
Lifelog Access Modelling using
MemoryMesh

Lijuan Zhou

Master of Science in Computer Science (Hons.)

A dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. Cathal Gurrin

January, 2016



Declaration
I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely my

own work, and that I have exercised reasonable care to ensure that the work is

original, and does not to the best of my knowledge breach any law of copyright,

and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed: (Lijuan Zhou)

Student ID: 11212053

Date:



Table of Contents

List of Tables 10

List of Figures 13

List of Nomenclature 16

Abstract 18

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Significance of This Research . . . . . . . . . . . . . . . . . . . . 7

1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Contribution and Novelty . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Acknowledgements 1

2 Overview of Lifelogging: Trends and Methods 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Five Ws of Lifelog . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



2.2.1 What is Lifelogging? . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Why Lifelog? . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 HoW We Can Log Life? . . . . . . . . . . . . . . . . . . . 29

2.2.4 Who Can Benefit From Lifelogs . . . . . . . . . . . . . . . 36

2.2.5 When to Do Lifelog . . . . . . . . . . . . . . . . . . . . . 36

2.3 Previous Uses of Lifelog . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Lifelog for Activity Recognition . . . . . . . . . . . . . . . 38

2.3.2 Lifelog for Social Behaviour Analysis . . . . . . . . . . . . 38

2.3.3 Lifelog for Memory Enhancement . . . . . . . . . . . . . . 39

2.4 Challenges in Lifelog Research . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Privacy Consideration and Subject Protection in Lifelog . . 40

2.4.2 Big Data Storage and Processing . . . . . . . . . . . . . . . 41

2.5 Lifelog Retrieval Systems . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Linked Archives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1 Lifelog MemoryMesh and Node Modelling . . . . . . . . . 44

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Research Methodology 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Study Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Collection Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Data Collection Rules and Protocols . . . . . . . . . . . . . . . . . 52

3.4.1 Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Collected Data Formats . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Data Analytic For Semantic Enrichment . . . . . . . . . . . . . . . 57

4



3.5.1 MemLog Overview . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2 MemLog Deployment Architecture . . . . . . . . . . . . . 61

3.5.3 Image Semantic Concept Annotation . . . . . . . . . . . . 64

3.6 ShareDay: Inter People Event Linkage Annotation . . . . . . . . . 65

3.7 ZhiWo: Physical Activity Annotation . . . . . . . . . . . . . . . . . 69

3.8 Development Technologies Employed . . . . . . . . . . . . . . . . 70

3.9 Data Analytics Approaches . . . . . . . . . . . . . . . . . . . . . . 71

3.9.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 71

3.9.2 Feature Representation and Fusion . . . . . . . . . . . . . . 71

3.9.3 Feature Scaling . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10.1 Precision and Recall . . . . . . . . . . . . . . . . . . . . . 74

3.10.2 F Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10.3 AP and MAP . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.10.4 NDCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.10.5 Significance Test . . . . . . . . . . . . . . . . . . . . . . . 78

3.10.6 Cross-fold Validation . . . . . . . . . . . . . . . . . . . . . 78

3.11 Data Representation and Visualization . . . . . . . . . . . . . . . . 79

3.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Contextual Discovery of Lifelog with Sensor Data 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Synopsis of Physical Activity . . . . . . . . . . . . . . . . . . . . . 87

4.3 Adaptive Hierarchical Physical Activity Recognition . . . . . . . . 90

4.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Concept of Adaptiveness . . . . . . . . . . . . . . . . . . . 91

5



4.3.3 Feature Extraction for Physical Activity Recognition . . . . 93

4.3.4 Accelerometer Enhanced Physical Activity Recognition . . 96

4.3.5 Physical Activity Recognition Based on Feature Fusion . . . 98

4.4 Personal Lifestyle Recognition . . . . . . . . . . . . . . . . . . . . 99

4.5 Experimental Set-up and Variables . . . . . . . . . . . . . . . . . . 101

4.6 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6.1 User Annotation of Personal Activities . . . . . . . . . . . 107

4.6.2 Activity Recognition . . . . . . . . . . . . . . . . . . . . . 109

4.6.3 Lifestyle of Activeness . . . . . . . . . . . . . . . . . . . . 111

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Visual Discovery from Lifelogs 114

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Visual Features for Lifelog Visual Content Analysis . . . . . . . . . 117

5.2.1 Bag of Visual Words . . . . . . . . . . . . . . . . . . . . . 119

5.2.2 Colour Histograms . . . . . . . . . . . . . . . . . . . . . . 120

5.2.3 Colour SIFT . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.4 SURF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.5 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Face Detection using Haar Cascades . . . . . . . . . . . . . 123

5.3.2 Social Activeness . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.3 Object Detection in Lifelog Data . . . . . . . . . . . . . . . 124

5.4 Multi-modal Event Segmentation . . . . . . . . . . . . . . . . . . . 127

5.4.1 Visual Event Segmentation . . . . . . . . . . . . . . . . . . 128

5.4.2 Context Features for Event Segmentation . . . . . . . . . . 128

6



5.4.3 Conceptual Features for Event Segmentation . . . . . . . . 129

5.5 Experimental Set-up and Variables . . . . . . . . . . . . . . . . . . 130

5.5.1 System Design and Implementation . . . . . . . . . . . . . 130

5.5.2 Result of Event Segmentation Approaches . . . . . . . . . . 131

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Lifelog Linkage Analysis with Event Modelling and Retrieval 134

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1.1 Fundamental Principles for Building Memory Mapping . . . 137

6.1.2 Guidance Consideration for Linkage Analysis . . . . . . . . 139

6.2 Event Linkage Modelling . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.1 Context Based Linkage Analysis . . . . . . . . . . . . . . . 143

6.2.2 Face Based Linkage Generation . . . . . . . . . . . . . . . 143

6.2.3 Concept Based Linkage Generation . . . . . . . . . . . . . 144

6.2.4 Lifelog Retrieval Using WWW Retrieval Methods . . . . . 144

6.3 Personal MemoryMesh and Lifelog Retrieval . . . . . . . . . . . . 150

6.3.1 Review of MemoryMesh Rationale . . . . . . . . . . . . . 151

6.3.2 MemoryMesh Construction Through Lifelog Linkage Anal-

ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.3 Lifelog Retrieval in MemoryMesh . . . . . . . . . . . . . . 153

6.4 Experimental Set-up and Variables . . . . . . . . . . . . . . . . . . 154

6.4.1 Deep Learning for Concepts . . . . . . . . . . . . . . . . . 154

6.4.2 Significance Test for Different Lifeloggers . . . . . . . . . 155

6.4.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5.1 Evaluation Based on Reminiscence . . . . . . . . . . . . . 158

7



6.5.2 Evaluation Based on Event Retrieval . . . . . . . . . . . . . 160

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusion and Summary 163

7.1 Research Objectives Re-visited . . . . . . . . . . . . . . . . . . . . 164

7.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8 List of Publications 169

Bibliography 172

Appendices 196

A Ethical Forms 197

B MemLog System Retrieval Interface and Implementation 199

C Survey on User Consent to Wearable Sensors 206

8



List of Tables

Table 1.1 Lifelog visual concepts for annotation . . . . . . . . . . . . . 20

Table 3.1 Sensor data types for collection . . . . . . . . . . . . . . . . 49

Table 3.2 Autographer data capture setting . . . . . . . . . . . . . . . . 49

Table 3.3 Available sensors equipped on a smartphone . . . . . . . . . 51

Table 3.4 Basis B1 Band Collected Data . . . . . . . . . . . . . . . . . 53

Table 3.5 Battery life-time . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3.6 Social activeness detection result . . . . . . . . . . . . . . . . 56

Table 3.7 Attribution of datasets . . . . . . . . . . . . . . . . . . . . . 57

Table 4.1 Elementary physical activity abbreviation and labels . . . . . 89

Table 4.2 Combined target activities in this lifelogging research . . . . . 89

Table 4.3 Activity feature extraction methods and their brief explanation 96

Table 4.4 MET levels for different activities . . . . . . . . . . . . . . . 100

Table 4.5 Initial user study evaluation of ShareDay . . . . . . . . . . . 102

Table 4.6 Activity recognition accuracy . . . . . . . . . . . . . . . . . 104

Table 4.7 Potential error rate for activity recognition . . . . . . . . . . . 108

Table 4.8 Evaluation of activity recognition . . . . . . . . . . . . . . . 110

Table 4.9 Combined Activity Recognition . . . . . . . . . . . . . . . . 111

Table 4.10 Evaluation of activeness recognition . . . . . . . . . . . . . . 112

9



Table 5.1 Social activeness detection result . . . . . . . . . . . . . . . . 124

Table 5.2 Conceptual event segmentation result . . . . . . . . . . . . . 131

Table 6.1 Face detection for lifeloggers and evaluation . . . . . . . . . 144

Table 6.2 Top 10 lifelog concepts for lifelogger 1 and 3 . . . . . . . . . 155

Table 6.3 Evaluation of different features for linkage analysis . . . . . . 159

Table 6.4 Evaluation of lifelog retrieval . . . . . . . . . . . . . . . . . 161

10



List of Figures

Figure 1.1 The vertical hierarchy of MemoryMesh structure . . . . . . . 11

Figure 1.2 Touch screen of the DCU SenseCam browser by Doherty et.

al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 1.3 Overview of data flow in lifelogging systems . . . . . . . . . 22

Figure 2.1 What is Lifelog . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.2 Sensor devices, a small collection . . . . . . . . . . . . . . . 30

Figure 2.3 Web 2.0 blog example . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.4 SenseCam and sample pictures it takes . . . . . . . . . . . . 32

Figure 2.5 Autographer . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.6 BodyMedia . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.7 Shimmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.1 The MemLog system architecture . . . . . . . . . . . . . . . 48

Figure 3.2 The MemLog system interface for the main annotation page . 58

Figure 3.3 Overview of the data flow in the MemLog system . . . . . . 62

Figure 3.4 The Model-View-Controller design of the MemLog system . 63

Figure 3.5 Overview of the ShareDay system . . . . . . . . . . . . . . 66

Figure 3.6 ShareDay system overview: family view . . . . . . . . . . . 67

Figure 3.7 Snapshots of ZhiWo PDA tagging system . . . . . . . . . . . 69

11



Figure 3.8 HMM structure for event modelling . . . . . . . . . . . . . 73

Figure 3.9 Relation between precision and recall . . . . . . . . . . . . . 76

Figure 3.10 Personal daily activity pie-chart visualization . . . . . . . . . 80

Figure 3.11 Event viewing in the MemLog system . . . . . . . . . . . . 82

Figure 4.1 Overview of Chapter 4 . . . . . . . . . . . . . . . . . . . . 84

Figure 4.2 The process of physical activity recognition . . . . . . . . . 87

Figure 4.3 Basis Band data distribution . . . . . . . . . . . . . . . . . . 92

Figure 4.4 Raw SenseCam sensor data for activity recognition . . . . . 92

Figure 4.5 Activity recognition results for each activity. . . . . . . . . . 97

Figure 4.6 Accelerometer recorded signal for activity recognition . . . . 98

Figure 5.1 Overview of work in chapter 5 . . . . . . . . . . . . . . . . 115

Figure 5.2 Process of lifelog visual discovery . . . . . . . . . . . . . . 118

Figure 5.3 RANSAC Approach Illustration . . . . . . . . . . . . . . . 122

Figure 5.4 Face Detection Result . . . . . . . . . . . . . . . . . . . . . 124

Figure 5.5 Computer detection from lifelog data using SURF . . . . . . 127

Figure 5.6 Event segmentation results . . . . . . . . . . . . . . . . . . 132

Figure 6.1 Hierarchy of work in chapter ?? . . . . . . . . . . . . . . . 135

Figure 6.2 Mind mapping of linked events in one’s daily life . . . . . . 139

Figure 6.3 Concepts distribution for lifelogger 1 . . . . . . . . . . . . . 154

Figure 6.4 Student’s t-test . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure B.1 Appendix figure MemLog ER diagram . . . . . . . . . . . . 200

Figure B.2 Appendix figure MemLog login . . . . . . . . . . . . . . . . 201

Figure B.3 Appendix figure MemLog thumbnail . . . . . . . . . . . . . 202

Figure B.4 Appendix figure MemLog annotation . . . . . . . . . . . . . 203

12



Figure B.5 Appendix figure MemLog activity . . . . . . . . . . . . . . 204

Figure B.6 Memory node linkage representation . . . . . . . . . . . . . 205

13



Nomenclature

ADL Activities of Daily Living, page 86

AmI Ambient Intelligence, page 6

ANNs Artificial Neural Networks, page 90

BLPF Butterworth Low-Pass Filter, page 94

BoF Bag of Features, page 119

CH Colour Histogram, page 120

CI Confidence Interval, page 78

ES Event Segmentation, page 101

EST Event Segmentation Theory, page 116

GPS Global Positioning System, page 12

GSR Galvanic Skin Response, page 91

HITS Hyper-link-Induced Topic Search, page 145

ICMR ACM International Conference on Multimedia Retrieval, page 86

ICR Image Category Recognition, page 121

14



IDF Inverse Document Frequency, page 145

IR Information Retrieval, page 2

JSON JavaScript Object Notation, page 52

LES Lifelog Event Segmentation, page 12

ME Metabolic Equivalent, page 100

MET Metabolic Equivalent of Task, page 100

ML Machine Learning, page 97

NDCG Normalized Discounted Cumulative Gain, page 77

OD Object Detection, page 122

OpenCV Open Source Computer Vision Library, page 125

PAR Physical Activity Recognition, page 11

PAR Physical Activity Recognition, page 87

PC Pervasive Computing, page 5

PDA Physical Daily Activity, page 11

PIR Passive Infra-red Light, page 48

PL Personal Lifestyle, page 99

QS Quantified Self, page 3

RANSAC RANdom SAmple Consensus, page 122

RF Random Forest, page 109

15



SIFT Scale-Invariant Feature Transform, page 120

SURF Speeded Up Robust Features, page 121

TF Term Frequency, page 145

UC Ubiquitous Computing, page 6

WWW World Wide Web, page 5

SVM Support Vector Model, page 95

16



Abstract
Lijuan Zhou

Lifelog Access Modelling using MemoryMesh

As of very recently, we have observed a convergence of technologies that have
led to the emergence of lifelogging as a technology for personal data application.
Lifelogging will become ubiquitous in the near future, not just for memory en-
hancement and health management, but also in various other domains. While there
are many devices available for gathering massive lifelogging data, there are still
challenges to modelling large volume of multi-modal lifelog data. In the thesis, we
explore and address the problem of how to model lifelog in order to make personal
lifelogs more accessible to users from the perspective of collection, organization
and visualization. In order to subdivide our research targets, we designed and fol-
lowed the following steps to solve the problem:

1. Lifelog activity recognition. We use multiple sensor data to analyse various
daily life activities. Data ranges from accelerometer data collected by mobile
phones to images captured by wearable cameras. We propose a semantic,
density-based algorithm to cope with concept selection issues for lifelogging
sensory data.

2. Visual discovery of lifelog images. Most of the lifelog information we take
everyday is in a form of images, so images contain significant information
about our lives. Here we conduct some experiments on visual content analysis
of lifelog images, which includes both image contents and image meta data.

3. Linkage analysis of lifelogs. By exploring linkage analysis of lifelog data,
we can connect all lifelog images using linkage models into a concept called
the MemoryMesh.

The thesis includes experimental evaluations using real-life data collected from
multiple users and shows the performance of our algorithms in detecting seman-
tics of daily-life concepts and their effectiveness in activity recognition and lifelog
retrieval.
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Chapter 1

Introduction

1.1 Motivation

As sensor technology is becoming ubiquitous, more people are beginning to utilise

inexpensive sensors for recording aspects of their lives and activities. Sensor tech-

nology has become prevalent in recent years as the cost of wireless communication

decreases and a new generation of digital devices is becoming available to every-

one. Meanwhile sensors as data collection tools are also attracting ever-increasing

research interest in both academia and industry. Sensors can be applied to many

domains such as personal health monitoring [118, 21, 126], military applications

[106], home activity detection and security surveillance [120], and social group

interaction [63].

Such increasing ubiquity of low-cost sensors allows for the creation of digital

lifelogs [74], or detailed digital footprints of our on-line and real-world activities.

A lifelog is a digital archive of people’s life experience in a format of images,

biometric readings, computer interaction records, emails etc. Since lifelogging is

a method by which people may chronicle their existence digitally, a lifelog can be

1



said to “represent a comprehensive ‘black box’ of human life activities and may

offer the potential to mine or infer knowledge about how we live our lives” [74].

Indeed, for many individuals, a lifelog already exists in the form of documents,

photos, videos, location logs, purchase histories, electronic health records and so

on. In this research, the focus is on the type of lifelogs that are made possible by

the new generation of personal sensing devices. This large volume of data gathered

by the sensor devices brings big potential for new user centric applications while

at the same time, bringing challenges in modelling large amounts of multi-modal

lifelog data from the sensors.

In this work, the focus is on how to organize large-volume, rich-format lifelog

data. For some types of lifelog data management is not a big challenge due to

data homogeneity. For example, some people log their footsteps using a pedome-

ter, while others may log their movements using FitBit or similar activity loggers.

However, recent advances in customer technologies (e.g. Narrative Clip, the Au-

tographer and even Google Glass) are bringing the challenges of managing large

volumes of lifelog data to the fore, and these challenges provide the motivation of

this research: to explore the potential for new lifelog application technologies that

make the lifelog manageable, useful and more than just a big-data archive. These

new developments of logging and communication technologies heralds a new era

for lifelogging, by expanding this research from human memory reminiscence to

human health management, self surveillance, entertainment and more. In recent

years we have become used to fast and effective Information Retrieval, but lifel-

ogging poses new challenges. This thesis explores the first retrieval models for

accessing lifelog data.

According to Gurrin et. al. “A lifelog is the actual data gathered. It could reside

on a personal hard drive, in the cloud or in some portable storage device. The

2



lifelog could be as simple as a collection of photos, or could become as large and

complex as a lifetime of wearable sensory output (for example, GPS location logs

or accelerometer activity traces)” [74] and “Lifelogging is the process of passively

gathering, processing, and reflecting on life experience data collected by a variety of

sensors, and is carried out by an individual, the lifelogger. The life experience data

is mostly based on wearable sensors which directly sense activities of the person,

though sometimes data from environmental sensors or other informational sensors

can be incorporated into the process” [74]. In this work, a lifelog is defined as

a long-term archive of consecutively collected passive sensor data and image data

that can be chronologically organized using digital data processing techniques and

applicable in people’s life in different scenarios including searching and browsing.

It is within this understanding of the concept of a lifelog that this research is framed.

Lifelogs can be captured in many ways with a wide range of sensors, most

specifically wearable sensors. Wearable sensors include FitBit, BodyMedia, GPS

locator, Looxie, SenseCam, mobile phones and biomedical wearable textile etc.

All these devices act as sensors that can record one or more aspects of our life

experience both individually and socially. Since there exists a variety of such sen-

sors, we can consider that the task of gathering lifelog data is sufficiently supported

by existing technologies. Nevertheless, the challenging task for enhancing human

memories using lifelogging is not to simply gather data, but to mine it, organise it

and generally to support the potential for positive captology [131].

There are many international academic and industrial conferences and activities

that are concerned with this new research area, including the SenseCam Conference,

Pervasive Health, UbiComp, Quantified Self and so on. All these conferences and

meet-ups are attracting increasing levels of attention from the research community

and society as a whole. Aside from academics, Quantified Self — Self Knowledge
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Through Numbers is a collaboration between users and tool makers who share an

interest in self knowledge through self-tracking [149]. QSers exchange information

about their personal projects, the tools they use, tips they have gleaned, and lessons

they have learned. QSers blog, meet face to face, and collaborate on-line. This

conference has also branched in many cities around the world like Dublin, Lon-

don, Sydney, Beijing, Silicon Valley, Portland, Berlin, Athens, Guangzhou, Seattle,

Davis, Milan, Louisville, Rotterdam and so on. Most of the research team here

at Dublin City University that supported me during this research are active partic-

ipants in the Dublin QS group and we attend the regular meet-ups, where we get

to understand the real-world lifelogging needs of other participants. There are also

many companies active in the space. Most recently, Narrative 1, a Swedish start-up

has had major success on kickstarter2 with their lifelogging camera up to the date

when this thesis is being written. Arduino, which provides open-source electronic

prototyping platforms, allow to create interactive electronic objects. One award-

winning development recently has been a lifelogging camera built on the Arduino

platform.

Although lifelogging is beginning to ‘take off’, the potential is not yet com-

pletely realised. Sellen and Whittaker have criticised a perceived lack of direction

in lifelog research and have gone so far as defining an initial five Rs of memory ac-

cess [142] as potential benefits for human memory of engaging in lifelogging. The

five Rs are Recollecting, Reminiscing, Retrieving, Reflecting and Remembering in-

tentions. Each of the five Rs defines a different reason why people access their

memories or their personal life archives. Specifically in this research, we are trying

to develop new approaches to lifelog data organisation that support technology me-

diated Recollecting and Reminiscing of past life experience. Recollecting is con-
1http://memoto.com/
2https://www.kickstarter.com/
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cerned with reliving past experiences for various reasons. For example, we may

want to recall who was at an event, or where we parked the car. Reminiscing, which

is a form of recollecting, is about reliving past experiences for emotional or senti-

mental reasons. In this research, we are applying Internet web information retrieval

technologies into the domain of lifelogging to explore the potential of exploiting

links between lifelog data to enhance the effectiveness of lifelog data access.

In addition, Bell and Gemmel stated in their book Total Recall [15], that the

era of lifelogs have “the potential to revolutionise our healthcare, productivity and

social lives, it will change what it means to be human.” There are many different

potential application areas from personalised healthcare to enhanced learning; how-

ever, we have only begun to address the research challenges. This is like the early

days of WWW search; back then there were many millions of WWW pages, but no

suitable search engine. The “Google” of lifelogging is still non-existent. Indeed,

for this research, the inspiration is drawn from the early days of the WWW; when

novel algorithms catapulted a small digital library project in Stanford from ‘back-

rub’ built on Lego hardware literally to become the search giant Google that we

know today. However this thesis is not trying to be the “Google” of lifelogging, but

focuses on some pioneering research on effective means of lifelog retrieval. The

research contained in this thesis is therefore to be viewed as a first-step in a long

process of developing lifelog data organisation and retrieval systems and not as a

solved problem. This thesis therefore investigates the application of novel search

and managing technologies, based on WWW linkage algorithms, and explores the

possibilities to apply them to the new domain of lifelogging. We divide the process

of research based on the state-of-the-art lifelog and information retrieval technolo-

gies and research outputs.

Pervasive computing researchers focus on lifelog research using pervasive tech-
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nology to collect data to enhance lifelog data modelling and data visualization.

While pervasive computing is a new paradigm, it is also described as Ubiquitous

Computing, Ambient Intelligence, or ‘everyware’. Although these terms are all

slightly different, they all indicate the trend of how the supporting technologies and

knowledge required to supporting lifelogging is receiving increasing attention.

As with any research involving user data, one of the big concerns with lifel-

ogging lies in the privacy issues. Privacy issues like many other issues within the

research scope of lifelogging, has triggered a significant amount of research dis-

cussion. O’Hara et. al. proposed that lifelog data acquisition, storage and retrieval

can be undiscriminating and therefore possibly raises issues about privacy, identity

and empowerment-related issues[123]. Other researchers also proposes different

solutions to privacy issues. Ye et. al. proposed to use Face Blurring to filter out

face information in all lifelog images [171]. Gedik et. al. proposed some archi-

tecture and algorithms to prevent lifelog location privacy from leakage [69]. One

of the thorough research on lifelog privacy issues is by Jacquemard in his Ph.D.

thesis about ethics of lifelog technology [82]. While in this thesis, we do not intent

to elucidate whether lifelog privacy issues are positive or negative. This research

concentrates on exploration of the potential of searching through lifelogs and leaves

others to consider the privacy, social and ethical issues inherent in lifelogging.

Before moving onto the main body of research presented in this thesis, we go

through the significance of this research and propose our research questions based

on our hypotheses.
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1.2 Significance of This Research

Internet of Things (IoT) [163, 169] is a scenario in which objects, animals or people

are provided with sensors and the ability to transfer data over a network without re-

quiring human-to-human or human-to-computer interaction [169]. IoT is a promis-

ing technology due to the benefits it offers in a modern world of complexity. It has

evolved from the convergence of wireless technologies, micro-electromechanical

systems and the Internet [169]. IoT technology is getting trendy in solving prob-

lems like in-home healthcare services [125], collaborative warehousing environ-

ment [136], product delivery service [86]. Also how to implement IoT has received

significant research attention of late [110, 156]. We notice a trend in which ubiqui-

tous computing is becoming a part of everyday life.

Lifelogging is one branch of pervasive computing that is accelerating in use and

application recently. With the recent availability of wearable sensing technologies

and an acceptance of personal data gathering and on-line social sharing (e.g, on

Facebook timeline), lifelogging has become a mainstream research topic. We now

have the ability to gather and store large volumes of personal data using an inexpen-

sive wearable devices and smart phones. Despite massive availability of lifelogging

tools, how to collect, organize and represent lifelog data is still under much discus-

sion [31, 174]. New technologies especially various sensors in data capture, storage

and computing will undoubtedly bring about a revolution in the way how humans

interact with technology in the forthcoming years. One will be able to record as

much of life experience as people wish, in previously unimaginable detail. Every-

thing we see, hear, food we eat, fun we have, health of our body, all can be captured

digitally. This is likely to revolutionise many aspects of our lives, for example, our

healthcare, our learning and our productivity. As Bell and Gemmell state:“the com-
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ing world of Total Recall will be as dramatic a change ... as the digital age ... It will

change the way we work and learn. It will unleash our creativity and improve our

health. It will change our intimate relationships of loved ones both living and dead.

It will, I believe, change what it means to be human ... I can look back over my

activity logs and notice where I have spent too much time on low-priority projects,

or took too little time at a key place, or burned up a surprising number of hours

reading Internet news ... lifelog (if properly organised) will reveal the meaning of

your life.”[15]. This is the focus of this research and forms the basis for the signifi-

cance of this research. We define new access models for lifelog applications based

on applying techniques from WWW search. We also proved as shown in the con-

clusion of this research that the proposed new retrieval models are applicable and

feasible in lifelog research and show promise as an avenue for further research and

optimisation.

Three converging technology streams have brought us to the point at which we

can consider a world of ubiquitous lifelogging, they are data capture, storage and

organization technologies [15]. Firstly, data capture technologies, such as smart

phones are already ubiquitous and we can already see a new generation of lifel-

ogging devices coming to market, such as location tracking, personal and environ-

mental sensing devices and more specifically, life activity specific recording devices

such as SenseCam, Narrative or Google Glass.

Secondly, data storage technologies have progressed to such a point that it is

now possible to capture 5,000 photos per day (using a Vicon Revue wearable cam-

era - a refinement of the original SenseCam) and store 30 years worth on a 1 TB

hard drive (at the low resolution of some wearable lifelogging devices, such as the

Microsoft SenseCam, that will be discussed later). Looking into the future, one

will be able to store all of the life experience in a continual stream of digital video
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while data storage technologies further improve in the coming years. The advent of

cloud-based data storage technology also provides excellent opportunities for stor-

ing vast life archives of video, audio, photos and various sensor streams to build a

rich lifelog.

The third and final technology stream is the data organisation and retrieval soft-

ware, which is the focus of this thesis and is an enabling technology in this area. Ini-

tial organization and access tools for lifelog have been based on a browsing method-

ology. A browsing tool for lifelog [56] is only the very beginning of what is possible

and when faced with large lifelog archives, a browsing tool has been shown to be

inefficient to allow a user to either locate or gain benefit from their content [175].

It is our conjecture, and the basis of this research, that lifelogging needs a Googli-

sation phase that moves the lifelog access state-of-the-art away from browsing and

towards search. This Googlisation phase should include more event recognition and

association from a psychological perspective, and search life experience through an

associative module, like associative human memory. The application of search for

lifelogging provides a first approach to retrieve and recollect from lifelogs.

