396 research outputs found

    Doppler Radar Techniques for Distinct Respiratory Pattern Recognition and Subject Identification.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Development of Arduino-based portable systems for electroanalytical detection

    Get PDF
    This work presents the development of a multi-mode electroanalytical detection system based on Arduino microcontroller board. First, a multichannel impedance readout system is designed for alternating current electrokinetics (ACEK) based capacitive sensing. ACEK phenomena on 100μm interdigitated electrodes are observed via fluorescent particles as well as bioparticles, which illustrate the mechanisms of ACEK target enrichment for the capacitive sensing method. I2C multiplexer is applied to allow multiple impedance converters to work together providing continuous AC signals for ACEK capacitive sensing. Second, an electronic nose composed of three modules including a gas sensor array, a circuit for signal acquisition integrated with Arduino microcontroller board, and a PC for signal analysis is designed. A backpropagation neural network with one hidden layer and one output layer is trained to classify gas samples from binary and ternary mixtures of acetone, ethanol, and isopropyl alcohol. Three features are extracted from transient signals in a short time (as compared to steady-state signals), and the classification is done within 1 minute after gas reached the surface of the sensors. Third, a low-cost portable potentiometric sensing system for the detection of heavy metals in water is developed and assessed by testing with hand-fabricated all-solid-state Pb2+ and Cd2+ ion-selective electrodes (ISEs). To avoid the use of a multimeter, an extended-gate metal-oxide-semiconductor field-effect transistor (MOSFET) is applied to the readout circuit and integrated with an Arduino microcontroller board. ALD1106 matched MOSFET pair is chosen for differential sensing to overcome the possible drift problem of ISEs. With a threshold voltage of 0.7 V while operating at the subthreshold region, the MOSFET could be biased via a potentiometer to avoid the use of a voltage source. Last, the three different analytical detections are integrated into one multi-mode system in the design

    Robust Digital Molecular Design of Binarized Neural Networks

    Get PDF
    Molecular programming - a paradigm wherein molecules are engineered to perform computation - shows great potential for applications in nanotechnology, disease diagnostics and smart therapeutics. A key challenge is to identify systematic approaches for compiling abstract models of computation to molecules. Due to their wide applicability, one of the most useful abstractions to realize is neural networks. In prior work, real-valued weights were achieved by individually controlling the concentrations of the corresponding "weight" molecules. However, large-scale preparation of reactants with precise concentrations quickly becomes intractable. Here, we propose to bypass this fundamental problem using Binarized Neural Networks (BNNs), a model that is highly scalable in a molecular setting due to the small number of distinct weight values. We devise a noise-tolerant digital molecular circuit that compactly implements a majority voting operation on binary-valued inputs to compute the neuron output. The network is also rate-independent, meaning the speed at which individual reactions occur does not affect the computation, further increasing robustness to noise. We first demonstrate our design on the MNIST classification task by simulating the system as idealized chemical reactions. Next, we map the reactions to DNA strand displacement cascades, providing simulation results that demonstrate the practical feasibility of our approach. We perform extensive noise tolerance simulations, showing that digital molecular neurons are notably more robust to noise in the concentrations of chemical reactants compared to their analog counterparts. Finally, we provide initial experimental results of a single binarized neuron. Our work suggests a solid framework for building even more complex neural network computation

    Fake Malware Generation Using HMM and GAN

    Get PDF
    In the past decade, the number of malware attacks have grown considerably and, more importantly, evolved. Many researchers have successfully integrated state-of-the-art machine learning techniques to combat this ever present and rising threat to information security. However, the lack of enough data to appropriately train these machine learning models is one big challenge that is still present. Generative modelling has proven to be very efficient at generating image-like synthesized data that can match the actual data distribution. In this paper, we aim to generate malware samples as opcode sequences and attempt to differentiate them from the real ones with the goal to build fake malware data that can be used to effectively train the machine learning models. We use and compare different Generative Adversarial Networks (GAN) algorithms and Hidden Markov Models (HMM) to generate such fake samples obtaining promising results

    Crowdfunding Non-fungible Tokens on the Blockchain

    Get PDF
    Non-fungible tokens (NFTs) have been used as a way of rewarding content creators. Artists publish their works on the blockchain as NFTs, which they can then sell. The buyer of an NFT then holds ownership of a unique digital asset, which can be resold in much the same way that real-world art collectors might trade paintings. However, while a deal of effort has been spent on selling works of art on the blockchain, very little attention has been paid to using the blockchain as a means of fundraising to help finance the artist’s work in the first place. Additionally, while blockchains like Ethereum are ideal for smaller works of art, additional support is needed when the artwork is larger than is feasible to store on the blockchain. In this paper, we propose a fundraising mechanism that will help artists to gain financial support for their initiatives, and where the backers can receive a share of the profits in exchange for their support. We discuss our prototype implementation using the SpartanGold framework. We then discuss how this system could be expanded to support large NFTs with the 0Chain blockchain, and describe how we could provide support for ongoing storage of these NFTs

    Analog VLSI Circuits for Biosensors, Neural Signal Processing and Prosthetics

    Get PDF
    Stroke, spinal cord injury and neurodegenerative diseases such as ALS and Parkinson's debilitate their victims by suffocating, cleaving communication between, and/or poisoning entire populations of geographically correlated neurons. Although the damage associated with such injury or disease is typically irreversible, recent advances in implantable neural prosthetic devices offer hope for the restoration of lost sensory, cognitive and motor functions by remapping those functions onto healthy cortical regions. The research presented in this thesis is directed toward developing enabling technology for totally implantable neural prosthetics that could one day restore lost sensory, cognitive and motor function to the victims of debilitating neural injury or disease. There are three principal components to this work. First, novel integrated biosensors have been designed and implemented to transduce weak extra-cellular electrical potentials and optical signals from cells cultured directly on the surface of the sensor chips, as well as to manipulate cells on the surface of these chips. Second, a method of detecting and identifying stereotyped neural signals, or action potentials, has been mapped into silicon circuits which operate at very low power levels suitable for implantation. Third, as one small step towards the development of cognitive neural implants, a learning silicon synapse has been implemented and a neural network application demonstrated. The original contributions of this dissertation include: * A contact image sensor that adapts to background light intensity and can asynchronously detect statistically significant optical events in real-time; * Programmable electrode arrays for enhanced electrophysiological recording, for directing cellular growth, for site-specific in situ bio-functionalization, and for analyte and particulate collection; * Ultra-low power, programmable floating gate template matching circuits for the detection and classification of neural action potentials; * A two transistor synapse that exhibits spike timing dependent plasticity and can implement adaptive pattern classification and silicon learning
    corecore