18,125 research outputs found

    Art/Sci Nexus, 9 Evenings Revisited

    Get PDF
    Following the exhibition of Hybrid Bodies at KKW in 2016 Andrew Carnie and I were invited back to act as mentors to a group of young artists and scientists from all over Europe undertaking a week long workshop designed to lead to new art/science collaborations. We were also invited to present the Hybrid Bodies project at a one day public event preceding the workshop

    Massively parallel single-molecule manipulation using centrifugal force

    Get PDF
    Precise manipulation of single molecules has already led to remarkable insights in physics, chemistry, biology and medicine. However, widespread adoption of single-molecule techniques has been impeded by equipment cost and the laborious nature of making measurements one molecule at a time. We have solved these issues with a new approach: massively parallel single-molecule force measurements using centrifugal force. This approach is realized in a novel instrument that we call the Centrifuge Force Microscope (CFM), in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force-field while their micro-to-nanoscopic motions are observed. We demonstrate high-throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Additionally, we verify the force accuracy of the instrument by measuring the well-established DNA overstretching transition at 66 ±\pm 3 pN. With significant benefits in efficiency, cost, simplicity, and versatility, "single-molecule centrifugation" has the potential to revolutionize single-molecule experimentation, and open access to a wider range of researchers and experimental systems.Comment: 5 pages, 3 figure

    Catalyzed relaxation of a metastable DNA fuel

    Get PDF
    Practically all of life's molecular processes, from chemical synthesis to replication, involve enzymes that carry out their functions through the catalytic transformation of metastable fuels into waste products. Catalytic control of reaction rates will prove to be as useful and ubiquitous in nucleic-acid-based engineering as it is in biology. Here we report a metastable DNA "fuel" and a corresponding DNA "catalyst" that improve upon the original hybridization-based catalyst system (Turberfield et al. Phys. Rev. Lett. 90, 118102-1118102-4) by more than 2 orders of magnitude. This is achieved by identifying and purifying a fuel with a kinetically trapped metastable configuration consisting of a "kissing loop" stabilized by flanking helical domains; the catalyst strand acts by opening a helical domain and allowing the complex to relax to its ground state by a multistep pathway. The improved fuel/catalyst system shows a roughly 5000-fold acceleration of the uncatalyzed reaction, with each catalyst molecule capable of turning over in excess of 40 substrates. With k_(cat)/K_M ≈ 10^7/M/min, comparable to many protein enzymes and ribozymes, this fuel system becomes a viable component enabling future DNA-based synthetic molecular machines and logic circuits. As an example, we designed and characterized a signal amplifier based on the fuel-catalyst system. The amplifier uses a single strand of DNA as input and releases a second strand with unrelated sequence as output. A single input strand can catalytically trigger the release of more than 10 output strands

    Hydraulic fracturing in cells and tissues: fracking meets cell biology

    Get PDF
    The animal body is fundamentally made of water. A small fraction of this water is freely flowing in blood and lymph, but most of it is trapped in hydrogels such as the extracellular matrix (ECM), the cytoskeleton, and chromatin. Besides providing a medium for biological molecules to diffuse, water trapped in hydrogels plays a fundamental mechanical role. This role is well captured by the theory of poroelasticity, which explains how any deformation applied to a hydrogel causes pressure gradients and water flows, much like compressing a sponge squeezes water out of it. Here we review recent evidence that poroelastic pressures and flows can fracture essential biological barriers such as the nuclear envelope, the cellular cortex, and epithelial layers. This type of fracture is known in engineering literature as hydraulic fracturing or "fracking"Peer ReviewedPostprint (author's final draft

    Microsystems technology: objectives

    Get PDF
    This contribution focuses on the objectives of microsystems technology (MST). The reason for this is two fold. First of all, it should explain what MST actually is. This question is often posed and a simple answer is lacking, as a consequence of the diversity of subjects that are perceived as MST. The second reason is that a map of the somewhat chaotic field of MST is needed to identify sub-territories, for which standardization in terms of system modules an interconnections is feasible. To define the objectives a pragmatic approach has been followed. From the literature a selection of topics has been chosen and collected that are perceived as belonging to the field of MST by a large community of workers in the field (more than 250 references). In this way an overview has been created with `applications¿ and `generic issues¿ as the main characteristics

    Millimeter-wave radiometry for radio astronomy Final report

    Get PDF
    Lunation study using millimeter wave radiometry for radio astronom

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping.

    Get PDF
    Human genome-wide association studies have identified thousands of loci associated with disease phenotypes. Genome-wide association studies also have become feasible using rodent models and these have some important advantages over human studies, including controlled environment, access to tissues for molecular profiling, reproducible genotypes, and a wide array of techniques for experimental validation. Association mapping with common mouse inbred strains generally requires 100 or more strains to achieve sufficient power and mapping resolution; in contrast, sample sizes for human studies typically are one or more orders of magnitude greater than this. To enable well-powered studies in mice, we have generated high-density genotypes for ∼175 inbred strains of mice using the Mouse Diversity Array. These new data increase marker density by 1.9-fold, have reduced missing data rates, and provide more accurate identification of heterozygous regions compared with previous genotype data. We report the discovery of new loci from previously reported association mapping studies using the new genotype data. The data are freely available for download, and Web-based tools provide easy access for association mapping and viewing of the underlying intensity data for individual loci
    • …
    corecore