Given the multimedia nature of lifelog content, the natural next technological

step is the generation of search engines that operate on manual textual annotations

of lifelog content; it would allow for text based searching through the archive. How-

ever manual annotation is unlikely to be scalable. A lifelog will form a multimedia-

rich, densely linked and constantly changing hypermedia archive[25], where the ac-

cess methods are not simply text queries in a desktop environment. The queries can

often be non-textual (e.g. context queries based on interactions with people or loca-

tions, or visible objects) statements of an immediate information need, or the user

will access the content by following associative links (as one does with one’s own

content-addressed or associative memory). This research addresses these issues by
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integrating information retrieval knowledge with inputs from cognitive psychology

to develop appropriate knowledge representation technologies based on the 5Rs if

lifelog access[142].

5 Rs can be originated from Cognitive Science. In the Stanford Encyclopae-

dia of Philosophy: cognitive science is the interdisciplinary study of mind and in-

telligence, embracing philosophy, psychology, artificial intelligence, neuroscience,

linguistics, and anthropology. Its intellectual origins are in the mid 1950s when

researchers in several fields began to develop theories of mind based on complex

representations and computational procedures. Its organizational origins are in the

mid 1970s when the Cognitive Science Society was formed and the journal Cogni-

tive Science began. Since then, more than seventy universities in North America,

Europe, Asia, and Australia have established cognitive science programs, and many

others have instituted courses in cognitive science.3

Even we have theory bases like 5 Rs to support that lifelog research needs to

combine computing science and psychological cognitive science, we have enough

evidence to see the possibility of applying cognitive science to our lifelog research,

which leads us to the main contribution of this research, theMemoryMesh, a rich

multimedia archive of life experience data that is interlinked as human episodic

memory is considered to be interlinked. The potential benefit in terms of enhanced

access and retrieval of applying the WWW linkage algorithms over the linked Mem-

oryMesh therefore is the basis of this research.

3http://plato.stanford.edu/entries/cognitive-science/
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Figure 1.1: The vertical hierarchy of MemoryMesh structure

1.3 Hypothesis

In order to solve the problem of organising lifelog and making it retrievable for

personal usage, we focus on three key challenges: physical activity recognition,

lifelog event segmentation, and lifelog retrieval. Figure 1.1 shows the hierarchy

of how these are related together. The bottom of this hierarchy is the raw and

original lifelog data that is gathered from multiple devices. The second to bottom

layer is the activities layer. This layer explains the process of extracting human

activities from the raw original lifelog sensor data. The third layer is the event

layer. This layer contains more contextual information and explains the process of

making lifelog data more meaningful by segmentation into events and enhancement

with contextual information. The top layer is the integration layer. With all events

composing the MemoryMesh of life experience, a lifelogger would be able to access

to lifelog via the MemoryMesh to provide enhanced search and retrieval. This

suggests one initial solution to the problem of accessibility of lifelog for real-world

users.

As stated, there are three key challenges in this research:

• Physical Activity Recognition

Accelerometer data has been widely used for physical activity recognition
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using user-annotation through supervised machine learning techniques [11].

Ellis et. al. evaluated all modern popular supervised machine learning meth-

ods and proposed that random forest is the best for accelerometer and GPS

data based physical activity recognition method [64]. However, only 5 of 15

activities are effectively recognized due to lack of sufficient features, with 34

features used in study. In this study, we present a supervised machine learn-

ing method of transportation mode prediction from GPS and accelerometer

data using 64 features which were also applied in the previous work of Ellis

[64]. It is computationally efficient when compared with Casale’s 20 features

[35] and Ellis’s 34 features [64].

• Lifelog Event Segmentation

For text based event detection or segmentation, Naughton and Carthy et. al

proposed a sentence level event segmentation approach to classify events

from unstructured text [119]. Event extraction from video has also been

widely explored [116]. But there has been limited work that has been done in

the area of lifelog event segmentation. The reasons for challenges or limita-

tions lie in ethical privacy issues, data collection and data sharing and forth-

coming data processing technologies. Doherty et. al. has developed an initial

approach to conduct event segmentation in lifelog research [58, 52]. This

approach is applied in the SenseCam browser [56] as shown in Figure 1.2.

These provide the basic approaches to event segmentation that are enhanced

in this work and described later in this thesis, and the construction of linkage

based MemoryMesh.

• Lifelog Retrieval

Information retrieval has been playing an essential role for over 50 years since
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Figure 1.2: Touch screen of the DCU SenseCam browser by Doherty et. al.

information management research began to be explored in the 1950s [139].

In the defined research pathway of this research, as shown in Figure 1.1, a

lifelog is composed of retrievable units called events. Like WWW, these units

can be linked or associated as event episodes that can be linked as a model

of associated memory analogically. Therefore, how we retrieve lifelog data

is one of the main research topics in this thesis. There is plenty of research

about concept based data indexing for information retrieval [77]. However,

there is still limited work on lifelog retrieval. Aizawa et. al. proposed to use

lifelog content and context for efficient retrieval [4]. But this method heavily

relies on human input of context information. Jones et. al. proposed that

lifelog access can be ad hoc search that allows ad hoc queries which users

partially remember, either to inform themselves of some forgotten details or

to share with others [87]. While in this thesis, we build linkage graphs for

lifelog retrieval based on retrievable episodes like events and apply tailored

13



algorithms to enhance retrieval performance.

The available suite of low-cost sensors today makes it possible to automati-

cally capture life experience in rich detail and subsequently to identify events or

moments from real-world activities and allocate importance factor to each event.

While the prior work on event segmentation and life experience contributes to life

event browsing [58] by stating that lifelog access can be divided into a three-layer

structure of data organization, this thesis proposes that lifelog browsing model can

be defined as a four-layer structure of lifelog browsing, as shown in Figure 1.1. The

top of the structure is a linked graph based MemoryMesh. Figure 1.1 demonstrates

the primitive representation of data hierarchy of the MemoryMesh system. The

key of the methods of constructing MemoryMesh lies on activity recognition, event

segmentation, event linkage analysis, MemoryMesh construction and retrieval.

So we make the following hypotheses for this research based on this research

pathway:

1. Lifelogs can be captured by multiple sensors and segmented into different

events. Event segmentation techniques in use today can be enhanced by

the introduction of life activity detection into the event segmentation pro-

cess (layer 2 and 3 in Figure 1.1). Activities are units of events while events

are the units of personal lifelog, which means multi-layer hierarchical event

segmentation is preferable to single layer ones, which were the focus of all

previous lifelog event segmentation efforts.

2. Lifelogs can be constructed as a MemoryMesh (the top layer in Figure 1.1), of

linked rich hypermedia, and algorithms that derive from web search, can help

to search, organize and recommend events from lifelog archives. Events (as
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in hypothesis 1) can be taken as units of lifelog for organization and linkage

analysis based access.

1.4 Research Questions

One of the major differences between lifelog data and traditional multimedia data

is that lifelog can have additional metadata collected by additional sensors. This

makes lifelog data more explorable than traditional multimedia data. Based on the

listed two hypotheses above and its attribute of meta data, we propose the following

research questions:

1. Can we extract daily life activities from raw lifelog data?

2. If we can recognize activities from the raw lifelog data, can these activities

facilitate human life event segmentation from lifelogs? If so, how efficient

and accurate can this be?

3. If human lifelogs can be constructed as different units of daily events, in what

way these daily events can be effectively linked together and constructed as

human memory mesh? We define it as MemoryMesh in this research.

4. How can we support information access using the MemoryMesh?

In the thesis, we explore and address the problems of how to model lifelogs

in order to make personal lifelogs more accessible to users from the perspective

of collection, organization and visualization. In order to subdivide our research

targets, we designed the following 3 steps:

1. Lifelog activity recognition. We use multiple sensor data to analyse various

daily life activities. This includes data from accelerometer collected by smart
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phones and images captured by wearable cameras. We propose a semantic,

density-based algorithm to cope with concept selection issues. This will be

described in Chapter 4 as lifelog sensor discovery.

2. Visual discovery of lifelog images. Most of the input information we take

everyday is present to us as visual images. Images contain significant infor-

mation about our lives. Here we conduct some experiments on visual content

analysis of lifelog images, which includes both image content and image meta

data. Image data provide rich information to lifelog event segmentation. This

will be shown in Chapter 5 as lifelog visual discovery.

3. Linkage analysis of lifelog. By exploring linkage analysis of lifelog data,

we can connect all lifelog images using linkage models into a concept called

MemoryMesh. This will be presented in Chapter ?? as lifelog linkage analy-

sis.

The thesis includes experimental evaluations after the experimental settings and

results in each chapter. All experiments use real-life data from multiple users. The

performance of our approaches to detecting semantics of daily-life concepts and

their efficacy in activity recognition and lifelog retrieval is also included in each

chapter.

1.5 Terminology

In order to describe the methods that we use to solve the research questions pre-

sented in the previous section, we elucidate some terminology here.

• Lifelogging
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Lifelogging is the process of capturing, processing, and organizing and dis-

covering lifelog data that are gathered by physical sensors and software both

passively and subjectively, including self-reported information, indoors and

outdoors [51, 177]. Although Bush’s Memex refers to what is now lifelog-

ging in 1940s, the first commonly accepted work in lifelogging was by Steve

Mann in late 1980s and early 1990s when he started to wear an apparatus

(wearable camera) over head. The device has been evolving ever since to-

wards the appearance of ordinary eyeglasses.

• Lifelogger

A lifelogger is an individual that conducts lifelogging using wearable sensors.

In this thesis, we use lifeloggers to generally refer to people who collect data

for lifelog.

• Lifelog

Lifelog is the actual data that lifeloggers collect for lifelogging. It is actually

existent data. The lifelog data can include sensory data like 3 dimensional

accelerometer reading, orientation, GPS traces, bluetooth, heart rate capture

etc. Multimedia data can be images, video and audio. All these provide

lifelog hypermedia data analysis supports.

• Lifelogging System

Different from lifelog software that focus on one component of lifelogging, a

lifelogging system is a holistic software that covers all aspects of lifelogging,

including data collection modules, data storage modules, data analysis and

interactive user interfaces. These systems may be designed for different pur-

poses. SenseCam, Autographer and their associated data processing systems
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[56] are designed to assist human memory. FitBit is an example of health in-

formation lifelog that tracks human activities. It helps illustrate life activities

using charts and tables to facilitate user to record and review their moving

details4. SenseSeer is a lifelogging system using a mobile phone as a data

collection tool and a set-up server for data storage and processing [133]. The

digital library of lifelogging data and its supportive system is called surrogate

memory [74]. We also developed a number of prototype lifelogging systems

for our research purposes [175, 176, 178]. The details about implementation

of these systems are mainly covered in the Chapter 3.

• Lifelog Concepts

According to The New Oxford Dictionary of English, Concept is “an idea or

thought what corresponds to some distinct entities or class of entities, or to

its essential features, or determines the application of a term, and thus plays a

part in the use of reason or language”. While this definition of regular concept

focuses on idea and thought of entities, Lifelog Concepts are more limited to

concepts that are relevant to personal live experience. These concepts can

be names of people, descriptive content of happenings and objects in lifelog-

gers’ life experiences and so forth. Different lifeloggers have different lifelog

concepts. These lifelog concepts construct patterns of people’s life and the

weights of lifelog concepts can imply the importance of that concept in the

life of the lifelogger. In this thesis, lifelog concepts are very diverse and range

from categories such as people (e.g. male, female), nature (e.g. lake, beach),

weather (e.g. rainbow, fog) to even sentiments (e.g. unpleasant, euphoric),

see Table 1.1. Lifelog concepts are the concepts that appear or occur in the

life of a lifelogger. These concepts include not only physical objects but also
4http://fitbit.com/
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natural scene and emotional states. These concepts are essential to construct-

ing lifelog linkages and personal archive or human digital memories [72].

Therefore, lifelog concepts are one of the elements that assist in building up

relations between lifelog events and they can also be employed to generate

lifelog search query sets.

Lifelog concepts compose parts of the ontology of lifelog MemoryMesh.

These concepts inherently indicate the relationships between different ac-

tivities and events of lifeloggers. Therefore these concepts can be applied

in formalisation of digital life representation. However, in this research, we

focus more on the representation of lifelog concepts and their attributes in

linking lifelog events. The formalisation of concept representation and their

mutual relations is one of the future work out-of-the-scope of the research

presented here.

• Activity

Lifelog activity is a vague concept in many lifelogging research scenarios,

especially when it is mentioned at the same time as event, they are often used

interchangeable. But in this thesis, we define lifelog activities to be phys-

ical activities that individuals behave in their lives like walking, standing,

stepping-down, driving etc. While events reflect a logical sequential combi-

nation of activities and do not have one word or two words of naming, rather

events can have detailed descriptions with time information, contextual infor-

mation etc. The naming of activities is also included in the set of concepts in

lifelogging, therefore the activity set is a subset of the concept set.

• Lifelog Event

There is still no final definition of event in lifelog research. Zacks and Tver-
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natural elements
time of day day, night, sunrise/sunset
celestial bodies sun, moon, stars

weather
clear sky, overcast sky, cloudy sky, rainbow, lightning,
fog/mist, snow/ice

combustion fire, smoke, fireworks
lighting effects shadow, reflection, silhouette, lens effects
Environment

scenery
mountain/hill, desert, coast, landscape, cityscape,
forest/park, graffiti

water underwater, sea/ocean, lake, river/stream, other
flora tree, plant, flower, grass
fauna cat, dog, horse, fish, bird, insect, spider, amphibian/reptile, rodent
People
age baby, child, teenager, adult, elderly
gender male, female
quantity none, zero, one, two, three, small group, large group
relationship family/friends, co-workers, strangers
Image elements
quality in focus, selective focus, out of focus, motion blur, noisy/blocky
style picture-in-picture, circular warp, gray-color, overlay
view portrait, close-up/macro, indoor, outdoor
type city life, party life, home life, sports/recreation, food/drink

impression
active, euphoric, happy, funny, unpleasant, inactive,
melancholic, scary, calm

Human elements

transportation bicycle/motorcycle, car/van/pick-up, truck/bus, rail vehicle,
water vehicle, air vehicle

Table 1.1: ImageCLEF5 - Image Retrieval in CLEF ImageCLEF, refer to the con-
cepts for the visual concept annotation
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sky defined events as “a segment of time at a given location that is conceived

by an observer to have a beginning and an end” [173]. While by Hard et.

al.’s definition [76], events should have a hierarchical structure, and should

be composed of sub-events. According to Qiu et. al., an event is a natural

unit for human memory [133] and there should be no major context change

within one event. We consider lifelog events as life episodes that are chrono-

logically consecutive and psychologically memorable that can be consistently

segmented by lifelog owners.

• MemoryMesh

MemoryMesh is a dynamically organized and hyper-linked lifelog that can

retrieve elements (lifelog nodes) according to relations between them. Differ-

ent from conventional lifelog archives, a MemoryMesh attaches more mean-

ing concepts in lifelog data by extracting and analysing the data itself and

forming a linked hypermedia mesh. It is a digital analogous system of hu-

man memory using associative human memory mechanism modelling. The

contribution of this research is to build a lifelog model for effectively and ef-

ficiently utilizing a a large volume of lifelog data to enhance personal digital

memory, which is named MemoryMesh in this thesis.

• Lifelog Linkage

In MemoryMesh, all information is connected by some association or rela-

tions which represent the cue of linking one lifelog node (event) to another.

The linkage model is one of the main research tasks in this research and it is

covered in Chapter ??.
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Figure 1.3: Overview of data flow in lifelogging systems, which shows the differ-
ence between traditional lifelog research systems and the MemoryMesh.

1.6 Contribution and Novelty

The goal of the research is to explore human activities and events in people’s lifel-

ogs. It also includes the potential influence of linkage models to support human

access to their lifelog by applying linkage analysis to enhance retrieval effective-

ness. These components are all main aspects of building future lifelogging systems

as shown in Figure 1.3. Figure 1.3 illustrates the data flow of MemoryMesh lifelog

modelling systems. The contribution of the research in this thesis can be sum-

marised as:

1. New event model

This thesis firstly proposes to apply activity recognition to human lifelog

event segmentation to create a new approach to event segmentation;

2. Linked MemoryMesh as a hypermedia or a linked graph
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This thesis firstly proposes the concept of MemoryMesh for lifelog research.

It also implies application of the new model of event segmentation to facilitate

linkage analysis and development of MemoryMesh;

3. Retrieval model with linkage for MemoryMesh search

While the most previous work on lifelog retrieval is mainly database search or

text ranking without event analysis, this work is an exploration of combining

text analysis and WWW search methods in lifelog research;

1.7 Thesis Organisation

The thesis is focused on exploring personal lifelogging and provides initial results

of a linkage analysis-based approach to making a lifelog more accessible in terms

of data collection, organisation and visualisation. In this chapter, we introduced

the motivation and the significance of this research. We also proposed our research

questions and summarised our research plan. The remainder of this thesis is organ-

ised as follows:

Chapter 2 overviews the research on lifelogging from both academic and indus-

try perspectives.

Chapter 3 introduces in detail all research methodologies that are applied over

this research, from text mining techniques to image processing approaches, from

information retrieval modelling to evaluation matrices.

Chapter 4 presents an overview of contextual discovery of lifelog using multiple

sensory data. These data include accelerometer readings, GPS, WiFi, bluetooth

that are collected via ubiquitous sensors. The long-term user study allows us to

use devices and technology to record data passively instead of generating content

objectively.
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Chapter 5 describes visual content analysis for event segmentation using im-

age processing techniques, which is the pre-process for lifelog linkage analysis in

Chapter ??.

Chapter ?? provides an overview of linkage analysis for lifelog about extracting

semantic relations between event entities in lifelog. We extract relations between

lifelog episodes, or events.

Chapter 7 summarises this thesis. Firstly, it reviews the research questions and

concludes all solutions proposed in this research for the research questions. The

contribution and future work of this study is also discussed. We also mention any

limitations of this research in Chapter 7.

Chapter 8 lists all the publications the author has published in related areas.
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Chapter 2

Overview of Lifelogging: Trends and

Methods

2.1 Introduction

Personal lifelogging has been researched at the same time as the emergence and

increasing ubiquity of digital technologies especially sensor technology. However,

for the most part, information retrieval research has focused on data generated by

humans, as opposed to data that is generated about humans. Although concepts like

digital life, lifelogging, digital wellness, modern biometrics etc. are being discussed

more frequently these days, the effective usage of sensors in human experience

retrospection and reminiscence is still under discussion and is primarily laboratory

bound. Few researchers are actually taking a holistic view of lifelog research. In this

chapter, we represent our work on exploration and exploitation of WWW retrieval

models in personal lifelogging, especially applying web linkage models in lifelog

research. We introduce related work in the most relevant aspects: wearable sensors

for lifelogging; contextual sensing for lifelogging; event segmentation and retrieval
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Figure 2.1: What is Lifelog

based on lifelog linkage analysis; life activity recognition and recording; use cases

and evaluation of lifelog systems.

Although sensor technology has been researched for a long period of time,

lifelog is a relatively new concept and consequently, there has not yet been a sig-

nificant volume of related research. However, the following sections overview the

state-of-the-art research in the area of lifelogging.

2.2 Five Ws of Lifelog

Lifelogging is not just a trend in collaborative research with inputs from computer

science, health science, psychology, physics, chemistry etc, but also affects many

aspects of our life by changing the interaction approach to our living environment

and cognition. We explore lifelogging through five main aspects: What, Why, hoW,

Who and When.

2.2.1 What is Lifelogging?

From a perspective of either scientific research or industry application, there is still

no agreed definition of lifelogging in terms of consideration of usage or meaning.

Even so, in all definitions of lifelogging, it includes the ongoing sensing of totality
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of waking life experience and combines as much information as we can gather about

our daily lives.

Recent practice of the MyLifeBits project of Bell & Gemmell combined active

and passive logging by using wearable cameras and capturing real-world informa-

tion accesses [15, 70]. Gurrin et. al. asserted that lifelog is the actual data that

people gather either passively or subjectively for recording their lives. It could re-

side in a personal hard drive, in the cloud or in some portable storage device. The

lifelog could be as simple as a collection of photos, or could become as large and

complex as a lifetime of wearable sensory data (for example, GPS location logs or

accelerometer activity readings) [74]. Lifelogging, for the purposes of this work,

is considered to be the passive capture of daily activities using environmental and

wearable sensors. The data that comprises a lifelog can take various forms, such

as body sensor readings like body temperature, heart rate, galvanic skin response

etc., image/pictorial recordings, which is also called visual lifelogging [161]. The

potential to capture such a large data collection presents many challenges, includ-

ing data analysis, visualisation and motivating users of different ages, backgrounds

and technology experience to lifelog that are represented as large archives of rich

multiple media and sensor content.

2.2.2 Why Lifelog?

When mentioning the purposes of why we lifelog, there could be countless reasons

and unsurprisingly, many of which would not be understood yet. Wang et. al. found

that lifelog could be applied to remembrance or re-finding previous events from the

past [161]. Recent results from a pilot study have examined both sedentary and

movement behaviour of a population of users. Early results from this research have

shown considerable potential in the field of movement behaviour research where the
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duration of journeys to/from work or school, as a specific targeted activity, can be

accurately estimated just from SenseCam images [92]. Also individually speaking,

lifelog gives people a valuable insight into the life of lifeloggers. They can put their

life experience into print as one would with photo albums of important events, such

as birthday parties or Christmas family gatherings etc. It is the author’s belief that

the coming era of lifelogging technologies may also help people to replay their life

entirely or become digitally consoling for lost of family members.

Corbin et. al. concluded that lifelog could be beneficial to lifestyle and be-

haviour recognition [45]. A sedentary lifestyle, coupled with overeating, can create

an energy imbalance that causes abnormalities in the body. In terms of diagnosing

diseases, it is currently undergone in a manner of question and answer or self-

reporting, but its accuracy and precision is debated as for some diseases, patients

can not describe their problem properly [121]. Lifestyle meta data can be utilized to

assess the quality of human lives and provide doctors with a reference to diagnose

diseases.

Given that most lifelogging work is based on examining the data from wear-

able sensors, we note that wearable sensors can be applied in many areas: log-

ging autonomic activity [67], fall detection [40], location and activities recogni-

tion [107, 109, 147, 102], users spatial context recognition [147, 41], rehabilitation

[168, 146, 128], natural disaster rescue [117], home healthcare [164, 152], martial

art games [78], Gait analysis [150, 20], etc. However, all of these technologies

are very domain dependent. Most researchers naturally tend towards the domain

of lifelogging for personal health monitoring and awareness, especially for mental

health. Sports is another applicable case of collecting data like movement, sweat,

heart rate etc. In this work, we take a more holistic overview and explore data gath-

ering and organisation for the generic lifelog domain, through our currently planned
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evaluations and cooperative linkages.

Zhou et. al. present a report over this based on a survey of various approaches

to capturing lifelog data, which includes SenseCam/Vicon Revue, wearable smart

phones, wearable video cameras, location loggers using GPS, bluetooth device log-

gers, human body biological state monitors (temperature/heart rate etc.)[174]. Po-

tential lifelogging devices are evaluated and the advantages and disadvantages of

different capture methods are presented, including consistency and integrity of cap-

ture, ‘life coverage’ of the captured data, as well as people’s experience and attitude

to these data capture devices. This has been done with user studies and surveys.

This work also suggested the most suitable model of data capture for personal life

logging in a variety of domains of use cases [174], which provides some support to

our data collection that is used throughout this research.

2.2.3 HoW We Can Log Life?

Wearable sensors are pervasively utilised for lifelogging with recent availability of

wearable sensing technologies [174], as shown in Figure 2.2. With the increasing

acceptance of personal data gathering and on-line social sharing (e.g, on Facebook

time-line, Twitter), lifelogging has become a mainstream research topic. SenseCam

is a wearable device designed to capture aspects of wearer’s daily lives [80, 79, 142]

to support human memory reminiscence. The sensecam has spawned numerous

related devices that are discussed below.

Given the low-cost and ubiquity of sensors, inexpensive smart phones come

equipped with an array of sensors. Consequently we now have an ability to gather

and store large volumes of personal data by using an inexpensive and ubiquitous

smartphone. Qiu et. al. proposed a real-time lifelog recording and transferring sys-

tem developed for Android users [132]. Researchers in University of Southampton
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Figure 2.2: Sensor devices, a small collection

also developed distributed and pervasive healthcare Deja View system for support-

ing memory [48]. Most of these researchers focused on data capture. However,

with many available lifelogging tools, how to collect, organize and represent lifelog

data is still under much discussion [31, 32, 174].

Lifelogs can also be collected passively using ambient sensors. During the last

decade, we have witnessed tremendous progress of this field and the development of

numerous communication standards for low-power wireless communication. Zig-

Bee is a specification for a suite of high level communication protocols using small,

low-power digital radio devices based on an IEEE 802 standard for personal area

networks [13, 10].

Utilising similar sensors, there has been a recent burst of research activity also

in the area of smart homes, where ambient assistance intelligence technology can

be applied to houses designed for older people or people with special needs [37,

99, 146, 127]. The Centre for Affective Solutions for Ambient Living Awareness
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(CASALA) in Ireland has built 16 apartments for ambient living research 1. Doyle

et. al. proposed the requirements for gathering healthcare data in aware homes [60],

and their results reveal that the old residents of these smart homes have a desire to

play an active role in managing their health. And they also proposed potential

concerns surrounding the delivery of such information through technology.

Lifelog technologies evolve in different directions, which include:

1. Web 2.0 blog

Figure 2.3 is an example for Web 2.0 blog. As we can view from Web 2.0

technologies, people can write down their life diaries digitally and publish

them into their weblogs in order to make a record of their experiences or

thoughts. The limitation of this format of “lifelog” is that it requires human

input with the associated cognitive effort and it is just a digital version of the

conventional diary that people have kept for centuries. What makes lifelog-

ging different is the fact that it should be an automated process that requires

minimal or no human input to gather and organise [74].

2. Body Sensor Network

Body sensor networks were first proposed by Lo et. al. as a wireless sensor

platform for pervasive healthcare monitoring [112]. There are quite a few

available sensors for constructing a body sensor network to collect data about

body movement and body condition. Although they can utilise similar wear-

able sensors, the focus of this research effort is different to the focus of our

work on lifelogging, so we do not consider them any further in this thesis.

• Microsoft SenseCam
1www.casala.com
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Figure 2.3: Web 2.0 blog example

(a) SenseCam

(b) SesenCam sample 1 (c) SesenCam sample 2

Figure 2.4: SenseCam and sample pictures it takes
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The Microsoft SenseCam (see Figure 2.4a) is a small lightweight wearable

camera used to passively capture photos and other sensor readings from a

user’s day-to-day activities [80]. It is designed to be worn around the neck

taking user oriented photos of what is in front of the user. It captures on

average 3,000 images of a typical day, equating to almost 1 million images

per year. The Microsoft SenseCam was the first widely deployed lifelogging

device and utilised by researchers in various fields of research, most notably

in terms of human healthcare and memory studies. Hodges et. al. detail the

potential memory benefits of a personal visual lifelog such as life records that

is generated by devices such as the SenseCam or the OMG Autographer [79].

• Autographer

The OMG Autographer (see Figure 2.4a) is a small wearable device which

incorporates a digital camera and multiple sensors including a 3-axis ac-

celerometer to detect motion, a thermometer to detect ambient temperature,

a passive infra red sensor to detect presence of a person, and a light sensor

to detect light. It is used to record a detailed visual record of daily activities.

The camera itself can take 5-mega pixel-shots, with dedicated glass hybrid

wide-angle lens which capture a fixed-focus 136-degree view. Other technical

specifications include 8GB of storage, which can hold up to 28,000 images

(which works out at over 12 days of capture on the highest frequency setting).

