117,479 research outputs found

    Prediction of mobility entropy in an ambient intelligent environment

    Get PDF
    Ambient Intelligent (AmI) technology can be used to help older adults to live longer and independent lives in their own homes. Information collected from AmI environment can be used to detect and understanding human behaviour, allowing personalized care. The behaviour pattern can also be used to detect changes in behaviour and predict future trends, so that preventive action can be taken. However, due to the large number of sensors in the environment, sensor data are often complex and difficult to interpret, especially to capture behaviour trends and to detect changes over the long-term. In this paper, a model to predict the indoor mobility using binary sensors is proposed. The model utilizes weekly routine to predict the future trend. The proposed method is validated using data collected from a real home environment, and the results show that using weekly pattern helps improve indoor mobility prediction. Also, a new measurement, Mobility Entropy (ME), to measure indoor mobility based on entropy concept is proposed. The results indicate ME can be used to distinguish elders with different mobility and to see decline in mobility. The proposed work would allow detection of changes in mobility, and to foresee the future mobility trend if the current behaviour continues

    Supersampling and network reconstruction of urban mobility

    Get PDF
    Understanding human mobility is of vital importance for urban planning, epidemiology, and many other fields that aim to draw policies from the activities of humans in space. Despite recent availability of large scale data sets related to human mobility such as GPS traces, mobile phone data, etc., it is still true that such data sets represent a subsample of the population of interest, and then might give an incomplete picture of the entire population in question. Notwithstanding the abundant usage of such inherently limited data sets, the impact of sampling biases on mobility patterns is unclear -- we do not have methods available to reliably infer mobility information from a limited data set. Here, we investigate the effects of sampling using a data set of millions of taxi movements in New York City. On the one hand, we show that mobility patterns are highly stable once an appropriate simple rescaling is applied to the data, implying negligible loss of information due to subsampling over long time scales. On the other hand, contrasting an appropriate null model on the weighted network of vehicle flows reveals distinctive features which need to be accounted for. Accordingly, we formulate a "supersampling" methodology which allows us to reliably extrapolate mobility data from a reduced sample and propose a number of network-based metrics to reliably assess its quality (and that of other human mobility models). Our approach provides a well founded way to exploit temporal patterns to save effort in recording mobility data, and opens the possibility to scale up data from limited records when information on the full system is needed.Comment: 14 pages, 4 figure

    Dynamical Patterns of Cattle Trade Movements

    Get PDF
    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions

    Dynamical Patterns of Cattle Trade Movements

    Get PDF
    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions
    corecore