487 research outputs found

    Formalism and judgement in assurance cases

    Get PDF
    This position paper deals with the tension between the desire for sound and auditable assurance cases and the current ubiquitous reliance on expert judgement. I believe that the use of expert judgement, though inevitable, needs to be much more cautious and disciplined than it usually is. The idea of assurance “cases ” owes its appeal to an awareness that all too often critical decisions are made in ways that are difficult to justify or even to explain, leaving the doubt (for the decision makers as well as other interested parties) that the decision may be unsound. By building a well-structured “case ” we would wish to allow proper scrutiny of the evidence and assumptions used, and of the arguments that link them to support a decision. A

    Fault Injection based Failure Analysis of three CentOS-like Operating Systems

    Full text link
    The reliability of operating system (OS) has always been a major concern in the academia and industry. This paper studies how to perform OS failure analysis by fault injection based on the fault mode library. Firstly, we use the fault mode generation method based on Linux abstract hierarchy structure analysis to systematically define the Linux-like fault modes, construct a Linux fault mode library and develop a fault injection tool based on the fault mode library (FIFML). Then, fault injection experiments are carried out on three commercial Linux distributions, CentOS, Anolis OS and openEuler, to identify their reliability problems and give improvement suggestions. We also use the virtual file systems of these three OSs as experimental objects, to perform fault injection at levels of Light and Normal, measure the performance of 13 common file operations before and after fault injection.Comment: 9 pages, 8 figure

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms
    • …
    corecore