There’s also a medium and low frequency option, which users can switch be-

tween using the two-button set-up on the right edge of the device. This is

also how users can enable Bluetooth syncing with iPhone, which springs up a

notification window on the smartphone, propelling people into the dedicated

application. The device charges through micro-USB, but we had no issues
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Figure 2.5: Autographer

with it running for several days before the battery indicator dipped below

half capacity2. The Autographer is the main lifelogging device that is utilised

in this research and has been used in the data gathering experiments described

in the remainder of this dissertation. The Autographer was chosen for this re-

search because of it’s quality of photo capture, reliability, all-day battery and

ready availability.

• Bodymedia3

BodyMedia (see Figure 2.6) is a wearable healthcare device developed by

a medical and consumer technology company called BodyMedia. It records

the cardiac activities of an individual and BodyMedia released a human phys-

iology data set for testing at the 2004 International Conference on Machine

Learning. The device has been used in hundreds of clinical studies [166].

• Shimmer4

Shimmer (see Figure 2.7) is a wearable tool to collect accelerometer data

2http://www.engadget.com/2013/07/29/autographer-wearable-camera-hands-on-price/
3http://www.bodymedia.com/
4http://www.shimmersensing.com/
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Figure 2.6: BodyMedia

Figure 2.7: Shimmer

[26] from individuals. It has a very sensitive accelerometer sensor with 100

Hz collection. Shimmer is lifelog recorder for GPS data and high frequent

accelerometer which is very crucial for physical activity recognition.

• SenseSeer [133, 6]

SenseSeer is an Android mobile phone application developed by Qiu et. al.

[133]. It can collect all sensor data types (including camera) accessible in an

Android phone and send them to a server for storage and processing. Sens-

eSeer is an example of a software lifelogging tool for gathering lifelog data.
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2.2.4 Who Can Benefit From Lifelogs

Lifelogs can be beneficial as a support for a new kind of social networking between

family and friends. Aharonya et.al. looked into the connection between individ-

ual’s social behaviour and their financial status, network effects to decision making

by employing a ubiquitous computing approach and found that the value of social

factors for choice, motivation, and adherence enables quantifying the contribution

of different incentive mechanisms between family and friends [2].

Lifelogging is also beneficial to intervention in increasing physical activity [143]

participation, which potentially supports health interventions by reducing any dis-

eases that are caused by lack of physical activity. Chronic disease sufferers with

ailments such as dementia can used lifelog tools to record their daily activities us-

ing fitness monitoring wristbands or cameras like the Autographer. The data can be

passively or objectively transferred to doctor-patient communication tools to help

doctors to diagnose correctly and find solution precisely [73]. So, all in all, there are

three beneficiaries of lifelogging: lifeloggers, society and organizations and corpo-

rates. In this work we focus on supporting applications of lifelogging and explore

how novel organisation technologies can be applied to assist in retrieval from lifel-

ogs. As such, this research can benefit individuals primarily, but also by inference,

society.

2.2.5 When to Do Lifelog

Widely speaking, we start to log lives in many ways even from the very beginning

of our lives. Before we were even born our parents could have our ultrasound screen

of foetus. Also when we were in childhood we could have a large number of family

photos. These family photos can be one part of our lifelog repository. Unpredictable
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and creative new technologies are helping people to achieve goals of recording life

easier. By applying ever-evolving new technologies, it could be very beneficial if

we can take lifelogging as an all-life activity.

The point is that lifelog is for all-life recording or “lifelong-lifelogging”. Es-

pecially the human generation that grows up with digitalized life, it is inevitable to

have digital records of health history, on-line messages, family and friends photos.

Such data can be massive, non-hierarchical archives consisting of interlinked life

experiences. Such data can compose of a person’s “lifelong-lifelogging”. This is

also a motivation of this research on lifelogging as a next generation of personal

data, gathered throughout life. Such data needs to be automatically organised and

made searchable. This is the focus of the research carried out in this thesis.

2.3 Previous Uses of Lifelog

New technologies can always be controversial when being applied in real-life use-

cases, and it is the same with lifelogging. CardioTrainer5 is an activity measuring

mobile application, using mobile phone’s accelerometer, combined with visualiza-

tion and other feedback to help users increase their physical activity levels. Indi-

vidual portable or wearable gadgets, no matter it is SmartBand or Narrative, these

lifelog applications or props, can be used as complete activity tracker. These are

mainly built for fitness and entertainment like monitoring work-out goals, or re-

membering the most valuable events of lives. Mostly these are for commercial-

ization reasons. These devices provide a connection between mind/body and the

digital world. And the data can be uploaded and synchronized easily with the con-

sent of application or gadget users.

5http://www.worksmartlabs.com/cardiotrainer/about.php
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2.3.1 Lifelog for Activity Recognition

Activity recognition fits into a bigger framework of context awareness. Activity for

human lives can have different definitions according to different scales and perspec-

tives and even goals. Some assert that life should be divided to be normal human

activities and disordered ones in the view of pathology and medical science [12];

while some sociologists propose human life activities can be categorized as indi-

vidual activities and social activities [65]. Some neurologists classify life activities

into smaller and detailed ones like eating/walking/talking etc. for the convenience

of behaviour analysis [88, 92].

Despite that, computer scientists explore life activity recognition using external

devices like accelerometers, mobile phones, GPS locator, home sensors etc. in a

more statistical and mathematical manner. By 3-axis accelerometer data, Bao and

Intille proposed to use accelerometer for activity recognition [11] with users’ anno-

tation, and Bieber and Kwapisz’s perspective in activity recognition is in agreement

with this, proposing that activity recognition can be achieved by using phone ac-

celerometer data [19, 102]. The techniques behind these activity recognition can be

based on a machine learning classification.

2.3.2 Lifelog for Social Behaviour Analysis

Lifelogging can be utilized in investigating social mechanisms of people in the real

world [2]. The evolution of lifelog research for physical measurement analysis lib-

erates the lifelog research from the outer ring, making it more popular with public,

not just people who have memory impairment. Caprani et. al. applied lifelog

research specially in sharing and explored sharing as a motivation for family remi-

niscence and socialness [33, 32, 34].
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2.3.3 Lifelog for Memory Enhancement

Lifelog for memory research had maintained the dominant focus of lifelogging re-

search, as a means to help an individual review and remember past activities. Berry

et. al. explored the neural basis of effective memory with SenseCam and its ef-

fectiveness in memory therapy [80, 16, 18, 17]. In our previous papers, we present

a new generation of lifelog system to support reminiscence through incorporating

event segmentation and group sharing [175].

One of the most important aspects of reviewing lifelogs for memory enhance-

ment is the concept of a lifelog event, which is analogous to an episode or event in

human episodic memory. Without detecting events, a user may need to slowly look

through more than 3,000 images for every day to find a certain memory cue. The

idea of segmenting the large lifelog data stream into events means that it is faster

and easier to locate a desired sequence of images via a browsing mechanism. Ini-

tial event segmentation research was conducted in two main directions: 1) personal

photo management using context and content information with the combination of

user annotation [122]; 2) event detection from videos for specific aims like sports

[137].

Meanwhile, a lifelog is more meaningful for a user and easier to browse if it can

be segmented into different conceptual events. Face detection and novelty recog-

nition is also applied in previous work on event segmentation [57]. Visual concept

detection also informs lifelog event segmentation in object detection from lifelogs

[28]. One approach for automatic segmentation of lifelog into events by different

methods of improvements in the selection of normalization, fusion, and vector dis-

tance techniques based on location change, photo scene change etc. with manually

groundtruthed events [58]. As far as we know, this is the only real prior work on

this area for lifelog event segmentation. Events are broad and inflexible units of
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retrieval, we will add this with the prior approach as described in Chapter 5. It is

our conjecture that we can develop improved event segmentation models by inte-

grating additional sensors and a new technique for event segmentation that will be

described in Chapter 5.

2.4 Challenges in Lifelog Research

2.4.1 Privacy Consideration and Subject Protection in Lifelog

Privacy is the most frequently mentioned ethical issue in conjunction with lifelog

technology in the academic debates recently [75], especially so since most lifelog-

ging research involves wearable cameras that capture other individuals in the course

of their daily activities. Increased personal information and emerging lifelog man-

agement technologies based on privacy-by-design help to alleviate the issues al-

leviate some of the issues. However it is still a challenge to do any research in

the lifelogging area, given these privacy considerations and a subsequent lack of

willingness of users to give their private lifelog data for research purposes. Other

privacy concerns include lifelogs being subject to enforced access and accidental

disclosure of private lifelog data.

“Digital society did not turn out to be what people hoped”, said MIT IDEASLAB’s

Alex (Sandy) Pentland’s Sustainable Digital Ecology6. “People should have the

same rights and obligations in people’s digital selves. You should control the infor-

mation about you, who gets it and what they want to do with it.” Privacy consider-

ation is the first issue to be considered during the preparation for experimental data

for this research, since the Autographer can record very detailed life under proper

set-up. Ethical approval was obtained from Research Ethics Committee in our uni-

6http://www.youtube.com/watch?v=O22acc48lKo
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versity for the use of participants SenseCam images for a wide variety of lifelog-

ging experimentation. For the particular research in this dissertation, we utilised a

number of datasets and for our main research tasks, the participants were wearing a

SenseCam or Autographer consecutively for over a period of one month. This guar-

antees a variety of activities (for example, ‘Eating’ at home or outside, ‘Walking’

in the street or countryside, etc.) needed in our experiments and was carried out in

accordance with the ethical principals under which my research team operates.

In this research, we tried to comply with all the requests from our data collection

participants, who may be concerned about any data that they may not wish to be in-

cluded in the experimental dataset. In this case, such data could have been removed

from the collection prior to the individual donating the data for use during the ex-

periments in this thesis. In the appendix there is an example of one such ethics form

that we have employed during this research. This form covers our data collection

of privacy polices about collecting and using the data, as shown in Appendix A.

2.4.2 Big Data Storage and Processing

Big data generally comes with four elements of data attributes: volume, variety,

velocity and veracity [74]. Lifelog data, due to the fact that it conforms these four

characteristics, is considered to be a scenario that big data techniques can be applied

to. Challenges to lifelogs [75] are various as in processing large volume of data.

How to effectively and efficiently organize and access lifelog data is a big research

question in this research area [74].

It is our conjecture, and the focus of this research, that WWW or Internet search

and organisation technologies can be applied to lifelogging research with the in-

clusion of concerns about data protection. Data organisation techniques, such as

inverted indexes can be applied to storing lifelog data. The primary contribution
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of this work, however, is the hypothesis that WWW linkage algorithms, such as

PageRank algorithm [24] and other information retrieval basics can be applied to

solving organisation and search challenges in large personal lifelog archives.

2.5 Lifelog Retrieval Systems

Initial research into lifelogging focusses on individual capturing devices (e.g. Steve

Mann [114], Aizawa [4], Tano [151], SenseCam [80], deja-view [48]). There has

been some work on holistic systems for lifelogging. Lee et. al. presented personal

lifelog management system by summarizing photos [103]. In order to provide ben-

efits to end users, the lifelog system must be an end-to-end system, incorporating

data gathering, data storage and some forms of data retrieval. While early lifelog-

gers including Steve Mann [114] made inroads into capturing lifelog content, the

most famous attempt to address the challenges to retrieval and value extraction from

lifelog is the MyLifeBits project at Microsoft Research, which was concerned with

gathering and making a searchable and long-term personal life archive for one in-

dividual [70]. Other notable work in the area has produced systems as a real-time

life experience tool by Qiu et. al. [132] which utilises a conventional smartphone

as the capture device with real-time analysis of the life experience, and the work of

De Jager et. al. [48], who have developed a hardware device that operates in con-

junction with a cell-phone to enable real-time capture and feedback. Despite prior

work in lifelogging systems, there are few holistic systems for lifelogging. Within

this research plan, we will develop lifelog retrieval systems to support the experi-

mentation outlined later. One prototype system that was already built and presented

in the 19th Multimedia Modelling conference (MMM 2013) [175] is described in

Chapter 5 in more detail.
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So far, there is little research about lifelog retrieval system evaluation. One of

the main research in this area is conducted by Jones et. al [87]. They stated that in

order to evaluate information access applications for personal lifelog, experimental

collections are required which are sufficiently large and diverse to represent the ex-

pected features of real user personal lifelog [87]. The main contribution in this work

is applying the evaluation techniques of information retrieval to personal lifelog re-

trieval and this is shown to be efficient in multiple works [95, 91]. So most of

lifelog retrieval evaluation is conducted in the similar way as conventional retrieval

systems using a test collection methodology to evaluate the individual components

and user studies to evaluate the holistic solutions to the event segmentation and

MemoryMesh.

2.6 Linked Archives

Since a lifelog can be a huge archive of multimedia data, it is our conjecture that

organisation and retrieval performance can be enhanced by incorporating linkage-

analysis algorithms and concepts. However, there have been no prior considerations

of this hypothesis. The prior work in organizing lifelogs was based on either video-

style playback or event segmentation with browsing or basic search [74]. In this

work, we propose that lifelog can be represented as a densely linked hypermedia

archive, called MemoryMesh. We introduce how this can be constructed and the

potential to improve retrieval performance.

With the ever-increasing universality of sensor industry, many sensors can be

used to sense our environment, in a manner similar to how humans sense their sur-

roundings. We believe that digital sensors make it possible to automatically identify

important events, just like a human can. In our experiments, we try to discover im-

43



portant events using the context extracted from many physical and virtual sensors.

Since our lives are regular over a given period of time, any notable happening can

impact our memory. These special moments become the important ones because

they have a notable impact on our daily life. By analysing our context history,

our life pattern can be discovered using pattern mining algorithms. By comparing

the context of that moment with the life pattern, users’ important moments can be

discovered.

2.6.1 Lifelog MemoryMesh and Node Modelling

The Dewey decimal system for categorizing items in a library collection is a clas-

sic example of a hierarchical categorization scheme. People’s family tree has a

structure, so does lifelog data if it is taken as linked mesh of each lifelog events.

Nodes are kingpins of the MemoryMesh system. As we will describe later, a node

is akin to an event in prior lifelog work. Since an event is rich in data and associ-

ated meta data, it is shown that these nodes can be linked together into a mesh or

web of human lifelog experience. This is called the MemoryMesh and is the core

data construct used in this research. The research presented in this thesis shows that

the MemoryMesh provides a viable option for managing lifelog data and making it

accessible to the end user. While it is not proposed to solve the challenge entirely,

this work is a pioneering endeavour to chart a pathway for future research efforts

by taking the first steps in this exciting and challenging research area.

2.7 Conclusion

In this chapter, we introduce the background of lifelogging and its collection through

various sensors. These sensors are categorized into two main classes: wearable sen-
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sors (entertainment supportive sensors, health monitoring sensors, sport supportive

sensors) and fixed/unwearable sensors (home installable PIR, remote control win-

dow sensors, sleep sensors). We also present the concept and limited prior work

on event segmentation/annotation, life activity recognition and lifelog retrieval sys-

tem and system evaluation. In the very end the motivation and expectation for this

research is discussed.
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Chapter 3

Research Methodology

In this chapter, we overview the research methods employed in this research. These

research methods range from approaches to lifelog data collection, data annotation,

analysis methods that include machine learning, t-tests, image-object detection al-

gorithms and evaluation matrix. We explain why, how and when these methods are

employed in the thesis. This chapter also describes the experimental set-up from

system configuration to evaluation measurements and user studies.

3.1 Introduction

As we described earlier, lifelogging is all-of-life logging [51, 15]. However, the

majority of previous research in lifelogging has been focused on physical activ-

ity recognition and lifelog event segmentation for lifelog linkage analysis using

wearable mobile devices to collect multiple sensor data, including Autographer and

SenseCam images. While the data collection is getting more widely acceptable and

the ever-decreasing cost of sensors and mobile devices makes it more feasible, there

are still a few challenges in lifelog research that need to be addressed in order to
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create more valuable systems for real-life applications. These questions are:

1. Lifelog data collection. It includes multiple sensing platforms for construc-

tion and application.

2. Lifelog data storage. It describes how the data is stored in a cross-platform

cloud based service.

3. Lifelog data analysis. Lifelog data analysis needs the semantic enrichment to

support organization and access.

4. Lifelog data representation and visualization.

In the remainder of this chapter, we firstly introduce data gathering and storage

process applied in this thesis. In the section 3.10, the prevailing approaches to

solving the problem of lifelogging management and access are presented. In the last

sections, we describe the approaches taken in solving these problems and describe

the evaluation methods that are used in chapters 4, 5 and ??.

3.2 Study Data Collection

As we presented our work on a survey on sensors for lifelogging that was presented

at SenseCam 2012, we found there were many existing devices that can be used

for lifelog data gathering [174], including SenseCam, Autographer, wearable sen-

sors (e.g. BodyMedia Fit Armband [130], FitBit [46]), programmable devices (e.g.

Arduino, Tyndall, Shimmer), Heart Rate Monitors, smartphone apps and various

ambient sensors. In this research, we focus on applying wearable devices for data

collection with the aim to enhancing individual user-centred applications of lifelog-

ging. Wearable sensors can be applied to collect numerous kinds of data about the
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Figure 3.1: The MemLog system architecture

individuals including user locations, biometrics, activities, somatometric indices,

visual content, aural content. We utilise lifelogging software developed for Android

Smart phones, both in-house [132] and off-the-shelf (MOVES app), SenseCam and

Autographer for visual capture, smartphone sensors and applications, Heart Rate

Monitors to gather a media rich lifelog for individuals. The types of data include:

passive capture visuals, explicit capture visuals, audio capture, location, accelera-

tion, compass, user physical activity (walking, sitting, driving, flying, etc.), temper-

ature, light levels, PIR output, bluetooth devices nearby and other context sources.

It is our conjecture and understanding that a richer set of source data provides a

deeper and more semantically meaningful event segmentations, data annotations

and linkage graphs, which better support our planned experimentation on Memo-

ryMesh evaluation. The metrics of data collected by these devices are shown in

Table 3.1. In all, we aim to gather different sensor data for this research.

Figure 3.1 is the diagram of the MemLog lifelogging system that was developed

to support most of the research proposed in this thesis. This architecture is represen-
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Device Sensor Type No. Data Entries
SenseCam image 2412325
Autographer image 725773

GPS 725773
bluetooth 725773

Table 3.1: Sensor data Types for collection. Autographer collects one image with
all sensor readings.

GPS Blue-tooth Capture Frequency Last Hours
1 on on High 5.5h
2 off on High 5.5h
3 on off High 5.5h
4 off off High 5.5h
5 on on Medium 15h
6 off on Medium 18h
7 on off Medium 18h
8 off off Medium 19h
9 on on Low 21h
10 off on Low 25h
11 on off Low 25h
12 off off Low 28h

Table 3.2: Autographer comparison over data capture type, frequency and maxi-
mum lasting time

tative of the software architectures of this research. In all, three different lifelogging

applications were developed during the course of this work: ZhiWo, ShareDay and

MemLog. MemLog, which is the most important of these.

The collected datasets include continuous collection of more than 25 types

of phone-based signal, including location, accelerometer, Blue-tooth based device

proximity, communication activities, installed applications, currently running appli-

cations, multimedia and file system information, and additional data generated by

our experimental applications. This design is implemented as a Django based web

service writing in Python, HTML, CSS and JavaScript. All the data is processed on

the server side as back-end services.
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3.3 Collection Devices

We used wearable devices with multiple sensors for data collection in this thesis.

There are a large number of devices to choose from, but our initial exploration

of the devices [174] suggested that a reduced set of broad sensing devices was

sufficient to encourage data gathering and reduce the overhead on the individuals

gathering data. Consequently, we centred our data gathering around two types of

device; sensor-rich smart phones and wearable cameras such as the Autographer

and SenseCam. These wearable mobile devices all can be worn for at least 5 hours

after one full charge according to Table 3.2 when running at full-frequency capture.

For the Autographer data collection, we asked each wearer to recharge their device

after lunch resting time regardless of whether the device has battery or not to ensure

a longer lasting data collection over the day. For SenseCam, one-day charge can last

over 18 hours data collection, so the device only needs to be charged during night

sleep time. In this case, there was a protocol designed to ensure close to full-day

high-frequency data capture. Each sensing modality is now described, beginning

with the two core modalities, but also including peripheral sensing modalities using

additional sensors that we have utilised for some of the experimentation described

in this thesis.

• Mobile phone sensing platform

The SenseSeer platform [133] is a real-time lifelogging software that can

work independently or in conjunction with a SenseCam. The software runs

on Android smart phones and was developed at DCU. It utilizes energy con-

servation software on the smartphone to support all-day-long sensor capture

and build a semantically rich life narrative. All available sensors on the phone

(including camera, accelerometer, GPS, Blue-tooth, etc.) are employed to
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Sensor Description
Acceleration Physical movement of the user
GPS Geographic location
Blue-tooth Social context
WiFi Indoor location, location cache
Camera Automatic photo/video capture
Speaker Environmental sound/noise level

Table 3.3: Available sensors equipped on a smartphone

capture the current user context. Data is analysed on the phone and uploaded

dynamically as a life-stream for further analysis when the WiFi network is

available.

• SenseCam and Autographer

SenseCam is a wearable camera with a wide-angle lens and Accelerometer,

PIR, thermometer that takes periodically photos passively and automatically

while users only need to wear it around neck using a lanyard. SenseCam has

been applied in multiple research projects has has been proved to be helpful in

facilitating human reminiscence and retrospective memory [80, 104, 56, 54].

Autographer is an evolution of the SenseCam that also hangs on a lanyard

around neck and as such is orientated towards the activities that the user is

engaged in. Similar to the SenseCam, it collects multiple lifelog data includ-

ing images, GPS traces, bluetooth. Given that the Autographer is an evolution

of the SenseCam, for much of this work, we employ the Autographer as op-

posed to the SenseCam

• Funf on Android Phone

Most of modern smart phones already carry accelerometers, gyroscopes and

other sensors and so can be used to log user daily life information. The prob-

lem with the Autographer is that the most frequent capture rate is 10 seconds
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per one capture, so it can not provide enough accelerometer data for sensory

lifelog analysis. Funf Journal is an open source software to be installed in

Android phones [2]. The orientation of worn phone considered for each of

the accelerometer axis was: the x-axis, y-axis and z-axis were respectively

aligned parallel to the coronal/frontal plane with positive direction pointing

towards tail, the sagittal/median plane with positive direction pointing to-

wards anterior; and the transverse plane with positive direction towards right.

• Basis B1 Band

Basis B1 Band is a sleep and fitness tracker, and it can be worn like a watch.

The data collected from this device (shown in Table 3.4) includes heart-rate

that we need for activity recognition in our some of the work described in

later chapters.

Different devices have different capture lifetimes owing to their batteries and

levels of battery consumption. Battery lifetime depends on the type of data being

captured and the frequency, as shown in Table 3.5

3.4 Data Collection Rules and Protocols

In our research process, we keep pre-defined data format to maintain data for ex-

periments and follow the rules to collect our lifelog data:

• keep data in easily processed form, like csv, JSON , database etc.;

• keep data collected with time stamp, as well as data modification and all day

gathering;

• keep data that is relevant to our research need;
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Devices On Time Charge Time
Autographer +5.5 hours 2pm, 12am
Mobile Phone 1 day 12am
Heart Rate Monitor 7 days 12am

Table 3.5: Battery life-time for different devices. Autographer is set to be high
capture with all sensors on, which generates up to 3,000 photos per day

• keep data private to protect lifeloggers privacy.

• all data should be manually cleaned (to remove any potentially private data)

before uploading, like any data that collector would not like to share can be

deleted from the system.

We ask all participants to sign the Informed Consent Form [42] and seek to gain

ethics approval prior to commencing this work.

3.4.1 Surveys

Survey is the research method that is used to assess thoughts, opinions, and experi-

ence of research participants [8]. It is often applied by psychologists and sociolo-

gists to analyse human behaviours. Especially in mobile CHI research area, survey

is a useful research method to get an idea of real-world user needs and provide

potential directions for design and research [96]. In this research, we claim that

lifelogging is a research field that deals mostly with human needs, so in the early

phrase of this research, we conducted a survey about lifelog data collection and the

feeling of participants (who were aware of the field) about lifelogging. The survey

includes telling users about what wearable sensors are, what data these sensors are

collecting and asking how they are feeling about the concept of lifelogging. Only

those subjects who are positive to wearable sensors are asked whether they would

like to join the data collection process. The results of the survey can be found in the
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Appendix C.

3.4.2 Collected Data Formats

We focus on using data collectable via lifelog wearable cameras (SenseCam, Auto-

grapher) and smartphone software sensing, to achieve a easy-to-go data gathering

process. The data collected using the above mentioned devices are:

• Lifelog Images

The Autographer can record data with three type resolutions: 2592 pixels ∗

1936 pixels, 640 pixels ∗ 480 pixels and 256 pixels ∗ 192 pixels. Average

RGBSift extraction time for these three type of images are 1m30.30s, 4.64s

and 0.92s. Thus, under the consideration of processing performance and im-

age quality, we mainly use the medium-size Autographer images.

• Accelerometer

Funf Journal [2] the maximum frequency for accelerometer capture is 100 Hz

which is a good supplement when the maximum frequency for Autographer

accelerometer capture is 0.1 Hz.

• GPS

GPS data is sensitive to show people’s privacy as it records locations of peo-

ple’s home, work places, routine of life. While in this research, GPS data is

not public to share for the security and privacy of participants. GPS data is

collected as a format of 3 dimensional matrix for a day. Each row of matrix

records one reading of a time-labelled moment of the lifelogger’s life. Each

row is represented in latitude, longitude and altitude. But we only use lati-
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participant. social role no of images
1 professor 11258
2 final year PhD student 20284
3 first year PhD student 15105
4 finance department worker 3523
5 assistant officer 5105
6 part-time first year PhD student 3921

Table 3.6: Social activeness detection result

tude and longitude for locating positions. For example, 53.385380, -6.257100

represents the location of School of Computing at Dublin City University.

3.4.3 Datasets

During this research, we have amassed a lifelog log dataset that may be open-

sourced in the near future, which, also to our best knowledge, is an unprecedented

lifelog dataset, which we refer to as the DCULifelogdataset, see Table 3.7.

• DCULifelogdataset

DCULifelogdataset includes data collected from 6 participants over a period

of a month from recruited by DCU under consent forms. These participants

are trained carefully how to use Autographer and mobile phone and how to

upload it into MemLog system for annotation and further experimental pur-

poses. This dataset will be used by multiple experiments in this thesis includ-

ing activity based activity recognition and event based hyper linked lifelog

analysis.

• DIAL

DIAL dataset is collected by 46 participants for one week each using Sense-

Cam and embedded sensors. This dataset is provided by UCSD as a collabo-

ration between two universities when the author was provided an opportunity
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DCULifelogdataset UCSD DIAL
Sizes 123G 20G
No. of Images 725773 35335
No. of Uploads 9711 46
Temporal Durations 2515h 351h

Table 3.7: Attribution of two datasets used in this thesis. Uploads are about how
many person-days of lifelogged data. One person one day is one upload

to visit UCSD in 2013. In this research, as for the limitation of data sharing

protocol, we are only using SenseCam data that was worn around neck, not

any of the related hip-worn sensors. Each participant wore SenseCam for a

week and were asked to upload their data after the one-week data collection

period.

3.5 Data Analytic For Semantic Enrichment

The currently prevailing theory for detecting unknown objects or concepts is still

using annotated data for training a predictive model. The basic lifelog gathered is

annotated with a semantic enrichment step which integrates existing Insight visual

processing tools (e.g. visual features from photos and semantic enrichment tools

(e.g. weather, environmental lighting, visual concept detection). This task produces

an enhanced media rich annotation for the data gathered, constructing the basis of

the MemoryMesh.

In this thesis, the author has built an new annotation tool that is applied in lifelog

data annotation. The annotation feeds the need of real-world lifelog and other wear-

able computing application and research. It includes local and remote data upload-

ing, service infrastructure set-up and easy-to-use annotation interface [178]. The

annotation applied in this thesis are activity annotation and event segmentation.
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Figure 3.2: The MemLog system interface for the main annotation page

The two annotation phrases are both embedded into our MemLog system (Figure

3.1 and 3.2) [178].

