all events are remembered, but those that are tend to be more psychologically relevant. In contrast, lifelogging is the process of automatically recording aspects of one's life in digital form without loss of information. In this article we share our experiences in designing computer-based solutions to assist people review their visual lifelogs and address this contrast. The technical basis for our work is automatically segmenting visual lifelogs into events, allowing event similarity and event importance to be computed, ideas that are motivated by cognitive science considerations of how human memory works and can be assisted. Our work has been based on visual lifelogs gathered by dozens of people, some of them with collections spanning multiple years. In this review article we summarize a series of studies that have led to the development of a browser that is based on human memory systems and discuss the inherent tension in storing large amounts of data but making the most relevant material the most accessible

    Experiences of aiding autobiographical memory using the sensecam

    Get PDF
    Human memory is a dynamic system that makes accessible certain memories of events based on a hierarchy of information, arguably driven by personal significance. Not all events are remembered, but those that are tend to be more psychologically relevant. In contrast, lifelogging is the process of automatically recording aspects of one's life in digital form without loss of information. In this article we share our experiences in designing computer-based solutions to assist people review their visual lifelogs and address this contrast. The technical basis for our work is automatically segmenting visual lifelogs into events, allowing event similarity and event importance to be computed, ideas that are motivated by cognitive science considerations of how human memory works and can be assisted. Our work has been based on visual lifelogs gathered by dozens of people, some of them with collections spanning multiple years. In this review article we summarize a series of studies that have led to the development of a browser that is based on human memory systems and discuss the inherent tension in storing large amounts of data but making the most relevant material the most accessible

    Considering documents in lifelog information retrieval

    Get PDF
    Lifelogging is a research topic that is receiving increasing attention and although lifelog research has progressed in recent years, the concept of what represents a document in lifelog retrieval has not yet been sufficiently explored. Hence, the generation of multimodal lifelog documents is a fundamental concept that must be addressed. In this paper, I introduce my general perspective on generating documents in lifelogging and reflect on learnings from collecting multimodal lifelog data from a number of participants in a study on lifelog data organization. In addition, the main motivation be- hind document generation is proposed and the challenges faced while collecting data and generating documents are discussed in detail. Finally, a process for organizing the documents in lifelog data retrieval is proposed, which I intend to follow in my PhD research

    LifeLogging: personal big data

    Get PDF
    We have recently observed a convergence of technologies to foster the emergence of lifelogging as a mainstream activity. Computer storage has become significantly cheaper, and advancements in sensing technology allows for the efficient sensing of personal activities, locations and the environment. This is best seen in the growing popularity of the quantified self movement, in which life activities are tracked using wearable sensors in the hope of better understanding human performance in a variety of tasks. This review aims to provide a comprehensive summary of lifelogging, to cover its research history, current technologies, and applications. Thus far, most of the lifelogging research has focused predominantly on visual lifelogging in order to capture life details of life activities, hence we maintain this focus in this review. However, we also reflect on the challenges lifelogging poses to an information retrieval scientist. This review is a suitable reference for those seeking a information retrieval scientist’s perspective on lifelogging and the quantified self

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Lifelog access modelling using MemoryMesh

    Get PDF
    As of very recently, we have observed a convergence of technologies that have led to the emergence of lifelogging as a technology for personal data application. Lifelogging will become ubiquitous in the near future, not just for memory enhancement and health management, but also in various other domains. While there are many devices available for gathering massive lifelogging data, there are still challenges to modelling large volume of multi-modal lifelog data. In the thesis, we explore and address the problem of how to model lifelog in order to make personal lifelogs more accessible to users from the perspective of collection, organization and visualization. In order to subdivide our research targets, we designed and followed the following steps to solve the problem: 1. Lifelog activity recognition. We use multiple sensor data to analyse various daily life activities. Data ranges from accelerometer data collected by mobile phones to images captured by wearable cameras. We propose a semantic, density-based algorithm to cope with concept selection issues for lifelogging sensory data. 2. Visual discovery of lifelog images. Most of the lifelog information we takeeveryday is in a form of images, so images contain significant information about our lives. Here we conduct some experiments on visual content analysis of lifelog images, which includes both image contents and image meta data. 3. Linkage analysis of lifelogs. By exploring linkage analysis of lifelog data, we can connect all lifelog images using linkage models into a concept called the MemoryMesh. The thesis includes experimental evaluations using real-life data collected from multiple users and shows the performance of our algorithms in detecting semantics of daily-life concepts and their effectiveness in activity recognition and lifelog retrieval

    Learning and mining from personal digital archives

    Get PDF
    Given the explosion of new sensing technologies, data storage has become significantly cheaper and consequently, people increasingly rely on wearable devices to create personal digital archives. Lifelogging is the act of recording aspects of life in digital format for a variety of purposes such as aiding human memory, analysing human lifestyle and diet monitoring. In this dissertation we are concerned with Visual Lifelogging, a form of lifelogging based on the passive capture of photographs by a wearable camera. Cameras, such as Microsoft's SenseCam can record up to 4,000 images per day as well as logging data from several incorporated sensors. Considering the volume, complexity and heterogeneous nature of such data collections, it is a signifcant challenge to interpret and extract knowledge for the practical use of lifeloggers and others. In this dissertation, time series analysis methods have been used to identify and extract useful information from temporal lifelogging images data, without benefit of prior knowledge. We focus, in particular, on three fundamental topics: noise reduction, structure and characterization of the raw data; the detection of multi-scale patterns; and the mining of important, previously unknown repeated patterns in the time series of lifelog image data. Firstly, we show that Detrended Fluctuation Analysis (DFA) highlights the feature of very high correlation in lifelogging image collections. Secondly, we show that study of equal-time Cross-Correlation Matrix demonstrates atypical or non-stationary characteristics in these images. Next, noise reduction in the Cross-Correlation Matrix is addressed by Random Matrix Theory (RMT) before Wavelet multiscaling is used to characterize the `most important' or `unusual' events through analysis of the associated dynamics of the eigenspectrum. A motif discovery technique is explored for detection of recurring and recognizable episodes of an individual's image data. Finally, we apply these motif discovery techniques to two known lifelog data collections, All I Have Seen (AIHS) and NTCIR-12 Lifelog, in order to examine multivariate recurrent patterns of multiple-lifelogging users
    corecore