69 research outputs found

    Stream Fusion, to Completeness

    Full text link
    Stream processing is mainstream (again): Widely-used stream libraries are now available for virtually all modern OO and functional languages, from Java to C# to Scala to OCaml to Haskell. Yet expressivity and performance are still lacking. For instance, the popular, well-optimized Java 8 streams do not support the zip operator and are still an order of magnitude slower than hand-written loops. We present the first approach that represents the full generality of stream processing and eliminates overheads, via the use of staging. It is based on an unusually rich semantic model of stream interaction. We support any combination of zipping, nesting (or flat-mapping), sub-ranging, filtering, mapping-of finite or infinite streams. Our model captures idiosyncrasies that a programmer uses in optimizing stream pipelines, such as rate differences and the choice of a "for" vs. "while" loops. Our approach delivers hand-written-like code, but automatically. It explicitly avoids the reliance on black-box optimizers and sufficiently-smart compilers, offering highest, guaranteed and portable performance. Our approach relies on high-level concepts that are then readily mapped into an implementation. Accordingly, we have two distinct implementations: an OCaml stream library, staged via MetaOCaml, and a Scala library for the JVM, staged via LMS. In both cases, we derive libraries richer and simultaneously many tens of times faster than past work. We greatly exceed in performance the standard stream libraries available in Java, Scala and OCaml, including the well-optimized Java 8 streams

    Evolving a DSL implementation

    Get PDF
    Domain Specific Languages (DSLs) are small languages designed for use in a specific domain. DSLs typically evolve quite radically throughout their lifetime, but current DSL implementation approaches are often clumsy in the face of such evolution. In this paper I present a case study of an DSL evolving in its syntax, semantics, and robustness, implemented in the Converge language. This shows how real-world DSL implementations can evolve along with changing requirements

    Contrasting Compile-Time Meta-Programming in Metalua and Converge

    Get PDF
    Powerful, safe macro systems allow programs to be programatically constructed by the user at compile-time. Such systems have traditionally been largely confined to LISP-like languages and their successors. In this paper we describe and compare two modern, dynamically typed languages Converge and Metalua, which both have macro-like systems. We show how, in different ways, they build upon traditional macro systems to explore new ways of constructing programs

    Evolving a DSL implementation

    Get PDF
    Domain Specific Languages (DSLs) are small languages designed for use in a specific domain. DSLs typically evolve quite radically throughout their lifetime, but current DSL implementation approaches are often clumsy in the face of such evolution. In this paper I present a case study of an DSL evolving in its syntax, semantics, and robustness, implemented in the Converge language. This shows how real-world DSL implementations can evolve along with changing requirements

    A Practical Unification of Multi-stage Programming and Macros

    Get PDF
    Program generation is indispensable. We propose a novel unification of two existing metaprogramming techniques: multi-stage programming and hygienic generative macros. The former supports runtime code generation and execution in a type-safe manner while the latter offers compile-time code generation. In this work we draw upon a long line of research on metaprogramming, starting with Lisp, MetaML and MetaOCaml. We provide direct support for quotes, splices and top-level splices, all regulated uniformly by a level-counting Phase Consistency Principle. Our design enables the construction and combination of code values for both expressions and types. Moreover, code generation can happen either at runtime Ć  la MetaML or at compile time, in a macro fashion, Ć  la MacroML. We provide an implementation of our design in Scala and we present two case studies. The first implements the Hidden Markov Model, Shonan Challenge for HPC. The second implements the staged streaming library Strymonas

    Squid: Type-Safe, Hygienic, and Reusable Quasiquotes

    Get PDF
    Quasiquotes have been shown to greatly simplify the task of metaprogramming. This is in part because they hide the data structures of the intermediate representation (IR), instead allowing metaprogrammers to use the concrete syntax of the language they manipulate. Scala has had ``syntactic'' quasiquotes for a long time, but still misses a statically-typed version like in MetaOCaml, Haskell and F#. This safer flavor of quasiquotes has been particularly useful for staging and domain-specific languages. In this paper we present Squid, a metaprogramming system for Scala that fills this gap. Squid quasiquotes are novel in three ways: they are the first statically-typed quasiquotes we know that allow code inspection (via pattern matching); they are implemented purely as a macro library, without modifications to the compiler; and they are reusable in the sense that they can manipulate different IRs. Adapting (or binding) a new IR to Squid is done simply by implementing a well-defined interface in the style of object algebras (i.e., tagless-final). We detail how Squid is implemented, leveraging the metaprogramming tools already offered by Scala, and show three application examples: the definition of a binding for a DSL in the style of LMS; a safe ANF conversion; and the introduction of type-safe, hygienic macros as an alternative to the current macro system
    • ā€¦
    corecore