3.5.1 MemLog Overview

It is our belief that concept detection is a basic technology for event segmentation

and linkage analysis. To the best of our knowledge, there is no such a system

available that allows us to annotate concepts from an organized list in lifelog data.

Therefore, we designed and developed the MemLog system to meet this research

need. The MemLog system is an end-to-end lifelog management and annotation

system and a screen-shot of MemLog is shown in Figure 3.1, in which an annotator

can be seen annotating a piece of content. On the left of the screen is the calendar to

access the lifelog data, on the right is the annotation panel and the main part of the

screen is the data panel, which displays (in this case) a full-sized playback view of
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the event being annotated. MemLog has been designed with multiple attributes that

meet practical research purposes, including both local and remote data uploading,

manual and automatic data annotation, and quality checking etc. These attributes

have been gathered after extensive consideration of the needs of large-scale lifelog

annotation efforts. The most relevant and important attributes of MemLog can be

summarised thus:

• User Authorization.

User authorization is necessary to enhance privacy and security of individ-

uals lifelog data. User authorization is implemented through a user-group-

permission map data table design scheme. The users can be data owners,

annotators, researchers reviewing the data and managers who oversee the

flexible process and allocate annotation tasks.

• Uploading and Appropriate Storage.

Lifelogs can exist in different formats and sizes. MemLog allows for the up-

loading of lifelog data from the most widely used lifelogging tools, such as

the Microsoft SenseCam, the Vicon Revue and the OMG Autographer. In ad-

dition, MemLog is designed to be usable in both a data centre environment or

on a personal laptop or desktop computer. Therefore, in the uploader module,

it supports both local transfer and remote upload.

• Extensible Categories and Concept Labels.

Following discussions with collaborators who engage in extensive levels of

lifelog annotation, we have identified the need for both core concepts as well

as user (or task)-specific concepts. Hence we have implemented a core set

of concepts to facilitate general concept annotations. These concepts include
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over 1,000 conceptual terms. For personalised concept annotation, users can

add their own personal label sets to the predefined concepts. Each concept

can belong to one category while each category contains one or more concept

labels. For example, we have a category called “activity”, it includes some

labels including sitting, walking, standing still, cycling, driving etc.

• Automatic Label Recommendation.

A lifelog for an individual user can surpass 4,000 images per day, hence au-

tomatic label suggestion is a valuable tool in the annotation process. The au-

tomatic label recommendation process in MemLog segments lifelog images

into episodes or events and generates multiple most likely potential labels for

each event (see Section 3.1). Annotators can check and modify these recom-

mended labels, reviewing them in a dedicated review screen for validation

and update.

• Cross-Annotator Quality Check.

To avoid discrepancies between humans manually annotating visual data, the

system is designed to have a quality check to re-access a configurable per-

centage of past annotations and correct when necessary. In this way, any

problem annotators can be identified. In addition, the quality check is also

useful for label recommendations.

• Event Reviewing.

Event reviewing is to show users daily events in a format of segmented lifelog

images. The algorithm behind event segmentation is supervised machine

learning based on user annotated data and holistic trained model. After event

segmentation, all events are presented to users chronologically with key-
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frames of each event. Each event can be demonstrated either in a conventional

thumbnail view or in movie view (sequential playback of lifelog images).

• Favourite and Sharing.

It has been shown that people have desire to share their lifelog data with their

family members and friends [30]. MemLog is designed to have functional-

ities to facilitate people to manipulate their lifelog in terms of favourite and

share with designated group members.

3.5.2 MemLog Deployment Architecture

Currently we have deployed our system in a university super computer data center

and locally to support multiple research tasks. Figure 3.4 is the model view con-

troller design of the MemLog system. The controller acts as the data storage centre,

storing the images and the database of meta-data (including annotations). The lifel-

ogging devices upload directly to the Controller and the users can access pages

(the annotation, review and quality check pages) through the HTTP interface by

means of a Permission Controller that regulates the views of the data that different

users see. The event segmentation and concept selection processes automatically

executes over the data in the Controller.

• Automatic Labelling of Lifelog Content

Human effort in manual lifelog image annotation is a huge task when the

lifelog dataset becomes large [34, 75], which every lifelog will, by its very

nature. One of many potential characteristics of lifelog data is the recurrence

of data that demonstrates people’s daily life. These recurred lifelog subsets

of life episodes is called life events. These events represents people’s life pat-

terns in the way of demonstrating repetitive life episodes. We use this as the

61



Figure 3.3: Overview of the data flow in the MemLog system

basis for label recommendation in our automatic annotation system process.

Automated label recommendation is a crucial step towards efficient and ef-

fective management of this increasingly high volume of content [140], while

such data can be assigned with category and content information using gen-

eral semantics [100]. In this work, we compare the image similarity of lifelog

events and recommend labels for current lifelog events using previously an-

notated labels to adaptively enhance automatic annotations.

• Physical Activity Annotation

Physical activities are annotated using ZhiWo system, as shown in Figure

3.7. ZhiWo was developed for this research purpose, to annotate physical

activities in real-world deployment. Physical activities used in this research

include walking, jumping, falling, driving, running, cycling, step-down, step-
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Figure 3.4: The Model-View-Controller design of the MemLog system
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up, standing-still.

Subjects are asked to use cell phones to record their activity after finishing an

activity, therefore, each activity label is assigned to a series of data between

last activity and the current activity. Each time user subject a labelled activity,

all sensory data associated is also sent to the cloud server. By using this

approach, we successfully collected 7,205 annotated activities. More details

about ZhiWo is described in Section 3.7

• Lifelog Event Annotation

Events annotation are used to mark the boundary for event segmentation and

as a source of metadata for the MemoryMesh. Events are different from

activities in that, activities are objects and subject irrelevant, which events are

objects and subjects relevant. Let’s say “Having dinner” is an activity, while

“having dinner with Ryan at student dinning hall at 12pm on 13th of March

2013” is an event. Also, activities are more general than events. An event

may contain multiple physical activities, as during a period of having dinner,

a person could be also sitting or standing.

3.5.3 Image Semantic Concept Annotation

In the image semantic concept annotation task, our goal is to detect the presence

of the various concepts in lifelog images and provide us with the annotations on

both per-image and event basis. To support efficient (i.e. non-browsing) access to

lifelog, semantic analysis tools are needed. These act as software sensors to enrich

the raw sensor streams with semantically meaningful annotations, that support the

basis of retrieval and linkage techniques. For example, raw accelerometer values on

a smartphone can identify the physical activities of a user [11], bluetooth and GPS
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sensors allow us to determine where and with whom people are with [29], while

using automatic detection of concepts is possible from lifelog images [84, 145].

3.6 ShareDay: Inter People Event Linkage Annota-

tion

People have always collected mementos over lifetime. With the digitization of me-

mentos (photos and videos etc.), researchers have begun to realize the benefit of

this to support reminiscence [129]. Sharing digital information is already com-

monplace, through emails, mobile phones and social networks. However, sharing

lifelog data between family members, to our knowledge, has not yet been explored.

Shared reminiscence between family members can serve many functions such as

maintaining memories of past relatives, creating bonds and teaching younger fam-

ily members from the elders’ experiences. We believe that sharing lifelog within

a family would enrich reminiscence and story-telling. In this thesis, we describe a

novel software system to support sharing lifelog data.

According to Icek Ajzen’s Theory of Planned Behaviour [5], human behaviour

is a result of conscious intention instead of unconscious developments. Accord-

ing to Fogg, persuasive technology uses seven strategies to influence behaviour:

reduction, tunnelling, tailoring, suggestion, self monitoring, surveillance, and con-

ditioning.

• Reduction simplifies a task that the user is trying to do.

• Tunnelling guides the user through a sequence of activities, step by step.

• Tailoring provides custom information and feedback to the user based on

their actions.
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Figure 3.5: Overview of the ShareDay system for group memory enhancement

• Suggestion gives suggestions to the user at the right moment and in the right

context.

• Self-monitoring enables the user to track his own behaviour to change his

behaviour to achieve a predetermined outcome.

• Surveillance observes the user overtly in order to increase a target behaviour.

• Conditioning relies on providing reinforcement (or punishments) to the user

in order to increase a target behaviour.

A previous study on intergenerational sharing [32] has shown that both older

and younger people were more likely to wear a lifelogging device for the purpose

of sharing images rather than simply wearing a lifelog device for private browsing

or reminiscence. ShareDay was designed to support browsing and sharing through

lifelogs on cross-platform implementations. To support family reminiscence we

have designed the system to be used on a touch screen device displayed in a com-

munal area at home so that all family members can upload, view and share their
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Figure 3.6: ShareDay system overview: family view

lifelog. Users can also view specific person’s shared data by clicking on their pro-

file (see Figure 3.6). The lifelog data can be viewed in two modes: personal and

family. In family view, all group members can see all daily events and images in an

overall, shared or favourite view. In personal view, only the logged-user can upload

data and view their data. If logged, users can manage (share, mark as favourite or

delete) and browse their visual lifelog. There are three main functions incorporated

into the ShareDay system: managing personal data, shared data and favourite data.

Figure 3.6 is the main view of the system, which shows all events gathered by all

family members in that day.

The continuous lifelog data streams require segmentation into logical units (ex-

periences). In prior work, the lifelog data has been segmented into events which

are statically defined. The challenge that needs to be fixed here is how to build

a static MemoryMesh over dynamic events. The solution here is to initialize the

MemoryMesh according to a fixed period of data and add up new events referring
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to multi-level similarity based association. We examine and quantitatively evaluate

how effective video shot and scene boundary detection, digital photo event detec-

tion and existing lifelog event segmentation techniques are, and develop/evaluate a

new experience segmentation model which is dynamic and of variable length.

To collect a personal lifelog (in our view of lifelogs for this thesis) the user must

initially capture images and other sensor data, and upload them to the system. Vi-

sual lifelogs present a challenge for developers as they need to represent the users

day accurately and in a user-friendly manner, without requiring the user to browse

through up to 3,000 images per day. For ShareDay, we integrated event segmenta-

tion model based on the work of Doherty et. al., [53], which organizes a sequence

of SenseCam images into a set of events.

Events represent daily activities such as walking, eating, shopping, talking, etc.

Key-frame images representing events are selected and displayed for each event,

with six large key-frame images being selected for each event. When a user is

logged in they can manage (share, favourite or delete) and browse through their

visual lifelog. With regard to sharing, a user can share/mark favourite their daily

events/images so that other family members can see shared data, which is designed

under the concern of privacy.

Sharing lifelog information has a wide range of advantages for both user and

communities [135, 160, 134]. The initial screen of the system displays shared

lifelog of each family member. The user can touch on the name of their family

member to view lifelog. A user can also browse through shared lifelog organized

chronologically by touching the Shared tab. Group sharing to support family remi-

niscence is the primary aim of the proposed lifelog management system. However,

we also wanted to ensure that users had control over their own lifelog as the content

can be extremely personal. To accommodate for this users can select to share im-
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(a) User Login (b) Activity Annotation (c) Activity Timeline

Figure 3.7: Snapshots of the interfaces of ZhiWo personal daily activity tagging and
recognition system

ages/events when they are logged into their accounts. These images automatically

be transferred to communal lifelog data set which all members of the family can

view.

In our previous studies the participants reported that when they wanted to share

images they had difficulty finding the images due to the vast lifelog datasets that

are so easily accumulated [174, 32]. An easy fix for this was to provide users with

a Favourites button. These selected images/events are automatically added into a

favourites folder which users can find on the main menu bar. This work has been

published in Publication 6 and 8.

3.7 ZhiWo: Physical Activity Annotation

We present an intuitive lifelog activity recording and management system called

ZhiWo as shown in Figure 3.7. To support our planned research, we needed a large

archive of annotated real-world activity data to develop models of user activity us-

ing machine learning techniques. Based on prior experience, it was not considered

sufficient to ask users to ’go back’ and annotate past data, nor were there any off-

the-shelf tools available for us to use that maps raw sensor data to real-life activities.
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Hence, we developed the third of three software tools, the purpose of which was to

support the sensor data reading and annotation in a free-living, real-world environ-

ment.

ZhiWo system is an Android mobile phone application built on Android Version

2.1. It embraces all sensors in the mobile phone as protocols to gather sensor read-

ings. By using a supervised machine learning approach, sensed data collected by

mobile devices are automatically classified into different types of daily human ac-

tivities and these activities are interpreted as life activity retrieval units for personal

archives. It solves the problem in layer 2 in Figure 1.1.

This work has been published in Publication 4.

3.8 Development Technologies Employed

All of the three software tools had different user and operation requirements. Hence,

each was designed and built independently. ZhiWo, for example, needed to run

on a mobile device, hence it was developed in the Java language for application

on the Android platform. ShareDay is a cross- platform application built in Flex

language, because of the focus on end-user ease-of-use and integration with touch-

screen computers in the home. MemLog, on the other hand, was developed to be

used at DCU (for this experimentation) and also in partner institutions, hence it was

developed as a web application and built using Django 1.7.1 and Python language,

with all the data being processed in the server side.
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3.9 Data Analytics Approaches

In this section, we describe the methods we chose to employ for data analytic and

lifelog semantic enrichment. Further details of the application of these approaches

are given in the following chapters.

3.9.1 Feature Extraction

Feature extraction is a research topic that focuses on finding the best features to

describe the specified dataset in order to present all data in that dataset more pre-

cisely and in a manner that can be more easily processed by a machine. In pattern

recognition and in image processing, feature extraction is a special form of dimen-

sionality reduction. In this research, there are two main steps that need to extract

features from raw data: sensory data feature extraction and visual data extraction.

For sensory data feature extraction, the raw accelerometer data and GPS data are

transformed into a 46 dimensional space by using mathematical calculation and

numeric attributions like mean, standard deviation, variance etc. For visual data

feature extraction, visual images are transformed into a 4,000 dimensional space to

represent each image using color histogram method.

3.9.2 Feature Representation and Fusion

Different feature representation for lifelog data can massively change results of

research evaluations. While single feature representation can fairly well describe

lifelog data, it is common trend to use feature fusion techniques to achieve a better

performing data feature representations. These include the following methods:

• Bayesian Network
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Bayesian Network is a probabilistic graphical model (a type of statistical

model) that encodes a set of random variables of interest and their condi-

tional dependencies via a Directed Acyclic Graph (DAG). Bayesian Network

has been testified to be powerful in extracting and encoding knowledge from

data when used in conjunction with statistical techniques. For example, a

Bayesian network could display the probabilistic relations between people’s

choices to some restaurants, if a person felt better about a restaurant A com-

paring with the restaurant B, it is more possible this person will go to restau-

rant A instead of B.

• Supervised Learning

Supervised Learning is a machine learning process that needs pre-defined

learning materials, like categorized and annotated data. In supervised learn-

ing process, inputs are objects with an pair of values, one is the labelled

desired output, the other one is normally a vector of multiple dimensions. In

ideal situation, the inputs should include all possible objects, while in reality,

with the limitation of enrolling in all data, we can only conclude limited pos-

sible pairs. SVM based classification is a widely applied supervised learning

methods, which is used mainly in this thesis for both sensory data classifica-

tion and visual content analysis.

• Unsupervised Learning

Different from Supervised Learning processes that need pre-labelled objects,

unsupervised learning does not stake a claim to annotated datasets, but it tries

to find hidden structure in unlabelled data.

A Hidden Markov Model is a generative statistical Markov Model in which

the system being modelled is assumed to be a Markov process with unob-
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Figure 3.8: HMM structure for event modelling

served or hidden states. It is a probabilistic model of joint probability of

a collection of random variables {O1, O2, ..., OT , Q1, Q2, ..., QT}. The Ot

variables are discrete observations and OT variables are hidden and discrete

states. Under an HMM, two conditional independence assumptions are made

about random variables that make associated algorithms tractable [161].

1. P (Qt|Qt−1, Ot−1, ..., Q1, O1) = P (Qt|Qt−1) It is that given the (t −

1)st hidden variable, the ith hidden variable, is independent of previous

variables.

2. P (Ot|Qt, Ot, ..., Q1, O1) = P (Ot|Qt) It is that the tth observation de-

pends only on the tth state.

Expectation Maximization(EM) is an iterative method for finding maximum

likelihood estimate of the parameters of a hidden Markov model for a given

set of observed feature vectors. One of most commonly used EM algorithm

is Baum-Welch algorithm [165]. Baum-Welch algorithm optimally estimates

the probability of the HMM model by iteratively re-estimating model param-
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eters.

Clustering is another applicable unsupervised learning method for lifelog data

analysis. Clustering generally iterate over a set of data with a goal to achieve

for ceasing the process of iteration. Here we use k-means (e.g., k-means,

mixture models, hierarchical clustering).

3.9.3 Feature Scaling

Feature Scaling is a method used to standardize the range of independent variables

or features of data1. Different features have different scales in terms of enumerating

representation. In order to encode all features into the same dimensional space,

feature scaling can be applied in contributing to this process. Feature scaling helps

to eliminate the difference between real-world data and modelling features.

3.10 Evaluation Procedure

In this section, we describe our evaluation methods employed in the research pre-

sented in this thesis. There were a number of evaluations required of the com-

ponents of the MemoryMesh, hence we needed to consider many approaches to

evaluation, all borrowed from the fields of information retrieval and multimedia

analytic. These evaluation approaches are utilized in this research for image pro-

cessing, physical activity analysis and linkage analysis.

3.10.1 Precision and Recall

Prevision and Recall are standard approaches to evaluation in Information Retrieval

(binary-rank-order), Machine Learning and Pattern Recognition. Precision, which
1http://en.wikipedia.org/wiki/Feature scaling
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can also be called positively predicted rate, is the fraction of corrected retrieved

instances 3.1, while recall (also known as sensitivity, see Equation 3.2) is the frac-

tion of relevant instances that are retrieved. Therefore, both precision and recall

are based on an understanding and measure of relevance of programs. Generally

speaking, precision is the probability that a retrieved item is relevant, while recall

is the probability that a relevant item is retrieved in a search.

In Equation 3.1 and 3.2, Irel means items that are relevant, while Iret means

items that are retrieved. Suppose we have a retrieval program for finding the lifelog

images that represents a lifelogger is using computer, in which, totally we get 1,000

images, 200 images with computers and 800 images without computers. After one

run of our algorithm, we get 250 images that are recognized by our program are

images with computer. But actually, there are only 170 of 250 images that are

genuinely computer images. Then, our precision in this run is 170/250 = 0.68,

recall is 170/200 = 0.85.

Precision =
|Irel ∩ Iret|
|Iret|

(3.1)

Recall =
|Irel ∩ Iret|
|Irel|

(3.2)

The relation between precision and recall is shown in Figure 3.9.

3.10.2 F Measure

In order to determine if our tests are significant, we conduct some test statistics. In

our case, we use the F statistic or called F-measure. F − value is a single measure

that represents the harmonic mean of precision and recall, see Equation 3.3. In

this case, recall and precision are evenly weighted, so it is also called F1 value. It
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Figure 3.9: Relation between precision and recall

conveys the significance of tests or evaluations.

F = 2 · Precision ∗Recall
Precision+Recall

(3.3)

3.10.3 AP and MAP

As stated earlier, precision and recall are single-value metrics based on the holistic

list of documents returned by the program or system without considering the ranked

order in which the returned documents are presented. In order to include the con-

sideration of ranked order of retrieved items, we introduce average precision, which

computes the the average value of p(r) in precision-recall curve over the interval

from r = 0 to r = 1. The precision-recall curve here is a curve that represents every

precision-recall dots for top N retrieved items. This curve plots precision p(r) as

a function of recall r. Average precision is the average value of of precision at all
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positions. In Equation 3.4, P (k) is the precision of the Ik in the retrieved item list,

and relk is 0 if Ik is relevant, otherwise, it is 0.

Most standard among the TREC retrieval tasks community is Mean Average

Precision (MAP), which provides a single-figure measure of quality across recall

levels, see Equation 3.6. Among all evaluation measures, MAP has been proved to

be especially good in terms of discrimination and stability.

AP =
1

|Irel|
·

n∑
k=1

P (k) ∗ rel(k) (3.4)

rel(k) =


1 if Ik is relevant

0 if Ik is not relevant
(3.5)

MAP (Q) =
1

Q
·

Q∑
q

AP (q) (3.6)

3.10.4 NDCG

NDCG stands for Normalized Discounted Cumulative Gain [162]. NDCG origi-

nates from an earlier, more primitive, measure called Cumulative Gain [83]. It is a

measure of ranking quality that is widely used in Information Retrieval. It measures

the quality of ranking based on two assumptions:

1. Highly relevant documents are more useful when appearing earlier in a search

engine result list (have higher ranks);

2. Highly relevant documents are more useful than marginally relevant docu-

ments, which are in turn more useful than irrelevant documents.
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The two assumptions also meet the requirements of our lifelog user accessibility.

We use this as one of measurements in lifelog retrieval experiments in Chapter ??.

3.10.5 Significance Test

Significance tests are used in this research to determine whether an experimental

result is statistically significant.

1. Student’s t-test

A t-test is any statistical hypothesis test in which the test statistic follows a

Student’s t distribution if the null hypothesis is supported. We use python

statistical module for student t-test for different user groups.

2. Confidence Interval

Confidence Interval is interval of numbers containing the most plausible val-

ues for our statistical results. In all research evaluation, we use the confidence

interval value of 0.95.

3.10.6 Cross-fold Validation

Cross-validation, is also called rotation estimation [50, 159, 159], is a predictive

model assessment technique for evaluating how the results of a statistical analysis

generalizes to an independent dataset. Its main goal of Cross-fold Validation is

to estimate how precisely a predictive model generates based on known data per-

formed in the real-world settings on an unknown dataset, for instance from a real

problem. This approach can limit problems like over-fitting, which describes ran-

dom error or noise instead of the underlying relation [9].
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In practise, we apply 10-fold cross validation, which means that we separate the

test dataset into 10 sub-folders. We do 10 times of experiments, in each one of these

experiments, we choose one folder as the training dataset (known data) and other 9

folders as the test dataset (unknown data).

To avoid any bias in the experimentations and software development, k-fold

cross validation is employed. This is a technique where the training set is split into

k disjoint subsets of equal sizes and a model is trained for each subset with the

overall performance of the software being calculated as the mean accuracy of each

subset. In this way, the optimization of the software for a single set of training and

test data can be avoided. In this work, k is set to be 5, which has been empirically

determined to provide a reasonable balance between processing time required to

train each model and the accuracy of the validation.

3.11 Data Representation and Visualization

There is a need to represent lifelog activities in a descriptive format like a graphic

form to allow users to have a better visualization experience. Visualization is a

combination of analysis and illustration. This is because a picture speaks more than

words. We used multiple visualization tool to represent our research results, these

tools include Dojo graphics and charting 2 and Google charts 3.

1. Daily activity

We visualize daily activity using pie chart 4 to give a lifelog information about

what is the activity composition of the users day, as in Figure 3.10.

2http://dojotoolkit.org/features/graphics-and-charting
3https://developers.google.com/chart/interactive/docs/gallery/piechart
4http://demos.dojotoolkit.org/demos/pieChart/demo.html
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Figure 3.10: Personal daily activity pie-chart visualization

2. Events

We developed an on-line events viewing system to help lifeloggers to review

their daily lifelog. See Figure in Appendix B.4 for an overview of the system

interface. All events are revealed as nodes in the lifelog graph.

3. Lifelog Linkage

In this research, linkage analysis is based on double directed networked graphs

of lifelog nodes. That means that we use node-link graph in Computer Sci-

ence to analyse lifelog linkage attributes. See Figure in Appendix B.6. We

also experiment using HTML5 Charts.js5 and Infovis tool-kit 6.

5http://www.chartjs.org/
6http://philogb.github.io/jit/demos.html
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3.12 Conclusion

In this chapter, we discussed research methodologies used in this research. These

methodologies scale from data collection techniques to data mining algorithms,

from data analysis evaluation matrices to systems for representation. These method-

ologies is supportive for all processes of this research. Data collection provides

dataset for experiments; data mining algorithms and image processing approaches

are mainly applied in Chapter 5 for lifelog visual discovery; evaluation matrices in-

clude evaluation methods for information retrieval, image content analysis and link-

age analysis; system models are designed and implemented to visualize research

results and provide a platform for user studies in Chapter 4, 5 and ??.
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Chapter 4

Contextual Discovery of Lifelog with

Sensor Data

Considering how people can benefit from lifelogging, it is likely that people will

use imagery to log good memories, or use GPS to log their locations, or use Ac-

celerometer to log their physical activities. We know that physical activities have

highly relation to physical wellness [45, 44]. Physical activities have been testi-

fied to be significant in maintaining good body condition and preventing multiple

diseases, including type two diabetes and some cardiovascular fitness [93]. In mod-

ern digitalized world, sensor technologies, in almost every aspect of daily business

and personal life, simplify both common and complex processes and chores. In

houses, technology breeds convenience, resulting in time and personal energy sav-

ings. Using sensors for managing personal lifestyle and physical activities has been

researched in various scenarios. In this chapter, we provide an overview of con-

textual discovery from lifelogs using multi-modal sensor data. This data includes

accelerometer, GPS, WiFi, bluetooth that are collected by multiple sensors. The
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Figure 4.1: Overview of Chapter 4
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long-term user study allows us to use devices/technology to record lives for later

usage passively instead of generating content objectively. This chapter also in-

troduced a self-reporting research method to provide us with ground truth data to

conduct multiple research experiments.

4.1 Introduction

Lifelogging as in previous research was mostly used in memory enhancement,

which in most cases were defined as predominantly visual capture of lives [56, 80,

79]. While recently, more and more research and applications are utilising sensory

information of lifelog to explore positive use cases like daily physical activity as-

sessment [154, 22]. Moreover, recent discoveries have found that using sensors to

understand users’ behaviour is a non-visual manner but contextual information can

provide positive feedback in users’ behaviour prediction [101]. For sensory con-

textual discovery from lifelogs, this thesis specifically focuses on physical activity

recognition by introducing input of heart rate from already available sensor source,

which, to our knowledge, is currently not facilitated by any tool or highly matched

technique yet.

Over the past two decades, the accelerometer has been established and refined

as a tool for tracking physical activities [154, 22]. Smart phones can be used as

a platform for lifestyle monitoring [61, 62]. All sensory data will be taken as the

context information on lifelog data analysis.

According to WHO, physical inactivity (lack of physical activity) has been iden-

tified to be the fourth leading risk factor of global mortality (6% of deaths globally).

In the book Physical activity and health: a report of the Surgeon General published

by National Center for Chronic Disease Prevention [121], it is addressed that Amer-
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icans (or more generally, people) substantially improve their wellness and quality

of life by embracing moderate amounts of physical activities in their daily lives.

The study of human motion using sensor devices including accelerometers, GPS

etc. has become increasingly extensive in various research areas. The exploita-

tion of lifelog access includes extracting and employing contextual raw data for

user access and further research. Thus, in this chapter, we focus on automatically

recognising Activities of Daily Living (ADL) using portable, non-costly sensors

and cell phones. Valuable information regards an individuals’ degree of functional

ability and lifestyle [22, 94]. More specifically in this research, physical activities

are important semantics that facilitates to build linkages between lifelog events for

retrieval purposes. The labels assigned to each activity are taken as attributes to

associated event.

We have introduced that there has been little research effort into physical ac-

tivity based event detection from lifelog, with the fact that prior state-of-the-art

systems focus on analysing a small number of wearable sensors. For example, the

previous work on event segmentation by Doherty et. al. incorporates visual process-

ing of raw lifelog data [57] from SenseCam to identify visually significant changes

in the composition of SenseCam images as a trigger for an event change. Since

event segmentation is the core basis of this research, rather than simply accepting

the current approaches, we propose to develop and evaluate a new technique for

lifelog event segmentation that integrates Activity Recognition into the Event Seg-

mentation, based on our conjecture (and related hypothesis) that visual processing

is not sufficient to segment life activities into events. Initial results of our research

into Activity Recognition have been gathered and the relevant paper was presented

at ICMR 2013. In this chapter, we introduce activity recognition methods that we

have used in our previous work and its application in personal lifestyle detection
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Figure 4.2: The process of physical activity recognition

and event segmentation for the next chapter. It includes why we are doing physical

activities, how we are conducting physical activities recognition and how it is used

in facilitating event segmentation and linkage analysis. Figure 4.2 illustrates the

process of physical activity recognition, which we describe now.

4.2 Synopsis of Physical Activity

Activity is an umbrella term for lifelog researchers because it is often confusingly

used as a synonym for event and life-activity, both physical and semantic. Physical

activity recognition using sensors has been a topic of research for about 10 years.

Bao et. al. proposed to use user-annotated acceleration data for activity recognition

[11, 102]. Physical activity is a complex behaviour while here we narrow down

categorization of physical activities to be a limited and digitally recognizable set of

physical behaviours.

Physical Activity, “exercise” and “physical fitness” are terms that are often used

interchangeably in epidemiology and especially behavioural epidemiology research

while their definitions are distinguished [36]. In the definition of Casperson et. al.,

physical activity is any kind of bodily movement produced by skeletal muscles that

brings about energy expenditure.

87



Human activity has different definition in different areas. Jennifer et. al. stated

that human daily activities include walking, jogging, climbing stairs, sitting, and

standing [102]; activities which are particularly relevant to exercise and healthcare.

In our research, we will extend this scale to consider most of the 16 activities ac-

cording to Kahneman’s work in Science Magazine [88], see Table 4.2.

The United States Department of Agriculture writes on their website mention-

ing that “Physical activity simply means movement of the body that uses energy.”1

According to their definition, physical activities should be categorized as moderate

or vigorous as per the exertion required in their performance.

These activities form the target for our new activity recognition technique, which

in turn both supports semantic annotation of lifelog events and the actual effective-

ness of the event segmentation model itself. However in this research, we only

address 15 of the 16 activities (ignoring Intimate Relations).

In contrast, the definition of physical activity we have proposed in this thesis

is more centred around lifelog access applications than those in common physical

measurement uses and thus is considerably more restrictive. Physical activities

are divided into two main categories: elementary physical activities and combined

physical activities.

Elementary physical activities are physical activities that can not be split into

smaller activities like standing, walking, sitting etc. Six types of elementary activi-

ties that are detected automatically are “WALKING”, “SITTING”, “STANDING”,

“LAYING”, “WALKING UPSTAIRS”, “WALKING DOWNSTAIRS”, using Sup-

portive Vector Machine [133] as shown in Table 4.1. We use abbreviations in later

description of how the categorization of elementary activities are applied.

Combined physical activities are activities that can be divided into multiple

1http://www.choosemyplate.gov/physical-activity/what.html
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1 W WALKING
2 SI SITTING
3 ST STANDING
4 L LAYING
5 WU WALKING UPSTAIRS
6 WD WALKING DOWNSTAIRS
7 C CYCLING

Table 4.1: Elementary physical activity abbreviation and labels

1
Intimate relations (not

explored) 9 Preparing food

2 Socializing 10 On the phone
3 Relaxing 11 Taking Care of my Children
4 Pray/worship/meditate 12 Computer/Internet/Email
5 Eating 13 Housework
6 Exercising 14 Working
7 Watching TV 15 Commuting
8 Shopping 16 Napping

Table 4.2: Combined target activities in this lifelogging research

different or same elementary activities as shown in Table 4.2.

Physical activities play significant role in daily lives as every human is con-

ducting meek (walk/shaking hand) or vigorous (boxing/running) kinds of physical

activities, just as stated by Caspersen et. al. “No member has no activity just as

no person has no fitness - all are active or fit to greater or lesser degrees” [36].

Therefore, physical activity recognition is an important means of recording body

movements of humans. Additionally, since physical activity recognition can facili-

tate digital calorie expenditure reckoning, people would like to use modern devices

to record their life data about physical activities, which is one of the underlying

motivations of this research to perform. To the best of our knowledge, the exact

correlation between accelerometer output and energy expenditure has not yet been

established, and given that accelerometers only calculate base don physical move-

ment, the energy expenditure based on cognitive processing and other baseline body
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activities will not be captured by accelerometers.

Equation 4.1 can be used to express the caloric contribution of each category to

the total energy expenditure due to physical activity according to [36].

kcalasleep + kcaloccupation + kcalleisure = kcaltotaldailyphysicalactivity (4.1)

4.3 Adaptive Hierarchical Physical Activity Recogni-

tion

In this section, we are introducing our proposed adaptive hierarchical physical ac-

tivity recognition methods using sensor data collected by mobile phone and Autog-

rapher.

We used Artificial Neural Networks as a classifier. ANNs have advantages of

being adaptive and capable of providing correct answers even if the previously un-

seen features are entered as inputs [105]. Our wearable system is based on a new

set of 20 computationally efficient features and the Random Forest classifier [35].

The following section will describe how the date is collected and how the features

are extracted and applied in physical activity recognition.

4.3.1 Data Collection

The data for physical activity recognition was collected with both Autographer and

Android phones with our in-house lifelogging software, as previously mentioned).

The Autographer is set at high capture rate to ensure that we gather enough data

(about 3,000 images per day) and the mobile phone data capture rate is set at 10Hz.
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For all subjects, each activity was manually identified and coded with predefined

activity labels. Autographer sensory data collection frequency of Autographer sen-

sory capture and Android phone sensory capture are respectively 0.1Hz and 50Hz,

thus, a period of T = 1/f = 100ms and with a resolution of 50 bits for acceleration

and one picture in 10 seconds. The data collection was passive, hence it had little

impact on the wearer’s daily life. To increase accuracy, we asked wearers to wear

the phone in the back-hip pocket, while Autographer was worn on the typical lan-

yard around neck. More details of this dataset is introduced in Chapter 3. Data

collected by BASIS band include calorie, galvanic skin response , hear-rate, skin

temperature and steps as shown in Figure 4.3.

The public Human Activity Recognition Using Smart phones Data Set [7] shared

by University of California, Irvine can be downloaded here 2 [7]. This dataset

was collected with a group of 30 volunteers within an age bracket of 19-48 years.

Each person performed six activities (WALKING, SITTING, STANDING, LAY-

ING, WALKING UPSTAIRS, WALKING DOWNSTAIRS) wearing a smartphone

(Samsung Galaxy S II) on the waist. This dataset provides us with the basic train-

ing set for physical activity recognition for training our machine learning model for

predicting.

4.3.2 Concept of Adaptiveness

The activity recognition work is significant because the model permits us to gain

useful knowledge about the habits of millions of users passively just by having

them carry cell phones in their pockets. In addition, activity is a natural segmen-

tation enhancement element for our work on event segmentation (next chapter). In

our research, we use a number of light-weight and power-efficient methods for ac-

2http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
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Figure 4.3: Basis Band data distribution of one day’s data of one subject

Figure 4.4: Raw SenseCam sensor data for activity recognition
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tivity recognition: accelerometer-based and GPS location-based. It may be deemed

necessary to enhance these methods with additional sensor sources, but this would

be the subject of experimentation. In this section we outline our work for the de-

velopment of activity recognition model. All data for this activity recognition had

been collected in prior research in which the author was personally involved.

Each individual is unique not just in appearance but also in life behaviours that

might appear similar to a human but actually massively different to sensitive sensors

due to bias and sensitiveness of digital devices collection. When designing human

computer interactive systems, adaptiveness is a vital element to consider [81]. Es-

pecially in our physical activity recognition process, we follow the research clues

stated in [153], that the recognition process should adopt the rule of adaptiveness

to allow the system to learn to adapt to individuals. Back to applying adaptive-

ness in the physical activity recognition process, instead of using one single model

for physical activity recognition for all users, adaptive physical activity recognition

generates personalized predictive models for each user as an optimization necessity

in physical activity recognition.

4.3.3 Feature Extraction for Physical Activity Recognition

Different researchers use different quantitative data onto the features of physical

activity recognition. Some use mathematical and statistical approaches. Lee et. al

applied two levels of feature extraction [107]: four features including mean, stan-

dard deviation, spectral entropy and correlation, which are extracted from the first

level for state classification, while at the next level (i.e., the activity recognition),

three features including autoregressive coefficients, signal magnitude area, and tilt

angle are used for activity classification.

Feature extraction should be the most important part for physical activity recog-
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nition process using 3-axial linear acceleration (ax, ay, az) and 3-axial angular ve-

locity (vx, vy, vz). Sensor-based activity recognition is a challenging task due to the

inherent noisy nature of the input from digital devices. Thereby, in the raw data

pre-precessing phrase, noise filtering is employed to get clean raw signal data and

then it is sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128

readings/window), similar to the approach used in DCULifelogdataset in Section

3.4.3. Considering the sensor acceleration signal could have been affected by grav-

itational and body motion, we used a Blutterworth Low-Pass Filter [3] to separate

the acceleration signal into body acceleration and gravity. All features are normal-

ized and bounded within [-1,1]. The gravitational force is assumed to have only low

frequency components, therefore a filter with 0.3 Hz cut-off frequency is used. For

each window, a vector of features is calculated using variables from the time and

frequency domain. We base our feature extraction on his research but also extend

to a wider spectrum by introducing more mathematical calculation, like described

in Chapter 3, Section 3.9.1.

The acceleration signals with N samples during a period of time T can be rep-

resented as:

A(T ) =


ax,1 ax,2 ... ax,N

ay,1 ay,2 ... ay,N

az,1 az,2 ... az,N

 (4.2)

where ax,t, ay,t, and az,t are the acceleration signals from x, y, and z-axis, re-

spectively (t = 1, 2, ..., N).

For each instant ti of acceleration record, the three acceleration values (axti , a
y
ti , a

z
ti

)

represents the three axis of the accelerometer x, y and z at the time-stamp of ti. One

sequence 1 second raw measures is subsequently used to obtain one instance vector.

The instance vector v = (v1, v2, ..., v39) includes 10 x-axis values, 10 y-axis values,
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10 z-axis values, three means and three standard deviations and three variance for

each axis. In the equation 4.5, j stands for the start point of x, y or z axis values.

Probability models and Support Vector Machines need a prerequisite of data

input that is how to combine heterogeneous input data in SVM training and testing

model.

mean =
1

N

10∑
1

vi (4.3)

sd =
1

N

√√√√ N∑
1

(xi − µ)2 (4.4)

variance =
1

N − 1

j+10∑
j

(xi − xj)2 (4.5)

Correlation among these 3 axes represents the relation among three axes and

helps to find out the strength and direction of a linear relation among three axes.

The correlation among three axes can be expressed as:

R(T ) =


rx,x ax,y ax,z

ay,x ay,y ay,z

az,x az,y az,z

 (4.6)

where, ri,j = 1
N−1

∑N
t=1(

ai,t−āi
si

)(
aj,t−āj

sj
), and i, j ∈ x, y, z, here where ri,j repre-

sents the correlation between two axes of the sensor, ai,t and aj,t the value of the

tth sample, āi and āj the mean, while si and sj are the standard deviation for both

axes, respectively.

All features included in this extraction process are included as in Table 4.3.

Analogously, the model produced by SVM for combined physical activity recog-
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Feature Explanation
mean() Mean value
std() Standard deviation
mad() Median absolute deviation
max() Largest value in array
min() Smallest value in array
sma() Signal magnitude area
energy() Energy measure. Sum of the squares divided by the number of values.
iqr() Interquartile range
entropy() Signal entropy
arCoeff() Autorregresion coefficients with Burg order equal to 4
correlation() correlation coefficient between two signals
maxInds() index of the frequency component with largest magnitude
meanFreq() Weighted average of the frequency components to obtain a mean frequency
skewness() skewness of the frequency domain signal
kurtosis() kurtosis of the frequency domain signal
bandsEnergy() Energy of a frequency interval within the 64 bins of the FFT of each window.
angle() Angle between to vectors.

Table 4.3: Activity feature extraction methods and their brief explanation

nition shares the same features as for elementary physical activity recognition.

4.3.4 Accelerometer Enhanced Physical Activity Recognition

Physical accelerometer feature extraction is required for physical activity recogni-

tion. In activity recognition, there is a fair amount of uncertainty and risk involved

with estimating the future value of next possible activities due to the wide variety

of potential outcomes.

Accelerometer data records human body movement in three dimensions. In our

research, the devices will be set to a high-collection rate (5Hz). To implement our

algorithm we firstly annotate accelerometer data that is collected from users as they

performed daily activities such as driving, walking, jogging, climbing stairs, sitting,

cooking, and standing, and then aggregated this time series data into learning ex-

amples that summarize the user activity over a time interval. We then use machine
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(a) Sitting (b) Standing (c) Walking (d) Running

(e) Stepping
Up/Down

(f) Falling (g) Driving
(h) Eat-
ing/Drinking

Figure 4.5: Activity recognition results for each activity.

This is our first experiment that aims to identify physical activities. Y-axis stands
for the fluctuation rate, and X-axis is the time. The time interval for this data is 5
seconds. All samples are randomly selected from our dataset. All dimensions are
scaled to fit in [-1,1].

learning (ML) based on annotated training data to induce a predictive model for

activity recognition. For this we are using an off-the-shelf SVM (Support Vector

Machine) tool called LIBSVM [38].

WiFi demonstrates the location information of users by the strength of the sig-

nal. Take WiFi “School of Computing” for example, if this signal is detected, it

shows that the user is in the School of Computing building. And in many cases, this

user could be conducting an “Computer/Internet/Email” activity and it is less likely

to be “Shopping”. We use WiFi to detect user activities by applying the look-up

mechanism.

GPS is efficient for speedy movement with location change on a vast scale, here
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Figure 4.6: Accelerometer recorded signal for activity recognition
Accelerometer recorded signal for activity recognition

we can extract very rich context information by combining location information

with relevant geographic knowledge. We use GPS location and map positioning

and altitude numbers into human-readable locations and store these locations in the

database. A new record, if it is within the scope of an existing location, should be

mapped to that location. The approach has been successfully used in my prior work

in GPS locating in late 2011.

4.3.5 Physical Activity Recognition Based on Feature Fusion

Using the combination of multiple features (GPS location, WiFi, Accelerometer)

and time, we integrate the features from different perspectives. We conduct this

comparison to examine whether the combination of these features outperforms any

individual feature. These features are taken as different dimensions in the machine

learning model training.
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In physics and other sciences, a non-linear system, in contrast to a linear system,

is a system which does not satisfy the superposition principle - meaning that the

output of a non-linear system is not directly proportional to the input.3

Future fusion combines multiple feature sets in a linear way to expand feature

sets. In this research, all features are combined in a linear space to mitigate the

complexity of the feature space.

4.4 Personal Lifestyle Recognition

Our previous work on public health research provides some basis of our work on

how to use lifelogs for public health research as a means of lifestyle detection [141].

This research demonstrates some of our thoughts about how lifelog can be applied

in public and individual health prevention and monitoring. One additional source

of evidence we will gather is concerned with Personal Lifestyle . We define PL to

be either active or sedentary according to tri-axial accelerator data (ax, ay, az) and

GPS (latitude gla, longitude glo) data. We compute the coefficient of activity degree

by:

A = a ∗
√
a2
x + a2

y + a2
z + b ∗

√
g2
la + g2

lo (4.7)

Equation 4.7 is the lifestyle detection method firstly defined by this thesis. In

this equation, the parameters a and b are empirically set as 0.4 and 0.6. If A >

threshold, then the current movement is defined as active, otherwise it is defined

as inactive. The threshold here will be determined by specific experiments that

will be conducted over large group of users. After we get assignment of all active

or inactive features of all movements of the users, we can get the activity degree

3http://en.wikipedia.org/wiki/Nonlinear system
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1 Physical activity MET
2 Light intensity activities <3
3 sleeping 0.9

Table 4.4: MET levels for different activities

of the users at any point in time. We empirically think that users should be active

during travel or moving time like commute/cooking/doing housework. If not, the

user will be considered as an inactive person. The Personal Lifestyle (PL) value of

people in specific time period feedbacks into the activity recognition in the way that

active people has a shorter time episode of activities. The result of this recognition

are evaluated by a user annotation-based experiment.

More careful descriptions and considerations of the components of daily living

will facilitate cross-study comparisons. Physical activities monitoring using digital

devices has been proved to be helpful for personal physical wellness maintaining

[68, 45, 44].

The Metabolic Equivalent of Task (MET), or simply Metabolic Equivalent (ME)

, is a physiological measure expressing the energy cost of physical activities and is

defined as the ratio of metabolic rate (and therefore the rate of energy consumption)

during a specific physical activity to a reference metabolic rate, set by convention

to 3.5 ml o 2*/kg/min or equivalently as in Equation 4.8:

1MET = 1
kcal

kg ∗ h
= 4.184

kJ

kg ∗ h
(4.8)

MET is the ratio of the work metabolic rate to the resting metabolic rate. It is

used as a means of expressing the intensity and energy expenditure of activities in

a way comparable among persons of different weight. Actual energy expenditure

during an activity depends on the person’s body mass index; therefore, the energy

cost of the same activity will be different for people of different weight and height.

100



As described earlier, Event Segmentation (ES) has received little attention in

research thus far, with the only comparable prior work on lifelog being done by

Doherty et. al. [59, 58]. In this work, we use multi-model sensor data for ES. This

multi-model sensor data includes images, GPS location, accelerometer, WiFi, blue-

tooth. With accelerometer and location, we need to find activities like Socializing or

Computer/Internet; with bluetooth data, we can explore the social life of the users.

The input of the algorithm is the activities and the output are events or episodes of

life activity.

Instead of taking original raw sensor data as input for event segmentation in

previous work, we take recognised activities as the input for event segmentation

units, as stated in Chapter 1, which decreases the dimension of the unprocessed

source data and has a potential to increase the segmentation accuracy.

4.5 Experimental Set-up and Variables

We have implemented an event segmentation algorithm based on time series and

accelerometer data that is collected by a SenseCam/Autographer camera and in-

stantiated as the ShareDay system [175]. ShareDay is a lifelog system to support

reminiscence through incorporating event segmentation and event sharing. This was

specifically trailed in a family scenario where ten families were employed to engage

in lifelogging for a period of two weeks. This is the first system developed by the

author and first user trial for this work. This system will be used as a framework

upon which I build the next systems that underlie the planned research. This al-

lowed us to trial the initial event segmentation approach with real-world users. The

figure in Appendix B.3 is the snapshot of the main interface of our implemented

system.
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We evaluated our system through a user study into system usability, usefulness

of system, and potential for event sharing between users. Table 4.5 demonstrates

the participant distribution in the ShareDay evaluation system. In total, we got 4

participants wearing wearable sensors for a month. We found in this study that

all users thought the system easy to use, easy to learn, an efficient way to access

information, useful, fun and interesting. Most users would like to look at shared

images only when they want to find some things of interest or for social reasons.

Participant Gender Age NumberOfImages
FK male 56 4618
CK female 58 11071
DK male 28 3249
SK male 23 2443

Table 4.5: Initial user study evaluation of ShareDay

Although the ShareDay system provided a framework for my future experi-

ments and a baseline event segmentation model, from the perspective of this re-

search, the most important result from this experiment is actually the understanding

gained that lifestyle activities could potentially form a valuable input into the event

segmentation process, and this has formed one of the hypotheses of this research

(hypothesis 2) in Chapter 1, that we can develop a better event segmentation ap-

proach by utilising activity recognition. This is also part of the initial study covered

by this research.

4.6 Evaluations

In this section we describe how we evaluated Activity Recognition, which is the

input of the Event Segmentation model and a source of annotation . To evaluate the
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potential of the activity recognition and its potential as a new data source for event

segmentation, we are following the test collection approach in which we employ

users to gather a suitable quantity of representative real-world source data and then

generate a ground-truth of correct answers by engaging the same users to annotate

their data with the correct annotations [56]. It is then possible to develop algorithms

and techniques to map between the source data and the annotated source from the

users. This allows us to employ machine learning techniques with K-Fold (k = 10)

cross validation to develop non-biased software tools and to refine and re-evaluate

these tools using a single, reusable gathered dataset.

In order to evaluate the potential of activity recognition, we have access to all

participants’ data over a period of one week. It was crucial that the participants

engage in as natural a lifestyle as possible during the data gathering phrase. Since

data gathering for lifelogging is a very challenging activity, this data gathering exer-

cise is being done in conjunction with other researchers. These users were chosen

from a broad spectrum of user groups, from students to retired individuals, with

varying incomes, age ranges and education levels. After gathering data for a pre-

scribed period of time, the users engage in the manual annotation process to build

the ground-truth for the test collection. All annotators are provided images of the

sequences to prompt important activity information. If the recognised activity was

in agreement with the real one in the time aligned wearable camera images, it was

marked as 1, otherwise it will be marked as 0.

In addition, the data is sub-sampled to ensure that the same number of positive

and negative examples are used when training and evaluating the models, so as to

further eliminate bias from the process. In total, we get 654,585 annotated activity

records.
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Apa =
Numcorrectlyrecognisedactivities

Numallactivitiesonecategory

(4.9)

Activity MM-AR ACC-AR WiFi-AR LOC-AR
WALKING .5652 .4672 .1245 .1652
WALKING UPSTAIRS .6943 .6652 .0124 .0025
WALKING DOWNSTAIRS .9587 .9922 .2145 .0145
SITTING .8962 .8521 .2351 .8566
STANDING .7587 .7542 .0024 .0041
LAYING .7754 .7752 .0085 .0057
RUNNING .4524 .4523 .0014 .0056
DRIVING .9869 .9122 .4120 .1245
CYCLING .7568 .1254 .7547 .5652

Table 4.6: Activity recognition accuracy of four methods (MM-AR, ACC-AR,
WiFi-AR and LOC-AR), the rate of automatic recognition result numbers divided
by numbers of respective manually marked result. (In this daily activity recogni-
tion, we set average number of daily activity to be 30 according to our experimental
and empirical observation.)

This is the approach to training and evaluation that will underpin all of the

planned semantic software development in this work. It is beneficial in that it allows

refinement and reworking of techniques long after the data gathering and annotation

phase is over. Another benefit is that it allows for the comparative evaluation against

existing techniques by simply implementing them over the new test collection and

observing the performance. In Table 4.6, as we use binary category classification,

all values are the rate that the activity is recognised as 1(correctly) and that is also

manually annotated as 1 over all categories.

For our first experiment into activity recognition, implemented a multi-modal

human daily activity recognition method for personal lifelog data analysis. Differ-

ent from prior work which used single modal data for activity recognition, our ap-

proach combined three models of data (accelerometer, WiFi and GPS). Aside from
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this, we extracted features from the multi-modal data by calculating mean/standard

deviation/median number/correlation of all three axial accelerometer data. Also, for

GPS data, the centre point nearest neighbour is applied; for WiFi, strength of WiFi

signal gives evidential hints of lingering in a place. The experimental result shows

that the proposed human activity recognition approach combining GPS and WiFi

data as auxiliary to conventional accelerometer based method can outperform any

single-modal method, suggesting that the likelihood of certain activities occurring

are correlated with the GPS and WIFI data, which are location-aware data sources.

As shown in Figure 4.5, feature samples for ten activities (Sitting, Standing,

Walking, Running, Stepping Down, Falling, Driving, Eating/Drinking, Sleeping/Napping)

under different features (GPS location (purple line), WiFi strength to centre WiFi

device (blue line), the mean value of accelerometer data ACC-X, ACC-Y, ACC-Z

in other three lines). In accelerometer data, all standard deviation/correlation are

normalized to be within -1 to 1. WiFi strength is normalized to be -1 to 0, in which

0 means strongest and -1 means weakest. GPS location is calculated to be earth

distance between the position of the subject and centre point.

The reason for this first experiment identifying these 10 activities instead of

the 15 lifestyle activities mentioned at the beginning of this chapter is that as the

lifestyle recognition experiment is still in progress and images had not been taken

into consideration in this first experiment, some of activities like Computer and

Relaxing are hard to be distinguished using the current approach. Thus we only

extract physical activities for this first experiment, but for our later experiments,

we identify the 15 lifestyle activities as a source of event segmentation input and

experience annotation data. In the table, for “sleeping” activity, only WiFi signal

can be detected well, that is mainly because we take time into consideration. In the

algorithm, if time is correct and the signal strength is not changing, then is likely to
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be “sleeping” activity.

We explore the performance of our proposed multi-model recognition method

of activity recognition by comparing with single-modal methods, see Table 4.6. In

this table, ACC means accelerometer based AR method, WiFi represents wireless

signal based approach, LOC shows the location based method and MM stands for

the combination of three aspects. The data we used is the all participants data

mentioned in the above context. We can easily see that different features work on

different activities. Take activity Stepping Up and Stepping Down for example,

ACC-Z works better for these activities as accelerometer fluctuates most strongly

in the Z axis. The more detailed research output can be seen in Table 4.6.

One new finding from this research is a concept called Activity shifting. Ac-

tivity shifting is a concept that we define in this thesis, because as we analysed the

activity recognition results, we found that there is a possibility for some activities to

be misclassified as a similar one. The phenomenon that the activities are recognised

as another activity we call Activity Shifting. Activity Shifting (Table 4.7) demon-

strates the possibility of different activities marked as another activity by MM-AR,

in which, if the value is higher, the more possible that the activity in left of the

table marked as the activity in header of the table. The values in the diagonal are

the accuracy rate of the activities recognised right in the MM-AR approach. In this

case, the possibility demonstrated in the Table 4.7 is the Activity Shifting poten-

tial. The activity shifting rate is higher if two activities are physically continuable.

Take Standing and Walking for example, AS rate is 0.2586 in Standing-Walking,

and 0.1253 in Walking-Standing. Also Activity shifting rate is 0.0053 in Running-

Driving, and 0.0019 in Walking-Standing, which is lower than the counter part as

Running and Driving differ in GPS changing feature (higher fluctuation). But the

Activity Shifting rate is not diagonal, as the possibility of activity A being recog-
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nised as activity B is not equal to the possibility of activity B being recognised as

activity A.

Different activities have different accelerometer fluctuation patterns, which are

effective in recognising activities, but as shown in Figure 4.5, that means there are

a few activities they are highly similar to each other. See activity Standing and

Sleeping/Napping, both have low fluctuation rate although for the Sleeping activity,

ACC-X meets minor regular up-down fluctuation as the body slowly moves when

breathing. All these features construct unique activity fluctuation patters referring

to multi-modal features. We reduce the potential impact of Activity Shifting. We

also suggest that Activity Shifting is a valuable target for future research activities,

but consider it to be outside of the scope of this research presented in this thesis.

4.6.1 User Annotation of Personal Activities

ZhiWo, as previously mentioned, is a prototype human activity recognition system

based on a concept of “Knowing Me”. The data source for ZhiWo is a raw sensor

stream sampled from a smartphone worn on the body. ZhiWo semantically pro-

cesses the sensor stream to identify distinct user activities (e.g. walking, resting,

commuting, eating, shopping, etc.) based on a machine learning model trained by

human annotation of activities on the mobile device. It provides browsing tech-

niques based on an activity time-line view and can support locating specific activi-

ties of interest from within large lifelog archives.

To achieve the greatest accessibility of data gathering for various users, an ap-

plication was developed for smartphones (Android OS) for collecting lifelog, see

Figure 2.2. Users collect data by wearing the smartphone on a lanyard about the

neck, or otherwise attached to the clothing in a manner so the smartphone camera

is orientated towards the activities the user is engaged in. The data collected in-
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cludes photos, tri-axial accelerometer readings, GPS, WiFi, bluetooth signals, and

ambient environmental measurements such as temperature. This data can be either

transferred to the server in real-time, uploaded on demand, or uploaded in bulk upon

charging to save the battery power of the smartphone.

Our experience shows that personal activity recognition models with supervised

machine learning model outperform naive approaches of setting thresholds. There-

fore, we applied a supervised machine learning method to identify different ac-

tivities automatically. The machine learning technique we employed was Support

Vector Machine with a linear kernel. We have identified a set of the sixteen most en-

joyable life activities as defined in previous work of Kahneman et. al. [88] and our

software automatically identifies appropriate activities, chosen from this sixteen.

The source data for training the SVM is the sensor stream data, segmented into

events, and the user annotation of life activities, which they can do by identifying

their current activities through the interface of the smartphone application.

4.6.2 Activity Recognition

For activity recognition evaluation, we used the DIAL dataset and DCULifelog-

Dataset. We set one window to be 60 seconds long and 30 steps within one window

for an adult normal walk. The frequency for one window is 30Hz,

Among 17 most commonly used classification methods, Random Forest and

SVM are evaluated to be the most effective classifiers [90]. In this research, we

explore the effectiveness of using these three menthols.

As shown in Table 4.8, most of elementary activities can be recognised at accu-

racy of over 90%, while some of them like laying has a very high accuracy as the

time feature is also added into the feature set for training and predicting.

As shown in Table 4.9, most of combined activities can be recognised at a lower
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Classifier Activity Accu-
racy(%)

Time
taken (s)

RF

WALKING 95.12 5.23
SITTING 95.85 3.6

STANDING 88.56 3.54
LAYING 99.56 2.76

WALKING UPSTAIRS 92.25 4.36
WALKING DOWNSTAIRS 89.58 3.25

CYCLING 90.54 4.54

SVM

WALKING 95.12 5.09
SITTING 93.34 5.06

STANDING 98.56 3.25
LAYING 99.56 2.33

WALKING UPSTAIRS 92.25 3.25
WALKING DOWNSTAIRS 89.58 3.05

CYCLING 91.33 3.91

ANN

WALKING 94.25 5.12
SITTING 92.51 5.11

STANDING 93.25 3.21
LAYING 99.44 2.56

WALKING UPSTAIRS 95.09 4.17
WALKING DOWNSTAIRS 88.22 3.91

CYCLING 90.96 4.21

Table 4.8: Evaluation of activity recognition.
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no. Activity Accuracy(%)
RF SVM ANN

1 Socializing 20.83 12.35 15.85
2 Relaxing 35.2 39.58 54.23
3 Pray/worship/meditate 46.25 33.65 40.21
4 Eating 59.8 62.23 45.26
5 Exercising 33.65 23.25 29.46
6 Working 85.66 86.58 88.16
7 Watching TV 25.33 25.65 33.21
8 Shopping 88.54 86.59 95.33
9 Preparing food 33.21 25.51 24.95
10 On the phone 13.25 18.68 29.56
11 Taking Care of my Children 23.25 12.35 18.5
12 Computer/Internet/Email 53.55 54.25 36.5
13 Housework 25.21 15.94 17.38
14 Working 68.56 78.54 74.46
15 Commuting 94.25 89.99 95.21
16 Napping 12.2 14.24 9.58

Table 4.9: Combined Activity Recognition

accuracy than elementary activity recognition as shown in Table 4.8. “Shopping”

and “Commuting” are the two most detectable activities with the highest detection

accuracy. The reason for this is that for “Shopping”, GPS location for shopping

centres are added into feature set; for “Commuting”, driving feature is almost (81%)

showing that it is commuting, also GPS feature also works for this detection.

4.6.3 Lifestyle of Activeness

One research topic we include in this chapter is the level-of-activity detection of

personal lifestyle. Level-of-activity is also called activeness in this thesis. We use

Equation 4.7 to detect the lifestyle of the subjects and use the factor as a index to

present the activeness for personal health care research. Although this is not the

main topic of the research of this thesis, but it is one of the research directions that

ubiquitous computing can be applied in support of daily life, which is the main
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Participant Social Role still(%) Moderately
Active(%)

Highly Ac-
tive(%)

1 professor 66.25 14.24 19.51
2 final year student 80.33 11.08 8.59
3 first year student 40.98 35.25 23.77
4 finance department worker 39.51 33.09 27.4
5 assistant officer 36.25 54.24 9.51
6 part-time first year student 38.41 45.11 16.48

Table 4.10: Evaluation of activeness recognition

purpose and aim of this research.

The output of Equation 4.7 is a score. This score was calculated by giving one

point for every second, threshold to three states (1) “still” (2) “moderately active”

(3) “highly active”. The result of activeness for 6 subjects are shown in the Table

4.10.

As shown in the Table 4.10, different people with different professions have sig-

nificantly different lifestyle activeness. First year student has more active lifestyle

than the final year student who had deadlines for theses. Also the age of group also

affects the lifestyle activeness. As shown in the table, younger age group has more

active lifestyle than the older group.

4.7 Conclusion

In this chapter, we first give our definition of human daily activities and later de-

scribe the activity recognition methods for sensor data. For activity recognition,

we have done experiments on physical activity recognition (10 activities) and more

work is to be done over 15 activity recognition. We also point out that we can also

do lifestyle detection for optimizing activity recognition and for healthcare research

in the future. We have also outlined the approach we are taking to development and
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evaluation, that will be employed many times throughout this research. In the fol-

lowing chapter, we will introduce how to apply the activity recognition in event

segmentation.
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Chapter 5

Visual Discovery from Lifelogs

5.1 Introduction

In our view of lifelogging, the data includes not only sensory data that provides

contextual information about the activities of the individual, but also visual content

that has previously proved to be efficient in human memory reminiscence [32, 56,

129]. These visual contents make up the vast majority of the lifelog data that we

generate in our lifelog (up to 86% are images). However, the potential of lifelogging

as an assistive technology is hampered by the complexity of visual content analysis

[28]. From prior research, we know that people perceive daily activities in terms of

discrete events [56] and in terms of lifelogging, this requires the creation of event

segmentation algorithms that segment a continual stream of lifelog data into a set

of discrete events. Events provide both a unit of access and a unit of retrieval for

lifelog. In this chapter we will review past efforts at event segmentation as well as

propose our approach to segment lifelog events by introducing features from both

contextual and conceptual data from lifelog that is discussed in the previous chapter

4. This chapter also provides input for the linkage analysis in the Chapter ??.
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Figure 5.1: Overview of work in chapter 5
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Event segmentation, in lifelogging research, means the automatic process of

segmenting chronologically consecutive images and body/ambient sensors into daily

life events. Researchers in the lifelog area have employed a number of methods

for lifelogs event segmentation . Event Segmentation Theory proposes that event

boundaries tend to occur when features of the situation being observed are chang-

ing the most, because these tend to be the times at which prediction errors increase

[172].1 Byrne et. al. validated everyday concept detection in visual lifelog and

applied it to daily event segmentation [28]. Wang et. al. proposed the concept

of visual lifelogging and brought up using Hidden Markov Model to analyse time

series of lifelog images [161]. Doherty et. al. also has done a recap of continuing

work in this trend [52].

The motivation for re-examining the event segmentation models in use today

is that there is limited research undertaken on lifelog event segmentation and asso-

ciation for lifelog, yet the quality of the event segmentation has an impact on any

holistic solution given that the event segmentation model typically generates the

documents, the basic data types to be used in developing search and access meth-

ods for lifelog data. In the lifelogging community, it has been recognised by Lin

et. al. that a visual lifelog should be segmented into shots/activities/events to make

it manageable [111]. Events in lifelogs [52] are life episodes that composes peo-

ple’s life, like working in the office, shopping with mum etc. The concept Event

differs from the concept Activity in the way that events are more scenario related

while activities are more physical behaviour based. Event segmentation is impor-

tant because it provides a basic unit for lifelog retrieval or linkage for any lifelog

application, which is the research topic covered in the next chapter. Without event

segmentation, a SenseCam wearer (or any other lifelogger) would have to examine

1http://www.apa.org/science/about/psa/2010/04/sci-brief.aspx
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up to 5,000 photos per day to review past experiences. Indeed, the initial Microsoft

SenseCam viewing software simply provided a frame-by-frame animated playback

mechanism for accessing up to thousands of images per day. In this thesis, we

provide a solution to the problem promised in the former part of this thesis by in-

troducing lifelog event segmentation methods, events linkage mesh construction

and retrieval models. Finally we depict our experimental system configuration and

illustrate our experimental prototypes.

5.2 Visual Features for Lifelog Visual Content Anal-

ysis

Events, or lifelog data in general, can be made semantically enriched by detecting

who is in the event (in the images), how many friends are in the images when and

where the image was taken, etc. Visual features can provide the information ex-

tracted from lifelog photos. According to Cathal Gurrin, the lifelogger with first

person experience of lifelogging, averagely, there will be around 1T of data col-

lected by a lifelogger within a year. It would be headache if these data is not user-

friendly organized and accessible to users. With the aim of providing all lifeloggers

with a user-friendly lifelog service, there are various problems we should solve in

this area:

1. How to segment events from a continuous lifelog stream?

2. What are the key factors that we can extract from visual images to represent

to users?

3. With visual images and extracted content, in what format this content can be

applied into lifelog linkage analysis and search?
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Figure 5.2: Process of lifelog visual discovery

This is also in accordance with the hypothesis 1.3 we propose in Chapter 1.

In order to address these three questions, there are two sources of data we can

employ: images and sensor records. For images, an example is if it reminds us of

some visual memory of past experience, we should be able to associate a flower

with a garden or a friend who sent the flower. This means objects in the photos

can trigger memory of past experience. Therefore, our work emphasis can be es-

tablished onto an object extraction process for lifelog linkage analysis. This is the

fundamental idea for the next chapter and the lifelog linkage analysis. In order to

do so, we extract visual information such as objects in images as a starting point for

visual content based event segmentation described in this chapter.

Automatic detection of concepts is already a very active area in multimedia re-

search in general and is applied to video from broadcast TV, movie, TV news etc.

as well as to still images. The Figure 5.2 shows the process of how we conduct our

visual discovery for lifelog image data. Later in this section, we describe different

visual content discovery algorithms for lifelog analysis and in the section of eval-

uation, we provide the results of comparing the different visual content discovery

methods for lifelog data.
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5.2.1 Bag of Visual Words

The Bag of Key points or Bag of Visual Words method is based on vector quanti-

zation of affine invariant descriptors of image patches. BoF is one of the popular

visual descriptors used for visual data classification. Bag of Features (BoF) is in-

spired by a concept called Bag of Words that is used in document classification. A

bag of words is a sparse vector of occurrence counts of words; that is, a sparse his-

togram over the vocabulary. In computer vision, a bag of visual words of features

is a sparse vector of occurrence counts of a vocabulary of local image features.

BoF typically involves in two main steps. First step is obtaining the set of bags

of features. This step is actually off-line process. We can obtain set of bags for

particular features and then use them for creating BoF descriptor. The second step

is we cluster the set of given features into the set of bags that we created in first step

and then create the histogram taking the bags as the bins. This histogram can be

used to classify the image or video frame.

In this research, we first extract opponentSIFT points for 279,230 images, each

image gets N(i) sift points; each opponent sift has 384 features. For different im-

ages, n is different. Heuristically speaking, the more complicated the image is, the

more sift points can be extracted from images, n is larger. All images averagely

contain 1,000 sift points, then 4 random sift points are taken out from each image

in our 279,230 image datasets to compose a 1,116,920 sift points repository. This

repository is used to cluster to get cluster center to construct visual vocabulary. In

this research, we chose 1,000 cluster center as the visual vocabulary. Each word

in this vocabulary contains 384 features in the same space as raw original images.

Then every image is mapped into these 1,000 centres constructed space using Bag

of Visual Word approach. With this method, all images with different number of

sift points are reconstructed into 1,000 dimensional space. The value of each di-
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mension for a image represents the visual occurrence of that center in the image.

With the visual vocabulary, a key-frame for each image can be represented by a

1,000 dimensional feature vector, analogous to the bag-of-words representation of

text documents. Our weighting schemes for bag of visual words image retrieval is

term frequency with normalization [170] as shown in Equation 5.1.

weight =
tfi∑
i tfi

(5.1)

5.2.2 Colour Histograms

Colour Histogram is widely applied to different visual features presentation. A

colour histogram is a representation of the distribution of colours in an image. For

digital images, a colour histogram represents the number of pixels that have colours

in each of a fixed list of colour ranges, that span the image’s colour space, the set

of all possible colours. So each feature of one image is actually the closest point

to cluster centres. This is a easy algorithm to implement although the process of

matching to the closest cluster center can cause the problem of losing information.

There are a number of approaches to colour extraction from images that can be

considered.

5.2.3 Colour SIFT

Scale-Invariant Feature Transform (SIFT) bundles a feature detector and a feature

descriptor. The detector extracts from an image a number of frames (attributed

regions) in a way which is consistent with (some) variations of the illumination,

viewpoint and other viewing conditions. The descriptor associates to the regions

a signature which identifies their appearance compactly and robustly. In-depth de-
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scription of the algorithm can be referred to [113] and tutorials 2. We choose to use

Colour SIFT because it is proved to be effective in detecting and describing local

features in images.

Event segmentation can be taken as a Image Category Recognition problem

by analysing visual information on the level of objects and scene types. Colorde-

scriptor [158, 157] is a open-source tool for extracting sift points for images3 Each

image will be described as a 128 ∗ N matrix, where N is the number of SIFT fea-

ture points for that image. After getting all SIFTs for all images, we get a subset

10,000 images of all images to describe as the base space for decomposing and

normalizing all images. Here we set subspace dimensions to be 1,000 dimensions

to keep enough information. These 1,000 points are taken as cluster centres for all

images. The reason why we choose 1,000 is due to the concern of speed and pre-

ciseness. As some of our experiments show, if dimension space grows by 5 times,

the speed slows down by 25 times. And 1,000 dimension is precise enough for our

experiments on concept detection.

5.2.4 SURF

Speeded Up Robust Features (SURF) is a robust local feature detector, first pre-

sented by Herbert Bay et. al. in 2006, that can be used in computer vision tasks like

object recognition or 3D reconstruction [14]. SURF was inspired by SIFT but is

claimed to be more robust than SIFT [14]. In this thesis, we detect SURF features

using MATLAB detectSURFFeatures of MathWorks.

2http://www.vlfeat.org/overview/tut.html
3http://koen.me/research/colordescriptors/download
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(a) Lifelog dataset with many outliers for
which a line has to be fitted.

(b) Fitted line with RANSAC; outliers
have no influence on the lifelog detection
result.

Figure 5.3: RANSAC Approach Illustration

5.2.5 RANSAC

RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler and Bolles

[66] is a general parameter estimation approach designed to cope with a large pro-

portion of outliers in the input data. RANSAC is a re-sampling technique. It uses

the least amount of data points to generate candidate solutions to estimate the under-

lying model parameters [49]. Imagine we have thousands of lifelog images and we

want to find similar events that share with the same visual information like meeting

with the same people or having dinner in the same restaurant. RANSAC approach

is used in this thesis to find out outliers in the lifelog data. As shown in Figure 5.3,

RANSAC can find out outliers without influencing the result.

5.3 Object Detection

One of precedent idea of discovering visual lifelog is based on object detection

[159] . We assume that if two lifelog events share sufficient objects, then these two
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events should be higher similar than the events that does not share common objects

in the visual lifelog. Here we train our machine learning model for different objects

for lifelog image visual discovery, in our research, the objects that we detect for

lifelog visual discovery are introduced in the following sub sections. These are the

initial list for event segmentation. Later in this research, more objects are used.

5.3.1 Face Detection using Haar Cascades

Face detection is essential in lifelog research not only for a potential application

purpose of finding people the lifelogger interacts with in lifelog, but also for ethical

purposes of deleting all images with some specific people’s faces if these people

require for a deletion for a concern of privacy [123, 30]. It is mentioned that there

is a dichotomy between lifelogger’s ideal and actual behaviour based on current so-

cietal expectations and technology restrictions [30]. Face detection for lifelogging

research is one part of technology exploration that narrows down that gap4. Our

face detection techniques is based on object recognition work of Viola et. al. [159].

5.3.2 Social Activeness

Although there is some prior research on physical activeness discovery from lifelog

[55, 74], there is very little discussion over social activeness of lifelog data analysis.

We define social activeness as a measurement of how active a lifelogger is at a level

of joining in social life with other individuals. Social activeness indicates to what

extent the lifelogger is socially active. Intuitively, we define a new measure for

social activities of a lifelogger over a period of time T to be the number of faces

detected by lifelog device divided by the length of the period, as in Equation 5.2:

4http://docs.opencv.org/trunk/doc/py tutorials/py objdetect/py face detection/py face detection.html#face-
detection
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Figure 5.4: Face Detection Result

subject. social role no. of images no. of faces social activeness
1 professor 11258 482 4.28
2 final year PhD student 20284 626 3.09
3 first year PhD student 15105 238 1.58
4 finance department worker 3523 49 0.56
5 assistant officer 5105 65 0.77
6 part-time first year PhD student 3921 207 5.28

Table 5.1: Social activeness detection result

SAT =

∑T
0 nf

|T |
(5.2)

5.3.3 Object Detection in Lifelog Data

Object detection uses features and machine learning algorithms instead of human

eyes and brain to find object in visionary scene, based on idea of replicating the

process of the human brain. Object detection is the prerequisite for object based

lifelog linkage constructing and retrieval.
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We use Open Source Computer Vision Library (OpenCV) [23] for object de-

tection task. OpenCV is the most used libraries in robotics for detection and to

understand the objects captured by image sensors. We choose two key concepts

that we detect from our lifelog data: “car” and “computer” to show our process

of concept detection for lifelog visual data discovery. These two key concepts are

chosen due to their ubiquity in our dataset. The concept ”Computer” is the most

common concept in the dataset. ”Car” is the most common non-computer related

concept.

1. Car detection

In order to detect cars in our lifelog, we use UIUC Image Database for Car

Detection [1] dataset for training our car detection model. This dataset has

1,050 training images (550 car and 500 non-car images), we also extract some

car training images from our lifelog dataset, and this gives us 2,045 more car

images and 513,459 non-car images.

We employ boosted cascade of simple features based rapid object detection

proposed by Viola et. al. [159]. Here, we used 1,050 car images for training

to get a classifier, which a cascade of boosted classifiers working with haar-

like features [167]. All training images are scaled to the same size, 48px

width and 24px height.

Here are steps how we get the training set and generate the cascade for car

detection.

(a) Get the positive training set

find TrainImages/* -type f -name ’*pos*’ -printf “TrainImages/%f 1 0 0

100 40

n” >cars.info
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(b) Get the negative training set

find TrainImages/* -type f -name ’*neg*’ -printf “TrainImages/%f

n” >bg.txt

(c) Get the vectors

opencv createsamples -info cars.info -num 550 -w 48 -h 24 -vec cars.vec

(d) Check the vectors

opencv createsamples -vec cars.vec -w 48 -h 24

(e) Train the cascade

opencv traincascade -data data -vec cars.vec -bg bg.txt -numPos 500

-numNeg 500 -numStages 2 -w 48 -h 24 -featureType LBP

(f) Test a car using generated cascade

./cardetect –cascade=data/cascade.xml

By using car information, we would know whether a lifelogger is “walking

along the road” or “walking towards his/her car”. This is important when

we are using this information for event and activeness detection. “walking

towards his/her car” can mean the following event is highly likely to be driv-

ing.

2. Computer detection

Computer relevant lifelog contents is a significant symbol of the individual in

a work environment. We use SURF Homography detector as shown in Figure

5.5 to recognize computers in lifelog images. SURF Homography detector

algorithm is widely applied in finding known objects in a complex image. As

in lifelog visual dataset, we find that, most of images about lifeloggers life

are repetitive as a matter of circulated life activities and events.
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Figure 5.5: Computer detection from lifelog data using SURF Homography detec-
tor. A lifelog image when a lifelogger was talking with a colleague in the office in
front of a computer.

5.4 Multi-modal Event Segmentation

In previous work, Doherty et. al. initially broke up sequences of SenseCam im-

ages into a series of chunks, where the boundary between these chunks corresponds

to periods when the device has been turned off for at least 2 hours [52]. In this

work, each image is then represented by MPEG-7 descriptor values and values from

SenseCam sensors described earlier. The MPEG-7 descriptors we select for event

segmentation are: colour layout, colour structure, scalable colour, and edge his-

togram [58, 59]. All these features are applied in three different types of event

segmentation: visual event segmentation, contextual event segmentation and con-

ceptual event segmentation.
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5.4.1 Visual Event Segmentation

Our observation is that most consecutively similar images have length of shorter

than 35, So we choose a window size 35 for comparing image’s similarity.

1. Compare adjacent images (or blocks of images) against each other to deter-

mine how dissimilar they are.

2. Determine a threshold value whereby higher dissimilarity values indicate ar-

eas that are likely to be event boundaries. e.g. a boundary is more likely to

occur at a time of significant visual or sensory change as opposed to when

little change occurs.

3. Remove successive event boundaries that occur too close to each other.

The similarity between two images is calculated by Equation 5.3. Here, Ai

means image A, and Bi means image B. n is the dimension of features, here we use

1,000.

similarity =

∑n
i=1 Ai ∗Bi√∑n

i=1A
2
i ∗

√∑n
i=1B

2
i

(5.3)

5.4.2 Context Features for Event Segmentation

Context means information that is gathered by additional sensors, like accelerome-

ter, WiFi and location etc. In addition to visual features that are introduced by the

last section, the event segmentation algorithm in this section includes contextual

information to facilitate event segmentation.

Contextual information includes location, infra-red signals, time of the day etc.

In the experiments in the following sections, we combine the features from visual
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content (concepts) and contextual content by feature fusion [148] that is mentioned

in Chapter 3.

In the experiment on evaluating activity classification, we carried out an assess-

ment of our algorithm on data sets using both clean (correct) concept annotation

and on concept annotation with errors.

5.4.3 Conceptual Features for Event Segmentation

Concepts that are discussed to be detected from images in previous sections in this

chapter are also used to segment events. The idea is that if the same objects appear

in consecutive images even their similarity is lower than the threshold, the images

should also segmented into one event instead of being split into different events.

This is based on the observation from our dataset that some images should be seg-

mented into the same event as due to the scalability and orientation of images, their

similarity might be massively different.

Concept features for lifelog analysis has not yet been established. In this re-

search, we employ the same concepts in Wang’s work [161], including band1

basin basket bicycle book bottle bowl building bus car cashier cat chair child cloth

clothes cooker cup cutlery cycle lane dark deli drink face finger finger touch food

fridge fruit glass glove group1 hand hand gesture hand washing handle bar hanger

hanging clothes indoor inside bus inside car keyboard kitchen laptop microwave

milk mobile phone monitor newspaper notebook office outdoor page turning pa-

per people pet phone screen plastic bag plate pram buggy presentation projection

projector remote control road path road sign screen shelf shop sink sky soap steer-

ing wheel table1 taking notes toy traffic light tree trolley TV vegetable water win-

dow yellow pole . This is the full list of all concepts.

Therefore, besides the space of visual features and context features, concept fea-
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tures are also included into the subspace of visual content, subspace of contextual

information and subspace of concepts as shown in Equation 5.4.

image set =


image1 : v1 ... vn c1 ... cn cpt1 ... cptn

image. : . . . . . . . . .

imagen : v1 ... vn c1 ... cn cpt1 ... cptn

 (5.4)

Here we normalize features from different sources (MPEG-7, accelerometer,

light level, ambient temperature, and passive infra-red and concept of event) into a

same metric space 5.

5.5 Experimental Set-up and Variables

5.5.1 System Design and Implementation

Visual concepts in lifelogging are visible facts of lives that demonstrate location,

time and objects of life events. In this work I build on top of pre-existing event

annotation tools as well as develop my own tools (specifically activity recognition)

to support the panned research. In this process, images are annotated with activity

attributions and all the annotated images with time stamps and other sensor data are

taken into training session in the following experiments.

In the event segmentation, we evaluate the performance of our daily activity

based event segmentation by comparing with prior work [59, 58]. This prior work

is also the ground truth of our work on event segmentation.

In this part, we use the same test collection and evaluation approach as in the

last chapter, annotated for activities and events. This will address hypothesis 1 in
5http://en.wikipedia.org/wiki/Feature scaling

130



participant events detected events correct
precision(%)

v cont. conc.
1 556 687 325 32.54 33.25 58.45
2 1025 1456 857 46.54 75.32 83.6
3 786 845 348 41.42 46.31 44.27
4 159 201 82 25.48 42.56 51.57
5 214 321 98 49.55 42.54 45.79
6 145 278 86 15.26 31.23 35.1

Table 5.2: Conceptual event segmentation result

our research plan.

We use the user annotation method for activity based event segmentation algo-

rithm, comparing with images based event segmentation algorithm accuracy 29.2%

[58].

In this section, we describe how we evaluate our approaches for lifelog visual

discovery and analyse our results from a real-life application.

This section now discusses the evaluation we carried out on augmenting lifelog

events with images/videos from other sources of information. We extensively eval-

uate the results using collected datasets.

5.5.2 Result of Event Segmentation Approaches

Table 5.2 shows the precision of different event segmentation approaches (visual,

contextual and conceptual) over the data from 7 different participants. As shown in

the table, the highest detection rate is for lifelog 2, who is a PhD student having a

regular lab/home life for this detection period of time. The lowest rate is for lifelog

6, which is partially due to lack of sufficient training data.

The results shown in Figure 5.6 present the results from different approaches

for different participants’ data. As shown in this figure, the conceptual event seg-

mentation approach outperforms the other two approaches of visual and contextual

131



Figure 5.6: Event segmentation results of different approaches for different partici-
pants. Confidence interval value is set to be 0.95.

information based event segmentation. The higher the value is, the better the feature

set for event segmentations are. This means using concepts for event segmentation

is the best practice for lifelog event segmentation. There is still scope for extending

this work in future.

Figure 5.6 also shows that for the participant 3’s data, the contextual event

segmentation approach outperform the other two approaches. The reason for this

should be that the data from the participant 3 himself as as we know shown in our

forms of participants, the lifestyle of participant 3 highly lies in cycling, driving

and sitting in the most of cases (65%). The images for this participant has a high

relation with the activities/contextual information.

For the participant 5, due to lack of diversity of different events, as partici-

pant had a big concern of privacy, most of data collected by the participant 5 are

about work. Therefore, the work environment is quite dominant (35.65%) in this
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sub-dataset. The concept space for this participant’s data is sparse due to lack of di-

versity. There is why even just with image visual features, the performance of event

segmentation is also good enough comparing fusing more features like concepts

and contextual information.

5.6 Conclusion

In this chapter, we introduce the visual discovery of lifelog using visual image anal-

ysis methods like SIFT, SURF, color histogram, face detection etc. By using feature

fusion methods, we combine 3 different type of features, including visual content,

contextual information and concepts into the experiment of evaluating different

approaches for lifelog event segmentation. The performance checking evaluation

shows that the overall performance of the feature fusion of three different spacial

information is the best for lifelog event segmentation. We explored how we use the

activity features that are introduced in the previous chapter for event segmentation

to support lifelog retrieval in MemoryMesh.
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Chapter 6

Lifelog Linkage Analysis with Event

Modelling and Retrieval

Data in lifelogs are heterogeneous, which eliminates available approaches to effi-

ciently organize lifelog. Linkage provides a perspective of looking over lifelog data

as an event-based data graph. The process of establishing lifelog connections is

also called relation extraction. Relation extraction from lifelogs is about extracting

semantic relations between entities in lifelogs, like activities and events that are dis-

cussed in the previous chapters. In this chapter, we provide an overview of linkage

analysis for lifelogs and explore possible linkage analysis methods of lifelog re-

search including extracting relation between lifelog data (specifically lifelog events)

based on the attributes of these events.

The limitation of ShareDay and ZhiWo, along with all other lifelog retrieval

systems developed to date, lies in the fact that there is no linkage analysis between

activities and events, also these systems are temporary not permanent in terms of

organizing lifelogs in a searchable manner. This motivates us to think deeply over
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Figure 6.1: Hierarchy of work in chapter ??

how to link lifelog data dynamically, which we call the MemoryMesh in this thesis.

In this chapter, we also present the MemoryMesh and identify how it can be

used to support lifelog search.

6.1 Introduction

The idea of MemoryMesh comes from human associative memory. The potential

of associative memory can be expanded through Memory Maps. Memory Maps

are like a Mind Map as described by Buzans and Harrison [27]. This chapter uses

WWW retrieval models to mimic the associative memory in cognitive science to

build up a MemoryMesh for lifelog linkage analysis and retrieval.

The SenseCam (as mentioned in Chapter 2) introduced the research commu-

nity to the potential of wearable cameras as lifelogging tools to gather a media rich

lifelog for individuals and groups. We refer to lifelogging as “a form of pervasive

computing, consisting of a unified digital record of the totality of an individual’s ex-
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periences, captured multi-modally through digital sensors and stored permanently

as a personal multimedia archive”, as used by Kitcher and Dodge [51]. With consid-

ering this definition, we focus our work in this thesis on developing data structures

to support lifelog archives by exploring linked-data potentials for the multimedia

content that exists in the archive.

As stated previously, a lifelog can consist of more than 5,000 photos daily, along

with hundreds of times more sensor readings. Very quickly, such a lifelog becomes

too large to browse. Therefore, it becomes necessary to organize this data and

to support search and retrieval for the purposes of easy accessibly and usability of

lifelog data for lifeloggers. Doherty et. al. identified the ‘event’ as a suitable atomic

unit of retrieval and proposed automatic segmentation of lifelog data into events,

made accessible through a browsing interface [58]. However it was found that 75%

of browsing effort fails to find a known event from a large lifelog [54]. Adding a

search facility over automatic (sensor-based) event annotations reduced the failure-

to-find error rate to 25% and the search-time by a factor of ten. In the MyLifeBits

project [71], a database search mechanism is provided, which was shown to be

effective at locating nuggets of information from Bell’s extensive archives [176].

Both Doherty and Bell & Gemmel’s work show the potential of search inter-

faces to lifelog for supporting a user with an information need. However, they

assume that the information need is simply that, and information need, without giv-

ing much consideration to the types of information need. Given that searching a life

experience archive is a new activity, to simply assume one type of information need

is not the best way to proceed, in our experience. In order to understand the poten-

tial information needs, Sellen & Whittaker [89], as a guide to future development of

lifelogging technologies, have identified the five reasons why people would access

their memories, and by association, their lifelog. The five R’s of memory access are
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Recollecting, Reminiscence, Retrieving, Reflecting and Remembering Intentions.

While a flat database or text-index based representation of lifelog events can

support the five R’s retrieval [142], it is our conjecture that a better organization

structure and data access methodology will support more efficient and effective

lifelog retrieval and will better serve to provide retrieval facilities that address some

(or all) of the 5 Rs, which we see as use cases of lifelogs.

Hence, we propose the MemoryMesh, which draws knowledge from WWW

search, coupled with cognitive psychology, to develop a novel lifelog index struc-

ture that models the lifelog as a densely linked hypermedia archive. This allows for

the application of new types of information retrieval concepts such as the WWW-

inspired PageRank algorithm and supports multi-faceted browsing through the lifelog,

supporting many use-cases. We now discuss the MemoryMesh, in terms of its con-

struction and potential for enhanced interaction with lifelog. At the same time, we

review what we mean by linkage in lifelogs and take it as our basis for linkage

evaluation.

6.1.1 Fundamental Principles for Building Memory Mapping

Every happening in life can be memorized and these happenings generally link

together through memory associations. Coggle 1 is a software about building infor-

mation sharing through information associations. It has been evidenced that images

captured by wearable devices can be utilized to facilitate people’s ability to connect

to their past, and these images do this in various ways [142]. Memory mapping

is the representation of how we conceive of, and make claims about lifelog linkage

analysis. A mind mapping generated using Coggle is shown in Figure 6.2. Episodic

memories or autobiographical memories [43, 155] record a trace of life experience

1https://coggle.it/
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(often in the form of visual imagery) with conceptual context. Episodic elements

or properties of past events or happenings: times, places, associated people and

emotions, and other contextual information can be stored in our memories. They

allow people to figuratively travel back in time to remember all the context of the

event. In order to utilize lifelogs to enhance people’s episodic memory, we stick to

the following fundamentals to build up memory mapping for MemoryMesh in this

research thesis:

1. Time and Space Accuracy

The time and location of events which are elements of the MemoryMesh

should be similar to the real-life happenings, which ensures the good match

of human memory and contents in the MemoryMesh.

2. Contextual Information are Assisting to Events

Contextual information can assist human memory of events and experiences.

Some people can listen to music at the time of finishing some tasks. So later,

when the same music is playing, the task could be vivid in memory due to the

musical contextual information. In our lifelog, due to privacy issues, we did

not collect sound, but other contextual information like time, location, people

around can be triggers of human episodic memory.

3. Visual Content Matching

Visual content is a ground-truth match for linking similar items or events as

per their location and environment. Visual content provides information like

indoor/outdoor, people are we are seeing, event we are doing etc. In this

thesis, we combine the similarity of images with other associated attributes

to build up mapping for lifelog linkage.
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Figure 6.2: Mind mapping of linked events in one’s daily life

We conceive of fundamental principles for building memory mapping as a guide-

line for us to construct a lifelog linked graph, as in Figure 6.2. When considering

constructing lifelog linkage for lifelog retrieval and analysis, these principles guide

us on what needs to be considered into lifelog linkage modelling.

6.1.2 Guidance Consideration for Linkage Analysis

When we think of establishing linkage analysis for lifelog data, we need to consider

two main factors: nodes and connections (or links). What are nodes? The first thing

to understand about lifelog linkage analysis is what should be linked in lifelog.

Nodes in lifelog analysis in this chapter are lifelog events that we segment using

the approaches introduced and evaluated in Chapter 5. What is linkage? This is

what we try to solve in this chapter. Before we introduce the linkage model we

build for lifelog, we list a few items we consider when we are trying to build up the

linkage graph for lifelog data.
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1. Picture

When we recall memories, some memories are easier to recall than the others.

Pictures give a trigger that sparks old memories; they act as memory cues.

Non-changed pictures can record what really happened in our lives and what

we experienced in our past life. One way of automatically utilizing images

as a source of building up our lifelog linkage for digital memory is to try to

detect “content” of images by employing image processing technologies like

concept detection, as has been discussed in the previous chapter.

2. Events

Events are the key factor for linkage analysis because they act as the unit of

linkage and retrieval. The main problem here is how to model events into a

linkage space, which means what should be used to represent an event. As

introduced in the previous chapter, we used visual, conceptual and contextual

information of activities to represent activities for event segmentation, in this

chapter, we explore using more event attributes to annotate events automati-

cally. This is introduced in the following sections.

3. Connections

A lot of the brain’s work is based on association and it automatically links

different subjects together to create a system. This is like Mind Map shown

in Figure 6.2. Mind Map has been successfully implemented in a few prod-

ucts like MindJet2, FreeMind3 and XMind4. It has been shown that it can

accelerate your learning capacity by helping people instantly see connections

and links between different subjects [47]. Mind Mapping is a guidance for

2http://www.mindjet.com/
3http://freemind.sourceforge.net/wiki/index.php/Main Page
4http://www.xmind.net/
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us to build up linkage for lifelog that is mainly aiming enhance human digital

memory.

6.2 Event Linkage Modelling

In a perspective of life of individuals, we can model various experiences (events)

as nodes in a connected graph with potential links between different experiences as

shown in Figure 1.1. Different colours of nodes represent different life events, and

the connection line between nodes indicates the strength of connections between

different events. The strength of different nodes shows to what extent these two

events are connected. Some events can be strongly and massively connected with a

lot of nodes, these events can be called core events of a specific episodic memory.

Some nodes can be alienated, and it means that this event can hardly be associated

to other events, which may be very novel.

Following the development and evaluation of the new approaches to event seg-

mentation, this thesis turns attention to the creation of the event linkage model that

is addressing the Hypothesis 2 outlined in the introduction of this thesis. Our own

human memories are heavily dependent on a form of event segmentation (episodic

memory) and event linkage (associative memory). Hence our linkage model will

form a connected graph, see Figure 1.1. This is also the construction of the Memo-

ryMesh. As new events will be added into the MemoryMesh, the MemoryMesh is

designed to be a self-updating system with adaptiveness to the updated data.

We refer to this as the MemoryMesh because it is modelled as a linkage graph

(like the WWW or in Figure 1.1) with nodes representing events and edges repre-

senting associative links between the events. It is this modelling as a graph that

allows for the application of WWW linkage analysis models to lifelog linkage anal-
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ysis.

There is no similar prior work in this area. All prior work has considered the

lifelog to be composed of a discrete set of events and relies on database and search

access to locate or rank desired events in response to a humans information need.

This work is different because, as we mentioned in the introduction, we are mod-

elling the lifelog as a linked graph, a linked hypermedia and this opens up new

opportunities for exploration of new models of lifelog retrieval, as we are about to

describe.

In order to build this MemoryMesh of linked events in lifelog, we explore the

features of different events and build relations between different events according

to their shared features, such as time, location, people or objects (objects extracted

automatically from images using existing tool sets, based on SVMs). The strength

of the relationship is initially assumed to be determined by the number of features

shared, which means the more features that two events share, the stronger relation-

ship that two events have. This is in effect an implementation of the TF document

similarity from text retrieval [138, 115]. The limitation with such a model is that

it requires a threshold and a distribution of event links employed in this work and

this is the subject of future work. For example, it may be appropriate to engage a

learning to rank [39] process, in which a pre-training phase allows us through a user

study to identify what makes a good MemoryMesh link, and then train the retrieval

model that generates the ranked list of similar events based on the user input. There

is a body of research to be done also to identify the required linkage type (i.e. one to

one or more likely, one to many), but it is not something that we focused on in this

research. Such issues have been observed and considered when we were developing

and evaluating the MemoryMesh.

In naturally occurring phenomena, such as height of buildings, distribution of
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wealth, links among WWW pages, a distribution called a Pareto (or power-law)

distribution is observed. It is our expectation that we also observe such a distri-

bution on the developed MemoryMesh. In addition, we evaluate if a concept such

as Inverse Occurrence Frequency aids in the creation of the MemoryMesh. In-

verse Occurrence Frequency is a concept that we are considering that is based on

the IDF ranking feature from information retrieval [115], that models the impor-

tance of a document (event) to a collection as a whole (the MemoryMesh) based

on the uniqueness of the concept. Following MemoryMesh construction, we have

developed the first purpose-built browsable lifelog archive. In order to evaluate the

usefulness of the MemoryMesh as a source of data for searching over, we need to

develop and evaluate retrieval models, as described below and detailed later.

6.2.1 Context Based Linkage Analysis

Context information, such as life location and environment etc. would be consid-

ered as important aspects of memory. In this thesis, contextual information about

lifelog are extracted from sensor data like WiFi, GPS, PIR etc. This information

provides a matrix of measuring how the event is wrapped up by a context that has

potentials of associating this event with any other events that may share similar

contextual information.

6.2.2 Face Based Linkage Generation

Face detection helps lifeloggers to search for specific digital memory about people

that showed up in his/her life before. Hence, faces (detected using the approach

previously described) is one of the sources of links between nodes in the Memo-

ryMesh. If two nodes are shown to share faces, then the two nodes have a link
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generated between them.

Lifelogger No. of Images Average Faces per Event
1 67927 56
2 26806 58
3 24623 28
4 8038 23
5 24441 58
6 3921 19

Table 6.1: Face detection for lifeloggers and their evaluation on faces per event

6.2.3 Concept Based Linkage Generation

Objects can be triggers for human memory system. It is not uncommon that one

person recalls of his or her memory of the moment when he or she got a birthday gift

toy when he or she sees the toy again after many years. Based on this phenomenon,

we have reasons to examine how objects that can be revealed or detected from one’s

lifelog image repositories influence human memory retrieval process.

6.2.4 Lifelog Retrieval Using WWW Retrieval Methods

Concepts provide a clue for lifelog exploration in terms of enriching lifelog presen-

tation spaces with semantic concepts [161]. After the construction of the Memo-

ryMesh, there exists a linkage graph of events. It now becomes necessary to further

address the second hypothesis by applying semantic graph algorithms (inspired by

WWW search algorithms) that show the benefit of modelling the lifelog as a Mem-

oryMesh. Here we describe our linkage models as eigenvector methods those are

used widely in Internet web data analysis. In our research, we explore the perfor-

mance of these algorithms and models for life experience linkage modelling. We
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compare for search and browsing against a ground truth of a TF-IDF text search

implementation over the MemoryMesh.

1. TF-IDF

TF-IDF is a basic approach for content based information retrieval [139]. TF

refers to Term Frequency while IDF represents Inverse Document Frequency.

The value of TF-IDF reflects how important a word is to a document in a

collection or corpus. It increases proportionally to the number of times a

word appears in the document, but is offset by the frequency of the word in

the corpus, which helps to control for the fact that some words are generally

more common than others. In our MemoryMesh system, all events are viewed

as documents, while attributes of these events are taken as terms that form a

document that represents the event for a search engine (in a similar manner

to how Google Image search would work). In this case, we can apply the

TF-IDF method in calculating the similarity of events and finding the most

relevant events. This method is the baseline of our MemoryMesh linkage

graph model and provide, both a baseline, as well as a user text querying

system..

2. HITS

Hyper-link-Induced Topic Search (HITS) (also known as hubs and authori-

ties) is a link analysis algorithm that rates web pages in terms of their author-

itativeness, or link to authoritativeness , developed by Jon Kleinberg [97]. It

was a precursor to PageRank [124]. The idea behind Hubs and Authorities

stemmed from a particular insight into the creation of web pages when the

Internet was originally forming [139]; that is, certain web pages, known as

hubs, served as large directories that were not actually authoritative in the
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information that it held, but were used as compilations of a broad catalogue

of information that led users directly to other authoritative pages. In our ex-

perience linkage model Event HITS, a good hub represents a event that is

connected to other events, and a good authority event represents a event that

is linked by many different hubs/event [115]. To begin the ranking, ∀p ,

auth(p) = 1 and hub(p) = 1. We consider two types of updates: Authority

Update Rule and Hub Update Rule. In order to calculate the hub/authority

scores of each node, repeated iterations of the Authority Update Rule and the

Hub Update Rule are applied. A k-step application of the Hub-Authority al-

gorithm entails applying for k times first the Authority Update Rule and then

the Hub Update Rule. In Authority Update:

∀p, auth(p) =
∑

hub(i) (6.1)

In Hub Update:

∀p, hub(p) =
∑

auth(i) (6.2)

This can also be achieved by examining the eigenvectors associated with the

top ranked positive and negative eigenvalues. Our conjecture is that apply-

ing a HITS style algorithm to the MemoryMesh allows the identification of

the most densely linked events from the MemoryMesh; the most important

clusters of events. From Cognitive Science, we would assume that these

are the most likely events to be merged. One additional positive feature of

the HITS algorithm is that it is ideally suited to retrieval time processing,

hence it is naturally scalable as the MemoryMesh grows over time. The other
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two algorithms mentioned below are typically processed pre-retrieval over

the entire linkage graph, hence they are not ideal for smooth scaling. In our

linkage analysis, all events are taken as nodes of networked MemoryMesh.

In Equation 6.1 and 6.2, all nodes are assigned with the value of authority

and hub. Authority auth stands for the importance/novelty of the events in

MemoryMesh while hub hub represents the ability of association of events in

MemoryMesh. In this algorithm, we not only can get the most novel events

(highest authority value) but also most most associative memorable events

(the highest hub value).

3. PageRank

From the perspective of constructing linkage between items, elements or en-

tity in a system or organization, linkage in MemoryMesh is similar to link

structure in the Web, which consists tremendous web pages, as well as for-

ward links and back links [124]. PageRank is a link analysis algorithm pro-

posed by the two founders of Google, Page and Brin in 1999 [124]. It is

considered that it was named after Larry Page and used by the Google Inter-

net search engine, that assigns a numerical weighting to each element of a

hyper-linked set of documents, such as WWW, with the purpose of “measur-

ing” its relative importance within the set. The algorithm may be applied to

any collection of entities with reciprocal quotations and references. In event

PageRank, any event is assigned with a score of significance according to

the importance of the moment to the life. And connection between events is

valued according to the features shared by two events.

PR(pi) =
1− d
N

+ d
∑

pj∈M(pi)

PR(pj)

L(pj)
(6.3)
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Applying a PageRank style algorithm over the MemoryMesh allows for the

immediate identification of the most commonly reoccurring events and event

types from the MemoryMesh, as the PageRank algorithm on WWW allows

for the identification of the most important WWW pages independent of any

information need. In MemoryMesh, PageRank also allows users to identify

the most “authoritative” events in their life. This is due to the independence

of PageRank results to the query set itself. However, we use personalized

PageRank algorithm. We initialize the events weights by user specified value

of life importance, or by a query into the lifelog system, or via a sample event

that acts as a query into the system (for the purposes of more-like-this search

or for evaluation), as in this work.

In any case, we can prime the initial state of linked graph for MemoryMesh

based on an information need. In Equation 6.3, pi and pj stand for different

events in the MemoryMesh. This iteration process calculates the importance

of event nodes by the “in” linkages. M(pi) is the set of event nodes that links

into the event node p(i), and it is also called outbound set, while the inbound

set L(pj) includes all event nodes that are linked from the event node pj .

The PR value of nodes shows the popularity of event nodes, which is the

ability of being associated from any other linked events. d is called damping

factor in the MemoryMesh, as in our thoughts, the owner of an MemoryMesh

structure can stop the association at some stage. N is the number of events in

the MemoryMesh.

4. SALSA

SALSA algorithm was proposed by Lempel [108] in 2001. It is a stochastic

approach for link-structure analysis, which examines random walks on graphs
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derived from the link-structure [108, 144]. Both SALSA and Kleinberg‘s

Mutual Reinforcement approach employ the same meta-algorithm. SALSA

is equivalent to a weighted in-degree analysis of the link-structure of WWW

sub-graphs, making it computationally more efficient than the Mutual Rein-

forcement approach [108].

(1) The hub matrix H , defined as follows:

h(i,j) =
∑

k:k∈(ih,ka),(jh,ka)εG

1

deg(ih)
∗ 1

deg(ka)
(6.4)

(2) The authority matrix A, defined as follows:

a(i,j) =
∑

k:k∈(kh,ia),(kh,ja)εG

1

deg(ia)
∗ 1

deg(kh)
(6.5)

Applying SALSA allows us to evaluate an alternative approach to the two

common WWW linkage analysis techniques just described. SALSA is sim-

ilar in many ways to both HITS and PageRank, and as such allows for the

identification of the most important, commonly occurring events from the

MemoryMesh. The linkage between two event node in MemoryMesh can be

viewed as an endorsement. SALSA is a query dependent ranking algorithm.

That means, whenever there is a query, the computation of ranking should be

calculated at query time. In our experiments, we initiate hub and authority

scores with the similarity of any two events.

Similarly to HITS algorithm, this algorithm computes an authority and a hub

value for each event nodes in the MemoryMesh graph, and these values can

be viewed as the principal eigenvectors of two matrices. HITS uses straight

adjacency matrix, SALSA gets the values according to in and out degrees of
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event nodes. In formula 6.4 and 6.5, h(i,j) is the transition probability of the

event node i to the event node j in the hub graph. The event node k points to

i and j in the implication, deg(ih) and deg(kh) are hub degree of nodes i and

k, while deg(ia) and deg(ka) are authority degree of nodes i and k.

However, unlike internet web page search, in which the web page weight is

computed according to its interrelation with other web pages, the significance ini-

tialization of the MemoryMesh relies on the importance of the events to specific

users, based in their different life experience patterns, or information needs, which

means that for different users and at different times, the graph is very different. This

is a concept that we propose and evaluate n this research, and drives us to consider

real-world evaluations of this research, beyond the test collection evaluations that

have been considered thus far. There is significant opportunity for future work in

this area.

6.3 Personal MemoryMesh and Lifelog Retrieval

In information retrieval, many researchers are dedicated to exploring methods for

ad hoc query understanding or parsing. Same in lifelog retrieval, this is also a big

issue as currently, many of lifeloggers like elderly people, ad hoc queries could be

much more easier for use.

Here we extend our approach for MemoryMesh constructing to N users instead

of just one user. In this thesis, N is equal to 7 which is subject to the data set

collection policies over this thesis. We conduct the same qualitative analysis as one

user over N users to check the adaptability of our approach to population.
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6.3.1 Review of MemoryMesh Rationale

We propose that a densely linked hypermedia is a more suitable lifelog data struc-

ture than a flat database-based organisation. In effect we consider the lifelog to be

more like a WWW structure, based on documents (events) and links. We know

from prior research that exploiting the linkage structure of the WWW allowed the

PageRank [124] algorithm to significantly enhance the effectiveness of large-scale

information retrieval on the WWW. PageRank was deployed in the Google search

engine and was considered an integral part of the ranking process. In the case of

lifelogs, we propose that modelling the lifelog as a linked data archive (as is done in

the human memory system) will bring similar benefits, which will not only support

more efficient and effective retrieval, but also better support real-time user interac-

tion with lifelog and the five R’s of memory access. By applying PageRank-style

algorithms, the MemoryMesh will know the importance, novelty of events and will

pre-calculate the links between them, thus making retrieval more efficient and ef-

fective.

6.3.2 MemoryMesh Construction Through Lifelog Linkage Anal-

ysis

On the WWW, the links between web pages are pre-existing and created by web

page authors as they create new websites and web pages. Consequently, the WWW

grows organically and algorithm can mine the latent qualitative judgements inherent

in each WWW link. This enhances the effectiveness of search algorithms.

Since we propose that a lifelog is a densely linked hypermedia archive, we can

model it as a graph. From mathematics, we know that a graph is an ordered pair of

G = (V,E) comprising a set V of nodes together with a set E of edges, which are
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2-element subsets of V (i.e. connect two nodes). In the MemoryMesh, the graph is

a representation of a set V of events where some pairs of events are symmetrically

connected by edges (the set E). An edge e is a link that is created between events

that are considered sufficiently similar. Each event is represented by a semantic

annotation (typically from wearable sensors as in [54]), which forms the content

for both query/retrieval and for linkage generation within the MemoryMesh. Given

a set of events V , the strength of edges between the events are calculated and the

most appropriate N edges are inserted into the graph. There are many methods for

selecting N edges. Here we present three example methods:

• Visual similarity between SenseCam images from one event and SenseCam

images in other events. Either low-level (e.g. SIFT or regionalised colour)

or high-level (visual objects co-occurrence) visual similarity can be calcu-

lated and can inform the strength of links, with links above a threshold bring

selected,

• Multi-axes similarity sources from lifelog meta-data, such as events at the

same location, time, noise level, actors involved, and many other sources of

linkage evidence,

• External sources of similarity, by looking to semantic-web-style external sources

of semantic data to identify real-world links between events.

In addition, the linkage model could be single or multi-layer. A single-layer

mesh would allow for a single link between events whereas a multi-layer mesh

would allow for multi-faceted browsing, which would provide additional flexibility

to the MemoryMesh. Regardless of the layering, it is likely that a proposed linkage

distribution would need to be adhered to when calculating a meaningful value for
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N, across single or multiple layers. As new events are continually inserted into the

lifelog, the MemoryMesh would need to re-calculate linkages either dynamically

or periodically.

6.3.3 Lifelog Retrieval in MemoryMesh

Having the links between events in the MemoryMesh provides a number of benefits.

Firstly, it supports real-time browsing for reminiscence and reflection (two of the

5Rs), without the need to continually, dynamically generate links to related events.

Secondly, the rich linked hypermedia allows for a user browsing session to be tar-

geted into the best region of the lifelog to begin a linked reminiscence session or

provided guided reminiscence tours. In addition, the pre-calculation of multi-layer

linkages would make the MemoryMesh more flexible to new and novel use-cases.

Finally, links between events in the MemoryMesh provides an additional source of

evidence when retrieving information from the lifelog, which would allow for the

application of common WWW algorithms such as HITS and PageRank, which have

shown useful on the WWW.

Applying a HITS [98] style algorithm to the MemoryMesh has potential to iden-

tify the most important user-context/query related events from the MemoryMesh.

Indeed exploring the top non-principal eigenvectors from the MemoryMesh (ap-

plying HITs techniques) could help to identify clusters of similar experience from

within the lifelog. Employing PageRank could support the efficient selection of

both mundane and novel events in the lifelog. As lifelogs increase in size, identify-

ing novel events becomes increasingly important.

Enhancing the MemoryMesh to incorporate a multi-level event linkage model,

it becomes possible to retrieve from, and browse through, the lifelog using various

criteria, such as exploring the lifelog via user activity links, behavioural similarity,
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Figure 6.3: Concepts distribution for lifelogger 1. The graph is generated using
Python 2.7 and Matplotlib 1.4.3

.

co-occurrence of similar objects, similar environmental context, or even the colour

or textures of the SenseCam images grouped into events. It is our conjecture that

moving from the flat collection of annotated events into a multi-dimensional linked

hypermedia helps to generate a more useful lifelog.

6.4 Experimental Set-up and Variables

6.4.1 Deep Learning for Concepts

In order to enhance the concepts that we can employ for annotation, we use 1,701

concepts for image concept detection by enlisting help from one open-source deep

learning tool called Caffe [85].
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No. Concept Occur. Concept Occur.
1 laptop 8094 laptop computer 3036
2 notebook 7060 laptop 3036
3 notebook computer 7060 notebook 2426
4 computer mouse 6639 notebook computer 2426
5 mouse 6639 monitor 2320
6 monitor 6447 CRT screen 2223
7 printer 5852 screen 2223
8 CRT screen 4944 home 1581
9 screen 4944 home theatre 1581

10 desktop 4894 desktop 1488

Table 6.2: Top 10 lifelog concepts for lifelogger 1 (left) and lifelogger 3 (right)

As per Table 6.2, it is very appealing but unsurprising to see how much lifelog

concepts of lifelogger 1 are related to office work as the real life of lifelogger al-

most spent more than 40 hours a week working in front of computer. Comparably,

lifelogger 3 is also a person who works with computers/laptops much, but instead,

lifelogger 3 spends more time at home than lifelogger 1, which also represents

the reality. Therefore, we can conclude from the concept distribution that lifestyle

of lifeloggers can be detected based on image concepts excluding traditional ac-

celerometer data.

6.4.2 Significance Test for Different Lifeloggers

In order to test whether our approach for lifelog retrieval is applicable to all lifelog-

gers in our dataset, we need to test the significance over different data collected by

different lifeloggers. Statistical significance indicates whether or not the difference

between two lifelog groups that can most likely reflect difference between them in

a real world. Here we take one set of data collected by one lifelogger as a group

of sample. We also use t-test to see whether the mean of our concept samples dif-

fers in a statistically significant way from the theoretical expectation. We set null
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Figure 6.4: Student’s t-test result. The graph is generated using Python 2.7 and
Matplotlib 1.4.3

hypothesis for this case to be “There is no significant difference between two lifel-

oggers’ data” and alternative hypothesis is “ There is significant difference between

two lifeloggers’ data”.

The significance level α in Figure 6.4 is a threshold, which means for a given

hypothesis test, if α is larger than or equal to P − value, then it is considered

statistically significant. The data we use here for t-test is the concepts distribution

for two different lifeloggers. The α value is 0.05. Figure 6.4 is the t test result of

our collected data for lifelog linkage analysis. As shown in Figure 6.4, the t-value

is within the acceptance area, thus we can assert that there is no big difference

between lifeloggers data and the proposed retrieval model should be applicable for

both datasets. There are future work opportunities in examining this across diverse

population.
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6.4.3 User Study

This section provides overview and instruction with regard to the evaluation of in-

teractive lifelog information retrieval system with users with reference to Kelly’s

work [90]. For retrieval research tasks, we ask 5 users to put in queries and rank

the retrieved results by 1-5. In our case, 5 stands for most relevant, and 1 means

least relevant. All these ranks are used to calculate precision, recall and F-measure.

Appendix B shows the interface of our retrieval system for lifelog data.

6.5 Evaluations

To address hypothesis 2 and to actually evaluate the real-world usefulness of the

MemoryMesh as the lifelog organisation tool, it is necessary to engage a new type

of evaluation for the MemoryMesh. The first version of the event segmentation

approach is used in our prototype system ShareDay (see Figure 3.5). The initial

user study has been conducted and result can be seen in Table 4.5. For our ongo-

ing work, rather than reusing the previous test-collection based evaluation, which

is more suitable to a real-world user evaluation over a prolonged period of time

by a number of users, we follow the approach of our prior work in MMM2013 (see

Publication 6 and Table 4.5. It engages users to actively use a new lifelogging proto-

type that is built for this research. This prototype is based on the ShareDay system,

but different from the browsing-focussed 2013 system, it is focused and targeted

at evaluating the MemoryMesh and the linkage algorithms. Hence it incorporates

an information retrieval module (implementing the baseline and 3 proposed linkage

algorithms) that supports users in both searching for past events as well as browsing

linked MemoryMesh in a manner similar to user browsing of associative memory

and the multi-modal nature of the lifelog. The retrieval from the MemoryMesh in

157



response to user queries supports users with an information seeking need such as

an object that was seen before, a meeting in the past, or any previous experience

that has been recorded in the MemoryMesh. This is a challenging task because the

nature of the query is far more complex than in WWW search due to the complexity

of associative memory. The semantic gap is significantly more noticeable in Mem-

oryMesh retrieval. The retrieval model of lifelog data retrieval needs to ensure high

accuracy of retrieved results by concerning latent semantically relevance ranking of

associated events via the linkage graph.

We evaluate an early model of the MemoryMesh under the instruction described

in Kelly’s work [90]. This evaluation is based on identifying the quality of the

links between the events that consist of the MemoryMesh; this naturally employs

a precision-oriented retrieval measure. In this model, we use randomly selected

events as query topics and evaluate based on the linkage likelihood. All threshold

of linkage is 10%, that means, only top 10 percent strongest similarity are selected

as effective similarity values for linking two events.

6.5.1 Evaluation Based on Reminiscence

In Sellen and Whittaker’s 5R theory, retrieval, reminiscence, recollection, remem-

bering intention and reflection are proved to be significant in lifelog research for

human memory enhancement. In this research, we follow the tracks of lifelog re-

searchers to evaluate our MemoryMesh to be effective in human memory reminis-

cence.

Here, we consider two types of user access case:

1. Retrieval.

Retrieval here implies to find all relevant events in our MemoryMesh system.
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For this we evaluate how the system retrieves events from lifelog dataset in

response to a given event user. Users mark each retrieved result with different

level of relevance which shows how the retrieved docs are ranked. And this

feedback is used to calculate the precision, recall and other measurements for

evaluation.

2. Reminiscence.

Reminiscence is more about browsing through lifelog events. Browsing through

all retrieved results gives users full accessibility to their lifelog data. There-

fore, we evaluate reminiscence in lifelog by evaluating user browsing history

and their feedback.

Table 6.3 and 6.4 are the results of evaluation for lifelog reminiscence. This

evaluation includes comparison among 4 different features sets and linkage

models: contextual information, face recognition, conceptual information

and feature fusion. These are all features mentioned in previous sections.

Feature Sets Precision@10 Recall@10 F-measure@10
context 45.48 45.32 46.18
Faces 43.26 38.24 19.07

Concept 70.82 48.04 32.49
Feature Fusion 83.28 58.62 55.43

Table 6.3: Evaluation of different features for linkage analysis.

In this evaluation, only top 10 results are included. Precision@10 means pre-

cision for top 10 results, same for Recall@10 and F − measure@10. As shown

in the Table 6.3, the feature fusion method outperforms (83.28% of accuracy) the

other ones, which means the more features that are included into the lifelog nodes
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representation, the more accurate the retrieved results are. The faces based linkage

model due to scarcity of the features as the faces are not included in all events. That

means in this model, if two events both have no faces, their similarity could be high.

6.5.2 Evaluation Based on Event Retrieval

Evaluation based on event retrieval uses events as queries to retrieve similar event

and users annotate the retrieved results with different scales (1-5) to mark the rele-

vance of the retrieved items. Table 6.4 is the evaluation results for all 6 participants.

All best performance is marked out with bold, and worst performance is marked

out with italic. As we can see from the evaluation of lifelog retrieval Table 6.4 that

simpler algorithm like TF-IDF outperforms other algorithms in most cases, while

SALSA algorithm is also a good choice for lifelog information retrieval. Also, the

more data a lifelogger has, the more accurate the retrieval becomes, which means

more data contributes more to the solution of the sparsity problem in our dataset.

One interesting finding from Table 6.4 is that PageRank significantly outper-

forms other linkage graph based retrieval methods by averagely 2%. The PageRank

applied here is Personalized PageRank as introduced in Section 3, which is query

independent. That indicates that the output of the ranked list is particularly final-

ized by the importance of the life events that is annotated by users themselves. This

means that with user input of importance as one dimension of the cosine similarity

calculation affects the ranked list positively by almost 2%.

6.6 Conclusion

In this chapter, we talk about the event segmentation for lifelog data. Further this

research, events segmented can be presented as experience nodes in our whole life,
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these experience nodes are linked together by sharing features like same location,

same people circle, same objects encountered etc. Then we describe the three pro-

posed linkage analysis approaches and how we intend to evaluate them.

We have proposed and presented the MemoryMesh, which organises a lifelog

as a densely linked hypermedia. We suggest that applying a MemoryMesh organi-

zation model to a lifelog will increase the flexibility and usefulness of the lifelog

and support new types of user interaction and better support real-time user search

and retrieval. Future work that relies on this initial work could examine more types

of information need and more of the 5R’s of lifelog access. What we present here

is initial findings that suggest the value of a MemoryMesh as a lifelog organization

methodology.
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Chapter 7

Conclusion and Summary

In this thesis, we proposed a number of research questions and hypothesis all cen-

tred on the development of improved models of lifelog data organisation and man-

agement. We have described the construction of the lifelog utilizing various lifelog

data collected by wearable sensors, especially by conducting event segmentation

for experience retrieval and activity recognition. The aim of this research was to

build a personal life log retrieval system based on activity recognition and its assis-

tance in event segmentation, model this as an associative MemoryMesh and explore

the potential of MemoryMesh.

Early in this thesis, we have discussed the potentials of lifelogging and gather-

ing large amounts of physical and visual sensors data. In the past decades, much

effort has been focused on miniaturising hardware and sensors to facilitate the cap-

ture of large amounts of such data, and it is only recently that the community has

seriously started tackling the problem of effectively managing these data. To verify

our research, users’ annotation is collected, they are used as ground truth. In the re-

maining sections, we talked about using four approaches to detect users’ important

moments: machine learning , information retrieval and mining sequential pattern.
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Overall, we have designed a model of doing lifelog information retrieval based

on activity recognition and event detection from lifelog data. The lifelog events

constructed the retrievable unites of the lifelog information retrieval system to sup-

port retrieval from the lifelog.

7.1 Research Objectives Re-visited

The major purpose of this thesis has been to propose a lifelog access model to en-

courage application of lifelog technologies through three main aspects: sensory dis-

covery of lifelog data, visual exploration of lifelog images and linkage constructing

and analysis to discover the patterns of individual’s lifelog.

1. “If we can recognize activities from lifelog, can these activities facilitate hu-

man life event segmentation from lifelog? If so, how efficient and accurate

can this be?”

We have used experiments to prove that lifelog activities can be employed

in lifelog event detection when the lifelog activity tags are added into event

detection models as additional features.

2. “If human lifelog can be constructed as different unities of daily events, in

what way these daily events can be linked together well and constructed as

humans memory mesh?”

The approaches introduced in this thesis about how to organize different

lifelog events and apply associative memory theories in constructing Memo-

ryMesh to support effective retrieval.

3. “How can we support search and retrieval over this MemoryMesh of life ex-

perience using multiple types of information need?”
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We developed a model in the MemLog system to visualize lifelog nodes and

to support lifelog information retrieval. We evaluated this through six partic-

ipants’ lifelog and discussed the results from different perspectives.

7.2 Contribution

This thesis follows a logical sequence - from explaining what is lifelog and what is

cognitive science to how the brain works and how cognitive science and information

retrieval theories can be applied in lifelog research. This thesis tries to accommo-

date all the requests that lifelog needs, especially for retrieving lifelog episodes and

meaningful lifelog events to propagate lifelog application in real-life except from

some discussion over privacy issues with lifelog.

In this thesis, we try to solve the three research questions that are proposed in

Section 1.4, Chapter 1.

Firstly, we explored using machine learning algorithms to facilitate physical

activity recognition in lifelog research. ZhiWo (literally means Know Me) was a

system that was developed to allow system users to mark down their daily activities

and share with other by uploading to a server throw http service. The data collected

from voluntary upload of users are applied to train models for activity recognition.

The data establish the basics for further lifelog exploration.

Secondly, we conducted some experiments on how visual content and contex-

tual information can be applied in the lifelog event segmentation. This is also the

base for lifelog information retrieval by providing the structure of retrievable nodes

from lifelog information dataset.

Finally, we presented the concept of MemoryMesh and a system called Mem-

Log (see Appendix 7 for more information) to demonstrate how a lifelog system
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can be used for lifelog retrieval. The retrievable unites are life events that are auto-

matically detected. The graph structure of linked lifelog establishes MemoryMesh.

We have shown through initial experimentation the potential of MemoryMesh.

7.3 Future Work

There are many opportunities for future work, such as a refined model of the event

segmentation process using activity recognition and then the construction of the

MemoryMesh. This could be evaluated against state-of-the-art construction of the

MemoryMesh. We will also suggest evaluation of the linkage models in a browsing

experiment. Both the event segmentation process and the MemoryMesh organisa-

tion and access algorithms will be evaluated using the appropriate methodologies

as described.

We would also like to see new techniques that can enhance daily and real-time

update for each memory event node. We also suggest exploring more new retrieval

models, in addition to TF-IDF, PageRank or HITS based retrieval models. We

also suggest more 5Rs exploration over evaluation based on real-world use cases.

Whether additional sensing and additional annotation would enhance a better expe-

rience or performance for lifelog users and researchers would be also a significant

future research task.

One of the future work that was also mentioned earlier in this thesis was about

ontology in lifelog. Ontology provides multiple dimensional representation of lifelog

concepts. While in this research, we focused on using concepts to detect relation-

ships between different lifelog events and activities, in the future, more exploration

of concepts and lifelog ontology could be also a potential large research topic in

this field.
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In addition, we think it is likely that the applicable lifelog access models would

have different determinants, may relate to very specific utility scenarios and there-

fore may require different intervention and promotion strategies.

It is our conjecture that the biggest contribution of this work is in the motivation

for linked models of lifelog and we encourage continued exploration. We consider

the work in this thesis to be initial exploratory work. The proposed MemoryMesh

is a concept that warrants future study. It is not yet a solved problem.

7.4 Final Thoughts

Lifelog is undoubtedly one of the most valuable technology in the coming years.

Before 19th century, nobody knew what photography was, and now everybody can

be a photographer. Not only for recording personal lives, beautiful nature scene, but

also for self-reflection of making people feel fulfilled by the concept of recording

and been valued. In the new century, we can except lifelog to be as common as

digital photography today.

Although we have strong concern about privacy protection, but a lifelog system

has to be well designed to protect the privacy of data owners. Lifelog owners have

full control of their data if it is store in a cloud based lifelog management system.

Just like websites with SSL certificates to ensure the protected transaction between

the website and the user, lifelog system designers and developers do also need a

good network security sense to put the privacy issues to the front.

But also, life is humdrum interspersed with moments of different emotions like

interest, joy and sorrow. Apart from recording images and events, how to record

emotions at moments is still not within any feasible research scope yet, but it would

be a very interesting and desirable topic to go forward to with in the future.
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Overall, it is more beneficial in a long run with lifelog data stored. And the

trend is getting indispensable when data can be applied to daily lives to bring en-

hancement. But still, how to utilize the data in a proper manner and how to apply

the data to enhance people’s lives is still a subject for research.

This research is meant to be unbound and to make initial progress, as well as to

draw forth by abler people to share ideas over lifelog research. It also invites more

people is to explore, to find something new and to connect with each other. We feel

that we have made initial findings, and opened doors for future research.

We have shown potential from replacing the database methodology of all past

lifelog research with a novel linked model. It is our hope that the concept of Mem-

oryMesh will be further explored and enhanced by future research efforts.
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on activity theory. Cambridge University Press, 1999.

[66] Martin A Fischler and Robert C Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated

cartography. Communications of the ACM, 24(6):381–395, 1981.

[67] R.R. Fletcher, K. Dobson, M.S. Goodwin, H. Eydgahi, O. Wilder-Smith,

D. Fernholz, Y. Kuboyama, E.B. Hedman, M.Z. Poh, and R.W. Picard. icalm:

Wearable sensor and network architecture for wirelessly communicating and

logging autonomic activity. Information Technology in Biomedicine, IEEE

Transactions on, 14(2):215–223, 2010.

[68] B.J. Fogg. Persuasive technology: using computers to change what we think

and do. Ubiquity, 2002(December):5, 2002.

[69] B. Gedik and L. Liu. Protecting location privacy with personalized k-

anonymity: Architecture and algorithms. Mobile Computing, IEEE Transac-

tions on, 7(1):1–18, 2008.

[70] J. Gemmell, G. Bell, and R. Lueder. Mylifebits: a personal database for

everything. Communications of the ACM, 49(1):88–95, 2006.

[71] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. Mylifebits: ful-

filling the memex vision. In Proceedings of the tenth ACM international

conference on Multimedia, pages 235–238. ACM, 2002.

181



[72] Cathal Gurrin, Daragh Byrne, Noel O’Connor, Gareth JF Jones, and Alan F

Smeaton. Architecture and challenges of maintaining a large-scale, context-

aware human digital memory. 2008.

[73] Cathal Gurrin, Zhengwei Qiu, Mark Hughes, Niamh Caprani, Aiden R Do-

herty, Steve E Hodges, and Alan F Smeaton. The smartphone as a platform

for wearable cameras in health research. American journal of preventive

medicine, 44(3):308–313, 2013.

[74] Cathal Gurrin, Alan F Smeaton, and Aiden R Doherty. Lifelogging: Per-

sonal big data. Foundations and Trends in Information Retrieval, 8(1):1–125,

2014.

[75] Cathal Gurrin, Alan F Smeaton, Zhengwei Qiu, and Aiden Doherty. Explor-

ing the technical challenges of large-scale lifelogging. In Proceedings of the

4th International SenseCam & Pervasive Imaging Conference, pages 68–75.

ACM, 2013.

[76] Bridgette M Hard, Barbara Tversky, and David S Lang. Making sense of

abstract events: Building event schemas. Memory & cognition, 34(6):1221–

1235, 2006.

[77] Paula Hatch, Nicola Stokes, and Joe Carthy. Lexical chaining for web-

based retrieval of breaking news. In Adaptive Hypermedia and Adaptive

Web-Based Systems, pages 327–330. Springer, 2000.

[78] E.A. Heinz, K.S. Kunze, M. Gruber, D. Bannach, and P. Lukowicz. Using

wearable sensors for real-time recognition tasks in games of martial arts-an

initial experiment. In Computational Intelligence and Games, 2006 IEEE

Symposium on, pages 98–102. IEEE, 2006.

182



[79] S. Hodges, E. Berry, and K. Wood. Sensecam: A wearable camera that

stimulates and rehabilitates autobiographical memory. Memory, 19(7):685–

696, 2011.

[80] Steve Hodges, Lyndsay Williams, Emma Berry, Shahram Izadi, James Srini-

vasan, Alex Butler, Gavin Smyth, Narinder Kapur, and Kenneth R. Wood.

Sensecam: A retrospective memory aid. In Ubicomp, pages 177–193, 2006.

[81] Tim Hussein, Heiko Paulheim, Stephan Lukosch, Jürgen Ziegler, and Gaëlle
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[83] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of

ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–

446, 2002.

[84] J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image annotation and

retrieval using cross-media relevance models. In Proceedings of the 26th

annual international ACM SIGIR conference on Research and development

in informaion retrieval, pages 119–126. ACM, 2003.

[85] Yangqing Jia. Caffe: An open source convolutional architecture for fast

feature embedding. h ttp://caffe. berkeleyvision. org, 2013.

[86] YU Jie, Nachiappan Subramanian, Kun Ning, and David Edwards. Product

delivery service provider selection and customer satisfaction in the era of

internet of things: A chinese e-retailers perspective. International Journal of

Production Economics, 159:104–116, 2015.

183



[87] Gareth JF Jones, Cathal Gurrin, Liadh Kelly, Daragh Byrne, and Yi Chen.

Information access tasks and evaluation for personal lifelogs. 2008.

[88] D. Kahneman, A.B. Krueger, D.A. Schkade, N. Schwarz, and A.A. Stone. A

survey method for characterizing daily life experience: The day reconstruc-

tion method. Science, 306(5702):1776–1780, 2004.

[89] Vaiva Kalnikaite, Abigail Sellen, Steve Whittaker, and David Kirk. Now

let me see where i was: understanding how lifelogs mediate memory. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 2045–2054. ACM, 2010.

[90] Diane Kelly. Methods for evaluating interactive information retrieval systems

with users. Foundations and Trends in Information Retrieval, 3(12):1–224,

2009.

[91] Liadh Kelly, Jinyoung Kim, and David Elsweiler. Workshop on evaluating

personal search. In ACM SIGIR Forum, volume 45, pages 81–86. ACM,

2012.

[92] Paul Kelly, Aiden Doherty, Emma Berry, Steve Hodges, Alan M Batterham,

and Charlie Foster. Can we use digital life-log images to investigate active

and sedentary travel behaviour? results from a pilot study. International

Journal of Behavioral Nutrition and Physical Activity, 8(1):1–9, 2011.

[93] Paul Kelly, Aiden R Doherty, Alex Hamilton, Anne Matthews, Alan M Bat-

terham, Michael Nelson, Charlie Foster, and Gill Cowburn. Evaluating the

feasibility of measuring travel to school using a wearable camera. American

journal of preventive medicine, 43(5):546–550, 2012.

184



[94] Adil Mehmood Khan, Young-Koo Lee, Sungyoung Y Lee, and Tae-Seong

Kim. A triaxial accelerometer-based physical-activity recognition via

augmented-signal features and a hierarchical recognizer. Information Tech-

nology in Biomedicine, IEEE Transactions on, 14(5):1166–1172, 2010.

[95] Basel Kikhia, Josef Hallberg, Johan E Bengtsson, and Stefan Savenstedt.

Building digital life stories for memory support. International journal of

Computers in Healthcare, 1(2):161–176, 2010.

[96] Jesper Kjeldskov and Connor Graham. A review of mobile hci research

methods. In Human-computer interaction with mobile devices and services,

pages 317–335. Springer, 2003.

[97] J.M. Kleinberg. Hubs, authorities, and communities. ACM Computing Sur-

veys (CSUR), 31(4es):5, 1999.

[98] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Jour-

nal of the ACM (JACM), 46(5):604–632, 1999.

[99] T. Kleinberger, M. Becker, E. Ras, A. Holzinger, and P. Müller. Ambient in-

telligence in assisted living: enable elderly people to handle future interfaces.

Universal access in human-computer interaction. Ambient interaction, pages

103–112, 2007.

[100] Alfred Korzybski. Science and sanity: An introduction to non-Aristotelian

systems and general semantics. Institute of GS, 1958.

[101] Christopher A Kurby and Jeffrey M Zacks. Segmentation in the perception

and memory of events. Trends in cognitive sciences, 12(2):72–79, 2008.

185



[102] J.R. Kwapisz, G.M. Weiss, and S.A. Moore. Activity recognition using cell

phone accelerometers. ACM SIGKDD Explorations Newsletter, 12(2):74–

82, 2011.

[103] Hyowon Lee, Alan F Smeaton, Noel E O’Connor, and Gareth JF Jones.

Adaptive visual summary of lifelog photos for personal information man-

agement. 2006.

[104] Hyowon Lee, Alan F Smeaton, Noel E OConnor, Gareth Jones, Michael

Blighe, Daragh Byrne, Aiden Doherty, and Cathal Gurrin. Constructing a

sensecam visual diary as a media process. Multimedia Systems, 14(6):341–

349, 2008.

[105] M.W. Lee, A.M. Khan, and T.S. Kim. A single tri-axial accelerometer-based

real-time personal life log system capable of human activity recognition

and exercise information generation. Personal and Ubiquitous Computing,

15(8):887–898, 2011.

[106] Sang Hyuk Lee, Soobin Lee, Heecheol Song, and Hwang Soo Lee. Wireless

sensor network design for tactical military applications: remote large-scale

environments. In Military Communications Conference, 2009. MILCOM

2009. IEEE, pages 1–7. IEEE, 2009.

[107] S.W. Lee and K. Mase. Activity and location recognition using wearable

sensors. Pervasive Computing, IEEE, 1(3):24–32, 2002.

[108] R. Lempel and S. Moran. Salsa: the stochastic approach for link-structure

analysis. ACM Transactions on Information Systems (TOIS), 19(2):131–160,

2001.

186



[109] L. Liao. Location-based activity recognition. PhD thesis, University of

Washington, 2006.

[110] Zhicheng Liao, Yun Xiong, and Yangyong Zhu. Daciot: A data cloud for the

internet of things. In Computer Science and Applications: Proceedings of the

2014 Asia-Pacific Conference on Computer Science and Applications (CSAC

2014), Shanghai, China, 27-28 December 2014, page 181. CRC Press, 2015.

[111] Wei-Hao Lin and Alexander Hauptmann. Structuring continuous video

recordings of everyday life using time-constrained clustering. SPIE, 2006.

[112] B. Lo, S. Thiemjarus, R. King, and G.Z. Yang. Body sensor network-a wire-

less sensor platform for pervasive healthcare monitoring. In The 3rd Inter-

national Conference on Pervasive Computing, volume 13, 2005.

[113] David G Lowe. Object recognition from local scale-invariant features. In

Computer vision, 1999. The proceedings of the seventh IEEE international

conference on, volume 2, pages 1150–1157. Ieee, 1999.

[114] S. Mann. Wearable computing: A first step toward personal imaging. Com-

puter, 30(2):25–32, 1997.

[115] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to information

retrieval, volume 1. Cambridge University Press Cambridge, 2008.

[116] Gérard Medioni, Isaac Cohen, François Brémond, Somboon Hongeng, and
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Appendix C

Survey on User Consent to Wearable

Sensors

The source of this survey is under here1.

1https://docs.google.com/spreadsheet/viewform?formkey=dFFJTWFQUG9uMnJObmpVcFN3Qkp6Nnc6MQ
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Feeling to Wearable Sensors
This is a survey caring about people's feeling to wearable sensors, including wearable cameras, 
amateur fitness devices, professional biometric devices and location recorders. Thanks a million 
for doing this survey.

* Required

Part 1: Wearable Cameras

There are a variety of different wearable cameras available right now, such as SenseCam, 
Looxcie, Go-Pro, variable mobile phone applications and so on. These sensor devices can shot 
video or photos as your personal lifelog.

What type of wearable cameras (if any) have you worn for a period of at least a few
hours? *

Check all that apply.

SenseCam/Vicon Revue

Looxcie

Go-Pro

Wearable Camera Glasses

Photo Capture Mobile Phone Software (lifelapse, clarity mobile app etc.)

I have never worn a wearable camera

Other:

1. 

If you have worn a wearable camera, for how long?

Mark only one oval.

Less than one day

More than one day but less than one week

More than one week but less than one month

More than one month but less than one year

More than one year

2. 
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If you have worn a wearable camera, how do you feel about wearing such a device?

Mark only one oval.

Very happy

Happy

Don't mind

A little unhappy

Very unhappy

Other:

3. 

If you are unhappy with wearing a wearable camera in the last question, please specify
the reasons.

4. 

If you have not worn a wearable camera, how do you think you would feel to wear such
a device?

Mark only one oval.

Very happy

Happy

Don't mind

A little unhappy

Very unhappy

Other:

5. 

In response to the previous question, why do you feel that way?6. 
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How do you feel if being captured by wearable cameras worn by others? *

Mark only one oval.

Very happy

Happy

Don't mind

A little unhappy

Very unhappy

Other:

7. 

In response to the previous question, why do you feel that way? *8. 

Which of the following two devices you would feel more comfortable to be in the
presence of ? *

Mark only one oval.

Wearable Photo Capture Devices

Wearable Video (including audio) Capture Devices

9. 

Why do you select that option in the previous question? *10. 

Do you concern about the appearance of the wearable camera devices? *

Mark only one oval.

Yes

No

11. 
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Wearable camera devices are believed to help offset some of the negative impacts of
memory disability. Therefore, which of the following would best describe your opinion
of when to begin using wearable cameras? *

Mark only one oval.

When I am healthy with no apparent memory disability

At the onset of a memory disability

Never

12. 

Part 2: Amateur Fitness Devices

Amateur Fitness Devices include Fit Bit, Nike + Pod etc that are able to store information such as 
the elapsed time of the workout, the distance traveled, pace, or calories burned by the individual 
wearing devices. Normally the amateur devices are small and portable.

What type of amatuer fitness device (if any) have you worn for a period of at least a few
hours?

Check all that apply.

Fit Bit

Nike + Pod

I have never worn any amateur fitness device.

Other:

13. 

If you have worn any Amateur Fitness Devices, for how long?

Mark only one oval.

Less than one day

More than one day but less than one week

More than one week but less than one month

More than one month but less than one year

More than one year

14. 

If you have worn an amateur fitness device, how do you feel about wearing such a
device?

Mark only one oval.

Very happy

Happy

Don't mind

A little unhappy

Very unhappy

Other:

15. 
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In response to the previous question, why do you feel that way?16. 

If you have not worn such a fitness device, how do you think you would feel to wear
such a device?

Mark only one oval.

Very happy

Happy

Don't mind

A little unhappy

Very unhappy

Other:

17. 

In response to the previous question, why do you feel that way?18. 

If you want to buy&wear an amateur device, which of the following will you consider?

Check all that apply.

Comfort to wear

Easy to wear

Good look

Cheap

Functional (can obtain your personal data that you want)

Easy to upload data and to examine data analysis result

Can easily share data with family and friends

Other:

19. 

Part 3: Biometric Devices
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It could be Heart Rate Monitor, BodyMedia SenseWear Pro, Equivital(Body sensor and GPS 
recorder), Readiband(Sleep tracking from your waist). These devices are mostly used to record 
biometric data, such as galvanic skin response (GSR) and skin temperature (ST) , physiological 
responses such as changes in heart rate or increased sweat production, sympathetic nervous 
activity. These data can be used for health analysis or professional sport training.

What type of biometric devices (if any) have you worn for a period of at least a few
hours? Please list one in one line.

20. 

If "yes" in the last question, how long did you wear this device?

Mark only one oval.

less than 1 day

More than 1 day but less than 1 week

More than 1 week but less than 1 month

More than 1 month

21. 

If you have worn an biometric device, how do you feel about wearing such a device?

Mark only one oval.

Very happy

Happy

Don't mind

A little unhappy

Very unhappy

Other:

22. 

In response to the previous question, why do you feel that way?23. 
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If you want to buy&wear a biometric device, which of the following will you consider?

Check all that apply.

Comfort to wear

Easy to wear

Good look

Cheap

Functional (can obtain your personal data that you want)

Easy to upload data and to examine data analysis result

Can easily share data with family and friends

Other:

24. 

Part 4: Location Devices

GPS recorder

What type of location recording devices (if any) have you worn for a period of at least a
few hours? Please list one in one line.

25. 

If "yes" in the last question, how long did you wear this device?

Mark only one oval.

less than 1 day

More than 1 day but less than 1 week

More than 1 week but less than 1 month

More than 1 month

26. 
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If you have worn an location recording device, how do you feel about wearing such a
device?

Mark only one oval.

Very happy

Happy

Don't mind

A little unhappy

Very unhappy

Other:

27. 

In response to the previous question, why do you feel that way?28. 

If you have worn an location recording device, why do you wear that gps device?

Mark only one oval.

Share location with family and friends

Your phone has gps, which was turned on for better location based services

For personal data collection, such how far have you travelled

Other:

29. 

Age *30. 

Gender *

Mark only one oval.

Male

Female

31. 
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